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The tidal deformability and the radius of neutron stars are observables, which have been used to
constrain the neutron star equation of state and explore the composition in neutron stars. We investigated
the radius and tidal deformability of dark matter admixed neutron stars (DANSs) by utilizing the two-fluid
TOV (Tolman-Oppenheimer-Volkoff) equation. Assuming that the dark matter modeled as fermions (with
or without self-interaction) or self-interacting bosons, for a series of DANSs at a fixed mass, it is shown that
there exists the DANSs with smaller normal matter radii but larger tidal deformabilities. This negative
correlation does not exist in the normal neutron stars. In other words, if the observation finds that the
neutron stars with a fixed mass exists such a situation, that is, having a smaller observed radius but a larger
tidal deformability, it will indicate the existence of dark matter in neutron stars. In addition, the relevant
neutron star observations can also be used to constrain the dark matter parameters.
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I. INTRODUCTION

Despite years of research and efforts, the essence of dark
matter remains a mystery. There are several prospective
particle candidates for the dark matter (such as weakly
interacting massive particles (WIMPs), light bosons, and
sterile neutrinos [1,2]). The interaction between the dark
matter and the normal matter is mainly gravity, so a neutron
star (one of the most compact objects in the universe) can
capture a sizable amount of dark matter through its strong
gravitational field. The accretion of dark matter into a
neutron star can affect its macroscopic properties [3,4],
which can be used to extract information about the dark
matter. In all, neutron stars provide a new way to investigate
the nature of dark matter.
Recently, the mass-radius measurements from the

Neutron Star Interior Composition Explorer (NICER)
[5–8] have yielded important constraints about the equa-
tions of state (EOSs) of dense nuclear matter [9,10].
Besides, the observation of the binary neutron star merger,
the GW170817 event [11], has constrained the tidal
deformability of a M ¼ 1.4M⊙ neutron star to a relatively
small value (Λ1.4 ¼ 190þ390

−120 [12]), which favors a soft
EOS. Numerous of investigations have used these obser-
vations to obtain constraints on the properties of neutron
stars and the parameters of EOS, such as the moment of
inertia of neutron star [13–16], the sound speed [17–19]
and the symmetry energy [20–22] of nuclear matter.
Theoretically, the capture of dark matter will further

influence the mass, radius and tidal deformability of

neutron stars [23–26], and even lead to the appearance
of supermassive neutron stars [27]. The gravitational wave
signal and the dynamics of the binary neutron star merger
are also affected by the existence of dark matter [28–31].
The constraints on dark matter parameters obtained from
the existing and future neutron star observations have also
received extensive attentions [32–34]. In addition, the
understanding of the interaction between the dark matter
and the normal matter is still ambiguous. Except for the
gravitational interaction, other interactions between the
dark matter and the normal matter will soften the EOS,
reducing the maximum mass of neutron stars [35] and the
tidal deformability [36].
Furthermore, the accumulation of dark matter in a

neutron star will lead to the emergence of a new type of
compact star, i.e., dark matter admixed neutron stars
(DANSs) [37–41]. Similar to the normal neutron stars, if
the gravitational interaction between the dark matter and
the normal matter is only considered, it is found that the
maximum mass of DANS corresponds to the beginning of
the unstable sequence [42]. For different types of dark
matter candidates, such as fermionic dark matter [38,39],
self interacting bosonic dark matter [40,41], and mirror
dark matter [4,43], by adjusting the particle mass of dark
matter and the interaction between the dark matter particles,
DANSs with mass similar to the normal neutron stars can
be obtained [44,45]. In addition, if the dark matter mass
fraction (i.e. the mass proportion of dark matter in DANSs)
is large or the particle mass of dark matter is small, the dark
matter radius tends to be greater than that of normal matter,
forming a dark matter halo around the DANS [32].
Conversely, a small dark matter mass fraction and a large*Contact author: wendehua@scut.edu.cn
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particle mass will lead to the occurrence of a dark matter
core [38]. Based on different processes of the DANS
formation [39], (for example, the remnant of the merger
of a pure dark matter star [46,47] and a neutron star may be
a DANSwith a large dark matter mass fraction [4]), DANSs
with different dark matter mass fractions can be formed.
In this work, the self-interacting bosons [48], the ideal

Fermi gas [44,49] and the self-interacting fermions [50,51]
are used to model the dark matter. Although other dark
matter candidates, such as axions [27,52], self-interacting
fermions [23,38], and the mirror twin Higgs model [53],
may be more realistic, the two selected dark matter models
are sufficient for a quantitative investigation of the con-
cerned properties of DANSs. Moreover, we only consider
the gravitational interaction between the dark matter and
the normal matter, so the two-fluid TOVequations [43] are
utilized to describe the DANSs. The influence of the dark
matter on the structure and the properties of DANSs is
investigated under different dark matter parameters. In
addition, we focus on the change of the tidal deformability
and the normal matter radius of DANSs, aiming to identify
a way to prove the existence of dark matter in neutron stars
by utilizing the uniqueness of DANS observables.
This paper is organized as follows. In Sec. II, the basic

formulas for the macroscopic properties of DANSs are
briefly introduced. In Sec. III, the normal matter radius and
the tidal deformability of DANSs with different dark matter
parameters and different normal matter EOSs are presented.
Finally, a summary is given in Sec. IV.

II. BASIC FORMULAS FOR THE MACROSCOPIC
PROPERTIES OF DANS

A. Two-fluid TOV equations

In contrast to a nonrotating neutron stars with only one
component, the individual components of a static neutron
star with two fluids that only interact through gravity need
to be calculated independently, i.e., using the two-fluid
TOV equations [41,43]

dpi

dr
¼ −

GεiðrÞMðrÞ
c2r2

�
1þ piðrÞ

εiðrÞ
�

×

�
1þ 4πr3pðrÞ

MðrÞc2
��

1 −
2GMðrÞ

c2r

�
−1
; ð1Þ

dMi

dr
¼ 4πr2εiðrÞ

c2
; ð2Þ

where i represents the two different components (i ¼ N or
D denotes the normal matter or the dark matter). piðrÞ,
εiðrÞ, andMiðrÞ are the pressure, energy density, and mass
of the two components at radius r, respectively. Variables
without a subscript denote the sums of the two components
[i.e., MðrÞ ¼ MNðrÞ þMDðrÞ, pðrÞ ¼ pNðrÞ þ pDðrÞ].
The initial condition at the center of a neutron star are

Mið0Þ ¼ 0 and pið0Þ ¼ pc;i. The pressures of the two
components will drop to 0 at different radii, then the mass
and the radius of each component can be obtained. Due to
the fact that the dark matter is electromagnetically dark, we
focus on investigating the normal matter radius (RN).

B. Tidal deformability

The tidal deformability of a normal neutron star char-
acterizes the deformation of the neutron star due to the tidal
effect created by a companion star. The details of the
computation of the tidal deformability for nonrotating
neutron stars can be found in Refs. [54]. Here we only
introduce the main equations. The tidal deformability is
defined as

λ ¼ 2

3
R5k2: ð3Þ

The second (quadrupole) tidal Love number k2 can be
obtained from [54,55]

k2 ¼
8

5
x5ð1 − 2xÞ2ð2 − yR þ 2xðyR − 1ÞÞ

× ð2xð6 − 3yR þ 3xð5yR − 8ÞÞ
þ 4x3ð13 − 11yR þ xð3yR − 2Þ þ 2x2ð1þ yRÞÞ
þ 3ð1 − 2xÞ2ð2 − yR þ 2xðyR − 1ÞÞ lnð1 − 2xÞÞ−1;

ð4Þ

where x ¼ GM=Rc2 is the compactness of neutron stars,
and yR is determined by

r
dyðrÞ
dr

þ yðrÞ2 þ yðrÞFðrÞ þ r2QðrÞ ¼ 0; ð5Þ

with FðrÞ and QðrÞ are functions of MðrÞ, pðrÞ and
εðrÞ [55]
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then yðrÞ ¼ yR at the radius R of the neutron star is
provided, and the dimensionless tidal deformability is
given by
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Λ ¼ λ

�
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�
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: ð8Þ

For a DANS with two fluids, Eq. (7) should be modified.
Specifically, the term with ∂pðrÞ=∂εðrÞ should be
changed to

εþ p
∂p=∂ε

→
X
i

εi þ pi

∂pi=∂εi
; ð9Þ

and the energy density, pressure, and mass in Eqs. (6)
and (7) should be replaced by the two components’ sums.
Additionally, the total radius R in Eq. (8) is the larger one of
the normal matter radius RN and the dark matter radius RD.

C. Dark matter modeled as self-interacting bosons

Due to the absence of the degeneracy pressure in bosonic
matter, it is necessary to assume the presence of self-
interaction in bosonic dark matter to resist gravity. The
EOS for the self-interacting bosonic dark matter [32,48]
can be written as

p ¼ 4ρ0c2

9

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ρ

4ρ0

s
− 1

!
2

ð10Þ

in the strong-coupling limit [48], where ρ0 ¼ m4
χ;b=4λℏ

3c5,
and mχ;b, ρ, and λ are the particle mass, density, and
coupling constant of the self-interacting bosonic dark
matter. From Eq. (10), it is evident that increasing mχ;b

and decreasing λ have similar effects on the EOS of bosonic
dark matter, as the effective parameter is m4

χ;b=λ. In the
following, the coupling constant is fixed to λ ¼ π (which
satisfies the strong-coupling limit) and we only consider the
impact of mχ;b on DANSs.

D. Dark matter modeled as ideal Fermi gas

Moreover, we assume the dark matter to be made of ideal
Fermi gas and neglect finite temperature effects. Although
this model is considered relatively simplistic, it still
provides us with quantitative insights into the properties
of DANS [44]. Assuming there is only one type of dark
matter particle with spin 1

2
, the ideal Fermi gas EOS [44,49]

at zero temperature is

ε ¼ Kðsinh t − tÞ; ð11Þ

p ¼ K
3

�
sinh t − 8 sinh

t
2
þ 3t

�
; ð12Þ

with

K ¼ πm4
χ;f

32π3ðℏcÞ3 ; ð13Þ

t ¼ 4 lnðyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

q
Þ; ð14Þ

where y is a variable related to the number density n

y ¼
�
3π2ðℏcÞ3n

m3
χ;f

�
1=3

; ð15Þ

and mχ;f is the particle mass, which is also the only
adjustable parameter of the ideal Fermi gas EOS.

E. Dark matter modeled as self-interacting fermions

In order to investigate the effects of self-interaction on
the fermionic dark matter, the exchange of scalar and vector
mesons is used to describe the interaction of the fermionic
dark matter. The Lagrangian density for the self-interacting
fermionic dark matter with meson exchange can be written
as [50,51]:

LD ¼ ψ̄D½γμði∂μ − gVVμÞ − ðmχ;f − gϕϕÞ�ψD

þ 1

2
ð∂μϕ∂μϕ −m2

ϕϕ
2Þ þ 1

2
m2

VVμVμ

−
1

4
ð∂μVν − ∂νVμÞð∂μVν − ∂

νVμÞ; ð16Þ

where mχ;f is the mass of dark matter in vacuum, and gi
(mi) are the coupling constant (meson mass) of dark matter
(i ¼ V;ϕ). The energy density εD and pressure pD of dark
matter are given in the following form:

εD ¼ 2

ð2πÞ3
Z
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0

d3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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pD ¼ 2
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V
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−
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ϕ
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where m�
χ;f ¼ mχ;f − gϕϕ0 is the effective mass of dark

matter, and ρD ¼ k3F;D
3π2

is the dark matter density.
Furthermore, the repulsive (attractive) interaction, which
will stiffen (soften) the dark matter EOS, is just determined
by the ratio parameter CDV ¼ gV=mV (CDS ¼ gϕ=mϕ). So
we adopt CDV ¼ 10 GeV−1 and CDS ¼ 0 (CDV ¼ 0 and
CDS ¼ 4 GeV−1) to generate a stiff (soft) enough dark
matter EOS [51]. It should be noted that a too large CDS
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will induce a nonmonotonic relation between the pressure
and the energy density of dark matter EOS.

F. EOS of normal matter

In order to meet the constraints of the GW170817 event
and the NICER observational data, we adopt the APR3
EOS (soft) [56] to represent the normal matter EOS. For
comparison, we also presented the results obtained using
the DDME2 EOS (stiff) [57] as the normal matter EOS, and
show the influences of different normal matter EOSs on the
macroscopic properties of DANSs. In addition, if the dark
matter EOSs is sufficiently stiff, the maximum mass of
DANSs constructed with these normal matter EOSs may
exceed that of normal neutron stars, and the mass-radius
(M-R) relation of DANSs is no longer a curve but extends
to a M-R plane [53,58,59].
Finally, the dark matter EOSs with different particle

masses and self-interactions, and the different normal
matter EOSs used are shown in Fig. 1. It is demonstrated
that for dark matter modeled as self-interacting bosons and
ideal Fermi gas, the dark matter EoS become softer with the
increase of the dark matter particle mass. For self-interact-
ing fermionic dark matter, the repulsive interaction repre-
sented by CDV > 0 will stiffen the dark matter EOS, while
the attractive interaction represented by CDS > 0 will
soften the dark matter EOS. Moreover, the dark matter
particle mass mχ;f ¼ 500 MeV (mχ;f ¼ 1300 MeV) for

CDV ¼ 0 and CDS ¼ 4 GeV−1 (CDV ¼ 10 GeV−1 and
CDS ¼ 0) is adopted, thus the self-interacting fermionic
dark matter EOSs can have a similar stiffness as the ideal
Fermi gas EOS with the particle mass mχ;f ∼ 600 MeV.

III. RELATIONS OF TIDAL DEFORMABILITY
AND NORMAL MATTER RADIUS OF DANS

A. Macroscopic properties of DANSs

Based on the two fluid TOV equations, the relations of
the mass and the normal matter radius (M − RN) of
DANSs, as well as the mass-tidal deformability (M − Λ)
relations, can be obtained by providing a normal matter
EOS and a dark matter EOS. In Fig. 2, the influences of
different dark matter mass fractions (FX ¼ MD=M) on the
M − RN (left panel) and M − Λ (right panel) relations of
DANSs are shown, where the normal matter EOS is the
APR3 EOS and the particle mass of self-interacting bosonic
dark matter is mχ;b ¼ 275 MeV. The M − RN and M − Λ
relations of normal neutron stars (without the dark matter)
are also displayed for comparison. Here we focus on the
normal matter radius RN . The dark matter radius RD can be
hardly detected because the dark matter is electromagneti-
cally dark, but the RD can have a significant impact on the
tidal deformability of DANSs [24,60].
From the left panel of Fig. 2, it is shown that theM − RN

relations of DANSs will extend to a series of curves (dashed

FIG. 1. Dark matter EOSs with different particle masses and interactions and different normal matter EOSs. Left panel: the black solid
(blue dash dotted) line is the APR3 (DDME2) EOS represents the normal matter. The red lines with different types are self-interacting
bosonic dark matter EOSs with the coupling constant λ ¼ π and the particle massmχ;b ¼ 200, 275, and 350 MeV. Right panel: the black
solid (blue dash dotted) line is the self-interacting fermionic dark matter EOS with the attractive interaction CDS ¼ 4 GeV−1 and
CDV ¼ 0 (the repulsive interaction CDS ¼ 0 and CDV ¼ 10 GeV−1) and the particle mass mχ;f ¼ 500 MeV (mχ;f ¼ 1300 MeV). The
magenta lines with different types are dark matter EOSs described by ideal Fermi gas with the particle mass mχ;f ¼ 500, 600, and
650 MeV.
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lines) instead of one curve (solid line) with the change of
dark matter mass fraction FX. If the FX takes continuous
values instead of discrete values, these M − RN curves will
form a M − RN plane, which means there are multiple
DANSs with the samemass but different normal matter radii.
This feature of DANSs is similar to that of twin stars [61].
However, in theM − RN relations containing twin stars, only
two different radii are allowed for the normal neutron stars
with the same mass [62], thus the twin stars can be
distinguished from the DANSs through observations. Due
to the wide range of theRN at a fixed stellar mass of DANSs,
induced by the variation of the FX, the M − RN relations
basically satisfy the constraints of existing observational
data, and it is difficult to prove the absence of dark matter in
neutron stars only through the existing observations, but the

amount of dark matter in the DANSs can be constrained
through these observations [39]. Additionally, as the FX
increases, the maximummass of DANSwill decreases firstly
and then increases [63,64], and theRN will decreases [44,58]
(but for largeFX, the RN of lowmass DANSs may increase).
Unlike the normal matter radius RN , the tidal deform-

ability Λ of DANSs in the right panel of Fig. 2 decreases
first and then increases with the increase of the dark matter
mass fraction FX. Moreover, when the FX is high (∼0.8),
the Λ of DANSs will become very large [27] (for example,
the Λ of DANSs with a mass of 1.4M⊙ can reach
Λ1.4 ∼ 8000) compared to that of normal neutron stars
(for the APR3 EOS, Λ1.4 ∼ 400). This large Λ of DANSs is
caused by the large dark matter radius RD. For a higher FX,
RD > RN (see the lower panel of Fig. 5), so even if the RN

FIG. 2. The influences of different dark matter mass fractions (FX ¼ MD=M) on the M − RN (left) and M − Λ relations (right) of
DANSs (dashed lines), where the normal matter EOS is the APR3 EOS and the particle mass of self-interacting bosonic dark matter is
mχ;b ¼ 200 MeV. The M − RN and M − Λ relations of normal neutron stars (solid lines) calculated by the APR3 EOS are also shown.

FIG. 3. The same as Fig. 2, but the dark matter is modeled by ideal Fermi gas and the particle mass is mχ;f ¼ 600 MeV.

NEW CRITERION FOR THE EXISTENCE OF DARK MATTER IN … PHYS. REV. D 109, 123037 (2024)

123037-5



is small (see the left panel of Fig. 2), the total radius R is
determined by the larger RD, and it will result in a large Λ
of a DANS [see Eq. (8)] greater than the Λ of a normal
neutron star.
For the dark matter modeled as the ideal Fermi gas, the

influence of the dark matter mass fraction FX on the normal
matter radius RN and the tidal deformability Λ of DANSs
are shown in Fig. 3. Similar to Fig. 2, the M − RN and
M − Λ relations of DANSs have also extended to a series of
curves. However, compared to the self-interacting bosonic
dark matter, a larger particle mass is need in the ideal Fermi
gas EOS to support DANSs with similar mass. This is due
to the lack of self-interaction in the ideal Fermi gas. If the
attractive interaction (CDS > 0) is considered in the fer-
mionic dark matter EOSs, only a smaller particle mass is
needed for the dark matter EOSs to support DANSs with
similar mass. Contrarily, if the repulsive interaction
(CDV > 0) is considered in the fermionic dark matter
EOSs, a larger particle mass is needed for the dark matter
EOSs to support DANSs with similar mass. The influence
of the self-interaction on DANSs with fermionic dark
matter EOSs will be discussed in detail later.
It is previously found that the mass of DANSs should

decrease as the dark matter central energy density εD
increases [51]. However, it should be noted that a larger
dark matter mass fraction FX does not necessarily corre-
spond to a larger εD, because there may be a smaller normal
matter central energy density εN. In Fig. 4, we demonstrate
the effect of increasing FX on the M − εN (M − εD)
relations of DANSs in the left (right) panel. The results
show that as the FX increases, the εD should increase first
and then decrease. The decrease of the εD at a large FX (the
εN also decrease so the large FX can be maintained) induce
the increase of the mass of DANSs. Moreover, it is shown
in Figs. 2 and 3 that there is an increase of RN for DANSs
with a large FX. This is related to the decrease of the εN of

DANSs (see the M − εN relation of FX ¼ 0.8 in Fig. 4).
Note that the decrease of εD, which is not as obvious as the
decrease of εN , ensures the large value of FX.
Compared to DANSs (FX < 0.5) with the mirror dark

matter model [43,65], a larger dark matter mass fraction
(FX < 0.8) is utilized in our work. The reason is that for
DANSs with the mirror dark matter model, if the normal
matter radius is replaced by the dark matter radius, the
mass-radius relations of FX > 0.5 are exactly the same as
the mass-radius relations of FX < 0.5. For example, the
mass of DANSs with FX ¼ 0.75 is the same as that of
DANSs with FX ¼ 0.25, and the dark matter radius of
DANSs with FX ¼ 0.75 is also the same as the normal
matter radius of DANSs with FX ¼ 0.25. However, for
other dark matter models, this situation is not valid, so it is
necessary to investigate DANSs with larger dark matter
mass fractions.
Additionally, for DANSs with a relatively small dark

matter mass fraction (FX < 0.5), the stars can acquire
enough dark matter through accretion during its billion-
year long lifetime [65]. However, a higher dark matter
density may exist at the center of the galaxies or in the early
Universe [4,58], so neutron stars may form DANSs with a
larger dark matter mass fraction (FX ∼ 0.8 [58]) through the
accretion in such environment. Furthermore, the merger of
a normal neutron star and a pure dark matter star (with mass
above 1M⊙) can also lead to the formation of DANSs with
a large FX [4,53,63,64], and the formation of such DANSs
could be relatively easy to discover due to the high energy
phenomenon [66].

B. Negative correlation between tidal deformability and
normal matter radius

To illustrate the effect of dark matter on the normal
matter radius RN and the (dimensionless) tidal deform-
ability Λ of DANSs intuitively, the upper panel of Fig. 5

FIG. 4. The left (right) panel is the relation of the mass and the normal (dark) matter central energy density M − εN (M − εD) of
DANSs. The εsat is the energy density correspond to the nuclear saturation density. The parameters are the same as those in Fig. 3.
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shows the relation of RN and Λ of DANSs with a fixed
stellar mass (1.4M⊙) at different dark matter mass fractions
FX. Here we only show the result of self-interacting
bosonic dark matter, and the result of fermionic dark
matter (with or without self-interaction) is similar to that.
From the upper panel of Fig. 5, it can be seen that with the
increase of FX, both the RN and the Λ initially decrease and
then increase. However, their decreases or increases are not
simultaneous. That is to say, in a specific range of FX
(indicated by the dashed line labeled III in the upper panel
of Fig. 5), the Λ increases while the RN decreases. As a
comparison, this phenomenon does not exist in twin stars.
Although the mass of twin stars are the same, the one with a
smaller radius must have a smaller tidal deformability [61].
Therefore, the negative correlation between the tidal
deformability Λ and the normal matter radius RN of the

DANSs at a fixed stellar mass may served as a clue to prove
the presence of dark matter in neutron stars.
To further investigate the negative correlation between the

tidal deformability Λ and the normal matter radius RN of
DANSs, thek2 − RN relationofDANSswithamassof1.4M⊙
atdifferentFX is alsoshownin theupperpanelofFig.5 (where
k2 is the tidalLovenumber), and the relative sizeof theRN and
the RD of those DANSs is presented in the lower panel of
Fig. 5. For DANSs with a relatively small FX (labeled with I
and II inFig. 5), an increase ofFX leads to a decrease ofRN ,k2
andΛ. Although in the stage II (beginningwith the kinkof the
k2 − RN curve) the total radius R ¼ RD > RN (i.e., dark
matter halo) increases with the increase ofFX, the decreasing
k2 dominates the decrease of tidal deformability Λ [see
Eq. (8)]. Conversely, the increase of R ¼ RD will dominate
as theFX further increases (III in Fig. 5), so theΛwill increase
while the RN remains decreasing. This range of FX corre-
sponds to the negative correlation between the tidal deform-
ability Λ and the normal matter radius RN . When the dark
matter accounts for a significant portion in DANSs (VI in
Fig. 5), the Λ and the RN show a positive correlation again.
It should be noted that for the DANSs with different masses,
the specific range of FX corresponding to the negative
correlation between the tidal deformability Λ and the normal
matter radius RN varies (see Fig. 6).

C. Influences of dark matter parameters
and normal matter EOSs

The normal matter radius RN and the tidal deformablity
Λ of DANSs are also influenced by the parameters (the
particle mass and the self-interaction) of the dark matter
EOSs and the normal matter EOSs. In order to investigate
the generality of the negative correlation between the Λ and
the RN , in Fig. 6, the three panels, (a), (b), and (c), show the
effect of the particle mass mχ;b of self-interacting bosonic
dark matter on the Λ and RN , and the panels (b) and
(d) show the effect of the normal matter EOSs. The
discontinuous solid lines [such as the 2M⊙ DANSs in
the panel (a)] indicate that for some ranges of FX, the given
EOSs of normal matter and dark matter cannot support the
DANSs with a relatively high mass (2M⊙).
The three panels (a), (b), and (c) of Fig. 6 show that an

increase of mχ;b will induce a decrease of tidal deform-
ability Λ and normal matter radius RN of the DANSs with a
large FX. For a largermχ;b, the self-interacting bosonic dark
matter tends to accumulate within the DANSs to form a dark
matter core rather than a dark matter halo, and the heavier
core has a stronger gravitational effect on the normal matter,
resulting in a decrease of RN . Similarly, the larger mχ;b also
lead to a smaller total radius R of DANSs, which induces a
smaller Λ. Furthermore, the increase of mχ;b will induce the
negative correlation between the tidal deformability Λ and
the normal matter radius RN (dashed lines) to occur at a
lower DANS mass. For mχ;b ¼ 200 MeV, this negative

FIG. 5. Upper panel: the k2 − RN and Λ − RN relations of
DANSs with a fixed stellar mass (1.4M⊙) at different dark matter
mass fractions FX. The dashed lines labeled with III represent the
range of FX corresponding to the negative correlation between
the tidal deformability Λ and the normal matter radius RN , while
the solid lines (I, II, and IV) represent the positive correlation
between the Λ and the RN . Lower panel: the relative size of the
RN (red solid circle) and the RD (blue dashed circle) of DANSs
(1.4M⊙) at different FX values (I, II, III, and VI). The normal
matter EOS and the dark matter parameters adopt the same as
those used in Fig. 2.
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correlation of DANSs with a mass of 1.75M⊙ is displayed in
the panel (a) of Fig. 6, but for mχ;b ¼ 275 MeV, that of
DANSs only occurs when the mass of DANSs is smaller
than 1.5M⊙ (panel (b) of Fig. 6). If themχ;b further increases
(mχ;b > 350 MeV), then only the DANSs with a mass
around 1M⊙ or less than that are likely to show the negative
correlation between the tidal deformability Λ and the normal
matter radius RN . Conversely, a smaller particle mass
(mχ;b < 200 MeV) will lead to a less obvious decrease in
the RN of DANSs with this negative correlation during the
increase of Λ, making it difficult to distinguish such DNASs
through the normal matter radius RN . Therefore, we only
investigate the macroscopic properties of DANSs when the
mχ;b is at around 300 MeV. Additionally, a stiffer normal
matter EOS (panel (d) of Fig. 6) can cause this negative
correlation to occur when the DANSs have a larger mass
(1.5M⊙), but the effect of normal matter EOSs is not as
significant as the effect of varyingmχ;b. Overall, for the self-
interacting bosonic dark matter, the negative correlation
between the tidal deformability and the normal matter radius

of DANSs is universal when changing the particle mass of
dark matter and the normal matter EOS. Furthermore, it is
important to emphasize that the effective parameter in
Eq. (10) is m4

χ;b=λ, so the effect of decreasing λ is the same
as the effect of increasing mχ;b. If the λ is changed, the tidal
deformability and the normal matter radius of DANSs at a
fixed mχ;b will also change.
Similarly, the effects of varying the particle mass mχ;f of

dark matter modeled as ideal Fermi gas and the normal
matter EOS on the tidal deformability Λ and the normal
matter radius RN of DANSs is illustrated in Fig. 7. For the
dark matter modeled as ideal Fermi gas, a larger particle
mass is needed to support DANSs with similar stellar mass
compared with the situation in the case of self-interacting
bosoninc dark matter. If the bosonic dark matter EOS with
the coupling constant λ > π [32,40] or the attractive self-
interacting fermionic dark matter EOS [38,51] is consid-
ered, the difference between the particle mass of the
fermionic and bosonic dark matter EOSs that can support
DANSs with similar mass could disappear. The negative

(a) (b)

(c) (d)

FIG. 6. The effects of the particle mass mχ;b of self-interacting dark matter and the normal matter EOSs on the relations of normal
matter radius RN and tidal deformabilityΛ of DANSs (with masses of 1, 1.25, 1.5, 1.75, and 2M⊙) at different dark matter mass fractions
FX . In panels (a), (b), and (c), the mχ;b adopts 200, 275, and 350 MeV, and the normal matter is described by the APR3 EOS. In panel
(d), the mχ;b adopts 275 MeV, and the normal matter is described by the DDME2 EOS. The dashed and solid lines are similar
to those in Fig. 5.
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correlation between the tidal deformability Λ and the
normal matter radius RN of DANSs is also presented for
the fermionic dark matter, as shown in Fig. 7. The increase
of mχ;f also causes this negative correlation to occur at a
lower DANS mass, whereas the effect of modifying the
normal matter EOS on this negative correlation is not
obvious. As a result, regardless of the types of dark matter
(self-interacting bosons or ideal Fermi gas), if there are a
series of neutron stars with the same or extremely similar
mass in future observation, and the ones with smaller radii
have larger tidal deformabilities, it is very likely to imply
the existence of dark matter in the neutron stars. Moreover,
if the stellar mass of this series of neutron stars is greater
than a certain value (for example, M > 1.25M⊙), then it is
also possible to constrain the parameters of dark matter (for
the self-interacting bosonic dark matter, mχ;b < 350 MeV
when λ ¼ π, and for the dark matter modeled as ideal Fermi
gas, the mχ;f is constrained to mχ;f < 600 MeV).
The effect of the self-interaction of fermionic dark matter

on the negative correlation between the tidal deformability
and the normal matter radius of DANSs is also investigated
preliminarily. In Fig. 8, the left (right) panel shows the
result of the fermionic dark matter EOS with the particle
mass mχ;f ¼ 500 MeV and the interaction parameter

CDV ¼ 0 and CDS ¼ 4 GeV−1 (mχ;f ¼ 1300 MeV, CDV ¼
10 GeV−1 and CDS ¼ 0). In the left panel, due to the
softening of the dark matter EOS induced by the attractive
interaction (CDS ¼ 4 GeV−1), and the stiffening of the dark
matter EOS induced by a smaller particle mass
(mχ;f ¼ 500 MeV), the fermionic dark matter EOS with
the attractive interaction has a similar stiffness of the ideal
Fermi gas EOS of mχ;f ¼ 600 MeV (also can be seen in
Fig. 1), so these two dark matter EOSs can support DANSs
with similar mass (M ¼ 1.15M⊙) when the FX change
from 0 to 0.8 (panel (b) in Fig. 7 and panel (a) in Fig. 8).
Conversely, a larger particle mass (mχ;f ¼ 1300 MeV) is
needed for the repulsive self-interacting (CDV ¼ 10 GeV−1

and CDS ¼ 0) fermionic dark matter EOS to support
DANSs with the mass of M ¼ 1.15M⊙ (panel (b) in
Fig. 8). Moreover, for self-interacting fermionic dark matter
EOSs with the similar stiffness, a large CDV leads to a
significant increase ofmχ;f, while a small CDS only slightly
reduces the mχ;f.
Although the fermionic dark matter EOSs with repulsive

and attractive interactions have the similar stiffness, for a
large value of FX, there are larger values of the normal
matter radius RN and the tidal deformability Λ for DANSs
with attractive self-interacting fermionic dark matter

(a) (b)

(c) (d)

FIG. 7. The same as Fig. 6, but the dark matter is modeled by the ideal Fermi gas, and the particle mass mχ;f of fermionic dark matter
adopts 500, 600, and 650 MeV. The masses of DANSs are 1, 1.15, 1.3, 1.45, and 1.6M⊙.
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(see panel (a) in Fig. 8). Because the Λ of low mass DANSs
(M ∼ 1.15M⊙) is mainly affected by the low-density range
of dark matter EOSs when the FX is large, and the
fermionic dark matter EOS with attractive interaction is
stiffer in the low-density region (see the black solid line in
the right panel of Fig. 1), which leads to a larger Λ. The
large value of RN for a large FX is due to the rapid decrease
of normal matter central energy density in DANSs with
attractive self-interacting fermionic dark matter.
Overall, the negative correlation between the tidal deform-

ability and the normal matter radius of DANSs still exists
when considering the self-interacting fermionic dark matter,
and the mass of DANSs corresponding to this negative
correlation can constrain the parameters of self-interacting
fermionicdarkmatterEOSs.Specifically, if a seriesofDANSs
with this negative correlation andM > 1.25M⊙ are found in
future observations, the existence of the attractive self-
interaction (CDV ¼ 0 and CDS ¼ 4 GeV−1) in fermionic
dark matter will constrain the mχ;f to a small value
(mχ;f < 500 MeV), while the existence of the repulsive
self-interaction (CDV ¼ 10 GeV−1 and CDS ¼ 0) in fer-
mionic dark matter will widen the range of the mχ;f

(mχ;f < 1300 MeV) compared to the situation of darkmatter
modeled as ideal Fermi gas (mχ;f < 600 MeV). If the self-
interaction between the fermions is changed (i.e., the change
of CDS and CDV), the constraint on the mχ;f will change
correspondingly.

IV. SUMMARY

It is shown that there is a series of DANSs with the same
mass but different dark matter mass fractions, and the ones
with smaller normal matter radii have larger tidal deform-
abilities, i.e., the negative correlation between the tidal
deformability and the normal matter radius. This negative
correlation does not exist in other types of neutron stars
(such as twin stars [61], quark stars [67]). If observations
confirm that there is a series of neutron stars with the same
or very similar mass, and the ones with smaller radii have
greater tidal deformabilities, it may indicate the existence of
dark matter in the neutron stars. The interaction among the
dark matter particles may be more complex in reality
[27,60], the negative correlation between the tidal deform-
ability and the normal matter radius of DANSs is believed
to exist even when the dark matter model is changed. In
addition, the negative correlation between the tidal deform-
ability and the normal matter radius of DANSs also
provides a way to constrain the dark matter parameters.
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(a) (b)

FIG. 8. The same as Fig. 7, but the dark matter is modeled by attractive (panel (a), CDV ¼ 0 and CDS ¼ 4 GeV−1) or repulsive (panel
(b), CDV ¼ 10 GeV−1 and CDS ¼ 0) self-interacting fermions, and the particle mass mχ;f of fermionic dark matter adopts 500 or
1300 MeV.
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