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Scenarios such as the QCD axion with the Peccei-Quinn symmetry broken after inflation predict an
enhanced matter power spectrum on subparsec scales. These theories lead to the formation of dense dark
matter structures known as minihalos, which provide insights into early Universe dynamics and have
implications for direct detection experiments. We examine the mass loss of minihalos during stellar
encounters, building on previous studies that derived formulas for mass loss and performed N-body
simulations. We propose a new formula for the mass loss that accounts for changes in the minihalo profile
after disruption by a passing star. We also investigate the mass loss for multiple stellar encounters. We
demonstrate that accurately assessing the mass loss in minihalos due to multiple stellar encounters
necessitates considering the alterations in the minihalo’s binding energy after each encounter, as
overlooking this aspect results in a substantial underestimation of the mass loss.
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I. INTRODUCTION

Beyond the well-known weakly interacting massive
particles paradigm, there are alternative theories that predict
an enhanced matter power spectrum on subparsec
(≲10−6M⊙) scales. These theories, which include the
quantum chromodynamics axion with the Peccei-Quinn
symmetry [1] broken after inflation (e.g., [2–5]), early
matter domination (e.g., [6,7]) and vector dark matter
models (e.g., [8,9]), lead to the formation of dense dark
matter structures, which are known as minihalos. Dark
matter minihalos, in these theories, originate earlier and are
denser, making them much less susceptible to disruption
compared to models such as those based on weakly inter-
acting massive particles, which do not have an enhanced
matter power spectrum on subparsec (≲10−6M⊙) scales
(e.g., [10–14]). Minihalos are potentially observable in
local studies (e.g., [15–17]) and their presence would also
have important implications for direct detection experi-
ments (e.g., [18,19]).
When a minihalo encounters a star, energy is injected

into the minihalo through tidal interactions (e.g., [20]).
Reference [21] (hereafter referred to as K2021) derived a
general formula for the mass loss of a minihalo during a
stellar encounter using the phase space distribution function
of the dark matter particles. A similar formula, using a wave
description, for the mass loss, was derived by Ref. [22].
Reference [23] (hereafter referred to as S2023) performed
N-body simulations of dark matter minihalos undergoing a
stellar interaction. They varied the normalized injected

energy of the minihalo-star interaction, the concentration
parameter, and the virial mass of the minihalo and com-
puted the survival fraction of the minihalo. They also used
an empirical response function to fit the numerically
simulated data. They found that the formula developed
by K2021 provided a reasonable fit for a halo concentration
of c ¼ 100. In this article, we show that K2021’s formula
does not work so well for other concentrations. We derive a
formula that performs better on all the concentrations that
S2023 showed detailed results for in their paper. Our new
formula uses a sequential stripping approach and accounts
for the minihalo profile change after being disrupted by a
passing star.
S2023 also investigated the mass loss for multiple stellar

encounters. This is important as the minihalos in our galaxy
will transverse the Galactic disk many times during the
history of the Universe (e.g., S2023). The fractional energy
is the ratio of the energy injected into the minihalo divided
by the minihalo binding energy. S2023 assumed that the
mass loss from multiple stellar encounters depends on
the sum of the fractional energies from each encounter. In
this article, we check this result and show that it does
not account for the change in the halo profile after each
encounter. Using our formula, we find that the mass loss is
significantly more severe than the method employed
by S2023.
S2023 estimated that about 60% of mass in minihalos

with an initial mass greater than 10−12M⊙ will be retained
by minihalos observed at the redshift zero at the solar
system location. Our results indicate that this is an
overestimate of the amount of retained mass.
The paper is structured as follows: Sec. II details the

K2021 method and its application across various
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concentration parameter values. Our proposed sequential
stripping model is elaborated in Sec. III. The dynamics of
multiple stellar encounters are discussed in Sec. IV, leading
to our concluding thoughts in Sec. VI. For more in-depth
technical explanations, readers are directed to the
Appendices.

II. MASS LOSS IN A MINIHALO DURING A
STELLAR ENCOUNTER

N-body simulations (e.g., [24]) indicate that the undis-
rupted minihalos can be fit by the well-known spherically
symmetric Navarro-Frenk-White (NFW) density pro-
file Ref. [25].
Mathematically, the NFW density profile ρ is described

as a function of the distance r from the center of the
minihalo as

ρðrÞ ¼ ρs
r
rs
ð1þ r

rs
Þ2 : ð1Þ

The parameters ρs and rs are two independent parameters
of the NFW profile. In addition, the virial radius rvir is
approximated as the radius within which the mean density
is 200 times the cosmological critical density. We will use
the following normalized distance from the center of the
minihalo

x≡ r
rvir

: ð2Þ

This is sometimes also called the normalized radius. The
concentration parameter of the minihalo is defined as

c≡ rvir
rs

: ð3Þ

Using these variables, we can rewrite the NFW profile as

ρðxÞ ¼ ρs
cxð1þ cxÞ2 : ð4Þ

Consider a minihalo with an NFW density profile
extending to infinity. We are interested in the mass loss
during a stellar encounter within the virial radius of the
minihalo.
As in S2023, the terms hr2i and hr−2i both averaged

within the virial radius are parametrized by α and β as
follows:

hr2i≡ α2r2vir; ð5Þ

hr−2i≡ β2r−2vir : ð6Þ

The binding energy Eb of the minihalo within the virial
radius is parametrized by γ as follows (S2023):

Eb ¼ γ
GM2

vir

rvir
; ð7Þ

whereMvir is the mass of the minihalo contained within the
virial radius. The energy injected per unit mass jΔεj into the
minihalo is given by Refs. [26,27]:

jΔεðrÞj ¼ ΔE
Mvir

r2

hr2i ; ð8Þ

where the net energy injected into the minihalo within the
virial radius for a single encounter with a star of mass m�,
relative velocity v�, and impact parameter b is given by [27]

ΔE ¼
8<
:

4α2ðcÞ
3

G2m2�Mvirr2vir
v2�

1
b4 ðb > bsÞ

4α2ðcÞ
3

G2m2�Mvirr2vir
v2�

1
b4s

ðb ≤ bsÞ
; ð9Þ

where bs ¼ fbð2α=3βÞ1=2rvir is the transition radius and fb
is an order-unity correction factor introduced by S2023.
From their simulations, S2023 finds that fb ¼ 6.
From Eqs. (5), (7), and (8), it follows that

jΔεðrÞj ¼ Ψ0

γ

α2
Efrac

r2

r2vir
; ð10Þ

jΔϵðxÞj≡ jΔεðxÞj
Ψ0

¼ γ

α2
Efracx2; ð11Þ

where Ψ0 ≡ GMvir
rvir

, Efrac ≡ ΔE
Eb
, G is Newton’s constant, and

jΔϵj is the normalized injected energy per unit mass into the
minihalo.
The relative potential Ψ is defined as ΨðrÞ≡ −ΦðrÞ,

whereΦðrÞ is the Newtonian gravitational potential. For an
untruncated NFWminihalo of concentration parameter c, it
can be shown that (see Appendix A)

ΨðrÞ ¼ Ψ0

1

fNFWðcÞ
ln ð1þ c r

rvir
Þ

r
rvir

; ð12Þ

ψðxÞ≡ΨðxÞ
Ψ0

¼ 1

fNFWðcÞ
ln ð1þ cxÞ

x
; ð13Þ

where ψ is the normalized relative potential and

fNFWðxÞ≡ lnð1þ xÞ − x
1þ x

: ð14Þ

The expression for the mass loss in a minihalo due to a
stellar encounter is (K2021):

ΔM¼16π2
Z

rvir

r¼0

drr2
Z

min ½jΔεðrÞj;ΨðrÞ�

ε¼0

dε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðrÞ−εÞ

p
fðεÞ;

ð15Þ
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where ΔM is the total mass loss within the virial radius of
the minihalo. Also, ε is a dark matter particle’s specific
relative (total) energy for a given r and velocity.
Additionally, fðεÞ is the phase space distribution function
of dark matter particles in the minihalo (K2021).
Converting Eq. (15) to a dimensionless form, we

compute the survival fraction (SF) of the minihalo as
(see Appendix B)

SF≡ 1 −
ΔM
Mvir

;

¼ 1 −
4πc3

fNFWðcÞ
Z

1

x¼0

dx x2
Z

min½jΔϵðxÞj;ψðxÞ�

ϵ¼0

dϵf̂ðϵÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
; ð16Þ

where ϵ≡ ε
Ψ0

is the normalized specific relative (total)

energy and f̂ðϵÞ ¼ Ψ3=2
0

ρs
fðεÞ (K2021) is the normalized

phase space distribution function of the dark matter
particles in the minihalo and it can be evaluated as follows
(K2021):

f̂ðϵÞ ¼ 1ffiffiffi
8

p
π2

Z
ϵ

ψ¼0

1ffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ

p d2ϱ
dψ2

dψ ; ð17Þ

where ϱ≡ ρ
ρs

is the normalized density of the minihalo.
Thus, Eq. (16) can be rewritten as a triple integral:

SF ¼ 1 −
4πc3

fNFWðcÞ
Z

1

x¼0

Z
min½jΔϵðxÞj;ψðxÞ�

ϵ¼0

×
Z

ϵ

ψ 0¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0p

×
d2ϱ

dψ 02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
dψ 0 dϵ dx: ð18Þ

Using Eq. (18), one can evaluate mass loss by computing
the survival fraction of the minihalo for a particular value of
Efrac and concentration parameter. We used theDerivative()

function from PYTHON’s SYMPY library to evaluate d2ϱ

dψ 02 as a

function of x and the solve() function from the SYMPY

library to invert the expression for ψ 0 so that we could

express x as a function of ψ 0 and eventually express d2ϱ

dψ 02 as a

function of ψ 0. We further used the nquad() function from
the SCIPY library to numerically evaluate the triple integral
in Eq. (18). The survival fraction of the minihalo is then
plotted against the normalized total injected energy, Efrac,
for a fixed concentration parameter, c. Fig. 1 shows this
plot for c ¼ 10, 30, 100, 500. From Fig. 1, it is clear that the
analytical method described so far does not approximate
the simulated data very well except for the c ¼ 100 case.
To improve on the analytical method, we introduce a

sequential stripping model for the mass loss in the
minihalo.

III. THE SEQUENTIAL STRIPPING MODEL

One of the flaws with the expression for ψðxÞ as given by
Eq. (13) is that it assumes that when one takes a dark matter
particle from position x to ∞, all matter in regions greater
than normalized radius x remains intact.
We introduce a model of dark matter particle “unbind-

ing,” where we divide the minihalo into shells of infini-
tesimal thickness. During a stellar interaction, dark matter
particles that will eventually be unbound will go to infinity.
A dark matter particle in a particular shell that is going to
infinity is not expected to feel a gravitational pull from a
dark matter particle in an outer shell because shell expan-
sion is taking place in a spherically symmetric manner.
Thus, we model this as first starting with the minihalo’s
outermost shell (not necessarily within the virial radius) and
taking it to infinity. Then we take the next innermost shell
to infinity, and so on. When we take a dark matter particle
from a normalized radius x to infinity, we assume that no
matter exists in the region of radius > x because the matter
in this region has already been taken to infinity. We call this
approach the “sequential stripping model.”
In Eq. (18), the upper limit of the ϵ is a minimum

operation on two functions, ψðxÞ and jΔϵðxÞj. Setting c ¼
10 for now, Fig. 2 shows ψðxÞ [according to Eq. (13)],
which is a decreasing function of x and jΔϵðxÞj [according
to Eq. (11)] which is a quadratically increasing function
on x. The two curves intersect within or beyond the virial
radius, and the normalized radius of the intersection is
called the normalized crossover radius x�. To make Eq. (18)
more tractable, let us utilize the normalized crossover

FIG. 1. Survival fraction as a function of the normalized total
injected energy Efrac into the minihalo as a result of stellar
interaction, for concentration parameters c ¼ 10, 30, 100, 500.
The solid curves are the output of our implementation of K2021’s
analytical approach. The dots are numerical simulation data from
S2023. The dashed curves are the empirical fitting functions used
by S2023.
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radius, x�, which is mathematically defined as that value of
x such that

jΔϵðx�Þj ¼ ψðx�Þ: ð19Þ

As shown in Appendix D the survival fraction with the
sequential stripping model can be computed using

SF ¼ mass fractionx<min½x�;1� − prefactor × IA; ð20Þ
where

mass fractionx<min½x�;1� ¼
c2

fNFWðcÞ
Z

min½x�;1�

x¼0

x
ð1þ cxÞ2 dx;

ð21Þ

prefactor≡ 4πc3

fNFWðcÞ
ð22Þ

and

IA ≡
Z

min½x�;1�

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0

B

p
×

d2ϱ

dψ 02
B

ðx0ðψ 0
BÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxÞ − ϵÞ

p
dψ 0

Bdϵdx: ð23Þ

The relative potentials in the above equation are given by

ψAðxÞ ¼
1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx�

�
; x < x�

ð24Þ

and

ψBðxÞ ¼
1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx

�
; x > x�:

ð25Þ

Figure 3 shows how the survival fraction (solid curves)
varies with the normalized injected energy Efrac. The
sequential stripping model gives a better fit to the simu-
lation data points when compared to the approach used
in Fig. 1.

A. The need to include relaxation

The S2023 simulation data shown in our Fig. 3, is
computed after the remnant minihalo has undergone full
relaxation following a stellar encounter. However, we have
not accounted for this relaxation process for our analytical
curves. But by juxtaposing our analytical curves with
S2023’s numerical data points, it is equivalent to assuming
that, in our case, the remnant minihalo relaxes to the same
initial NFW profile. This is a good approximation for small
Efrac values. For example, in the limit Efrac → 0, there is no
actual stellar encounter, and the resulting (relaxed) mini-
halo is the same NFW minihalo we started with. Thus, for
small finite Efrac values, the approximation that the remnant
minihalo relaxes to the same NFW profile is a good one.
Thus, we see that our analytical curves have a good match
to the numerical data at low values of Efrac. However,
S2023 finds that, in general, the remnant minihalo relaxes
to a broken power profile,

ρðrÞ ¼ ρs
r
rs

�
1þ r

rs

�
k ; ð26Þ

which has an outer logarithmic slope of −ðkþ 1Þ for large
values of r and a logarithmic slope of−1 for small values of
r.1 For our purposes, we assume that k ¼ 3, and this profile
is known as the Hernquist density profile [29]. Since we
have argued that for small Efrac, the remnant minihalo
relaxes to an NFW profile, it is only for larger Efrac values
that the remnant minihalo relaxes to a Hernquist profile.
Since our analytical curves in Fig. 3 do not account for this,
there arises a discrepancy which becomes starker at higher
values of Efrac. This discrepancy leads to errors, which
result in our analytical curves overshooting the numerical
data points at larger Efrac values. We need to include the
relaxation process in our calculations to account for this
discrepancy.

FIG. 2. The normalized injected energy per unit mass jΔϵj in a
minihalo due to a stellar interaction is plotted as a function of the
normalized radius x. In doing so, the total injected energy Efrac is
set to 0.1, 1, 10. The normalized relative potential ψ is also
plotted as a function of x. The ψðxÞ curve does not vary with
Efrac. In all cases for this figure, the concentration parameter
c ¼ 10. The value of x at which jΔϵðxÞj and ψðxÞ curves intersect
is called the normalized crossover radius x�.

1This is in contrast to Ref. [28] who finds that the profiles relax
to a nonbroken power law formula. However, Ref. [28] only fits
numerical simulations up to r ≈ 2rs while S2023 fits them to
r ≈ 20rs.
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B. The Hernquist model

In this section, we assume that after disruption, the
minihalo relaxes to the Hernquist density profile, which is
described by

ρðrÞ ¼ ρs
r
rs
ð1þ r

rs
Þ3 ; ð27Þ

ρðxÞ ¼ ρs
cxð1þ cxÞ3 : ð28Þ

First, using the same sequential stripping model we used
for the NFW minihalo, it can be shown that the normalized
relative potential of an untruncated Hernquist minihalo is
(see Appendix H)

ψAðxÞ ¼ ð1þ cÞ2
�

x� − x
ð1þ cx�Þð1þ cxÞ þ

x�

ð1þ cx�Þ2
�
;

x < x�; ð29Þ

ψBðxÞ ¼ ð1þ cÞ2 x
ð1þ cxÞ2 ; x > x�: ð30Þ

To find x�, we use the condition given in Eq. (19) where
jΔϵðxÞj is given by Eq. (11). The α2 and γ for a Hernquist
minihalo are given by (see Appendix I)

α2 ¼ cð6þ 9cþ 2c2Þ − 6ð1þ cÞ2 lnð1þ cÞ
c4

; ð31Þ

γ ¼ 4þ c
6

: ð32Þ

C. Density profile of the first-generation minihalo
resulting from stellar interaction with an

NFW minihalo

Wewould now like to plot the density profile of the first-
generation minihalo resulting from a stellar interaction
of an NFW minihalo. The first-generation minihalo is
assumed to have a broken power law profile (S2023).
We start by specifying the scale parameters of an unper-
turbed NFWminihalo. Using these, we look to compute the
scale parameters of the first-generation broken power law
profile minihalo. We use the subscript s to denote the
unperturbed NFW minihalo and subscript 1 to denote the
resulting first-generation minihalo.
We first note that the NFWminihalo in the region x > x�s

is completely disrupted. In addition, there is a partial mass
loss in the region x < x�s (see Appendix D). One must note
that x�s can be greater than 1. We first compute the total
surviving mass of the NFW minihalo just after the stellar
interaction. We then allow the remnant minihalo to fully
relax to a broken power law profile of the form

ρðrÞ ¼ ρ1
r
r1

�
1þ r

r1

�
k ; ð33Þ

FIG. 3. The same as Fig. 1 except that the solid curves are the output of our analytical approach using the sequential stripping model of
mass loss in the minihalo.
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where we are leaving k unspecified for the moment, and
later we will set it to 3. We use the fact that the total
surviving mass of the NFW minihalo after perturbation is
equal to the total mass of the fully relaxed broken power
law first-generation minihalo, i.e.,

Menc;sðx�s Þ − ΔMxs¼0→x�s ¼ lim
x1→∞

Menc;1ðx1Þ; ð34Þ

whereMenc;sðx�s Þ is the mass of the NFWminihalo enclosed
within the normalized crossover radius x�s and ΔMxs¼0→x�s
is the mass of the NFWminihalo lost within the normalized
crossover radius x�s . Also, limx1→∞Menc;1ðx1Þ is the total
mass of the first-generation broken power law minihalo.
The xs and x1 are “local variables” of the NFW minihalo
and the first-generation minihalo, respectively. They are
defined as

xs ≡ r
rvir;s

; ð35Þ

x1 ≡ r
rvir;1

; ð36Þ

where rvir;s and rvir;1 are the virial radii of the unperturbed
NFW minihalo and first-generation minihalo, respectively.
We consider the disrupted halo to be a broken power law

of the form

ρk¼2þΔðrÞ ¼
ρ1

r
r1
ð1þ r

r1
Þ2þΔ ð37Þ

for a parameter Δ > 0.
We now look at Fig. 6 of S2023 and make the reasonable

assumption that at small radii, the unperturbed NFW mini-
halo density profile and the first-generation Hernquist/broken
power-law density profile are indistinguishable from each
other. We write this as

lim
r→0

ρNFWðrÞ ¼ lim
r→0

ρk¼2þΔðrÞ;

lim
r→0

ρs
r
rs

�
1þ r

rs

�
2
¼ lim

r→0

ρ1
r
r1

�
1þ r

r1

�
2þΔ ;

ρs
r
rs

¼ ρ1
r
r1

⇒ ρsrs ¼ ρ1r1: ð38Þ

As shown in Appendix J we can compute r1 in terms of
rs as follows

r1 ¼ rs × Rs; ð39Þ

where

Rs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ Δ2Þ�fNFWðcsx�s Þ − 4πc3s Is

�q
ð40Þ

and

cs ≡ rvir;s
rs

: ð41Þ

It is also shown in the same appendix that

ρ1 ¼
ρs
Rs

: ð42Þ

Thus, if the scale parameters ρs, rs of the NFW profile are
given, Eqs. (39) and (42) give the scale parameters ρ1, r1 of
the resulting first-generation broken power law minihalo.
Using N-body simulations, S2023 finds that when an

NFW minihalo participates in a stellar interaction with
impact parameter b ¼ 2 × 10−5 kpc, the resulting first-
generation minihalo will have a broken power law profile
with k ¼ 3.2 or Δ ¼ 1.2. In such a case,

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
66

25

�
fNFWðcsx�s Þ − 4πc3s Is

�r
: ð43Þ

On the other hand, according to the N-body simulations of
S2023, if the impact parameter is b ¼ 5 × 10−5 kpc, the
resulting first-generation minihalo will have a broken
power law profile with k ¼ 3.3 or Δ ¼ 1.3. Then,

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
299

100

�
fNFWðcsx�s Þ − 4πc3s Is

�r
: ð44Þ

Finally, assuming for simplicity that the first-generation
minihalo had a Hernquist profile (k ¼ 3 or Δ ¼ 1),

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fNFWðcsx�s Þ − 8πc3s Is

q
: ð45Þ

Moving on, instead of specifying the unperturbed NFW
minihalo by its two scale parameters, we would like to
specify it by two other quantities: its concentration para-
meter and its virial mass. So, in order to compute the scale
parameters of the first-generation minihalo, we need to first
compute the scale parameters of the NFWminihalo from its
concentration and virial mass.
We first use the definition of the virial radius of the NFW

minihalo. The virial radius is that radius at which the
average density ρ̄vir enclosed within the virial radius is 200
times the critical density ρcrit of the Universe. Therefore,

Mass within virial radius
Volume within virial radius

¼ 200ρcrit;R rvir;s
r¼0 ρNFWðrÞ × 4πr2dr

4π
3
r3vir;s

¼ 200ρcrit: ð46Þ

Let
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xs ≡ r
rvir;s

⇒ r ¼ xsrvir;s: ð47Þ

Substituting Eq. (47) in Eq. (46)

Z
1

xs¼0

ρNFWðxsÞx2s dxs ¼
200

3
ρcrit: ð48Þ

Substituting Eq. (4) in Eq. (48) and performing the
integration with respect to xs in the lhs of Eq. (48), we get

ρs
c3

�
lnð1þ cÞ − c

1þ c

�
¼ 200

3
ρcrit

⇒ ρs ¼
200

3

c3

fNFWðcÞ
ρcrit: ð49Þ

Cosmological observations [30] fix the value of ρcrit as

ρcrit ¼ 1.3483 × 10−7M⊙=pc3: ð50Þ

Thus, specifying the concentration of the NFW minihalo
fixes its scale density through Eq. (49).
Next, the average density within the virial radius of the

NFW minihalo is expressed in terms of its virial mass and
viral radius as follows:

ρ̄vir ¼
Mvir;s
4π
3
r3vir;s

: ð51Þ

Substituting Eq. (41) in Eq. (51) and solving for rs,
we get

rs ¼
1

cs

	
3Mvir;s

4πρ̄vir



1=3

: ð52Þ

Noting that by definition

ρ̄vir ¼ 200ρcrit: ð53Þ

Therefore, Eq. (52) becomes

rs ¼
1

cs

	
3Mvir;s

800πρcrit



1=3

: ð54Þ

Thus, given the concentration and virial mass of the NFW
minihalo, its scale parameters can be found using Eqs. (49)
and (54). Given the concentration and virial mass of the
unperturbed NFW minihalo, we are now able to plot the
density profile of the first-generation minihalo. We use
cs ¼ 100 and Mvir;s ¼ 10−10M⊙. The left (right) panel of
Fig. 4 shows the case where the impact parameter b ¼
2 × 10−5 kpc (b ¼ 5 × 10−5 kpc). The black curve shows
the density profile of the unperturbed NFW minihalo while
the orange curve shows the case where the fully relaxed
first-generation minihalo is assumed to have a Hernquist
profile (k ¼ 3). For both the impact parameter cases,
S2023 numerically shows how the density profile of the
resulting minihalo changes and stabilizes over time. We
chose the data points on that portion of the density profile
curve at t ¼ 2.5 Gyr where the profile had stabilized and
used these datapoints to find the model parameters of the
resulting broken power law of the form given in Eq. (33).
These data points are shown in teal in both panels of Fig. 4.
We did a least squares fit of the data points and obtained
the optimal parameters r1, ρ1, and k. These parameters are

FIG. 4. The left and right panels show the density profile of an NFW minihalo (black curve) which has a stellar encounter with impact
parameters b ¼ 2 × 10−5 kpc and b ¼ 5 × 10−5 kpc, respectively. The NFW minihalo has an initial concentration cs ¼ 100 and virial
massMvir ¼ 10−10M⊙. The orange curve shows the case where the remnant minihalo has relaxed to a Hernquist density profile, which is
a broken power law profile with k ¼ 3. The teal dots are numerical data points of the resulting density profile stabilized at t ¼ 2.5 Gyr
poststellar interaction taken from S2023. We performed a curve fit of these data points to a broken power law (BPL) profile and obtained
its three parameters. The broken power law profile is shown as the red curves.
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given in Table I. The resulting broken power law profiles are
plotted as the red curves in Fig. 4. We notice that the broken
power lawprofilemergeswith theNFWprofile at small radii.
This further reinforces our assumption that the parent and
relaxed child AMCs are indistinguishable at small radii
during a stellar interaction. Next, we calculated the virial
radius rvir;s of the unperturbedNFWminihalo usingEq. (51).
We found that rvir;s ¼ 9.6 × 10−3 pc.We then calculated the
masses of theHernquist andbroken power lawprofiles inside
this virial radius rvir;s. The ratio of the abovemass to thevirial
mass of theNFWprofile then gives us the survival fraction of
the Hernquist or broken power-law profiles. Alternatively,
we also calculate the value of normalized injected energy
Efrac using the impact parameter with Eq. (70) when b > bs.
When b ≤ bs one can use Eq. (70) with b replaced by bs.
Knowing Efrac, we calculate the survival fraction according
to S2023’s empirical response function. These survival
fractions are presented in Table I. As can be seen, there is
about a 0.03 difference in the SF value between the broken
power law case and the SF from S2023’s empirical response
function. This is indicative of the level of systematic error in
determining the SF. As can be seen, the difference between
the SF from the Hernquist and the broken power law profiles
is around 0.01, which indicates that within the level of
systematic error, the Hernquist profile could be used instead
of the broken power law.

D. Incorporating relaxation to a Hernquist profile

We now try to improve upon Fig. 3, this time incorpo-
rating the relaxation process to a Hernquist profile. We
assume we are given the concentration cs of the unperturbed
NFW minihalo. Then, Eq. (49) gives us the scale density ρs
of the NFW minihalo. Having calculated ρs, Eq. (42) gives
us the scale density ρ1 of the relaxed first-generation
Hernquist minihalo, where Rs is given by Eq. (45).

Our next task is to compute the concentration c1 of the
first-generation Hernquist minihalo and get an equation
analogous to Eq. (49) but for the Hernquist profile. We start
with the definition of the virial radius as before. This then
leads us to an equation similar to Eq. (48) but for the first-
generation Hernquist minihalo, finally resulting in an
equation relating the concentration c1 and scale density
ρ1 as follows (see Appendix L 1):

1

2c1ð1þ c1Þ2
¼ 200

3

ρcrit
ρ1

: ð55Þ

The survival fraction after relaxation is given by (see
Appendix K)

SF≡Menc;1ðxrvir;s1 Þ
Mvir;s

; ð56Þ

¼ 1

2
R2
s
fHernðc1xrvir;s1 Þ
fNFWðcsÞ

; ð57Þ

where

fHernðxÞ ¼
x2

ð1þ xÞ2 ; ð58Þ

xrvir;s1 ≡ rvir;s
rvir;1

ð59Þ

is the virial radius of the unperturbed NFW minihalo
expressed in terms of the “local” normalized radial distance
variable of the first-generation Hernquist minihalo. Menc;1

is the mass enclosed for a Hernquist profile. xrvir;s1 can be
written as (see Appendix K)

xrvir;s1 ¼ cs
c1

1

Rs
: ð60Þ

Using this procedure, the survival fraction can be computed
against Efrac. Figure 5 shows the results. The solid lines are
our analytical curves. The circular dots are numerical data
points from S2023. The dashed curves are S2023’s curve
fits to the numerical data. Our analytical curves closely
match the numerical data points for larger values of Efrac.
This is because it is a reasonable assumption that the remnant
minihalo relaxes to a Hernquist profile in this regime.
However, our analytical curves overshoot the numerical
data for smaller values of Efrac. This is because, as discussed
in Sec. III A, for smaller Efrac values, it is a better
approximation to assume that the remnant minihalo relaxes
to the same NFW profile not the Hernquist profile.

E. The switching procedure

Figure 3 shows that the sequential striping model with-
out considering relaxation produces a good match to the

TABLE I. An NFW profile minihalo of concentration cs and
virial massMvir;s undergoes a stellar interaction with two different
impact parameters b ¼ 2 × 10−5 kpc and b ¼ 5 × 10−5 kpc. In
each case, we fit the numerical data points in Fig. 4 to obtain the
parameters of the resulting broken power law (BPL) profile. The
scale radius r1, scale density ρ1, and power parameter k of the BPL
profile are presented above. Moreover, the survival fractions using
the Hernquist and BPL profiles in Fig. 4 as well as using S2023’s
empirical response function are presented.

b 2 × 10−5 kpc 5 × 10−5 kpc
r1 1.14 × 10−4 pc 2.47 × 10−4 pc
ρ1 2.44M⊙=pc3 0.716M⊙=pc3

k 3.38 3.34
SF from Hernquist 0.15 0.433
SF from BPL 0.137 0.423
SF from S2023
response function

0.172 0.393
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numerical data at low values of Efrac but overshoots the
data at high Efrac values. On the other hand, Fig. 5 shows
that the sequential stripping model incorporating relaxation
to a Hernquist profile overshoots the numerical data at low
values of Efrac but is a good match at high Efrac values. We
have previously discussed the physical intuitions for both
these models. We now introduce a switching procedure
where, for any given Efrac value, we compute the survival
fraction both without and with considering relaxation to a
Hernquist profile, and we choose the method that gives us
the lesser value of survival fraction. Implementing this
procedure in PYTHON, we find that the algorithm selects the
method without relaxation for low values of Efrac. As Efrac
is increased, the algorithm switches to the method with
relaxation at some (unenforced) value of Efrac. Figure 6
shows the survival fraction plotted against Efrac using the
switching procedure. The switching procedure provides a
good match to the numerical data for all regimes of Efrac
values considered.
Figures 7 and 8 show the error and relative error

respectively in the survival fraction vs Efrac curves for
K2021’s approach, our analytical switching procedure and
S2023’s fitting functions.
As can be seen, the smallest errors are shown by the

switching procedure and S2023’s semianalytic fitting
functions. In some instances, the switching procedure
outperforms S2023’s fitting functions.

IV. MULTIPLE STELLAR ENCOUNTERS
OF AN NFW MINIHALO

Here, we consider the scenario of multiple successive
stellar interactions with an NFW minihalo. After each stellar
interaction, the remnant minihalo is allowed to fully relax
before the next stellar interaction is applied. S2023 states
that, after a stellar encounter, the NFWminihalo will relax to
a broken power law profile with a k dependent on the impact
parameter of the stellar interaction. In general, k ∼ 3. We will
assume k ¼ 3 for our analytical calculations, i.e., a Hernquist
profile. We also assume that when a Hernquist profile is
perturbed, the remnant minihalo will relax to a Hernquist
profile with a different concentration and overall mass.
The NFW and Hernquist density profiles are two-

parameter models. However, it turns out that we need only
one piece of information to calculate the survival fraction
(or mass loss fraction) due to a stellar encounter. Here,
we use the concentration of the minihalo as that piece of
information. As we will see later, the concentration of a
two-parameter minihalo, like the NFW and Hernquist
profiles, uniquely determines the scale density of that
minihalo. So, we cannot compute the exact value of the
scale radius as that would need a second piece of informa-
tion. However, we can compute the ratio of the parent and
child minihalos’ scale radii. This will allow us to calculate
the scale density of the child minihalo. Knowing the scale

FIG. 5. The same as Fig. 1 except that the solid curves are the output of our analytical approach using the sequential stripping model of
mass loss in the minihalo and taking into account relaxation of the remnant minihalo to a Hernquist profile.
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density of the child minihalo gives us its concentration
parameter. We then iterate this process to get the concen-
trations (and hence survival fractions) of successive gen-
erations of minihalos.
We use the subscript s to denote the unperturbed NFW

minihalo. We use the numeral n to denote the nth generation

Hernquist minihalo, where the first-generation Hernquist
minihalo is the child of the NFW minihalo and the nth
generation Hernquist minihalo is the child of the (n − 1)th
generation Hernquist minihalo.
To compare the survival fractions of successive gener-

ations of minihalos, we will define the survival fraction of
any minihalo as

SFn ≡ 1 −
ΔM
Mvir;s

; ð61Þ

FIG. 7. The error in a model is defined as (model−data). Plotted
are the errors in the output of Ref. [21]’s (K2021) analytical
approach, our analytical switching procedure and S2023’s em-
pirical fitting functions. The numerical data is taken from S2023’s
N-body simulations. Errors are plotted for concentration param-
eters c ¼ 10, 30, 100.

FIG. 8. The same as Fig. 7 except for the relative error, which is
defined as (model−data)/data, rather than the error.

FIG. 6. The same as Fig. 1 except that the solid curves are the output of our analytical approach using the sequential stripping model of
mass loss in the minihalo and incorporating the switching procedure.
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where n ¼ s; 1; 2; 3;… and ΔM is the total mass lost
within the virial radius of the unperturbed NFW minihalo.
This means that our region of interest for the purposes
of evaluating mass loss is always inside a sphere of
radius rvir;s.
We start the procedure by specifying the concentration cs

of the NFW minihalo. To better understand how some of
the equations in this section are derived, see Appendix L.
Step I: Compute the survival fraction of the NFW

minihalo. We use the switching procedure to find out
the survival fraction of the NFW minihalo. We will restrict
our incremental Efrac to be high enough such that the
switching procedure forces the remnant minihalo to relax to
a Hernquist profile. Knowing cs, we can calculate the scale
density ρs of the NFW minihalo using Eq. (49). Next we
calculate Rs using Eq. (45). We can then calculate the scale
density ρ1 of the first-generation Hernquist minihalo using
Eq. (42). We can then calculate concentration c1 of the
first-generation Hernquist minihalo by solving for Eq. (55).
The NFW minihalo’s survival fraction is then given
by Eq. (56).
Step II: Compute the survival fraction of the nth

generation Hernquist minihalo (n ≥ 1). In the (n − 1)th
step, we would have calculated the scale density ρn and
concentration cn of the nth generation Hernquist minihalo.
We next consider the conservation of mass condition for the
transition from the nth to (nþ 1)th generation Hernquist
minihalo.

Menc;nðx�nÞ − ΔMxn¼0→x�n ¼ lim
xnþ1→∞

Menc;nþ1ðxnþ1Þ: ð62Þ

Evaluating each of the terms in Eq. (62), it can be shown
that the ratio of the scale radii of the (nþ 1)th to the nth
generation Hernquist minihalos is (see Appendix L 3)

rnþ1

rn
¼ Rn; ð63Þ

where

Rn ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fHernðcnx�nÞ − 8πc3nIn

q
; ð64Þ

In ≡
Z

x�n

xn¼0

Z jΔϵðxnÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

1ffiffiffi
8

p
π2

x2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxnÞ − ϵÞ

p

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ − ψ 0
B

p d2ϱ

dψ 02
B

ðx0nðψ 0
BÞÞdψ 0

Bdϵdxn: ð65Þ

We can now calculate the scale density ρnþ1 of the (nþ 1)
th generation Hernquist minihalo using the following
relationship (see Appendix L 3):

ρnþ1 ¼
ρn
Rn

: ð66Þ

Next, we compute the concentration cnþ1 of the (nþ 1)th
generation Hernquist minihalo by adapting Eq. (55) and
solving for cnþ1 in the expression below:

1

2cnþ1ð1þ cnþ1Þ2
¼ 200

3

ρcrit
ρnþ1

: ð67Þ

The survival fraction of the nth generation Hernquist
minihalo is given by (see Appendix L 4)

SFn ¼
1

2
ðRnRn−1…R1RsÞ2

fHern
�
cnþ1x

rvir;s
nþ1

�
fNFWðcsÞ

; ð68Þ

where

xrvir;snþ1 ¼
cs
cnþ1

1

RnRn−1 � � �R1Rs
: ð69Þ

Step II is applied for n ¼ 1, then n ¼ 2, and so on. This
completes the theoretical procedure for computing survival
fractions for multiple stellar encounters of an NFW mini-
halo. We now set cs ¼ 100 and evaluate the survival
fractions of the NFW minihalo and successive generations
of Hernquist minihalos using the above mentioned pro-
cedure. Figure 9 shows the survival fractions resulting
from multiple energy injections into the minihalo due to
successive stellar encounters. The blue curve represents
the survival fraction vs Efrac due to single stellar encounter
scenarios. The green/red curves represent multiple en-
counters, each characterized by an incremental Efrac ¼
0.1=7.8, respectively. However, the green curve’s last two

FIG. 9. The survival fraction of an NFW minihalo is plotted
against the total normalized injected energy Efrac. The blue curve
shows the case of a single stellar encounter. The green (red)
curves represent the multiple stellar encounter scenario where an
incremental Efrac ¼ 0.1ð7.8Þ is used repeatedly. When the in-
cremental Efrac is higher (red curve), the deviation from the single
energy injection case (blue curve) is higher as well.
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incremental energy injections are characterized by
an Efrac ¼ 0.2.
It can be seen that multiple encounters generate more

mass loss than a single-shot encounter case of the same
cumulative energy injection Efrac because of the relaxation
occurring in between stellar encounters.
In Fig. 9, we have fixed the incremental Efrac between

successive encounters. According to S2023, for a large
enough impact parameter,

Efrac ¼
α2

πγ

GM2
⋆

V2b4
1

ρ̄vir
; ð70Þ

whereM⋆ is the mass of the perturbing star, V is the relative
velocity of the star, and ρ̄vir is the average density of the
minihalo within its virial radius. α2 and γ are functions of c,
which depends on the density profile of the minihalo—
specifically, it depends on the scale density of the mini-
halo. Between successive encounters of the minihalo, its
density profile changes. Thus, the ratio α2

γ changes.
Assuming we fix M⋆, V, and ρ̄vir between encounters
(recall ρ̄vir ¼ 200ρcrit, so it is fixed), fixing Efrac necessarily
means that the impact parameter b changes between
successive encounters. In Fig. 9 of S2023, they have a
graph where they use their N-body results to evaluate the
survival fractions of an NFWminihalo for a multiple stellar
encounter scenario. We would like to compare our results
with that of S2023. They use incremental Efrac ¼ 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.2, 0.2 in one case and Efrac ¼ 7.8, 7.8,
7.8, 7.8, 7.8 in a second case. We will also use these values
of incremental Efrac in our analytical calculations. S2023
evaluates b from Eq. (70) for an NFW profile, given
knowledge of the concentration of the NFW minihalo and
the Efrac value. S2023 then fixes b between successive
encounters while simultaneously assuming that Efrac is held
constant ð0.1=0.2=7.8Þ [31]. This approach is inaccurate
since the density profile of the minihalo changes between
encounters, thus changing the ratio α2

γ . Thus, both Efrac and
b cannot be fixed between encounters. As we mentioned,
S2023 fixes b between successive encounters. To compare
the output of our analytical procedure to S2023’s results,
we emulate this by first evaluating b from Eq. (70) for
the NFW profile, with a known Efrac ð0.1=0.2=7.8Þ and
then fix that value of b and evaluate the actual Efrac using
Eq. (70) for the remaining encounters. Using the actual
value of Efrac for each encounter, we analytically compute
the survival fraction for that encounter. However, when
plotting the results in a graph, we use Efrac ¼ 0.1=0.2=7.8
for each encounter instead of the actual value of Efrac.
This allows us to compare the output of our analy-
tical procedure to the numerical simulations of S2023.
Figure 10 shows the corresponding results. The blue curve
represents the single encounter case. The green (red) curves
represent the multiple encounter scenario with incremental

Efrac ¼ 0.1ð7.8Þ. The solid curves with circular markers
represent our analytical method, while the dashed curves
with triangular markers represent S2023’s numerical simu-
lations. There is a fair amount of agreement between our
results and S2023’s. However, the slight deviation in the
two results is likely because, as is apparent from Fig. 6,
our analytical method of computing survival fractions
gives a slightly different answer compared to S2023’s
numerical simulations. Moreover, we assume that the suc-
cessive generations of minihalos have Hernquist density
profiles. However, in reality, those minihalos will have a
broken power law profile with the k parameter close to, but
not exactly, 3 (which would be the Hernquist profile).

V. EMPIRICAL METHOD OF ACCOUNTING
FOR MULTIPLE ENCOUNTERS

Inspired by Ref. [32], we propose the following empiri-
cal method for evaluating the effective single energy
injection from multiple stellar encounters:

Efrac;eff ¼
�X

i
Ep=2
frac;i

�
2=p

; ð71Þ

where p is a parameter to be determined. For p ¼ 2, the
value of Efrac;eff would correspond to the sum of all
individual Efrac;i. For p < 2, multiple energy injections
would have an enhanced effect. Only the strongest energy
injection would matter for p → ∞.
Reference [32] finds that p ¼ 1.2 for a prompt cusp

which has a density that differs from the NFW form,
following a steep r−1.5 density profile between outer

FIG. 10. The survival fraction of an NFW minihalo is plotted
against the total normalized injected energy Efrac. The blue curve
shows the case of a single stellar encounter. The green (red)
curves represent the multiple stellar encounter scenario where an
incremental Efrac ¼ 0.1ð7.8Þ is used repeatedly. The solid curves
with circular markers represent the output of our analytical
method, while the dashed curves with triangular markers re-
present the output of S2023’s N-body simulations.
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boundary set by the curvature of the initial density peak and
inner core determined by the physical nature of the dark
matter. S2023 effectively assumed p ¼ 2. As our results in
the previous section indicate, p < 2 would provide a better
fit. A similar finding was obtained by Ref. [28]. However,
due to the different methods and assumptions used there, it is
difficult to make a precise comparison between our results.
We performed a least squares fit to find the optimal value

of p for the cases we investigated in Fig. 9. The results are
shown in Fig. 11. Our best-fit values of p ¼ 0.8 and p ¼ 0.6
are consistent with our earlier findings that successive
encounters are more destructive than a single effective
encounter, with the effective fractional energy equal to the
sum of the fractional energies of each actual encounter.

VI. DISCUSSION AND CONCLUSIONS

In extending the K2021 method for evaluating minihalo
mass loss due to stellar encounters, we have introduced
a sequential stripping model. This model conceptually
divides the minihalo into infinitesimally thin shells, sequen-
tially focusing from the outermost to the innermost.
However, this sequential approach does not imply a
temporal sequence in the stripping process. Instead, it is
a methodological tool for analysis. In reality, during a
stellar encounter, the stripping of shells occurs simulta-
neously, regardless of their distance from the minihalo
center.
Building on this, it is crucial to note that our model also

accounts for changes in the minihalo’s profile after a stellar
encounter. This aspect becomes significant if the energy
injection during the encounter is sufficiently large, altering
the minihalo’s structure and dynamics.
As shown in Figs. 7 and 8, our new method provides a

significantly better fit to S2023’s N-body simulation results
compared to the K2021 method. This is particularly
noticeable for Efrac ≳ 10−2, which is relevant for modeling
the mass loss incurred by multiple passes through the
Milky Way disk (S2023).
A significant finding of our research centers on the

treatment of minihalos undergoing multiple stellar encoun-
ters. Note that this is for the case where the minihalo has
had time to stabilize after each encounter. As discussed
in S2023, for example, this scenario may be appropriate
for successive cases of the minihalo passing through the
Galactic disk. Although many encounters may occur during
a single passing through of the disk, these will be in such
rapid succession that they can be considered one encounter
where the fractional energies have been summed up to give
the effective fractional energy of one encounter.
Contrary to the results presented by S2023, our analysis

suggests that sequential stellar interactions lead to a more
pronounced mass loss in minihalos when they are allowed
to fully relax between encounters. This finding will have
implications for our understanding of minihalo survival and
evolution in dense stellar environments. S2023 found that
by z ¼ 0 at the Solar System location, around 60% of the
mass in minihalos has survived stellar disruption from the
Milky Way disk. However, as we have shown, they assume
the fractional energy injections for each passage through
the disk can be added to make a single effective fractional
energy injection. Our results indicate that this underesti-
mates the effects of sequential energy injections. In future
work, we would like to use our new method of evaluating
the impact of sequential stellar encounters to estimate the
mass lost by minihalos in the Milky Way.

All code used in this article can be found at the following
online repository [33].

FIG. 11. The survival fraction (SF) of an NFW minihalo is
plotted against the total normalized energy energy injection Efrac.
The blue curve shows the case of a single stellar encounter.
The green (red) curves represent the multiple stellar encounter
scenario where an incremental Efrac ¼ 0.1ð7.8Þ is used repeat-
edly. In the top and bottom panels, the orange curve is the best fit
p using Eq. (71) for individual energy injections of Efrac ¼ 0.1
and 7.8, respectively. The respective best-fit values of p were
0.8 and 0.6.
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APPENDIX A: COMPUTING THE EXPRESSION
FOR THE NORMALIZED RELATIVE
POTENTIAL OF AN UNTRUNCATED

NFW MINIHALO

The Newtonian gravitational potential for an untruncated
NFW density profile is Ref. [20] [Eq. (2.67)]

ΦðrÞ ¼ −4πGρsr3s
ln ð1þ r

rs
Þ

r
: ðA1Þ

Making the substitutions r
rs
¼ xrvir

rs
¼ cx and rs ¼ rvir

c in
Eq. (A1)

ΦðxÞ ¼ −4πGρs
r3vir
c3

ln ð1þ cxÞ
xrvir

;

¼ −Ψ0 ×
4πρsr3vir
Mvirc3

ln ð1þ cxÞ
x

; ðA2Þ

where Ψ0 ≡ GMvir
rvir

.
Substituting for Mvir from Eq. (E5) in Eq. (A2)

ΦðxÞ ¼ −Ψ0

1

fNFWðcÞ
ln ð1þ cxÞ

x
: ðA3Þ

Let the relative potential be Ψ≡ −Φ and the normalized
relative potential be ψ ≡ Ψ

Ψ0
. ⇒ ψ ¼ − Φ

Ψ0
. From Eq. (A3),

this implies that the normalized relative potential is

ψðxÞ ¼ 1

fNFWðcÞ
ln ð1þ cxÞ

x
: ðA4Þ

APPENDIX B: COMPUTING THE
DIMENSIONLESS EXPRESSION FOR THE

SURVIVAL FRACTION OF AN NFW MINIHALO

We start with Eq. (15). Substituting with r ¼ xrvir,
Ψ ¼ ψΨ0, ε ¼ ϵΨ0, jΔεj ¼ jΔϵjΨ0, and f ¼ ρs

Ψ3=2
0

f̂, we get

ΔM ¼ 16π2ρsr3vir

Z
1

x¼0

dx x2
Z

min ½jΔϵðxÞj;ψðxÞ�

ϵ¼0

dϵ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
f̂ðϵÞ. ðB1Þ

From Eq. (E5),

Mvir ¼ 4πρsr3vir
fNFWðcÞ

c3
: ðB2Þ

From Eqs. (B1) and (B2), it follows that the survival
fraction is

SF≡ 1 −
ΔM
Mvir

;

¼ 1 −
4πc3

fNFWðcÞ
Z

1

x¼0

dx x2
Z

min½jΔϵðxÞj;ψðxÞ�

ϵ¼0

dϵ f̂ðϵÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
: ðB3Þ

APPENDIX C: COMPUTING THE MASS
OF THE MINIHALO IN A SHELL

OF FINITE THICKNESS

K2021 gives the phase space distribution of dark matter
particles in a minihalo as

fðεÞ≡ dM
d3r⃗d3v⃗

; ðC1Þ

ε≡ΨðrÞ − v2

2
; ðC2Þ

where ε is called the specific relative (total) energy, r⃗ is the
radius vector associated with a dark matter particle, v⃗ is the
corresponding velocity vector, dM is the mass present in
the phase space volume of d3r⃗d3v⃗. Assuming spherical
symmetry in physical space and velocity space,

dM ¼ 16π2fðεÞr2v2dvdr: ðC3Þ

To find the mass of the minihalo between r ¼ r1 and
r ¼ r2, we integrate Eq. (C3)

δM ¼ 16π2
Z

r2

r¼r1

Z
vmaxðrÞ

v¼0

fðεÞr2v2dvdr: ðC4Þ

While performing the v integral, r remains fixed. Thus,
differentiating Eq. (C2)

dε ¼ −vdv: ðC5Þ

Moreover, using Eq. (C2), solving for v

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðrÞ − εÞ

p
: ðC6Þ

Also, we note that when v ¼ vmaxðrÞ, ε ¼ 0 from Eq. (C2)
since ε cannot be negative for a dark matter particle bound
to the minihalo.
Using Eqs. (C5) and (C6), Eq. (C4) becomes

δM ¼ 16π2
Z

r2

r¼r1

Z
ΨðrÞ

ε¼0

fðεÞr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðrÞ − εÞ

p
dεdr: ðC7Þ
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Thus, when the upper limit of the ε integral is ΨðrÞ,
Eq. (C7) gives the mass of the minihalo between the radii
r ¼ r1 and r ¼ r2.

APPENDIX D: EVALUATING THE SURVIVAL
FRACTION USING THE SEQUENTIAL

STRIPPING MODEL

Equation (19) can be used to split the triple integral in
Eq. (18) into two triple integrals as follows:

SF ¼ 1 −
4πc3

fNFWðcÞ
�Z

min½x�;1�

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0p d2ϱ

dψ 02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
dψ 0dϵ dx

þ
Z

1

x¼min½x�;1�

Z
ψðxÞ

ϵ¼0

Z
ϵ

ψ 0¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0p d2ϱ

dψ 02

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
dψ 0 dϵ dx

�
: ðD1Þ

Since we are only interested in the mass loss within the
virial radius, a min½x�; 1� term is introduced in the limits of
the x integral in Eq. (D1) to account for the case when
x� > 1, where x ¼ 1 represents the virial radius.
Let us rewrite Eq. (D1) as follows:

SF ¼ 1 − prefactor × ½IA þ IB�; ðD2Þ

where

prefactor≡ 4πc3

fNFWðcÞ
; ðD3Þ

IA ≡
Z

min½x�;1�

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0p d2ϱ

dψ 02

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
dψ 0dϵ dx; ðD4Þ

IB ≡
Z

1

x¼min½x�;1�

Z
ψðxÞ

ϵ¼0

Z
ϵ

ψ 0¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0p d2ϱ

dψ 02

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞ

p
dψ 0dϵ dx: ðD5Þ

For illustration purposes, let us assume that x� < 1.
Then, according to Eq. (D5), IB is nonzero. Here,
“prefactor × IB” represents mass loss in the region from
x ¼ x� to x ¼ 1. It is important to note that when the
upper limit of the ϵ integral is ψðxÞ, then the triple integral
calculates the mass of the minihalo between the lower
and upper limits of the x integral (see Appendix C).
This implies a total mass loss in the region x∈ ½x�; 1�.
To be exact, “prefactor × IB” is the mass loss fraction
(relative to the virial mass) in the region x∈ ½x�; 1�. Then,
“1-prefactor × IB” represents the mass fraction of the

region x∈ ½0; x��, since all mass in the region x∈ ½x�; 1�
is lost due to stellar interaction. Thus,

1 − prefactor × IB ¼ mass fractionx<min½x�;1�: ðD6Þ

Thus, Eq. (D2) can be written as

SF ¼ mass fractionx<min½x�;1� − prefactor × IA: ðD7Þ

According to Fig. 2, for x < x�, jΔϵðxÞj < ψðxÞ. Since the
upper limit of the ϵ integral in Eq. (D4) is jΔϵðxÞj,
“prefactor × IA” represents a partial mass loss occurring
in the region x∈ ½0; x��.
We now have to mathematically evaluate the two terms

of Eq. (D7). Since “mass fractionx<min½x�;1�” represents the
mass of the minihalo in the region x∈ ½0;min½x�; 1��, we
can calculate it by simply integrating the NFW density
profile from x ¼ 0 to x ¼ min½x�; 1�, and dividing the result
by the virial mass, which is a known expression:

Mass fractionx<min½x�;1� ¼
1

Mvir

Z
min½r�;rvir �

r¼0

ρs
r
rs
ð1þ r

rs
Þ2

× 4πr2dr; ðD8Þ

where r� is the crossover radius defined as r� ≡ x�rvir.
It can be shown that Eq. (D8) reduces to (see

Appendix E):

Mass fractionx<min½x�;1� ¼
c2

fNFWðcÞ
Z

min½x�;1�

x¼0

x
ð1þ cxÞ2 dx:

ðD9Þ

For x > x�, the resulting relative potential ψBðxÞ is given
by (see Appendix F),

ψBðxÞ ¼
1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx

�
; x > x�:

ðD10Þ

To compute the expression for the relative potential in the
region x < x�, while taking the dark matter particle from x
to infinity, we assume that all matter is intact from
normalized radius x to x�, and all matter is already stripped
off in the region x > x�. The resulting relative potential
ψAðxÞ is given by (see Appendix G),

ψAðxÞ ¼
1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx�

�
; x < x�:

ðD11Þ
It is important to note that ψðxÞ is continuous at x ¼ x� and
hence x� can be easily evaluated using Eq. (19).
To evaluate the mass loss in the region x < x�, we have

to evaluate “prefactor × IA” in Eq. (D7). In the expression
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for IA, as given by Eq. (D4), the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψðxÞ − ϵÞp

term
becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxÞ − ϵÞp

because the x integral in Eq. (D4)
ranges from x ¼ 0 to x ¼ x�. Thus, ψAðxÞ from Eq. (D11)
applies here.

In Eq. (D4), there is also a term d2ϱ

dψ 02 . Here, we have to

ascertain if it is ψAðxÞ or ψBðxÞ that we differentiate ϱ by.
To find out, note that from the ψ 0 integral in Eq. (D4),
we have

0 ≤ ψ 0 ≤ ϵ: ðD12Þ

From the ϵ integral in Eq. (D4), we have

ϵ ≤ jΔϵðxÞj

x≤x�

: ðD13Þ

From Eqs. (11) and (19) we see that

jΔϵðxÞj

x≤x�

≤ jΔϵðx�Þj ¼ ψðx�Þ: ðD14Þ

This can also be seen in Fig. 2 for the c ¼ 10 case.
From Eqs. (D12), (D13), and (D14), it follows that

ψ 0 ≤ ψðx�Þ: ðD15Þ

Figure 2 then says that ψ 0 is in the region x ≥ x�. Thus, we
must use ψ 0

Bðx0Þ to differentiate ϱ in d2ϱ

dψ 02 . Thus, IA [from

Eq. (D4)] can be rewritten as

IA ≡
Z

min½x�;1�

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0

B

p
×

d2ϱ

dψ 02
B

ðx0ðψ 0
BÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxÞ − ϵÞ

p
dψ 0

Bdϵ dx: ðD16Þ

Using Eqs. (D9), (D3), and (D16), the survival fraction can
be computed using Eq. (D7).

APPENDIX E: COMPUTING THE MASS
FRACTION OF THE NFW MINIHALO BELOW
THE NORMALIZED CROSSOVER RADIUS

In this section, we compute the expression for the mass
fraction of the NFW minihalo in the range x < min½x�; 1�.
We start with Eq. (D8).

Mass fractionx<min½x�;1� ¼
1

Mvir

Z
min½r�;rvir �

r¼0

ρs
r
rs
ð1þ r

rs
Þ2

× 4πr2dr: ðE1Þ

Making the substitution r ¼ xrvir and c ¼ rvir
rs

in Eq. (E1)

Mass fractionx<min½x�;1� ¼
4πρsr3vir
Mvir

Z
min½x�;1�

x¼0

1

cxð1þ cxÞ2
× x2dx; ðE2Þ

where x� ≡ r�
rvir
.

The mass enclosed within a sphere of radius r for an
NFW density profile is Ref. [20] [Eq. (2.66)]

MencðrÞ ¼ 4πρsr3s

"
ln

	
1þ r

rs



þ

r
rs

1þ r
rs

#
: ðE3Þ

Making the substitutions r
rs
¼ xrvir

rs
¼ cx and rs ¼ rvir

c in
Eq. (E3)

MencðxÞ ¼
4πρsr3vir

c3

�
lnð1þ cxÞ − cx

1þ cx

�
: ðE4Þ

The virial mass Mvir is defined as that mass contained
within the virial radius (x ¼ 1). Thus

Mvir ≡Mencðx ¼ 1Þ;

¼ 4πρsr3vir
c3

�
lnð1þ cÞ − c

1þ c

�
;

¼ 4πρsr3vir
fNFWðcÞ

c3
; ðE5Þ

where fNFWðcÞ≡ lnð1þ cÞ − c
1þc.

Substituting for Mvir from Eq. (E5) in Eq. (E2)

Mass fractionx<min½x�;1� ¼
c2

fNFWðcÞ
Z

min½x�;1�

x¼0

x
ð1þ cxÞ2 dx:

ðE6Þ

APPENDIX F: COMPUTING THE EXPRESSION
FOR THE NORMALIZED RELATIVE

POTENTIAL OF AN NFW MINIHALO IN THE
REGION x > x� USING THE SEQUENTIAL

STRIPPING MODEL

For the sequential stripping model, in the region x > x�
where there is complete mass loss, we start by taking the
outermost shell to infinity and then the next outermost
shell, and so on. Thus, in the region x > x�, when a dark
matter particle is taken to infinity, it does not encounter a
net force from dark matter particles in outer shells. So, the
enclosed mass that the dark matter particle sees remains
fixed. The Newtonian gravitational potential is Ref. [20]
[Eq. (2.67)]

ΦðrÞ ¼ −G
Z

∞

r0¼r

Mencðr0Þ
r02

dr0: ðF1Þ
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Making the substitution r0 ¼ x0rvir, Eq. (F1) becomes

ΦðxÞ ¼ −
G
rvir

Z
∞

x0¼x

Mencðx0Þ
x02

dx0; ðF2Þ

where x≡ r
rvir
.

But the enclosed mass seen by the dark matter particle is
always MencðxÞ, even as it is taken to infinity. Thus

ΦðxÞ ¼ −
G
rvir

MencðxÞ
Z

∞

x0¼x

1

x02
dx0;

¼ −
G
rvir

MencðxÞ
1

x
;

¼ −Ψ0

MencðxÞ
Mvir

1

x
; ðF3Þ

where Ψ0 ≡ GMvir
rvir

.
Substituting for MencðxÞ from Eq. (E4) and Mvir from

Eq. (E5), Eq. (F3) becomes

ΦðxÞ ¼ −Ψ0

1

fNFWðcÞ
�
lnð1þ cxÞ − cx

1þ cx

�
1

x
;

¼ −Ψ0

1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx

�
: ðF4Þ

Let Ψ≡ −Φ and ψ ≡ Ψ
Ψ0
.⇒ ψ ¼ − Φ

Ψ0
. From Eq. (F4), this

implies that the normalized relative potential is

ψBðxÞ ¼
1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx

�
; x > x�:

ðF5Þ

APPENDIX G: COMPUTING THE EXPRESSION
FOR THE NORMALIZED RELATIVE

POTENTIAL OF AN NFW MINIHALO IN THE
REGION x < x� USING THE SEQUENTIAL

STRIPPING MODEL

Here, we utilize the sequential stripping model. For the
purposes of computing the relative potential in the region
x < x�, we assume that there is no mass loss in the region
x < x� and complete mass has already occurred in the
region x > x�, in keeping with the sequential stripping
model. From Eq. (F2), the Newtonian gravitational poten-
tial in the region x < x� is

ΦðxÞ ¼ −
G
rvir

Z
∞

x0¼x

Mencðx0Þ
x02

dx0;

¼ −
G
rvir

�Z
x�

x0¼x

Mencðx0Þ
x02

dx0 þMencðx�Þ
Z

∞

x0¼x�

1

x02
dx0

�
;

ðG1Þ

because in the region x > x�, the dark matter particle only
sees an enclosed mass ofMencðx�Þ since all the mass in the
region x > x� is already stripped off.
Substituting for MencðxÞ from Eq. (E4), Eq. (G1)

becomes

ΦðxÞ ¼ −
G
rvir

4πρsr3vir
c3

�Z
x�

x0¼x

1

x02

�
lnð1þ cx0Þ− cx0

1þ cx0

�
dx0

þ
�
lnð1þ cx�Þ− cx�

1þ cx�

�
1

x�

�
;

ΦðxÞ ¼ −
G
rvir

4πρsr3vir
c3

�	
lnð1þ cxÞ

x
−
lnð1þ cx�Þ

x�




þ
	
lnð1þ cx�Þ

x�
−

c
1þ cx�


�
;

ΦðxÞ ¼ −Ψ0

4πρsr3vir
Mvirc3

�
lnð1þ cxÞ

x
−

c
1þ cx�

�
: ðG2Þ

Substituting for Mvir from Eq. (E5), Eq. (G2) becomes

ΦðxÞ ¼ −Ψ0

1

fNFWðcÞ
�
lnð1þ cxÞ

x
−

c
1þ cx�

�
: ðG3Þ

Let Ψ≡ −Φ and ψ ≡ Ψ
Ψ0
.⇒ ψ ¼ − Φ

Ψ0
. From Eq. (G3), this

implies that the normalized relative potential is

ψAðxÞ¼
1

fNFWðcÞ
�
lnð1þcxÞ

x
−

c
1þcx�

�
; x<x�: ðG4Þ

APPENDIX H: COMPUTING THE EXPRESSION
FOR THE NORMALIZED RELATIVE

POTENTIAL OF THE HERNQUIST DENSITY
PROFILE USING THE SEQUENTIAL

STRIPPING MODEL

For a Hernquist profile, the mass enclosed within radius
r is Ref. [20] [Eq. (2.66)]

MencðrÞ ¼ 2πρsr3s
ð rrsÞ2�
1þ r

rs

�
2

ðH1Þ

Using Eqs. (2) and (3), Eq. (H1) can be rewritten as

MencðxÞ ¼
2πρsr3vir

c
x2

ð1þ cxÞ2 : ðH2Þ

The virial mass is, by definition

Mvir ≡Mencðx ¼ 1Þ ¼ 2πρsr3vir
c

1

ð1þ cÞ2 : ðH3Þ

From Eqs. (H2) and (H3), it follows that
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MencðxÞ ¼ Mvirð1þ cÞ2 x2

ð1þ cxÞ2 : ðH4Þ

According to Eq. (F2),

ΦðxÞ ¼ −
G
rvir

Z
∞

x0¼x

Mencðx0Þ
x02

dx0 ðH5Þ

The normalized crossover radius x� is defined by Eq. (19).
We now look at two cases.
Case x > x�: In the sequential stripping model, when

computing the normalized relative potential ψ at normal-
ized radius x, we assume that all shells outward from x have
already been stripped off. Thus, as the dark matter particle
is taken from x to infinity, the enclosed mass is always
MencðxÞ. Thus Eq. (H5) becomes

ΦðxÞ ¼ −
G
rvir

MencðxÞ
1

x
; ðH6Þ

ΦðxÞ ¼ −Ψ0ð1þ cÞ2 x
ð1þ cxÞ2 ; ðH7Þ

where Ψ0 ≡ GMvir
rvir

.

Defining Ψ≡ −Φ, and ψ ≡ Ψ
Ψ0

¼ − Φ
Ψ0
, we compute the

normalized relative potential ψ as

ψBðxÞ ¼ ð1þ cÞ2 x
ð1þ cxÞ2 ; x > x�: ðH8Þ

Case x < x�: We assume complete mass loss in the region
x > x�. In the sequential stripping model, when computing
ψðxÞ, we assume all shells for which x > x� have already
been stripped off. We also assume no shell stripping has
occurred in the range ½x; x��. Thus, Eq. (H5) becomes

ΦðxÞ ¼ −
G
rvir

�Z
x�

x0¼x

Mencðx0Þ
x02

dx0 þ
Z

∞

x0¼x�

Mencðx�Þ
x02

dx0
�
ðH9Þ

Substituting for Menc from Eq. (H4), Eq. (H9) becomes

ΦðxÞ ¼ −Ψ0ð1þ cÞ2
�

x� − x
ð1þ cx�Þð1þ cxÞ þ

x�

ð1þ cx�Þ2
�
:

ðH10Þ

Again, by definition, ψ ¼ − Φ
Ψ0
. We can then compute the

normalized relative potential ψ as

ψAðxÞ ¼ ð1þ cÞ2
�

x� − x
ð1þ cx�Þð1þ cxÞ þ

x�

ð1þ cx�Þ2
�
;

x < x�: ðH11Þ

APPENDIX I: EVALUATING THE EXPRESSION
FOR α2 AND γ FOR A HERNQUIST MINIHALO

α2: For a spherically symmetric density profile like the
Hernquist profile (S2023)

α2 ¼ 1

Mvirr2vir

Z
rvir

r¼0

d3r⃗r2ρðrÞ: ðI1Þ

Since the density profile is spherically symmetric, Eq. (I1)
becomes

α2 ¼ 4π

Mvirr2vir

Z
rvir

r¼0

ρðrÞr4dr: ðI2Þ

Instead of r, writing the variable of integration as x, Eq. (I2)
can be written as

α2 ¼ 4πr3vir
Mvir

Z
1

x¼0

ρðxÞx4dx: ðI3Þ

Substituting for ρðxÞ from Eq. (28), we can then compute
the one-dimensional integral in Eq. (I3). Thus, Eq. (I3)
becomes

α2 ¼ 4πρsr3vir
Mvir

"cð6þ9cþ2c2Þ
ð1þcÞ2 − 6 lnð1þ cÞ

2c5

#
: ðI4Þ

Substituting for Mvir from Eq. (H3), Eq. (I4) can be
written as

α2 ¼ cð6þ 9cþ 2c2Þ − 6ð1þ cÞ2 lnð1þ cÞ
c4

: ðI5Þ

γ: For a spherically symmetric density profile like the
Hernquist profile (K2021)

γ ¼ 4πrvir
M2

vir

Z
rvir

r¼0

MencðrÞρðrÞrdr: ðI6Þ

Changing the variable of integration from r to x, Eq. (I6)
becomes

γ ¼ 4πr3vir
M2

vir

Z
1

x¼0

MencðxÞρðxÞxdx: ðI7Þ

Substituting forMencðxÞ from Eq. (H4), ρðxÞ from Eq. (28)
and Mvir from Eq. (H3), the one-dimensional integral in
Eq. (I7) can be evaluated and Eq. (I7) can be succinctly
written as

γ ¼ 4þ c
6

: ðI8Þ
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APPENDIX J: COMPUTING EXPRESSIONS FOR
THE DISRUPTED MINIHALO’S PARAMETERS

We now compute each of the terms in Eq. (34). For an
NFW profile, the mass enclosed within radius r is
[Eq. (2.66) of Ref. [20] ]

Menc;sðrÞ ¼ 4πρsr3s

"
ln

	
1þ r

rs



−

r
rs

1þ r
rs

#
: ðJ1Þ

Now,

r
rs

¼ r
rvir;s

rvir;s
rs

¼ xscs; ðJ2Þ

where

cs ≡ rvir;s
rs

: ðJ3Þ

Substituting Eq. (J2) in Eq. (J1)

Menc;sðxsÞ ¼ 4πρsr3s

�
ln ð1þ csxsÞ −

csxs
1þ csxs

�
;

¼ 4πρsr3sfNFWðcsxsÞ; ðJ4Þ

⇒ Menc;sðx�s Þ ¼ 4πρsr3sfNFWðcsx�s Þ: ðJ5Þ

Next, prefactor × IA from Eqs. (D3) and (D16), computes
the mass loss fraction between x ¼ 0 and x ¼ min ½x�; 1�.
We can convert a mass loss fraction term to a mass loss term
by multiplying with Mvir. Thus,

ΔMxs¼0→x�s ¼Mvir ×
4πc3s

fNFWðcsÞ
Z

x�s

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

x2
1ffiffiffi
8

p
π2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ− ψ 0
B

p d2ϱ

dψ 02
B

ðx0ðψ 0
BÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxÞ− ϵÞ

p
dψ 0

Bdϵdx: ðJ6Þ

Substituting for Mvir from Eq. (E5) in Eq. (J6)

ΔMxs¼0→x�s ¼ 16π2ρsr3sc3s

Z
x�s

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

× x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0

B

p d2ϱ

dψ 02
B

ðx0ðψ 0
BÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxÞ − ϵÞ

p
dψ 0

Bdϵ dx;

¼ 16π2ρsr3sc3s × Is; ðJ7Þ

where

Is ¼
Z

x�s

x¼0

Z jΔϵðxÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

x2
1ffiffiffi
8

p
π2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0

B

p d2ϱ

dψ 02
B

ðx0ðψ 0
BÞÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxÞ − ϵÞ

p
dψ 0

Bdϵ dx: ðJ8Þ

Next, in general, for a broken power law of the form given
by Eq. (37) the total enclosed mass is

lim
x1→∞

Menc;1ðx1Þ ¼ lim
r→∞

Menc;1ðrÞ;

¼
Z

∞

r¼0

ρk¼2þΔðrÞ × 4πr2dr;

¼
Z

∞

r¼0

ρ1
r
r1
ð1þ r

r1
Þ2þΔ 4πr2dr;

¼ 4πρ1r31
Δþ Δ2

: ðJ9Þ

Finally, substituting Eqs. (J5), (J7), and (J9) in Eq. (34)

4πρsr3sfNFWðcsx�s Þ − 16π2ρsr3sc3s Is ¼
4πρ1r31
Δþ Δ2

: ðJ10Þ

Dividing Eq. (J10) by 4πρsr3s

fNFWðcsx�s Þ − 4πc3s Is ¼
1

Δþ Δ2

	
ρ1r1
ρsrs


	
r1
rs



2

: ðJ11Þ

Substituting Eq. (38) in Eq. (J11), we can then compute
r1 in terms of rs as follows

r1 ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ Δ2Þ½fNFWðcsx�s Þ − 4πc3s Is�

q
;

¼ rs × Rs; ðJ12Þ

where

Rs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ Δ2Þ½fNFWðcsx�s Þ − 4πc3s Is�

q
: ðJ13Þ

Substituting Eq. (J12) in Eq. (38), we get

ρ1 ¼
ρs
Rs

: ðJ14Þ

APPENDIX K: COMPUTING THE EXPRESSION
FOR SURVIVAL FRACTION, INCORPORATING

RELAXATION

Here, we compute the expression for the survival
fraction, assuming that the remnant minihalo following a
stellar encounter (with an NFW minihalo) relaxes to a
Hernquist profile. Our region of interest for calculating
the survival fraction is the physical virial radius of the
unperturbed NFW minihalo. Thus, the survival fraction is
the ratio of the mass enclosed by the region of interest for
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the relaxed Hernquist profile to the mass enclosed by the
same region of interest for the unperturbed NFW profile
which is just the virial mass Mvir;s of the NFW minihalo.

SF≡Menc;1ðxrvir;s1 Þ
Mvir;s

: ðK1Þ

Here, xrvir;s1 is the physical virial radius of the unperturbed
NFW minihalo expressed in the “local” normalized radial
distance variable of the relaxed Hernquist minihalo.

xrvir;s1 ≡ rvir;s
rvir;1

; ðK2Þ

¼ csrs
c1r1

;

¼ cs
c1

1

Rs
; ðK3Þ

where rvir;s and rvir;1 are the physical virial radii of the
unperturbed NFW minihalo and the relaxed Hernquist
minihalo, respectively. cs and c1 are the concentrations
of the NFW and Hernquist minihalos, respectively.
According to Eq. (2.66) of Ref. [20]

Menc;1ðrÞ ¼ 2πρ1r31
ðr=r1Þ2

ð1þ r=r1Þ2
; ðK4Þ

⇒ Menc;1ðx1Þ ¼ 2πρ1r31
ðc1x1Þ2

ð1þ c1x1Þ2
; ðK5Þ

where x1 ≡ r
rvir;1

. Thus,

Menc;1ðxrvir;s1 Þ ¼ 2πρ1r31
ðc1xrvir;s1 Þ2

ð1þ c1x
rvir;s
1 Þ2 ;

¼ 2πρ1r31fHernðc1xrvir;s1 Þ: ðK6Þ

Next, Mvir;s is given by Eq. (E5) but it can be rewritten as

Mvir;s ¼ 4πρsr3sfNFWðcsÞ: ðK7Þ

Substituting Eqs. (K6) and (K7) in Eq. (K1)

SF ¼ 2πρ1r31fHernðc1xrvir;s1 Þ
4πρsr3sfNFWðcsÞ

;

¼ 1

2

	
ρ1r1
ρsrs


	
r1
rs



2 fHernðc1xrvir;s1 Þ

fNFWðcsÞ
: ðK8Þ

Substituting Eqs. (38) and (J12) in Eq. (K8)

SF ¼ 1

2
R2
s
fHernðc1xrvir;s1 Þ
fNFWðcsÞ

: ðK9Þ

APPENDIX L: EVALUATING MASS LOSS
UNDER MULTIPLE STELLAR ENCOUNTERS

OF AN NFW MINIHALO

1. Computing the concentration of a Hernquist
minihalo given its scale density

We start with the definition of the virial radius of the
Hernquist minihalo, analogous to Eq. (46). This leads us to
an equation similar to Eq. (48) but for the first-generation
Hernquist minihalo. Thus, we haveZ

1

x1¼0

ρHernðx1Þx21dx1 ¼
200

3
ρcrit; ðL1Þ

where

x1 ≡ r
rvir;1

; ðL2Þ

and rvir;1 is the virial radius of the first-generation Hernquist
minihalo. Substituting Eq. (28) in Eq. (L1) and performing
the integral with respect to x1 in the lhs of Eq. (L1), we get

1

2c1ð1þ c1Þ2
¼ 200

3

ρcrit
ρ1

: ðL3Þ

2. Evaluating the normalized virial radius of the
unperturbed NFW minihalo, expressed in the local
variable of the first-generation Hernquist minihalo

Here, we compute xrvir;s1 , the normalized virial radius of
the unperturbed NFW minihalo, expressed in the local
variable of the first-generation Hernquist minihalo, as
follows:

xrvir;s1 ≡ rvir;s
rvir;1

;

¼ csrs
c1r1

;

¼ cs
c1

1

Rs
: ðL4Þ

3. Computing the ratio of scale radii of the (n+ 1)th and
nth generation minihalos. Also, computing the scale

density of the (n+ 1)th generation minihalo

We start with Eq. (62) and evaluate each of the three
terms in this equation. Both the nth and (nþ 1)th gen-
eration minihalos have a Hernquist density profile. First,
adapting Eq. (H1), the mass enclosed by the nth generation
Hernquist minihalo is

Menc;nðrÞ ¼ 2πρnr3n
ð rrnÞ2

ð1þ r
rn
Þ2 : ðL5Þ
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But

r
rn

¼ r
rvir;n

rvir;n
rn

¼ xncn; ðL6Þ

where rvir;n is the viral radius of the nth generation
minihalo, and

xn ≡ r
rvir;n

; ðL7Þ

cn ≡ rvir;n
rn

: ðL8Þ

Substituting Eq. (L6) in Eq. (L5),

Menc;nðxnÞ ¼ 2πρnr3n
ðcnxnÞ2

ð1þ cnxnÞ2
;

¼ 2πρnr3nfHernðcnxnÞ: ðL9Þ

When xn ¼ x�n, the normalized crossover radius of the nth
generation Hernquist minihalo,

Menc;nðx�nÞ ¼ 2πρnr3nfHernðcnx�nÞ: ðL10Þ

Second, Eq. (B1) gives the mass loss between x ¼ 0 and
x ¼ 1 for a Hernquist (as well as NFW) profile. To evaluate
ΔMxn¼0→x�n , we need to evaluate the mass loss between
x ¼ 0 and x ¼ x�. Between these limits, Fig. 2 tells us that
min½jΔϵðxÞj;ψðxÞ� ¼ jΔϵðxÞj. Thus, Eq. (B1) turns into

ΔMxn¼0→x�n ¼ 16π2ρnr3vir;n

Z
x�n

xn¼0

dxn x2n

×
Z jΔϵðxnÞj

ϵ¼0

dϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxnÞ − ϵÞ

p
f̂ðϵÞ: ðL11Þ

Substituting f̂ðϵÞ from Eq. (17) in Eq. (L11),

ΔMxn¼0→x�n ¼ 16π2ρnr3vir;n

Z
x�n

xn¼0

Z jΔϵðxnÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

1ffiffiffi
8

p
π2

x2n

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxnÞ − ϵÞ

p
×

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ψ 0

B

p d2ϱ

dψ 02
B

ðx0nðψ 0
BÞÞdψ 0

Bdϵdxn

¼ 16π2ρnc3nr3n × In; ðL12Þ

where

In ≡
Z

x�n

xn¼0

Z jΔϵðxnÞj

ϵ¼0

Z
ϵ

ψ 0
B¼0

1ffiffiffi
8

p
π2

x2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðψAðxnÞ − ϵÞ

p

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ − ψ 0
B

p d2ϱ

dψ 02
B

ðx0nðψ 0
BÞÞdψ 0

Bdϵdxn: ðL13Þ

Third,

lim
xnþ1→∞

Menc;nþ1ðxnþ1Þ ¼ lim
r→∞

Menc;nþ1ðrÞ;

¼ lim
r→∞

2πρnþ1r3nþ1

ð r
rnþ1

Þ2�
1þ r

rnþ1

�
2
;

¼ 2πρnþ1r3nþ1: ðL14Þ
Substituting Eqs. (L10), (L12), and (L14) in Eq. (62)

2πρnr3nfHernðcnx�nÞ − 16π2ρnc3nr3nIn ¼ 2πρnþ1r3nþ1: ðL15Þ

Dividing Eq. (L15) by 2πρnr3n

fHernðcnx�nÞ − 8πc3nIn ¼
ρnþ1rnþ1

ρnrn

	
rnþ1

rn



2

: ðL16Þ

Here too, we assume that at small radii, the nth and
(nþ 1)th generation minihalos are indistinguishable from
each other. Thus, we arrive at a similar “small radius
condition” as Eq. (38):

ρnrn ¼ ρnþ1rnþ1: ðL17Þ

Substituting Eq. (L17) in Eq. (L16), we get the ratio

rnþ1

rn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fHernðcnx�nÞ − 8πc3nIn

q
;

¼ Rn; ðL18Þ

where

Rn ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fHernðcnx�nÞ − 8πc3nIn

q
: ðL19Þ

Substituting Eq. (L18) in Eq. (L17)

ρnþ1 ¼
ρn
Rn

: ðL20Þ

4. Computing the survival fraction
of the nth generation minihalo

Here, we compute the survival fraction of the nth
generation Hernquist minihalo, assuming it relaxes to the
(nþ 1)th generation Hernquist minihalo. Our region of
interest for calculating the mass loss is the physical virial
radius of the unperturbed NFW minihalo.
We subject the nth generation Hernquist minihalo to a

stellar encounter and let the remnant minihalo relax to an
(nþ 1)th generation Hernquist minihalo. The survival
fraction of the nth generation minihalo is then given by
the ratio of the mass enclosed by the relaxed (nþ 1)th
generation Hernquist minihalo within the region of interest
to the mass enclosed by the unperturbed NFW minihalo
within the same region of interest. Thus,
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SFn ≡Menc;nþ1

�
xrvir;snþ1

�
Mvir;s

; ðL21Þ

where

xrvir;snþ1 ¼
rvir;s

rvir;nþ1

ðL22Þ

is the physical virial radius of the unperturbed NFW
minihalo expressed in the normalized “local” radial dis-
tance variable of the (nþ 1)th generation minihalo. Thus,

xrvir;snþ1 ¼
csrs

cnþ1rnþ1

;

¼ cs
cnþ1

1
rnþ1

rn
rn
rn−1

� � � r2r1
r1
rs

;

¼ cs
cnþ1

1

RnRn−1 � � �R1Rs
; ðL23Þ

where

Ri ¼
riþ1

ri
: ðL24Þ

Next, adapting Eq. (L9), the mass enclosed by the (nþ 1)th
generation Hernquist profile is

Menc;nþ1ðxnþ1Þ ¼ 2πρnþ1r3nþ1fHernðcnþ1xnþ1Þ
⇒ Menc;nþ1ðxrvir;snþ1Þ ¼ 2πρnþ1r3nþ1fHernðcnþ1x

rvir;s
nþ1Þ: ðL25Þ

Substituting Eqs. (L25) and (K7) in Eq. (L21)

SFn ¼
2πρnþ1r3nþ1fHernðcnþ1x

rvir;s
nþ1Þ

4πρsr3sfNFWðcsÞ
;

¼ 1

2

ρnþ1rnþ1

ρsrs

	
rnþ1

rs



2 fHernðcnþ1x

rvir;s
nþ1Þ

fNFWðcsÞ
: ðL26Þ

Mandating that all generations of minihalos are indistin-
guishable at small radii, we have

ρsrs ¼ ρnþ1rnþ1: ðL27Þ

Moreover,

rnþ1

rs
¼ rnþ1

rn

rn
rn−1

� � � r2
r1

r1
rs
;

¼ RnRn−1 � � �R1Rs: ðL28Þ

Substituting Eqs. (L27) and (L28) in Eq. (L26)

SFn ¼
1

2
ðRnRn−1 � � �R1RsÞ2

fHernðcnþ1x
rvir;s
nþ1Þ

fNFWðcsÞ
: ðL29Þ
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Correction: The value for the concentration parameter
was incorrect and has been fixed in the second sentence in
the third paragraph of Sec. III, in the caption to Fig. 2, and
in the text below Eq. (D14) where Fig. 2 is mentioned.
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