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This study is devoted to the inference problem of extracting the nuclear matter properties directly from a
set of mass-radius observations. We employ Bayesian neural networks (BNNs), which is a probabilistic
model capable of estimating the uncertainties associated with its predictions. To simulate different noise
levels on theMðRÞ observations, we create three different sets of mock data. Our results show BNNs as an
accurate and reliable tool for predicting the nuclear matter properties whenever the true values are not
completely outside the training dataset statistics, i.e., if the model is not heavily dependent on its
extrapolating capacities. Using real mass-radius pulsar data, the model predicted, for instance, Lsym ¼
39.80� 17.52 MeV and Ksym ¼ −101.67� 62.86 MeV (2σ interval). Our study provides a valuable
inference framework when new neutron star data becomes available.
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I. INTRODUCTION

The properties and composition ofmatter properties inside
neutron stars (NSs) remain an open question. The equation of
state (EOS) of dense and asymmetric nuclear matter, realized
inside NSs, is the key quantity of research in NS physics.
Constraints on the EOS at moderate and high baryonic
densities aremainly supplied byobservations ofmassiveNSs
(M=M⊙): 1.908� 0.016 for PSR J1614 − 2230 [1–3],
2.01� 0.04 for PSR J0348–0432 [4], 2.08� 0.07 for
PSR J0740þ 6620 [5], and 2.13� 0.04 for J1810þ 1714
[6]. Furthermore, the recent advent of multimessenger
astrophysics combined different sources of information
regarding NS physics (e.g., gravitational waves, photons,
and neutrinos). The observation of compact binary coales-
cence events such as GW170817 [7] and GW190425 [8] by
LIGO/Virgo collaboration posed further constrains on the
EOS. The recent inferences of the PSR J0030þ 045 pulsar
mass [9,10] and PSR J0740þ 6620 radius [11–13] by
NICER (Neutron star Interior Composition ExploreR)
experiment also narrowed down the possible NS matter
scenarios. Observations from future experiments, with
higher precision measurements, such as the enhanced
x-ray Timing and Polarimetry mission (eXTP) [14,15], the
(STROBE-X) [16], and Square Kilometer Array [17] tele-
scope, will be fundamental in restricting the different
scenarios for the NS matter properties.
The low density region of the EOS is constrained by

chiral effective field theory (cEFT) [18,19], and at high

densities, pQCD is reliable (for a review [20]). The
inference of the EOS of NSs given a set of theoretical
and/or observational constraints is normally implemented
via Bayesian inference scheme, see, e.g., [21–23]. Another
interesting method also implemented is the Gaussian
processes [24–27]. Let us point out that several approaches
have considered agnostic descriptions of the EOS subjected
to the above constraints, in particular, in several works the
two extreme constraining EOS are connected using a
piecewise polytropic, speed of sound or spectral interpo-
lation, and if necessary, causality is imposed [28–33].
These descriptions do not allow, however, for the deter-
mination of the nuclear matter properties.
The use of neural networks (NNs) based inference

frameworks in high energy physics has gathered significant
attention across various disciplines, as highlighted by the
comprehensive review [34]. Our recent contribution [35]
focused on employing a Bayesian neural network (BNN) to
map NS observations to the speed of sound squared
and proton fraction inside NSs. Additionally, we explored
NNs in mapping the EOS of β-equilibrium NS matter to
the properties of nuclear matter in [36], where we tested
our final model with 31 nuclear models. Expanding beyond
our contributions, several studies have been conducted
[26,37–47]. For instance, deep NNs are explored to deduce
nuclear matter properties in [43,44] using two architectures:
one mapping MðRÞ curves to the EOS and the other
mapping the EoS to nuclear matter properties. However,
the need for robust uncertainty quantification is evident in
both articles. Addressing questions like “How confident is
a model about its predictions?” remains pivotal.
The present work aims to directly map a set of NS

observables (mass-radius observations) to nuclear matter
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properties using an inference framework based on BNNs.
Training on a dataset of relativistic mean field (RMF)
models constrained by minimal conditions such as low-
density properties and pure-neutron matter, our trained
model facilitates instantaneous inference for diverse
nuclear matter properties across various observation sets.
This approach eliminates the need for separate Bayesian
analyses for each observation set.
The paper is organized as follows. A basic introduction

to BNNs is presented in Sec. II. Then the family of nuclear
models chosen and the generation of the mock observation
datasets is explained in Sec. III. The model results for the
properties of nuclear matter are discussed in Sec. IV, where
the section is further divided into three tests, and lastly, the
conclusions are drawn in Sec. V.

II. BAYESIAN NEURAL NETWORKS

Bayesian neural networks (BNNs) represent a Bayesian
approach framework designed to quantify both aleatoric and
epistemic uncertainties within a dataset [48]. They can be
viewed as an extension of traditional NNswherein themodel
weights are stochastic and follow a specified probability
distribution. The prediction of BNNs, denoted as y� for a
given input x�, transforms into a Bayesian model average

Pðy�jx�; DÞ ¼
Z
θ
Pðy�jx�; θÞPðθjDÞdθ; ð1Þ

where θ denotes the model’s weights, D the dataset,
Pðy�jx�; θÞ is the network’s distribution (which captures
the noise present in the data), and PðθjDÞ is the posterior
distribution of our weights (which characterizes the model
uncertainty). Both aleatoric and epistemic uncertainties are

captured by, respectively, Pðy�jx�; θÞ and PðθjDÞ (see
Ref. [49] for details).
Variational inference method is used to solve Eq. (1),

where the real posterior PðθjDÞ is approximated by a
variational posterior qϕðθÞ. The Kullback-Leibler relation,
which measures the dissimilarity between two probability
distributions, is used to quantify the quality of the approxi-
mation (i.e., how close is the variational posterior to the real
posterior),

KLðqϕðθÞjjPðθjDÞÞ ¼
Z
θ
qϕðθÞ log

�
qϕðθÞ
PðθjDÞ

�
dθ: ð2Þ

The variational posterior is determined by optimizing the
following objective function (see Ref. [35] for details):

qϕ� ¼ arg min
qϕ

½KLðqϕðθÞkPðθÞÞ − EqϕðθÞðlogPðDjθÞÞ�:

ð3Þ
Choosing a multivariate Gaussian for the variational

posterior, qϕðθÞ ¼N ðμq;ΣqÞ, and a multivariate Gaussian
with diagonal covariance matrix for the prior, PðθÞ ¼
N ð0; IÞ, and using Monte Carlo sampling to calculate the
expected values of our target objective function, we obtain

FðD;ϕÞ ¼ 1

2Ds
½ð− logdetðΣqÞÞ− kþ trðΣqÞ þ ðμqÞTðμqÞ�

−
1

B

XB
i¼1

1

N

XN
n¼1

logPðyijxi; θðnÞÞ; ð4Þ

where θðnÞ are samples from the variational posterior, qϕðθÞ,
B is the number of points of the minibatch,Ds is the number

FIG. 1. Intuitive illustration highlighting the predicted uncertainty quantification obtained by the optimized BNN model. The mean
vector μ̂ and the variance vector σ̂2 of the predicting distribution Pðy�jx�; DÞ are calculated, for a fixed x�, utilizing the law of total
expectation and total variance. These principles are elucidated more comprehensively in our earlier work [35]. The equation governing μ̂
describes the mean vector obtained through the law of total expectation. Simultaneously, the variance vector, denoted by σ̂2 and obtained
via the law of total variance, is intricately partitioned into two distinctive components; an epistemic component (σ̂2epis) and an aleatoric
component (σ̂2alea).
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of points of the training dataset, k is the dimension of the
identitymatrix of theprior andN is thenumber of sampleswe
take off the variational posterior (we used N ¼ 104). Once
the network is trained and themean μq and covariancematrix
Σq are found, which best approximate the true posterior, we
solve Eq. (1) via Monte Carlo sampling,

Pðy�jx�; DÞ ¼
Z
θ
Pðy�jx�; θÞqϕðθÞdθ ð5Þ

¼ 1

N

XN
n¼1

Pðy�jx�; θðnÞÞ; θðnÞ ∼ qϕðθÞ: ð6Þ

The meaning of the last equation is schematically illustrated
in Fig. 1. Each sampledweightsθðnÞ corresponds to a specific
NN, and the BNNs output is determined by the ensemble
prediction.

III. DATASET

A. Nuclear models

The data we use for training the BNN models consists of
nuclear models based on a relativistic mean field (RMF)
description, where the nucleon interaction is mediated
through the exchange of scalar-isoscalar mesons, vector-
isoscalar mesons, and vector-isovector mesons. The model
details are omitted here but can be seen in [23]. The dataset
consisting of 25 287 nuclear models was obtained by
imposing minimal constraints on several nuclear saturation
properties, reproducing 2M⊙ NSs, and a consistent low-
density pure neutron matter with N3LO calculations in
chiral effective field theory (see Table I).
To a good approximation, the EOS of nuclear matter can

be written in terms of the binding energy per nucleon
ϵðn; δÞ and can be decomposed into a symmetric and
asymmetric part [55,56],

ϵðn; δÞ ≈ ϵSNMðnÞ þ EsymðnÞδ2 þ � � � ; ð7Þ

where δ ¼ ðnn − npÞ=n is the isospin asymmetry, np and
nn are the proton and neutron density, respectively, n ¼
np þ nn is the baryonic density, ϵSNMðnÞ ¼ ϵðn; δ ¼ 0Þ
represents the binding energy per nucleon of symmetric
nuclear matter, and EsymðnÞ denotes the symmetry energy,
which could be written as

EsymðnÞ ¼
∂
2ϵðn; δÞ
2∂δ2

����
δ¼0

: ð8Þ

Expanding both symmetric and asymmetric parts in a
Taylor series around the saturation density n0 until third
order, we get

ϵðn;δÞ≈ ϵ0 þ
K0

2
x2 þQ0

6
x3|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ϵSNMðnÞ

þ
�
Jsym þLsymxþ

Ksym

2
x2 þQsym

6
x3
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EsymðnÞ

δ2 þ � � � ;

ð9Þ

where x ¼ ðn − n0Þ=ð3n0Þ. The ϵ0 ¼ ϵSNMðn0Þ term
denotes the binding energy per particle, and Jsym the
symmetry energy, K0 is the incompressibility coefficient,
Q0 the skewness, while Lsym, Ksym, Qsym are, respectively,
the slope, curvature and skewness of symmetry energy at
saturation density, respectively. The dataset statistics for
the nuclear matter properties are in Table II. A detailed
examination of these parameters, including asymmetric
parameters with higher order effects in Eq. (7), can be
found in [57].

B. Structure

Our objective involves utilizing simulated observations
of neutron stars (referred to as the set X) as inputs for a
BNN model, denoted as PðYjX; θÞ, where θ represents
parameters sampled from the variational posterior distri-
bution of the model, i.e., θ ∼ qϕðθÞ. The primary objective
is to establish a probability distribution for the output space,
denoted as the set Y. This set encompasses properties of
nuclear matter, introduced in the preceding section and
detailed in Table II. However, our focus is specifically on
training and predicting the incompressibility K0 and skew-
ness Q0 of symmetric nuclear matter, and the symmetry
energy Jsym, along with its slope Lsym, curvature Ksym, and
skewness Qsym. We are not predicting the values of n0 and
E0 because they are theoretical and experimental well
restricted and have been strongly constrained when the
EoS dataset was generated [23]. Furthermore, those two
variables show small correlations with the input of our
model, being less informative for the predictions. In a
similar work in [44], the author also kept constant the

TABLE I. Constraints on the binding energy per nucleon ϵ0,
incompressibility K0, and symmetry energy Jsym at the nuclear
saturation density n0 (with 1σ uncertainties). The pressure of pure
neutron matter (PNM) is considered at densities of 0.08 fm−3,
0.12 fm−3, and 0.16 fm−3, obtained from a χEFT calculation [18].

Constraints

Quantity Value/band Ref

NMP
(fm−3) n0 0.153� 0.005 [50]

ϵ0 −16.1� 0.2 [51]
(MeV) K0 230� 40 [52,53]

Jsym;0 32.5� 1.8 [54]

PNM (MeV fm−3) PðρÞ 2 × N3LO [18]
dP=dρ >0

NS mass (M⊙) Mmax >2.0 [5]
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values of E0 and n0, doing a study with the use of two NN
architectures which first maps the observations to the EOS
curve and then maps pressure times baryonic density to the
parameters of nuclear matter.
The input X and output Y set are composed of D rows

of vectors x and y, respectively, where D represents
the dataset size we are utilizing. In simpler terms,
Y is expressed as Y ¼ fyðiÞgDi¼1, and X is denoted as
X ¼ fxðiÞgDi¼1. The size of the output vector is yðiÞ ¼
fK0; Q0; Jsym; Lsym; Ksym; Qsymg, while the input vector

xðiÞ is defined by 10 values; xðiÞ ¼ fðMðiÞ
j ; RðiÞ

j Þg5j¼1,
representing five simulated observations MjðRjÞ in the
mass-radius curve. Concerning the dataset size, we ran-
domly divided the total EOS models into two distinct sets:
a training set denoted as X and Y, incorporating 80% of
the data (D ¼ 22758 EOS), and a test set denoted as XT
and YT , comprising the remaining 20% (DT ¼ 2529 EOS).
In summary, our output elements are six-dimensional
vectors denoted as yðiÞ with a total of training and test
data expressed as Y ¼ fyðiÞg22758i¼1 and YT ¼ fyðiÞg2529i¼1 ,
respectively. Regarding the input space, we have a ten-

dimensional vector xðiÞ ¼ fðMðiÞ
j ; RðiÞ

j Þg5j¼1, and both the

training and test data are denoted as X ¼ fxðiÞg22758i¼1

and XT ¼ fxðiÞg2529i¼1 .

C. Observation mock data

The statistical procedure for generating the five mock
observations MjðRjÞ in the mass-radius curve with distinct
input noises originating in different datasets unfolds
through the following steps. For each EOS:
(1) We randomly sample five NS mass values, Mð0Þ

j ,
from a uniform distribution within the range of
1.0M⊙ to Mmax;

(2) We sample five values, σj;M, from a uniform dis-
tribution spanning the interval ½0; σM� (σM is in
Table III);

(3) We sample five values, σj;R, from a uniform dis-
tribution spanning the interval ½0; σR� (σR is in
Table III);

(4) The NS radius, Rj, is sampled from a Gaussian
distribution centered at the TOV solution, denoted as

RðMð0Þ
j Þ, with the standard deviations σj;R;

(5) Lastly, the NS mass is sampled from a Gaussian

distribution centered at Mð0Þ
j with the standard

deviations σj;M.
This process is summarized by the following equations:

Mð0Þ
j ∼ U½1;Mmax� ðin units ofM⊙Þ; ð10Þ

Rj ∼N ðRðMð0Þ
j Þ; σ2j;RÞ; where σj;R ∼ U½0; σR�; ð11Þ

Mj ∼N ðMð0Þ
j ;σ2j;MÞ; where σj;M ∼U½0;σM� j¼ 1;…;5:

ð12Þ
This method is very similar to the method implemented
in [38]. By performing the above numerical procedure,
we construct the initial input structure x ¼ ½M1;…;M5;
R1;…; R5�, where each pair (Mj, Rj) is a single realization
of the above procedure (observation). These pairs collec-
tively characterize the MðRÞ diagram of a given EOS. We
will replicate ns times the aforementioned procedure for the
same EOS, i.e., ns is the number of times we resample the
input vector, x, for the same EOS. As a result, the dataset is
organized asX ¼ fXignsi¼1 and Y ¼ fYignsi¼1. This approach
expands our dataset to a size of D ¼ ns ×D, where D
denotes the original dataset size for the number of EOSs.
For example, by choosing ns ¼ 120 implies the repetition
of these procedures 120 times for each EOS, resulting in
X ¼ fXig120i¼1 ¼ fX1;X2;…;X120g. We have generated a
total of three distinct datasets, whose properties are detailed

TABLE II. Extreme values and respective mean and standard deviation for nuclear matter parameters from the
source dataset we are employing. The dataset contains a total of 25287 nuclear models. All quantities are in MeV
except the saturation density n0, which is in fm−3.

Y Ȳ σY Ymin Ymax

n0 (fm−3) 0.153351 0.003356 0.140047 0.166157
E0 −16.099182 0.176263 −16.862894 −15.251849
K0 269.555070 19.696655 193.038134 347.284418
Q0 −381.870901 60.604233 −617.004518 −15.088353
Jsym (MeV) 31.870120 1.466915 25.416222 37.963163
Lsym 41.412327 9.824848 21.789640 93.972049
Ksym −107.711394 31.334004 −212.745127 16.062865
Qsym 1274.851388 297.082380 −63.828371 1962.652643

TABLE III. Generation parameters for each dataset.

Dataset σMðM⊙Þ σR (km)

0 0 0
1 0.136 0.626
2 0.271 1.253
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in Table III. The standard deviation for set 2 was chosen by
considering the ten initial values for the standard deviations
of mass and radius in Table VII, which correspond to the
ones with the smallest standard deviation for the radius. We
calculated the mean of these ten values. Set 1 comprises
half the values of set 2, and set 0 represents the values
without noise, as illustrated in Fig. 2. The reason we only
chose the ten values with a lower standard deviation of the
radius is that otherwise, the input noise would be so high
that the model would not be able to extract anything from it.
The creation of these three sets aims to investigate how the
model responds to different levels of noise. We utilized 120
mock observations (ns ¼ 120) in the training sets for each
EOS, while ns ¼ 1 was employed for the test sets. This
distinction mimics a real-world scenario where access to a
single mock observation of the “true” EOS is typical. Here,
a single mock observation corresponds to ns ¼ 1, repre-
senting five MjðRjÞ mock observations. It’s essential to
note that, for each EOS, there are 600 points in the MðRÞ
diagram, comprising 120 simulated observations for five
neutron star mock observations each.
In our previous investigation [35], we employed ns ¼ 60

during the training phase. However, for the current study,
where we have reduced the dimension of the output vector,
we wanted to enhance the model’s performance without
compromising training time and RAM usage. After exper-
imenting with different adjustments to either the input
vector or the ns value for the training, we found that setting
ns ¼ 120 yielded the optimal balance between improved
performance and computational efficiency.

D. Training procedure

To investigate the response of BNNs to varying input
noises and output targets, we conducted a series of
experiments involving the training of diverse functional
and stochastic models. The BNN models were trained

using distinct datasets generated following the guidelines
provided in Sec. III C. In the training stage, a portion of the
training data was randomly chosen as a validation set, with
80% dedicated to actual training and 20% for validation.
Additionally, both the input data X and output data Y were
standardized,1 given the significant differences in the
ranges of the output vector values. Defining the functional
models entailed adjusting the number of neurons, layers,
and activation functions. Table IV shows the best functional
model for all the datasets mentioned in Table III.
In our exploration of hidden layers, we considered

hyperbolic tangent, softplus, and sigmoid activation func-
tions, with a linear activation function chosen for the output
layer. The architecture incorporates three hidden layers,
each consisting of ten neurons. The output layer consis-
tently contains 12 neurons, with six dedicated to represent-
ing the mean and another six for the standard deviation of
the output probability distribution function. It is noteworthy
that we intentionally avoided incorporating correlation in
the output layer, as its inclusion led to inferior performance.
Consequently, the output layer is exclusively focused on
capturing the mean and standard deviation information of
the output distribution. The architecture adopted in this
study features two to three hidden layers, maintaining a
consistent number of neurons within each hidden layer.
The most favorable outcomes are achieved by employing

the sigmoid activation function in the hidden layers,
ensuring minimal loss and preventing divergence. It was
determined that the optimal number of hidden layers is
three. Detailed information on these configurations is
available in Table IV. During training, we use a learning
rate of 0.001 and employ the ADAM optimizer [58] with
the AMSgrad improvement [59]. The models undergo
training for 4000 epochs, utilizing a minibatch size of 1536.

FIG. 2. The gray area represents the extremes of the dataset, while the three lines represent three different EOSs. The points along the
lines represent the values corresponding to the respective sets, with the dataset size reduced to ns ¼ 30 for a clearer visualization.

1z ¼ ðx − μÞ=σ, where μ stands for the mean of the training
dataset and σ is the standard deviation of the training dataset.
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Concerning the stochastic model, we employ a Gaussian
prior with a mean of zero and a standard deviation of one.
While this prior choice lacks a specific theoretical justifi-
cation, it serves as a reasonable default prior, as discussed
in [48]. Future research could delve further into investigat-
ing the impact of prior parameters, similar to the approach
taken in Ref. [60]. Additionally, we select a multivariate
normal distribution as the variational posterior, initialized
with a mean of 0 and a diagonal covariance matrix, where
the standard deviation is equal to logð1þ exp 0Þ ¼ 0.693.
Furthermore, all BNNs models were coded using the
Tensorflow library [61], more specifically we use Keras
[62], an high-level API of the TensorFlow.

IV. RESULTS

After training our model, we proceed to assess its
performance through a series of tests. Initially, we evaluate
the model’s accuracy using the test set derived from the
original set of EOS outlined in Sec. IVA. Subsequently, in
Sec. IV B, we examine the model’s performance with
different nuclear models. Lastly, we conduct a test on
our model using the observations outlined in Sec. IV C. We
should clarify that whenever we say, for instance, the
results of set 1, we are specifically indicating the BNN
model trained on dataset 1 and evaluated with a corre-
sponding noise level from set 1. This applies to Secs. IVA
and IV B. However, for the last Sec. IV C, it’s crucial to
highlight that no noise is applied to the test set, i.e., the test
set consists of the mean values of the pulsar observations.

A. Test set prediction

Analyzing the predictions of our BNN model across the
three sets, we begin by examining the behavior of model
predictions over the entire test set. We define the normal-
ized residuals as ΓðYÞ ¼ ðμ̂Y − YTÞ=σ̂Y , where μ̂Y and σ̂Y
are the mean and standard deviation predicted by the
model, and YT is the true value. Subsequently, we evaluate
the coverage probability.
The results for these two metrics are illustrated in Fig. 3

for our six-dimensional output vector across the three sets.
Focusing on Γ (upper panel), we observe that for all three
datasets, approximately 50% of the values cluster around
zero. Additionally, the 95% confidence level is situated
between �2σ, with slight deviation for Qsym. The analyses
of the coverage probability (bottom panel) shows the

model’s ability to capture the data distribution. This metric
quantifies the percentage of values within specific intervals
relative to the total values in the test set. In particular, we
examine whether the proportion of values falling within 1σ
of the output distribution aligns with the expected 68.3%.
This evaluation is then extended to 2σ (95.4%) and 3σ
(99.7%) intervals. The model demonstrates an effective
prediction of the associated percentage for the standard
deviation being measured.
The observed behavior of Qsym in the coverage proba-

bility can be attributed to the considerable skewness in the
distribution of Γ, distinguishing it from the other nuclear
properties.
It is crucial to note from these two plots that the results

for the three sets are remarkably consistent. This observation

FIG. 3. In the upper plot, the median for ΓðYÞ ¼ ðμ̂Y − YTÞ=σ̂Y
is denoted by circular markers for each set, while the 95% con-
fidence level is indicated between square markers (97.7% CL)
and star markers (2.3% CL). In the bottom plot, the coverage
probability is represented with circular markers for 68.3%, square
markers for 95.4%, and triangular markers for 99.7% confidence
levels.

TABLE IV. Structures of the final BNN models.

Layers Activation Neurons

Input N/A 10
Hidden layer 1 Sigmoid 10
Hidden layer 2 Sigmoid 10
Hidden layer 3 Sigmoid 10
Output Linear 12
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indicates that irrespective of the increased noise in our input
vector, which leads to an increased uncertainty as evident in
subsequent plots, the model consistently adapts to preserve
the statistics of the dataset.
To gain a deeper insight into the impact of each set on the

model prediction, we introduce the following metric:

η½a; b� ¼ 1

T

�XT
i¼1

σ̂ai − σ̂bi
σ̂ai

�
× 100: ð13Þ

This metric provides insights into the percentage uncer-
tainty deviation between models trained with sets ’a’ and
’b’ across the six values of the output vector, and T is the
total number of EOS in the test set. The results are shown in
Fig. 4. Upon examining the plot, a notable observation is
that, for all three η vectors, the quantity Q0 demonstrates
the most significant variation.
Qualitatively this aligns with our expectations, given that

Q0 exhibits the highest correlation with the observables, as
illustrated in Fig. 12 in Appendix A. It’s crucial to
acknowledge that the correlation observed is only based
on linear dependence. An alternative correlation mea-
sure, known as Kendall rank, is shown in Fig. 13 of the

work [23], where once again,Q0 stands out with the highest
score for R1.4 and Rmax. Additionally, we acknowledge the
inherent challenge posed by the stochastic nature of our
model, which contributes to the complexity of quantita-
tively interpreting the results.
Moreover, the values of ηð0; 1Þ, ηð1; 2Þ, and ηð0; 2Þ

consistently exhibit negative values, as anticipated. This is
attributed to the absence of input noise in set 0 and the
larger noise in the input of set 2 compared to set 1.
Examining the order of η values, the blue curve exhibits a
more negative trend, as expected, indicating a greater
difference in input noise.
Additionally, ηð0; 1Þ appears more negative than ηð1; 2Þ,

emphasizing the impact of varying the input noise from a
uniform distribution for sets 1 and 2. Occasionally, these
two sets converge to similar standard deviation values for
the noise, a scenario less likely for set 0, which consistently
lacks input noise.
In the final examination of this section, we analyze the

model’s residuals, δ ¼ ðμ̂Y − YTÞ, by examining their mean
and standard deviation, as detailed in Table V. Notably, the
model exhibits higher accuracy for properties of nuclear
matter with lower order, which is correlated with their
smaller range of values. When comparing between sets, it
becomes apparent that the standard deviation of residuals is
greater for set 2, followed by set 1, and, finally, set 0. This
observation indicates that the model achieves higher
accuracy when trained with less input noise, aligning with
our expectations.
For instance, the Lsym residuals standard deviation

(MeV) for the model predictions is 8.77 (set 0), 9.52
(set 1), 9.69 (set 2). These uncertainties are not larger, and
generally smaller than the ones obtained in several works
where the uncertainties linked to experimental, observa-
tional or theoretical uncertainties are of the order 10–28%
[63–65].

B. Nuclear models application

After confirming the ability of our model to predict the
test set, we extend our assessment to evaluate its perfor-
mance with additional nuclear models. Specifically, we
consider a set of 31 unified EOS built from a relativistic

FIG. 4. Prediction uncertainty deviation ηða; bÞ for the output
vector for models a and b as defined in Eq. (13).

TABLE V. The mean and the standard deviation of the model residuals δ ¼ ðμ̂Y − YTÞ for the three sets.

Set 0 Set 1 Set 2

Y (MeV) δ̄ σδ δ̄ σδ δ̄ σδ

K0 −0.663391 16.440592 −0.505939 17.894562 −0.315610 18.705447
Q0 −1.879105 39.562439 −1.338307 48.660290 −0.381916 52.664798
Jsym −0.002277 1.272795 0.003521 1.436066 0.003998 1.454013
Lsym 0.004316 8.769408 0.039834 9.523284 0.021291 9.692659
Ksym 0.157757 27.521557 −0.311028 30.918154 −0.179070 31.494850
Qsym 2.541514 280.488010 2.908357 291.857966 2.560507 293.681477
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mean field (RMF) approach and nonrelativistic Skyrme
interactions [66]. These EOS have been considered because
they are unified, meaning that the inner crust and the core
have been obtained from the same model, and they span a
large set of nuclear matter properties. This last character-
istic will allow us also to test the extrapolation ability of our
BNN model. Besides, this set has already been used in a
previous study using ML methods [36], and, therefore
some comparisons are possible. The mass-radius curves for
these models are represented in Fig. 5.
In Sec. IVAwe have measured the performance of three

BNN models, each one trained in a distinct dataset (see
Table III). Here, we are applying these models to an
independent set of nuclear models. For that, we first need
to generate the corresponding observation sets (input data)
with the same statistical properties as the ones in which the

models were trained. For instance, if we want to apply the
BNN model trained on set 0, we need to generate an
observation set for these nuclear models without any noise
(see Table III). Furthermore, the generation of the obser-
vation sets follows a similar procedure used in Sec. III C,
albeit with some modifications. For each nuclear model and
level noise, the procedure is as follows: (i) randomly
selecting 20 points from each MðRÞ curve, (ii) from these
20 points, 100 sets of five points are generated by sampling
without replacement, resulting in 100 distinct input vectors
x with 10 values each.
The selection of 20 points for the mass-radius MðRÞ

curve was driven by the number of available observa-
tions, as indicated in Table VII, which is 18. Given the
relatively small size of the input vector, consisting of only
five pairs, we opted to generate the 100 subsets for each
nuclear model.
In order to analyze the predictions obtained with the

BNN models trained in the three datasets for each nuclear
model, we represent the BNN model’s performance (col-
ored dots with error bars) and the real value of the nuclear
model defined as NMk (black dots), where k represents
each of the 31 nuclear models in Figs. 6 and 7.
The predictions for the 100 samples of each nuclear

model are presented utilizing both the law of total expect-
ation and the law of total variance, with mean and standard
deviation values denoted as μ̂k and σ̂k, respectively, where
once again k represents each of the 31 nuclear models.
These quantities are represented by an error bar defined as
μ̂k � 2σ̂k for the three datasets. We include the mean (Ȳ)
(dashed line) and two standard deviations (2σY) of the
training dataset in these figures (dark gray band).
Additionally, the range of the training dataset [Ymin,
Ymax] is shown (light gray band), providing a reference

FIG. 5. The gray band represents the dataset region without
noise, and the multiple lines represent the 31 nuclear models. We
have a total of 14 EOS inside the dataset region without noise for
the input space and 12 EOS inside the dataset region for the
output space.

FIG. 6. Representation of the K0; Q0; Jsym output values, where the light gray band illustrates the minimum and maximum values
within the training dataset [Ymin, Ymax]. The dashed line and dark gray band correspond, respectively, to the mean and the 2σ CI of the
training region (Ȳ � 2σY ). The error bar denotes the 2σ range prediction by the BNN model (μ̂k � 2σ̂k) for the sets 0, 1, and 2.
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for understanding the BNNmodel’s performance relative to
the training distribution. For the higher-order properties,
particularly for Q0, the BNN model struggles when values
significantly deviate from the training region, becoming
unable to accurately track the true value. Notably, models
trained with the set without uncertainty show an ability to
appropriately extend the error bar, effectively capturing the
true value. For certain properties, such as Qsym, these
models even reach beyond the training region. In general, it
is expected that if the model finds useful physical infor-
mation in the input data, σ̂k < σY (the model is confident
because it has seen similar data during training). On the
other hand, if there is no useful physical information, i.e.,
too much noise, or the nature of the input data differs
significantly from the training data set, i.e., model sees
unconventional input data with respect to the training data,
then the model will increase the uncertainty prediction to
fit the true value within its uncertainty band prediction,
i.e., σ̂k > σY . Whenever the NMk data are outliers (Figs. 6
and 7), it is the red error bars associated with set 0 (no
noise) that fall closer to the NMk; when the NMk falls
within the training region, it is mostly contained within the
red error bars. This is only true if the noise introduced into
the input data is sufficiently small. A correlation study
between the BNN mean predictions and the nuclear models
values is presented in Appendix A for completeness.
To gain a clearer understanding of the BNN model’s

predictive performance, we have recalculated the coverage
probability for 1σ, 2σ, and 3σ, as illustrated in Fig. 8 for
these new three datasets. This provides insight into the
percentage of values our BNN model accurately captures
up to 3σ. Notably, Jsym exhibits nearly 100% coverage for
3σ, indicating that the model effectively contains the

majority of values within a 3σ range from the pre-
dicted mean.
When comparing the inference results between the test

set of Sec. IVA (see Fig. 3, right panel) and the above
figure for the nuclear models (Fig. 8), it is clear a
considerable decline in the BNN models performances.
However, we should consider the key difference between
both inferences; while the test set of Sec. IVA has exactly
the same statistical structure of the training set, these 31
nuclear models are characterized by nuclear matter proper-
ties values far from the training region; in other words, the
above inferences heavily rely on the extrapolation capacity

FIG. 7. Representation of the Lsym, Ksym,Qsym output values, where the light gray band illustrates the minimum and maximum values
within the training dataset [Ymin, Ymax]. The dashed line and dark gray band correspond, respectively, to the mean and the 2σ CI of the
training region (Ȳ � 2σY ). The error bar denotes the 2σ range prediction by the BNN model (μ̂k � 2σ̂k) for the sets 0, 1, and 2. More
information can be found in the text.

FIG. 8. Coverage probability for the model tested with the three
sets across 100 samples of the 31 nuclear models, with red
representing set 0, purple representing set 1, and blue represent-
ing set 2.
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of BNN models. One obvious way of increasing the BNN
models performance would be to generalize the training set
to be as broad as possible, covering an extensive range of
possible nuclear matter properties. However, the training
set we have used was restricted to be consistent with
theoretical/experimental low-energy constraints: in other
words, we are not expecting the true EOS of nuclear matter,
and its nuclear matter parameters, to strongly deviate from
our training statistics. Notice that the nuclear models that
fail to reproduce with good accuracy the nuclear matter
properties are distributed within the different frameworks
used to build the EOS, i.e., the performance depends on the
way the phenomenological nuclear models are constrained
and not on the different frameworks, such as RMF, Skyrme
forces, or hadronic density dependent models.
The performance of the BNN models is well captured by

the two combined heatmaps represented in Fig. 9 illustrat-
ing a comparison between the training dataset properties Y
and the BNN model predictions μ̂k for the 31 nuclear
models, with the true nuclear matter properties of these 31
EOS, respectively, in the top and bottom heatmap.
In the upper panel, we visualize the deviation of target

values, specifically the six nuclear matter properties
denoted as NMk for nuclear model k, from the mean of
the training region, Ȳ. This deviation is normalized by the
standard deviation of the training region, σY . Meanwhile,
the lower panel portrays the absolute value of the normal-
ized model residuals’ predictions for set 2, chosen as an
illustrative example. To be precise, this representation

captures the distance between the true value NMk and
the predicted mean for each nuclear model, μ̂k, normalized
by the predicted standard deviation, σ̂k. These individual
quantities were shown in Figs. 6 and 7. The objective of this
visualization is to emphasize that nuclear model properties
with a greater distance from the mean of the training data
also tend to exhibit a larger deviation from the BNN
predicted mean, μ̂k. This trend is evident, for instance, in
the case of the quantity Q0. Taking the nuclear model DD2
as an illustrative example,Q0 exhibits the furthest deviation
from the mean value of the training distribution and,
consequently, is the farthest from the predicted mean being
15 σ̂DD2 away from the predicted mean. The ranges of the
mean values and standard deviations in the training set vary
significantly for each quantity, as detailed in Table II.
In a recent study [44], a deep learning model was also

tested with nuclear models, albeit with a different amount
and output/input quantities. Notably, we utilized two
common models, SK272 and SK255, specifically for the
properties Lsym, Ksym, and K0. Remarkably, we achieved
smaller residuals in comparison to their results for the
quantities Ksym and K0, despite the fact that they employed
a more complex architecture and conducted a direct
mapping from the EOS to the properties of nuclear matter.
Furthermore, in our earlier work [36], where we directly

mapped the EOS of β-stable matter to the properties of
nuclear matter, we also conducted tests with the same 31
nuclear models. The results were not only successful but
also exhibited a higher precision. However, our main

FIG. 9. In the top panel of the heatmap, we present an overview of the BNN model predictions’ reliability, considering the normalized
distance of target values (nuclear matter properties NMk for each model k) from the respective mean of the training
region,jȲ − NMkj=σY . Here, Ȳ and σY denote the mean and standard deviation, respectively, of the training dataset. The values
NMk correspond to the nuclear matter properties, where the index k represents each nuclear model. In the bottom panel, the focus shifts
to the absolute value of the normalized model residuals’ predictions for set 2, and the training dataset mean and standard deviation are
substituted by μ̂k and σ̂k that symbolize, respectively, the predicted mean and standard deviation, jμ̂k − NMkj=σ̂k. For a detailed
understanding of these individual quantities, see Figs. 6 and 7.
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drawback in that study was the challenge of quantifying the
uncertainty, a challenge that we have effectively addressed
in our present work.

C. Real observation dataset

In a final evaluation of our BNN model, we conducted a
final test using the real NS observations listed in Table VII.
Figure 10 shows these observations. As their dispersion is
quite high and most of them are far from the training set, we
took their mean values as the observation values, which we
supplied to the BNN model.
Contrarily to the last section, here we employ just one

BNN model to the pulsar dataset. We use a BNN model
trained on set 2 because the noise properties of set 2 were
determined precisely from the pulsar list, Table VII, leading
to set 2 exhibiting an input noise similar to the standard
deviation of the mass-radius pairs. Additionally, this choice
is motivated by the highly dispersed nature of the mean
values of the pulsar observations, which fall within the

domain of set 2. This implies that the model has learned
these diverse regions effectively. In a similar methodology
as followed in the last section, we generate sets of five pairs
from the 18 pulsar values through sampling without
replacement, and this process was iterated 100 times,
resulting in a dataset of 100 input vectors for testing.
We opted for 100 repetitions to remain consistent with the
previous subsection.
Only three mean values fall within the dataset region

without noise for the mass radius curves, and the dispersion
of each observation, in most cases, surpasses the radius
interval covered during training. This implies that the
model is extrapolating values, making it challenging to
obtain accurate predictions. The resulting mean and stan-
dard deviation for the six values of the output vector were
obtained using, once again, the law of total variance and the
law of total expectation for the 100 different input vectors.
These quantities are represented as μ̂obs and σ̂obs respec-
tively, and are presented in Table VI. To enhance predic-
tions, more precise observation values are crucial.
The comparison between our work and existing studies

for the quantities of symmetry energy, its slope, and
curvature is presented in Fig. 11. Specifically, we compare

FIG. 10. Observations that come from the Table VII, for the
68% CL, the dark gray band is the dataset region without noise.
Notice that there are only three mean values inside the training
region.

TABLE VI. The predicted mean and standard deviation,
denoted as μ̂obs and σ̂obs respectively, determined for the output
vector based on the set created from the observations listed in
Table VII. Further details can be found in the accompanying text.

Set 2

Y (MeV) μ̂obs σ̂obs

K0 264.043724 18.184857
Q0 −397.115823 55.868526
Jsym 31.622006 1.466793
Lsym 39.802926 8.764159
Ksym −101.667751 31.432478
Qsym 1294.825496 252.531340

FIG. 11. Comparison of our results for the symmetry energy, its slope, and curvature (labeled as 1 for a 68% CL) with values
from other studies; 2) Jsym ¼ 31.7� 3.2 MeV and Lsym ¼ 58.7� 28.1 MeV from [65]; 3) Jsym ¼ 31.6� 2.7 MeV and
Lsym ¼ 58.9� 16 MeV [68]; 4) 29 < Jsym < 32.7 MeV and 40.5 < Lsym < 61.9 MeV [64]; 5) Lsym ¼ 57.7� 19 MeV at a
68% confidence level [69]; 6) Ksym ¼ −107� 88 MeV at a 68% confidence level in [69]; 7) Ksym ¼ −100� 100 MeV [70]; and
8) Ksym ¼ −112� 71 MeV [71].
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our results: 1) for a 68% CL with the following references;
2) Jsym ¼ 31.7� 3.2 MeV and Lsym ¼ 58.7� 28.1 MeV
from [65]; 3) Jsym ¼ 31.6� 2.7 MeV and Lsym ¼ 58.9�
16 MeV [68]; 4) 29 < Jsym < 32.7 MeV and 40.5 <
Lsym < 61.9 MeV [64]; 5) Lsym ¼ 57.7� 19 MeV at a
68% confidence level [69] for 24 new analysis of neutron
star data since GW170817; 6) Ksym ¼ −107� 88 MeV at
a 68% confidence level in [69] but for the 16 new analysis
of neutron star data since GW170817; 7) Ksym ¼
−100� 100 MeV [70]; and 8) Ksym ¼ −112� 71 MeV
[71]. The key takeaway from this comparison is that our
results for the three quantities fall within the ranges
reported by the seven different works, suggesting the
accuracy of our model. Particularly noteworthy is the
alignment of our predicted mean values with those from
other studies, especially for Jsym and Ksym.

V. CONCLUSIONS

Throughout this study, we have delved into the explora-
tion of nuclear properties, aiming to derive them directly
from mass-radius observations while quantifying their
respective uncertainties. Our approach involves the appli-
cation of BNNs, a probabilistic machine learning model
that outperforms traditional neural networks by providing
uncertainty measurements alongside its predictions. Our
EOS dataset used to train the BNN model was built from a
relativistic mean field approach within a Bayesian frame-
work and incorporates crucial constraints derived from both
nuclear matter properties and neutron star observations.
Unlike more flexible EOS parametrizations discussed in
works like [32], we deliberately opted for this specific
family of microscopic nuclear models. This choice is driven
by our overarching goal—to explore the feasibility of
inferring nuclear matter properties, such as the quantities
K0; Q0; Jsym; Lsym; Ksym; Qsym, from observations of neu-
tron stars. Spanning a dataset of 25 287 EOS—we generated
three distinct sets of mock observational data for the mass
and radius of five NS, simulating diverse scenarios of
uncertainties, as outlined in Table III. These sets represent
various levels of input noise scatter. Subsequently, we trained
three BNN models, each corresponding to one of the
three sets.
Through this exploration, we have successfully demon-

strated the efficacy of BNNs in utilizing measurements of
the mass and radius from five neutron stars to extract
comprehensive information about the properties of nuclear
matter. Our model has demonstrated its capability to
provide valuable insights while effectively addressing
uncertainties, particularly for the test set crafted with the
same statistical characteristics as the training set.
We further extended our investigation by testing the

BNN model using the NS EOS derived from 31 nuclear
models [66], probing its ability to predict the properties of
nuclear matter when confronted with samples exhibiting a

behavior vastly different from the training set. Some of
these samples could fall completely outside the training
region, as illustrated in Fig. 5. Adapting the 31 NS EOS to
the three distinct sets with different uncertainties, we
observed that the BNN model encountered challenges
when dealing with samples that fall far away from the
mean of the training region. Interestingly, we found that set
0, which included no uncertainty on the measurement of the
mock data, demonstrated a superior ability to accurately
capture the target values beyond the training region, even
extrapolating successfully, going towards the direction of
the out of the training region values.
In a final test, we evaluated the model using a test set

with real observation values, once again encountering
values completely outside the training region and exhibit-
ing a quite large dispersion. This test dataset was exclu-
sively tested on the model trained with set 2, i.e., the set
with the largest uncertainties on the mock data observa-
tions. Our key takeaway from this test is that the current
available observations still require improvement, given the
substantial associated uncertainty leading to limited infor-
mation for the extraction of the EOS. We anticipate
advancements from future observations, such as those
expected from STROBE-X [16] and eXTP [14], promising
radius measurements with uncertainties as low as 2%–5%,
thereby refining our predictions.
Numerous approaches for further exploration and

improvement unfold from our current work. One potential
direction involves augmenting the output vector by incor-
porating fourth-order components of the Taylor expansion
of the nuclear matter EOS.
One particularly promising idea for future work involves

training the BNN model with a diverse range of EOS that
permit the extraction of nuclear matter properties (e.g.,
excluding polytropics and other agnostic approaches).
Specifically, this could involve training with the nuclear
models tested in Sec. IV B and utilizing metamodels. The
BNN model would be able to learn a larger domain for the
input and output space.
Introducing hyperons or a quark phase into the compo-

sition of neutron stars and training and testing the model
with this set could offer intriguing insights. Regarding the
stochastic model, developing other prior distributions for
the weights is worth for exploration. Additionally, a crucial
study would involve analyzing other distributions beyond
Gaussian distributions for the posterior of the weights.
Exploring alternative distributions could potentially lead to
further improvements in the loss optimization. These
improvements collectively offer rich possibilities for
advancing and refining our current methodology.
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APPENDIX A: CORRELATIONS

Let us calculate and analyze the Pearson correlation, for
the source dataset, between the parameters of nuclear
matter and the corresponding radius values for fixed mass
values. While it is a limited quantity as it only measures
linear correlations between variables, it already gives a

good indication of the important properties in describing
the NS radius. The results are shown in Fig. 12. The most
notable observation is that the quantity Q0 exhibits the
highest correlation coefficient. By considering the isovector
nuclear matter properties, fJsym;…; Qsymg, it is clear an
interesting feature; the low-order parameters are more
strongly correlated with the low M while the opposite
happens for high order parameters. This is expected since
low NS masses have central densities much smaller than
massive NS and thus low-order parameters are enough to
explain the radii of light NS. On the other hand, massive NS
radii are more sensitive to high-order parameters because
their central densities are very sensitive to the high-order
polynomial orders in the EOS. This plot serves as a
valuable tool for comprehending the results of this work.
A deeper study on the subject of correlation can be found
in [72].
In Fig. 13 we show the scatter plots ðμ̂k;NMkÞ, i.e., the

BNN predictions vs the nuclear models values, with the
correspondent correlation coefficients for each of the three
test sets. Lastly, the correlations among the nuclear matter
properties for the training dataset and the nuclear models
are displayed in Fig. 14. Several conclusions can be drawn:
(i) the correlations between the two sets (Fig. 13) are
generally positive and larger for set 0, although in some
cases the correlations are very small or the difference
between the sets is small; (ii) set 0 has the most extreme
values of μ̂k, the smallest and the highest, because this is the
set that comes closer to the NMk; (iii) the negative
correlation obtained for Ksym could be due to the corre-
lations that the BNN model has learned from the training

FIG. 12. Correlation between the nuclear matter parameters and
the radius for fixed mass values RðMÞ. In black squares we show
the mean correlation value for M=M⊙ ∈ ½1; 2�.

FIG. 13. Scatter plots of ðμ̂k;NMkÞ for each nuclear matter parameter and the corresponding correlation values between μ̂k and NMk
for each set.
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set, which shows a negative correlation of the order of −0.5 between Lsym and Ksym (Fig. 14). On the other hand, the 31
nuclear models show a positive correlation of the order of 0.4 between Lsym and Ksym. The BNN model has learned the
correlations of the training set, but tries to overcome them in set 0, which has no noise, since set 0 has the least negative
correlation, followed by set 1 and set 2 according to the degree of noise. The behavior of Ksym also affects the magnitude of
the correlations of Qsym.

APPENDIX B: TABLE OF OBSERVATIONS

Illustration of the observation table outlined in the article [67], featuring 18 observables derived through Gaussian-fitted
analyses. These observations are established from marginalized distributions, capturing key properties associated with
neutron stars.

FIG. 14. The correlations between the nuclear matter properties for the training dataset (left) and for the 31 nuclear models (right).

TABLE VII. Observation table sourced from the article [67].

M (M⊙) R (Km)

Observables Mean σ Mean σ

4U 1702-429 1.9 0.3 12.4 0.4
PSR J0437‐4715 1.44 0.07 13.6 0.85
PSR J0030þ0451 1.44 0.15 13.02 1.15
M28 1.08 0.3 8.89 1.16
X5 1.18 0.37 10.05 1.16
X7 1.37 0.37 10.87 1.24
4U 1724-207 1.79 0.26 11.47 1.53
EXO 1731-248 1.59 0.24 10.4 1.56
NGC 6397 1.25 0.39 11.48 1.73
4U 1820-30 1.76 0.26 11.31 1.75

wCen 1.23 0.38 9.8 1.76
SAX J1748.9‐2021 1.7 0.3 11.25 1.78
4U 1608-52 1.6 0.31 10.36 1.98
PSR J0740þ6620 2.08 0.07 13.7 2.05
KS 1731-260 1.59 0.37 10.44 2.17
M30 1.44 0.48 12.04 2.3
M13 1.42 0.49 11.71 2.48
NGC 6304 1.41 0.54 11.75 3.47
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