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We investigate the viability of primordial black hole (PBH) formation in the standard model (SM) in a
scenario that does not rely on specific inflationary features or any exotic physics such as phase transitions
or nonminimal coupling to gravity. If the Brout-Englert-Higgs (BEH) field lies exactly at the transition
between metastability and stability, its potential exhibits an inflexion point due to radiative corrections. The
BEH can act like a stochastic curvaton field, leading to a non-Gaussian tail of large curvature fluctuations
that later collapse into PBHs when they reenter inside the horizon. This scenario would require a precise
value of the top-quark mass to ensure the Higgs stability, which is disfavored but still consistent with the
most recent measurements. However, we also find that large curvature fluctuations are also generated on
cosmological scales that are inconsistent with cosmic microwave background observations. We therefore
conclude that the SM cannot have led to the formation of PBHs based on this mechanism. Nevertheless, a
variation of the scenario based on the Palatini formulation of gravity may have provided the conditions to
produce stellar-mass PBHs with an abundance comparable to dark matter, without producing too large
curvature fluctuations on cosmological scales.
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I. INTRODUCTION

Primordial black holes (PBHs) have recently been pro-
moted among the hottest topics in cosmology. They could
explain a sizable or even the totality of the dark matter (DM)
in the Universe as well as some intriguing properties of black
hole binary mergers [1] observed by the LIGO-Virgo-Kagra
(LVK) collaboration [2–7], such as black holes in the pair-
instability mass gap heavier than 60M⊙ like in GW190521
[8], or binaries with low-mass ratios like GW190814 [9].
Other possible clues for the existence of PBHs [1,10–12]
include microlensing observations of quasars or stars, spatial
correlations in the source-subtracted x-ray and infrared
background radiations [13], the existence of supermassive
black holes very early in the Universe history, or unexpected
galaxies at high redshifts recently observed by the James
Webb Space Telescope [14,15]. At the same time, the
abundance of PBHs is subject to stringent limits from various
probes; see, e.g., [16,17] for recent reviews. There are only
two possible mass ranges for PBHs to significantly contrib-
ute to the DM: the asteroid-mass region between 10−16M⊙
and 10−11M⊙ and the solar-mass region that is only mildly
constrained by microlensing surveys.
PBHs may have collapsed in the very early Universe

[18,19] from preexisting inhomogeneities on smaller scales
than the ones probed by the cosmic microwave background
(CMB) anisotropies and the large scale structures of the
Universe. These fluctuations can typically be produced
during inflation but other mechanisms are also possible
(see Refs. [17,20,21] for reviews). However, despite their

interest on an observational point of view, almost all PBH
models suffer from severe fine-tuning and coincidence
issues [22], e.g., in order to explain a comparable abun-
dance to baryons or masses comparable to stars. In this
context, a recent progress has been to identify the role of the
QCD epoch in boosting the PBH formation [23–26] and
shaping their mass distribution with features induced by the
transient variation of the equation of state of the Universe at
this epoch. This effect provides a natural explanation to a
population of stellar-mass PBHs. Nevertheless, PBHs still
remain a rather unnatural hypothesis and all the models
proposed so far require exotic ingredients such as features
in the scalar field potential responsible for cosmic inflation,
a regime of ultraslow-roll, multifields, a nonminimal
coupling to gravity, etc., combined with unnatural param-
eter fine-tuning. So the present situation on the theory side
is still rather unsatisfactory.
In this Letter, we examine if PBHs could have formed

in the framework of the standard model (SM), with the
common addition of standard slow-roll inflation, without
requiring any exotic ingredient. The considered PBH
formation mechanism relies on the Brout-Englert-Higgs
(BEH) field that can be a light quantum stochastic spectator
field during inflation. For special values of the BEH mass,
the top quark mass, and the strong coupling constant, the
radiative-corrected BEH potential is stable and exhibits an
inflexion point. We show that in the regions of the Universe
where the BEH field after inflation end up to be very close
to this inflexion point, curvature fluctuations are generated
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when the BEH density transiently dominates, in addition to
the ones from slow-roll inflation. These are generated on all
scales and have a non-Gaussian tail on small scales, allowing
large fluctuations to collapse into PBHs when they later
reenter inside the horizon. We compute their statistics using
the stochastic δN formalism [27,28]. However, we also find
that the regions where the BEH field can generate PBHs
also produce too large curvature fluctuations on cosmologi-
cal scales, which is ruled out by CMB observations.
Nevertheless, we discuss the conditions under which such
a scenario could have been viable and believe that the
mechanism remains interesting in more particular scenarios.
As an example, we study the PBH formation from the BEH
field in the Palatini formulation of gravity [29], for which the
CMB constraints can be satisfied.
A connection between the BEH and PBH formation was

already envisaged in different contexts. One can mention
the model of critical Higgs inflation [30,31] where the BEH
has a nonminimal coupling and plays the role of the
inflaton along an inflexion-point potential. Another pos-
sibility is that the BEH field is trapped in a false vacuum
[32]. Finally, curvature fluctuations from the BEH as a
stochastic field were considered in [33], also finding that it
is inconsistent with CMB observations, but their mecha-
nism was different because curvature fluctuations were
produced during inflation, and not after it as in our model.
This Letter is organized as follows: After introducing the

BEH potential, we calculate the BEH probability distribu-
tion reached at the end of inflation, due to its stochastic
dynamics. Then we relate these field fluctuations to the
generation of curvature fluctuations after inflation, which
are compared to the CMB primordial power spectrum. Then
we explore the PBH formation in the Palatini formulation of
gravity andwe compute the expected PBHmass distribution
from the statistics of the curvature fluctuations generated by
the BEH field. Finally, we discuss our findings and present
our conclusions and some perspectives.

II. THE BEH POTENTIAL

In our scenario, we consider an inflaton field ϕ whereas
the BEH field h is a light stochastic spectator field,
minimally coupled to gravity, with a mass mh ≪ H during
inflation, such that it typically experiences quantum fluc-
tuations of order H=2π over one e-fold of expansion. We
chose the top quark mass, the BEH bare mass, and the QCD
coupling constant such that the BEH potential exhibits an
inflexion point. The effective BEH potential at large field
values, where h ≫ υ, with v being the scalar vacuum
expectation value (VEV), is given by

VðhÞ ¼ λðhÞ
4

h4; ð1Þ

where the self-coupling λðhÞ is determined by the so-called
β function, βλ ¼ dλ=d ln μ. The β function has been

computed from the contributions of top Yukawa couplings
at the one-loop level and higher orders for which we also
consider the strong couplings and the BEH self-coupling as
well as the anomalous dimensions of the scalar field
[34,35]. For this purpose, we have used the code provided
in [35], based on [34,35], which includes the two-loop and
three-loop radiative corrections to the BEH potential.
The two important parameters in theSMthat determine the

electroweak phases are the BEH mass mh ¼ ð124.94�
0.17Þ GeV and the top-quark mass mt ¼ ð171.1�
0.4Þ GeV [36,37]. These measured values of mh and mt
place the SM almost near the transition between the stability
and metastability regimes [38,39].
In Fig. 1 we depict the potential for different values of

the top-quark mass, assuming the best fits of the BEH mass
and strong coupling constant. For a fine-tuned value of
mt ¼ 171.28604 GeV, we obtain a near-inflexion point in
the scalar potential (black line). This inflection point marks
the transition from the stable to the metastable regime. In
Fig. 1, we illustrate how the top quark mass sensitivity can
lead to this inflection point. For simplicity, we describe the
scenarios depicted by gray lines as belonging to the stable
regime and those by blue lines as metastable. It is important
to note that all cases represented in the plot do not exhibit
negative potential energy.

III. CURVATURE FLUCTUATIONS FROM THE
BEH STOCHASTIC SPECTATOR FIELD

During inflation, the BEH field is typically very light
with a mass mh ≪ H, with H being the expansion rate.
In this limit, one can calculate the evolution, in e-fold
time Ninf , of the variance of its quantum fluctuations. We
distinguish between the field fluctuation in a Hubble-sized

FIG. 1. The BEH field potential with a near-inflection point
(black line). The dashed lines correspond to different values of
the top quark mass, given in the legend. Mp is the reduced Planck
mass. The mass of BEH is fixed to mh ¼ 125.7 GeV and the
strong coupling constant to αs ¼ 0.1184.
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region at time Ninf with respect to the mean field value in
the immediately surrounding region, δhin, and the fluc-
tuation of that outside mean field value compared to the
averaged field value in the whole observable patch of the
Universe, denoted δhout. We assume that the first slow-roll
parameter ϵ1, defined as ϵ1 ≡ −d lnH=dN, is slowly
varying during inflation while the second parameter ϵ2 ≡
d ln ϵ1=dN is assumed to be constant. One gets [40]

hδh2outðNinfÞi ≃
H2�

8π2ϵ1�

�
1 − e−2ϵ1�ðNinf−Ninf;�Þ� ð2Þ

hδh2inðNinfÞi ≃
H2�
4π2

exp

�
−2

ϵ1�
ϵ2�

h
eϵ2�ðNinf−Ninf;�Þ − 1

i�
; ð3Þ

where we assume that the slow-roll parameters at the time a
pivot scale k� exited the horizon, and are given by ϵ1� ¼
0.0002 and ϵ2� ¼ 0.035. These values are compatible with
the ones derived for R2 theories such as the Starobinsky
inflation model, and with CMB observations. The Hubble
rate parameter at the same time is H� ¼ 5.8 × 10−6MP in
order to get the correct CMB normalization, while the
tensor-to-scalar ratio is then r ¼ 16ϵ1� ¼ 0.0032. The e-
fold time during inflation Ninf is arbitrarily scaled such that
the e-fold at horizon exit of k� is Ninf � ¼ 0. We are
interested in the evolution of field fluctuations at Ninf >
0 that are inside Universe patches of similar size as our
observable Universe. We denote hhi the mean BEH field
value in our observable patch and treat it as a free
parameter.
The equations governing the evolution of h in the

subsequent matter era are

h00 þh0
1

2ρ

�
−3ρme−3N þh0

∂V
∂h

�
þ3h0 þ3M2

P

ρ

∂V
∂h

¼ 0; ð4Þ

where primes denotes derivatives in respect to e-folds, MP
is the reduced Planck mass, and ρm is the matter density at
some initial time before the BEH starts to dominate. We
thus assume that the BEH quickly dominates during the
reheating phase, but alternatively, one may have considered
a rapid transition to the radiation era and adapt the above
equation accordingly, without significantly changing our
results. In the following we define hic as the considered
initial field values for the numerical integration of Eq. (4)
and hcr as the field value at the inflection point (or local
maximum). The total energy density ρ is given by

ρ ¼ ρme−3N þ VðhÞ; ð5Þ

and we consider an initial e-fold time N ¼ 0 for the
spectator-field domination phase that corresponds to ρm ¼
10VðhÞ initially. This choice ensures that the field evolution
is frozen by the Hubble friction from the matter density
before the numerical integration starts. A larger initial value

of ρm would not have led to sizable curvature fluctuations.
We end the numerical integration when the first slow-roll
parameter reaches unity and neglect the kinetic terms
during the slow-roll phase as well as the subsequent
oscillatory phase, because they do not induce sizable
additional curvature fluctuations, as discussed in [40].
In Figs. 2 and 3 we depict the number of e-folds Nh that

are realized in this phase for various initial field values,

FIG. 2. Number of e-folds realized during the BEH spectator
field domination phase, as a function of the difference between
the initial BEH field value hic and the potential maximum hcr, for
top quark masses corresponding to the metastable regime, with
the BEH mass and the strong coupling constant being as in Fig. 1.

FIG. 3. Number of e-folds realized during the BEH spectator
field domination phase, as a function of the difference between
the initial BEH field value hic and the near-inflection point hcr of
the potential, for top quark masses corresponding to the stable
regime, with the BEH mass and the strong coupling constant
being as in Fig. 1. The solid lines are for initial values lower than
the inflexion point, hic < hcr, while the dashed lines are for larger
initial values, hic > hcr.
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after solving Eq. (4) for several choices of the top quark
mass. The range of initial conditions is chosen near the
local maximum of the potential for top quark mass values in
the metastability regime shown in Fig. 2, or near the
inflection point for values in the stability regime, extending
down to values close to the bottom of the potential in both
cases. In Fig. 3 we also show initial conditions above the
near inflexion point (dashed lines). In all cases, we find that
more than one e-fold can be realized if the top-quark mass
is sufficiently fine-tuned. When this is translated in a
curvature fluctuation, one therefore expects to gener-
ate PBHs.
The probability that a field fluctuation δhin, described by

the stochastic dynamics during inflation, becomes a cur-
vature fluctuation ζ ≡ ζin − ζout [calculated as ζinðxÞ¼
NðδhinþδhoutþhhiÞ−hNi and ζoutðxÞ¼NðδhoutþhhiÞ−
hNi], as studied in Refs. [24,40], leading to

PðζÞ ¼
Z

dδhoutPðδhinÞPðδhoutÞ
dh
dN

����
hout

; ð6Þ

where PðδhinÞ and PðδhoutÞ are the Gaussian probability
distributions of the corresponding field fluctuations during
inflation, with variances hδh2ini and hδh2outi that can be
approximated by Eqs. (2) and (3).
In Fig. 4 we depict the probability distribution of ζ, for

different fluctuation sizes that are associated to different
values of Ninf . Clearly, one can notice that these distribu-
tions, even if they become non-Gaussian as Ninf increases,
always have a variance that is much larger for the observed
10−5 curvature fluctuations on CMB scales. More precisely,
the condition on the power spectrum of curvature fluctua-
tions produced by the BEH field, in the δN formalism, can
be obtained as

Pζ ≃
H2�

4π2M2
P

�
dN
dh

�
2
����
h¼hhi

≪ 2.1 × 10−9 ð7Þ

whereas in our model this condition is not satisfied, because
dN=dh is at best of order 103MPl.
As Ninf increases, the distribution of curvature fluctua-

tions becomes broader. This allows the distribution to reach
values larger than the threshold for PBH formation (gray
dot-dashed line). However, despite the elegance of this
mechanism, the large-scale curvature fluctuations do not
pass the constraints imposed by CMB observations. The
origin of this problem comes from the fact that the field
value at the inflection point or at the potential maximum is
much larger than Hinf that characterizes the size of the
quantum field fluctuations. If future refined calculations of
the effective BEH potential in the SM or some of its
extensions (e.g., in supersymmetry or supergravity frame-
works) show that the BEH potential exhibits an inflexion
point pushed down to a value hcr ≲ 10−4MPl, then we could
select values of hhi close to the bottom of the potential that
lead to tiny curvature fluctuations in agreement with CMB
observations, but with a growing variance that could allow
to cross the threshold of PBH formation on small scales,
following the mechanism investigated in [40] for a generic
spectator field. Below, we explore another option with the
Palatini formulation of gravity, where there is no inflexion
point but a plateau potential.

IV. THE PALATINI FORMULATION: ONE WAY
TO FORM PBHS AND EVADE
THE CMB CONSTRAINTS

We have highlighted the impossibility for the BEH
spectator field scenario to produce small enough curvature
perturbations on CMB scales and at the same time lead
to PBHs.
The BEH field could be the inflaton if it has a non-

minimal coupling in the action [41,42]. A more general
approach can be realized through the so-called Palatini
formulation [29], in which the connection Γα

βγ and the
metric gμν are treated as independent variables. We now
consider the case where the BEH field is not the inflaton but
a spectator field and show that the changes in the effective
potential can lead to the PBH production, while respecting
CMB the constraints. The Einstein-frame action is given by

S ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ KðhÞgμν∂μh∂νh

þ 2Ω−4ðhÞVðhÞ�; ð8Þ

where the kinetic term is

KðhÞ ¼ 1

ΩðhÞ2 ð9Þ

FIG. 4. Probability distribution of curvature fluctuations ζ pro-
duced by theSMBEHfield, assumingmt¼171.2860319GeV,with
mh and αs as in Fig. 1. The vertical line corresponds to the critical
threshold ζcr for PBH formation.
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and with

Ω2 ¼ 1þ ξh2; ð10Þ

where ξ is the nonminimal coupling of the field. The
potential with a canonical kinetic term is given by [29]

Uðh̃Þ ¼ 1

4ξ2
λtanh4ð

ffiffiffi
ξ

p
h̃Þ: ð11Þ

The ξ parameter can be fixed such that curvature fluctua-
tions from h̃ are below the CMB level on the cosmological
scale. The potential has a plateau at large values of the field
and could lead to inflation [29,43]. In our case, we instead
consider the regime ξ ≫ 1. The double advantage of this
potential is that (i) one can assume hhi ≪ ξ−1 close to the
bottom of the potential where the induced curvature
fluctuations remain smaller than the ones observed on
CMB scales, and (ii) its stochastic fluctuations during
inflation can reach the plateau region in rare regions that
will generate large curvature fluctuations leading to PBHs.
We solve the field dynamics for this potential and multiple
initial field values, and depict in Fig. 5 the expected
additional expansion coming from the spectator field
dominated phase. In the inner panel, we show its variations
with respect to the initial field value that are needed in the
δN formalism to compute the spectrum of curvature
fluctuations. In order to get PR < 2 × 10−9, according to
Eq. (7), one needs dN=dhic < 50. This condition is found
to be satisfied when hhi < 8 × 10−6MP. We then compute
the probability of PBH formation in this model, following
the methodology introduced above. An example of the
distribution of curvature fluctuations is displayed on Fig. 6.
It shows that a small fraction of them exceed the threshold

for PBH formation. Therefore, in the case of Palatini
formulation we can fulfill both the condition of small
curvature fluctuations on CMB scales and get PBH for-
mation on small scales.

V. PBH MASS DISTRIBUTION

PBH formation is contingent upon surpassing a specific
threshold for the density perturbations of the early
Universe. This threshold depends on various factors,
including the equation of state of the primordial plasma
[25,26,44,45]. Additionally, the shape of the density
perturbations plays a crucial role. In this section, we
estimate the fractional abundances of PBHs for the
SM BEH potential and for the potential obtained by
using the Palatini formulation of gravity. One can relate
the PBH mass MPBH to the corresponding comoving
fluctuation scale k and to the e-fold time Ninf at which
it exits the horizon during inflation through MPBH=M⊙ ≃
½k=ð2 × 107Þ Mpc−1�−2 ≃ 2 × 1013 expð−2NinfÞ. The den-
sity fraction of PBHs per unit of logarithmic mass at
formation can be evaluated as

βðMPBHÞ≡ 1

ρcr

dρPBH
d lnMPBH

¼
Z

∞

ζcr

PðζÞdζ; ð12Þ

where ρcr is the critical density, ζcr denotes the threshold of
the curvature fluctuation for PBH formation, and PðζÞ
denotes the probability density function described in
Eq. (6). In Eq. (12), we implicitly assumed a top hat
window function over unit intervals of ln k justified by one
e-fold separation of the scales associated to the inner and
outer regions. For the threshold, we take into account its
variations due to the QCD crossover transition, following
[25,40]. More precisely, we assumed that ζcr ¼ 0.55 in the
radiation era and considered relative variations around this

FIG. 5. Number of e-folds realized during the spectator field
domination phase, as a function of the initial BEH field, assuming
ξ ¼ 4 × 1012. The enlarged plot shows the derivative of the field
with respect to this number of e-folds.

FIG. 6. Probability distribution of curvature fluctuations in the
BEH-Palatini scenario, obtained at different scales related to the
e-fold time Ninf during inflation at which it exits the Hubble
radius. The vertical line shows the considered curvature threshold
ζcr for PBH formation.
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value at the QCD epoch. One could question the validity of
this threshold value. In fact, there is so far no simulation of
PBH formation in numerical relativity that assumes our
probability distribution of curvature fluctuations, so the
exact threshold value in the radiation era could be slightly
different than the assumed one. Nevertheless, we argue that
the value of hhi can always be anthropically selected to
compensate a change in ζcr, in order to lead to the same
PBH abundance. Future work using dedicated numerical
relativity simulations could help to better understand
how the threshold varies in non-Gaussian models like
ours. Then we compute the today fractional abundances
fPBH as [23]

fPBHðMPBHÞ ≈ 2.4βðMPBHÞ
�
2.8 × 1017M⊙

MPBH

�
1=2

: ð13Þ

The resulting abundance of PBHs is shown in Fig. 7. In
both models, the abundance comes from the extra expan-
sion after inflation and one can also notice the imprints
from the QCD transition, with a peak at around MPBH ≈
2M⊙ and a bump from 30M⊙ to 100M⊙. The value of hhi is
adequately chosen to get all the dark matter made of PBHs,
after integrating the mass distribution. It is worth noticing
that a different value can lead to lower dark matter
fractions, without significantly changing the normalized
mass distribution. Given that it is a stochastic variable, with
different realizations in different Universe patches, the total
abundance of PBHs would in fact be typically lower or
higher in other regions outside our observable Universe.
Therefore in this scenario, one can invoke an anthropic
selection argument to evade the usual fine-tuning problem
linked to PBH formation [24].

The exact shape of the mass distribution also depends
on the choice of slow-roll inflationary parameters. An
overproduction of light PBHs can be avoided even if the
value of hδh2outi grows until the end of inflation, which
tends to ease the formation of light PBHs. The reason is that
at the same time, hδh2ini is progressively suppressed when
Ninfϵ2� ≳Oð1Þ, i.e., when Ninf ≳ 25. For light PBHs, this
latter effect counterbalances the former. Its importance
depends on ϵ1� and ϵ2� and it influences the global shape of
the distribution.
Those results are consistentwith those obtained in [40] for

a generic spectator field with a plateau-like potential.
Interestingly, there is no overproduction of light or super-
massive PBHs and most of the abundance comes from
stellar-mass PBHs. For the mass distribution obtained in the
Palatini framework, we even obtain a larger suppression of
the mass function that is not reminiscent of the one obtained
with a nearly scale invariant spectrum of Gaussian fluctua-
tions as in [11]. This type of mass functions could more
easily evade microlensing and CMB constraints and have
specific signatures in the PBH merging rates that could be
observed with GW observations.
We did not explore the impact of the radial profile of the

curvature fluctuations or of the scaling relation of the critical
threshold, which can alter the QCD features in the final PBH
mass distribution, as well as the overall abundance since it
can anyway be rescaled by an adequate choice of hhi.

VI. DISCUSSION AND CONCLUSION

Exploring the role of spectator fields offers a promising
avenue to understand the formation of PBHs, especially
because of important fine-tuning issues in the vast majority
of formation scenarios. Unlike alternative models that rely
on parameter fine-tuning, specific inflationary features, or
exotic physics, the generation of PBHs through the sto-
chastic fluctuations of a light scalar field during inflation
emerges as a relatively generic process. Moreover, the
stringent observational constraints on the abundance and
mass distribution of PBHs, as well as some possible
positive observational evidences, provide valuable insights
into the early Universe and the enigmatic properties of DM.
In this study, by considering the BEH field as the most

natural candidate for a light quantumstochastic spectator field
during inflation,wehave explored theultimate possibility that
PBHs could even have formed within the SM. However, our
analysis reveals thatwhile theBEH field cangive rise to PBHs
for specific values of strong coupling constant, of the top
quark, and of the BEH mass, leading to an inflexion point in
the potential obtained by including radiative corrections, this
would lead at the same time to excessive curvature fluctua-
tions on cosmological scales compared to CMB anisotropy
observations. As a result, this scenario appears to be
excluded. However, we have also discussed the conditions
under which such a scenario could become viable, which
could lead to interesting connections between PBHs and the

FIG. 7. Abundance of PBHs for the SM BEH field (without
nonminimal coupling, solid line) for hhi ¼ 0.185MP, and for
the Palatini formulation of gravity (dashed line) with hhi ¼
3.87 × 10−6MP. For the other parameters, we assume those of
Figs. 4 and 5.
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intriguing fact that the SM exactly lies at the transition
between metastability and stability. Then we also studied a
variation of the scenario that assumes a nonminimal
coupling to gravity in the context of the Palatini theoretical
framework. In this case, we obtained a viable scenario of
PBH formation with a broad mass distribution and a peak at
the solar-mass scale that could be tested with GW obser-
vations. This scenario is a first concrete realization of the
generic mechanism that we investigated in [40].
Our findings emphasize the interest to pursue the

exploration of possible PBH formation scenarios based
on the BEH field, also encouraging forthcoming studies to
better understand why the SM parameters are such that the
BEH field exactly lies between the metastable and stable

regimes. Other perspectives include more accurate deter-
mination of the PBH mass function, comparison with the
black hole population inferred from GW observations, and
the computation of the scalar-induced GW background
from our fully non-Gaussian curvature perturbations, on
frequencies relevant for the recent GW observation with
pulsar timing arrays.
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