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Observations of accreting neutron stars are widely used to constrain the microphysical properties of
superdense matter. A key ingredient in this analysis is the heating associated with nuclear reactions in the
outer layers of the neutron star (crust), as well as the equation of state and composition of these layers. As
recently shown, the neutron hydrostatic/diffusion (nHD) condition is valid in the inner part of the crust,
where some of the neutrons are not bound to the nuclei, and this condition should be properly incorporated
into crustal models. Here we construct models of the accreted crust of a neutron star, taking into account the
nHD condition and proton shell effects in nuclei. For numerical illustration, we employ the recently
proposed compressible liquid drop model, which incorporates shell effects. However, our approach is
general and can also be used in future studies relying on more sophisticated nuclear physics models.
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I. INTRODUCTION

The observational properties of accreting neutron stars
evolve on the timescale of a human lifetime, offering an
opportunity to explore the neutron star “real-time” dynam-
ics. Specifically, crust cooling following an accretion
episode has been observed and analyzed for nine sources,
[1–11], while a few dozen other accreting neutron stars in
quiescence demonstrate thermal emission from the fully
thermally relaxed crusts [9,11–23]. The necessary ingre-
dients for modeling these sources are the crustal equation
of state (EOS) and the heat release profile over the crust.
Here, we determine these properties taking into account the
proton shell effects in nuclei as well as the presence of
unbound neutrons in the inner crust.
To construct the EOS of the accreted crust, one should

study the accretion-driven evolution of volume elements in
the crust. Namely, accretion leads to the compression of
each volume element, initiating nuclear reactions there.
In early works, beginning from [24], this problem was
considered in a single-fluid approximation, i.e., it was
assumed that all matter is confined within the compressing
volume element, thereby making pressure the only driving
parameter of nuclear evolution (the temperature effects
were also neglected).
However, as indicated in [25], the problem is not that

simple due to the presence of unbound neutrons in the
inner crust. The unbound neutrons must be treated as an
independent fluid, which makes the traditional (single-
fluid) approximation inapplicable (see [26] for a discussion
of inconsistencies arising in the single-fluid approxi-
mation). The behavior of the neutron fluid is quite
simple: owing to superfluid motions or rapid diffusion,

it redistributes itself within the inner crust to remain in the
hydrostatic/diffusion equilibrium (nHD) governed by the
nHD condition

μ∞n ¼ constant; ð1Þ

where μ∞n ¼ μneν=2 is the redshifted neutron chemical
potential, μn is the local neutron chemical potential, and
eν=2 is the redshift factor. By definition, inner crust
corresponds to μn ≥ mnc2 (mn is the bare neutron mass;
c is the speed of light), and the upper boundary of the inner
crust is given by the condition μn ¼ mnc2. In the approxi-
mation of vanishing stellar temperature, T ¼ 0, there are no
unbound neutrons above the inner crust. The continuity of
the neutron chemical potential at the crust-core boundary,
as well as the equilibrium structure of the core, implies that
the redshifted neutron chemical potential is constant both in
the inner crust and core [25].
Because of neutron leakage, it is essential to associate a

volume element with the nuclei and monitor nuclear
reactions in that element. The nuclear evolution is governed
by two key parameters: the pressure determined by the
hydrostatic crustal model above this volume element and
the neutron chemical potential, which can also be affected
by the crustal model below the chosen volume element
due to the nHD condition. As a result, it is generally not
possible to build a model of the inner crust layer by layer,
starting from the top; instead, it is necessary to consider the
nuclear evolution in the entire crust simultaneously.
This problem is especially complicated (and has not been

analyzed yet) at the initial stages of accretion, when the
original composition of the matter in the pristine crust is

PHYSICAL REVIEW D 109, 123032 (2024)

2470-0010=2024=109(12)=123032(20) 123032-1 © 2024 American Physical Society

https://orcid.org/0000-0002-6748-1246
https://orcid.org/0000-0003-1333-6139
https://ror.org/05dkdaa55
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.123032&domain=pdf&date_stamp=2024-06-24
https://doi.org/10.1103/PhysRevD.109.123032
https://doi.org/10.1103/PhysRevD.109.123032
https://doi.org/10.1103/PhysRevD.109.123032
https://doi.org/10.1103/PhysRevD.109.123032


replaced by the accreted material. We will not consider this
transitional regime in what follows. Instead, as in our
previous works, we will focus on investigating the steady-
state regime of accretion, in which the composition of the
crust no longer depends on time (except for small secular
corrections associated with changes in the mass of the
accreting star). The resulting neutron star crust will be
referred to as the fully accreted crust (FAC).
The assumption of FAC makes the problem self-similar

and substantially simplifies it. In particular, if Poi, the
pressure at the outer-inner crust interface (oi), is known, it
becomes possible to construct a model of the crust, starting
from the top of the crust and considering it layer by layer.
The equations governing the nHD crust were first derived
in [25] and rederived here in Sec. II for a more realistic
nuclear physics model that includes shell effects.
Unfortunately, generally Poi cannot be known in advance

and must be determined as a result of FAC modeling. To do
this, we treat Poi as a parameter and apply the equations
from Sec. II to construct the nHD EOS family, parametrized
by the pressure Poi. We then analyze this family to
constrain the actual value of Poi and the corresponding
FAC model according to two requirements.
First, the number of nuclei in the crust must be nearly

constant for the crustal structure to remain self-similar.
Because accretion supplies additional nuclei to the crust,
there must be an effective mechanism for nuclei disinte-
gration. The physical mechanism for disintegration is
related to a specific instability, which was identified in
[25] and further analyzed here (see Sec. IV). According to
the numerical results, this instability occurs if Poi exceeds

the critical value PðminÞ
oi , thus constraining Poi from below.

The second condition is used to determine the upper
bound for Poi. It arises from the requirement that the FAC
must be thermodynamically consistent with the neutron star
core. It is important to note that the self-similar solution
ends at the point where all the nuclei disintegrate and
generally cannot be continued into the underlying layers.
For the compressible liquid drop (CLD) model used in [25],
this is not a problem, as the FAC solution ends at the crust-
core boundary. However, for more realistic models, the
situation is not that simple, and relic crustal layers may
remain between the FAC and the core (see Ref. [27] and
Secs. IV and V).
For numerical illustration (Sec. IV) we limit ourselves to

a pure 56Fe ash composition (see Refs. [28–30] for multi-
component models, which, however, are limited to not-too-
deep crustal layers) and apply the recently suggested CLD
model with proton shell effects added on top (CLDþ sh
model, [31]). Using this model, we constrain the pressure
Poi in Sec. V. In Sec. VI, we analyze heat release at the
innermost regions of inner crust and, in Sec. VII, present a
heuristic energy-based approach to predict FAC properties
for more refined nuclear physics models. Our conclusions
and results are summarized in Sec. VIII.

II. CONSTRUCTION OF NHD CRUST

As an input for the development of accreted crust
models, it is necessary to invoke two fundamental physical
theories: thermodynamics and kinetics of crustal matter.
Thermodynamics is required to calculate the equation of
state, assuming a given chemical composition and local
thermodynamic equilibrium. The equation of state, deter-
mined in this manner, will be referred to as the microscopic
equation of state (mEOS); note that we distinguish it from
the actual equation of state established in a specific
accreting neutron star. In turn, kinetics is necessary to
consistently determine the composition of matter in each
point of the accreting crust by accounting for nuclear
reactions and the redistribution of free neutrons within
the crust.
In Ref. [25], we analyzed the nHD crust using the

smooth CLD model as our thermodynamic framework. The
corresponding mEOS is two parametric, i.e., the energy
density ϵ ¼ ϵðnb; nNÞ is a function of the baryon number
density nb and the number density of nuclei, nN . In
Sec. II A we rederive the equations of Ref. [25] in a more
general form, which simplifies the subsequent discussion.
The main goal of this paper is to consider the nHD crust

with a more realistic microphysics input that includes shell
effects. This significantly complicates the problem because
of two reasons. Firstly, mEOS ceases to be two parametric
(see Sec. III B for details). As a result, the equations
governing the nHD crust need to be modified to be
consistent with this more realistic mEOS. The correspond-
ing modification is presented in Sec. II B. The algorithm for
the construction of the nHD crust based on these equations
is given in Sec. II C.
Secondly, the calculation of the shell effects to determine

mEOS is a complicated and model-dependent problem. In
this work, we apply three simplified models to describe
shell energy corrections (see Sec. III C). We treat these
models more as qualitative ones, and use them as a proof-
of-principle demonstration of how one should proceed in
order to construct the nHD accreted crust accounting for
shell effects. We find that the latter effects are crucial for
modeling the nHD crust and infer some general trends that
appear to be less sensitive to the quantitative behavior of
shell corrections.

A. Smooth mEOS

In Ref. [25] we started the derivation of the equations for
the nHD crust from the two-parametric mEOS ϵðnb; nNÞ
and used the CLD model for numerical illustration. The
CLD-based mEOS can be represented in this form by
imposing beta-equilibrium, mechanical equilibrium, and
chemical equilibrium conditions inside a spherical cell,
which contains one nucleus (see the Supplementary
Material of that work). Here, we take a step back and start
from a three-parameter mEOS, ϵðnb; nN; ZÞ (see Sec. III A
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for numerical implementation). This allows us to consider
not only beta-equilibrated matter, but also a EOS for which
Z is constant in the inner crust. The latter model, referred to
as “Z-fixed” EOS in what follows, is used as a simplified,
yet adequate model mimicking the strong proton shell
closure of nuclei with Z ¼ 20.
Let us introduce the chemical potentials, μN ¼ ∂ϵ=∂nN

and μb ¼ ∂ϵ=∂nb. The first one, μN , describes the energy
change resulting from the addition of a nucleus at fixed nb
and Z (alternatively, one can consider it as the creation of a
nucleus from nucleons already available in the matter),
while μn corresponds to the energy change due to an
additional baryon at fixed nN and Z. Since the proton
number density, ZnN , remains also unchanged, the added
baryon is a neutron, and μb can be identified with the
neutron chemical potential, μn: μb ¼ μn. Below, we will
write μn instead of μb in all formulas.
In this section, we consider the two cases: (i) Z is

conserved during compression (Z-fixed EOS), and (ii) beta-
equilibrated matter, for which (see Sec. III A)

∂ϵ

∂Z

����
nb;nN

¼ 0: ð2Þ

In both cases, the pressure can be written as

P ¼ −
∂ðϵVÞ
∂V

¼ −ϵþ μnnb þ μNnN: ð3Þ

Here, the second equality can be derived straightforwardly
by taking partial derivative at a fixed nucleon and baryon
number, and using the definitions of the chemical potentials
μn and μN ; see also Sec. II A.
According to one of the Tolman-Oppenheimer-Volkoff

equations [32],

P0 ¼ −ðPþ ϵÞν 0=2: ð4Þ

Here the prime denotes the derivative with respect to the
radial coordinate r. Combined with the nHD condition (1)
and the Gibbs-Duhem relation in the form dP ¼ nbdμnþ
nNdμN , which holds true for both the Z-fixed EOS and
beta-equilibrated EOS, we arrive at the condition
μ∞N ¼ constant. Thus,

μN ¼ Cμn: ð5Þ

Here C is a constant that depends on the pressure Poi at the
outer-inner crust boundary. As we demonstrated in
Ref. [25] (see also Sec. V), FAC EOS corresponds to a
certain value of C. However, to determine this value, it is
instructive to consider the whole nHD EOS family, i.e., a
family of EOSs that are allowed by the nHD condition (1).
The nHD EOS family can parametrized by the pressure Poi
(or, equally, by C).

The catalyzed crust corresponds to the global minimum
of the energy density ϵðnb; nN; ZÞ at fixed nb, which is
given by the beta-equilibrium condition (2) and the con-
dition μN ¼ ∂ϵ=∂nN ¼ 0. As pointed out in Ref. [25], it is a
member of the beta-equilibrium nHD EOS family, corre-
sponding to C ¼ 0.

B. Realistic mEOS

For a realistic modeling of the accreted crust, one should
utilize the mEOS, which takes into account nuclear shell
effects. Obviously, the corresponding mEOS is more
complicated than its CLD-based smooth analog. In par-
ticular, the nuclear charge number Z becomes discrete
(integer), and the energy density dependence on Z becomes
rather complicated (see, e.g., Refs. [31,33] and Sec. III B).
As a result, the beta-equilibrium condition (2) cannot be
applied and should generally be replaced with some other
requirement. Moreover, Eq. (5) can be violated if Z varies
in the inner crust due to nuclear reactions. To address these
difficulties, we should modify our approach as discussed
in Ref. [34].
Namely, we should replace Eq. (5) with its more general

counterpart which, similarly to Eq. (5) follows from the
Tolman-Oppenheimer-Volkoff equation (4) and nHD
condition (1):

μn ¼ mnc2 exp
�Z

P

Poi

dP̃=
�
ϵðP̃Þ þ P̃

��
; ð6Þ

where, as we already indicated in the introduction, mnc2 is
the neutron chemical potential at the top of the inner crust
(located at P ¼ Poi). This equation allows us to determine
the chemical potential μn in the layer with the pressure P, if
the EOS [e.g., the function ϵðPÞ] is known in the range
from Poi to P. In accordance with Refs. [35–37], our
approach to constructing the inner crust model involves
a step-by-step progression into deeper layers of the crust.
At each layer, we determine the charge number Z by
minimizing the corresponding thermodynamic potential
by means of permissible nuclear reactions (see Sec. II C
for more details). Previously (e.g., in Refs. [35–37]), the
redistribution of unbound neutrons was disregarded.
Consequently, the reactions were assumed to occur at a
constant pressure, and the potential to be minimized was
associated with the Gibbs free energy (e.g., [35,36]).
However, as stipulated by Eq. (6), in the nHD crust, not
only is the pressure P fixed in a given layer, but also the
chemical potential μn. As shown in [34], the appropriate
thermodynamic potential that should be minimized at fixed
P and μn is then

Ψ ¼ ðϵþ PÞV − μnNb: ð7Þ

Here V is the volume attached to nuclei, and Nb ¼ Vnb is
the total number of baryons in the volume.
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If (pycnonuclear) fusion and fission reactions are not
allowed (either too slow or energetically forbidden), the
number of nuclei is conserved. In this case, to determine Z
one can minimize the potentialΨ per one nucleus (note that
it coincides with μN in a special case considered in this
work when nuclei of only one species are present at any
given pressure in the crust):

ψ ≡ Ψ
VnN

¼ ϵþ P − μnnb
nN

¼ μN: ð8Þ

This minimization effectively replaces the beta-equilibrium
condition. For a smooth CLD model with continuous Z, it
reduces to Eq. (2); see Sec. III B for details.
When the composition of a given layer is determined, we

can apply Eq. (6) to consider the underlying layer. By
repeating this procedure, we develop a step-by-step algo-
rithm, which is formulated in the next subsection and
applied in this work to construct the nHD crust.

C. Algorithm

Similar to the case of a smooth mEOS, we begin by
constructing the nHD EOS family, which is parametrized
by the pressure Poi at the outer-inner crust interface. In
subsequent sections, we discuss how to constrain the range
of realistic Poi and present numerical results for the
CLDþ sh model of Ref. [31].
To build the nHD EOS family, we apply an algorithm

based on Eqs. (6) and (7). We stress that this algorithm is
quite general and, in particular, applicable in the situation
when both shell effects and odd-even staggering of nuclear
energies are allowed for. Since the thermodynamic poten-
tialΨ should be minimized at fixed P and μn we assume the
mEOS to be parameterized by the pressure P, neutron
chemical potential μn, and nuclear charge number Z. In
other words, the microphysical model should allow one to
calculate the energy density ϵ and potential ψ for a given P,
μn, and Z (see Sec. III B for the realization of this form of
mEOS based on the CLDþ sh model, which is used in this
work as a numerical example).
The algorithm contains the following stages (stages 2

and 3 are repeated at each step):
(1) Specify the initial conditions at the top of the inner

crust.
The EOS of the fully accreted outer crust is well

studied, especially for a one-component ash dis-
cussed here (see, e.g., Refs. [35,38]). This allows us
to determine the charge number at the bottom of the
outer crust, located at P ¼ Poi. Combining with the
neutron chemical potential at the top of the inner
crust, which is equal to μn;oi ¼ mnc2 by definition,
we obtain the initial conditions (the j ¼ 0 step) for
the construction of the nHD inner crust. Before
turning to the next stage, we also analyze the
reaction pathways at the oi interface according to

stage 3 to determine the composition at the top of the
inner crust.

(2) Advancing to j-th layer.
Starting this step, we assume that the equation of

state in the previous, (j − 1)-th layer, has been
determined and the respective pressure is Pj−1, the
neutron chemical potential is μn;j−1, and the charge
number is Zj−1. We increase the pressure by a small
amountΔP, such thatPj ¼ Pj−1 þ ΔP. To guarantee
the nHD equilibrium, we also increase the neutron
chemical potential according to the formula (6):

μn;j ¼ μn;j−1 · exp

�
ΔP

ϵðPj−1Þ þ Pj−1

�
: ð9Þ

The composition will be adjusted to the equilibrium
one at the next stage, and here we simply assign
Zj ¼ Zj−1.

(3) Choosing optimal Zj.
As inputs for this stage, we have the pressure Pj

and neutron chemical potential μn;j at the layer j, but
the nuclear charge Zj may differ from the optimal
value. It can either be equal to Zj−1 or correspond to
the value obtained in the preceding iteration of this
stage. In order to check whether Zj is further
changing, we calculate the potential ψ for Z ¼ Zj,
Zj − 1, and Zj þ 1. The latter two are nuclei that can
be produced by electron capture and emission,
respectively. By comparing the values ψðZjÞ,
ψðZj − 1Þ, and ψðZj þ 1Þ we choose Z correspond-
ing to the minimal ψ and assign Zj ¼ Z. If Zj is
modified, we repeat this stage again. If it is not
modified, Zj is considered optimal, and we proceed
to the next crustal layer by applying the algorithm of
stage 2.

In principle, the fourth stage, which checks for pycno-
nuclear reactions at the layer j, can be added. However, for
56Fe ash this stage is unnecessary, because the typical
Z ≈ 20, which is realized in the inner crust in this case, is
too large, leading to extremely small rate of pycnonuclear
reactions.
Obviously, this algorithm should be interrupted if the

crust-core boundary is reached, i.e., when, for some μn, the
pressure at the crust matches that in the core.
In fact, the algorithm can be interrupted even earlier

because of the disintegration of all nuclei at stage 3, before
reaching the crust-core boundary. This disintegration could
take place as a result of the onset of an instability at
P ¼ Pinst, as described in Ref. [25] for the smooth CLD
model. This is the most interesting case, because the
instability is required for the formation of FAC.
In terms of the potential ψ the criteria for the in-

stability can be expressed as ψðZinstÞ ¼ ψðZinst − 1Þ >
ψðZinst − 2Þ > … > ψðZ ¼ 1Þ > 0, where Zinst is the
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charge at the previous step of the algorithm (at the layer
P < Pinst). In principle, pycnonuclear fusion can become
important once Z has decreased to a low enough value
during the disintegration process. In this case, further
transformation of nuclei into neutrons proceeds via an
unstoppable analog of the superthreshold electron capture
cascade (SEC, [39]). This modification does not affect the
final outcome—all nuclei disintegrate in the considered
layer. Specifically, fusion-produced nuclei will undergo
beta captures and subsequent neutron emissions, leading to
low-Z nuclei, which, in turn, undergo pycnonuclear fusion.
An overall result of this process is disintegration of one
nucleus ðZ; AÞ per one pycnonuclear reaction and produc-
tion of A neutrons, which redistribute over the crust to keep
fixed μn in the instability layer: ðZ; AÞ þ ðZ; AÞ →
ð2Z; 2AÞ → ðZ; AÞ þ An (A is the atomic mass number).
It should be noted that in the traditional approach that
neglects neutron redistribution, the SEC cascade increases
the number of unbound neutrons, affecting μn and prevent-
ing complete disintegration in some layers (e.g., [37,40]).
In contrast, for the nHD crust, the SEC cascade becomes
unstoppable: the nHD condition fixes the neutron chemical
potential and thus the amount of free neutrons in the layer.
The neutrons produced by disintegration of nuclei are
removed from the layer by superfluid flow or diffusion.
To illustrate the onset of the instability, let us consider the

“smooth” model, i.e., by treating Z as a continuous
variable. The schematic ψðZÞ profiles for such a model
are shown in Fig. 1. Panel (a) shows the typical profile for
layers located at P < Pinst. The function ψðZÞ has a
profound minimum, shown by the star, where nuclei are
stable. However, there is also another extremum (local
maximum) at a lower Z. With pressure increase, the
minimum and the maximum become closer and closer,
and at P ¼ Pinst, they merge, producing an inflection point,
shown by the star in panel (b). At this point, nuclei become
unstable and undergo a series of beta captures (Z is
lowered), until complete disintegration into neutrons.

Clearly, at the instability point, we have

0 ¼ ∂ψ

∂Z

����
Pinst;μn;inst

; ð10Þ

0 ¼ ∂
2ψ

∂Z2

����
Pinst;μn;inst

: ð11Þ

At P > Pinst (panel c) ψ monotonically increases with Z;
hence no beta-stable solutions [see Eq. (10)] are available.
In a more realistic model, the shell effects introduce

many local minima in the ψðZÞ curve (see Fig. 4).
However, for sufficiently large P, the general slope of
the function ψðZÞ becomes strong enough to smooth out
the local minima, leading to the instability.
As long as all nuclei in the considered volume disinte-

grate, the construction of the nHD accreted crust cannot be
continued unambiguously to higher pressures. However,
reaching P ¼ Pinst does not necessarily mark the end of
the crust. At larger pressures, P > Pinst, the crust can be
continued by “relic” layers that are not replaced by the
accreted material in the FAC regime. These layers are
formed at the initial stages of accretion and can be
composed of the spherical nuclei or more complicated
nuclear shapes referred to as “pasta” (see, e.g., [41–50] for
a recent discussion of pasta in pristine crust). Clearly, the
unambiguous determination of the composition of these
layers requires consideration of their formation, which is
beyond the scope of the present paper.

III. MICROPHYSICS INPUT

In our previous work [25], we employed the CLD model
based on the extended Thomas-Fermi (ETF) calculations of
the nucleus surface properties, which explicitly incorpo-
rates the neutron skin effects (see detailed description in the
Supplementary Materials of Ref. [25]).

FIG. 1. Qualitative behavior of the potential ψ for a smooth model with continuous Z for the three values of pressure: P < Pinst,
P ¼ Pinst, and P > Pinst.
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In this paper, we apply the CLD and CLDþ sh models of
Ref. [31], which are slightly different. The basic smooth
CLD model of that reference does not explicitly take into
account the neutron skin effect, and the surface properties are
fitted to reproduce ETF calculations of the nuclear mass table
for the HFB24 model (see [31] for details). As a result of this
difference, the set of variables for the smooth CLD model of
Ref. [31] differs from [25]. This requires some additional
derivations in order to rewrite the CLD model in terms of the
variables that are useful for constructing the nHD crust
(Secs. II A and II B). These derivations are rather straightfor-
ward, but we present them in Sec. III A for completeness.
The CLDþ sh model of Ref. [31] is more realistic than

the smooth CLD model of Ref. [25], because it includes
proton shell effects (neutron shell corrections are small and
can be disregarded [51,52]). The proton shell energies are
added on top of the CLD model. They are determined in
Refs. [33,53] from the ETF plus Strutinsky integral method
(ETFSI). As shown in [31], the resulting CLDþ sh model
reproduces the most realistic calculations of the inner crust
to date [53], providing a unique tool to study the nHD crust.
The reduction of the CLDþ sh model to the variables of
Sec. II B is presented in Sec. III B.

A. Smooth CLD model

When applying the CLDmodel without shell effects, it is
natural to assume that the nuclear charge Z evolves
continuously in the inner crust. Of course, these assump-
tions will be relaxed in the next section, where the shell
effects are taken into consideration. Here, we apply the
CLD model suggested in Ref. [31].
The CLD model of Ref. [31] starts from an explicit

expression for the free energy (see Sec. II of that reference).
In the zero temperature limit, which is adopted here, it
reduces to the energy density ϵðnni; npi; nno; nN; ne; wÞ,
where nni and npi are, respectively, the neutron and proton
number densities inside nuclei; nno is the number density of
unbound neutrons; nN and ne are, respectively, the number
densities of nuclei and electrons; and w ¼ VpnN is the
fraction of volume occupied by nuclei (Vp is the volume of
a single nucleus).
Following Ref. [25], it is useful to introduce the “total”

number densities nðtotÞni ¼ nniw, n
ðtotÞ
pi ¼ npiw, and nðtotÞno ¼

nnoð1 − wÞ, instead of nni, npi, and nno. For example, nðtotÞni
can be interpreted as the total number of neutrons in nuclei
divided by the total volume (not the volume occupied by
nuclei). Using these variables, the differential dϵ can be
expressed as

dϵ ¼ ∂ϵ

∂nðtotÞni

dnðtotÞni þ ∂ϵ

∂nðtotÞpi

dnðtotÞpi þ ∂ϵ

∂nðtotÞno

dnðtotÞno

þ ∂ϵ

∂nN
dnN þ ∂ϵ

∂ne
dne þ

∂ϵ

∂w
dw: ð12Þ

Introducing the baryon number density nb ¼ nðtotÞni þ
nðtotÞpi þ nðtotÞno , the neutron chemical potentials inside μni ¼
∂ϵ=∂nðtotÞni and outside μno ¼ ∂ϵ=∂nðtotÞno nuclei, the proton

chemical potential inside nuclei, μpi ¼ ∂ϵ=∂nðtotÞpi , as well as
the chemical potentials of nuclei μN ¼ ∂ϵ=∂nN , and elec-
trons, μe ¼ ∂ϵ=∂ne, Eq. (12) can be rewritten as

dϵ ¼ μnidnb þ ðμpi þ μe − μniÞdnðtotÞpi þ μNdnN

þ ðμno − μniÞdnðtotÞno þ ∂ϵ

∂w
dw; ð13Þ

where we make use of the quasineutrality condition,

ne ¼ nðtotÞpi . It is worth noting, that μpi and μni are not
equal to their bulk counterparts. In particular, both these
quantities include contributions from the surface energy,
and μpi additionally includes a correction associated with
Coulomb energy.
To obtain EOS in the form of Sec. II A, we should keep

nN , nb, and Z ¼ nðtotÞpi =nN fixed, while determining the

remaining parameters w and nðtotÞno by minimizing ϵ:

0 ¼
∂ϵ
�
nb; n

ðtotÞ
pi ; nðtotÞno ; nN; w

�

∂w
; ð14Þ

0 ¼
∂ϵ
�
nb; n

ðtotÞ
pi ; nðtotÞno ; nN; w

�

∂nðtotÞno

¼ μno − μni: ð15Þ

These equations have a natural physical meaning: the first
one represents the mechanical equilibrium of nucleus and
unbound neutrons, while the second one represents the
diffusion equilibrium for neutrons outside and inside nuclei
(an analog of the equilibrium with respect to neutron
emission and captures). Since μno ¼ μni, below we refer
to both of these quantities as the neutron chemical potential
and denote it simply as μn.
Let us consider the beta equilibrium condition (2). It is

equivalent to ∂ϵ=∂nðtotÞpi ¼ 0, leading to

0 ¼ μpi þ μe − μn: ð16Þ

The equilibrium (catalyzed) crust can be obtained by
imposing an additional condition,

μN ¼
∂ϵ
�
nb; n

ðtotÞ
pi ; nðtotÞno ; nN; w

�

∂nN
¼ 0: ð17Þ

This condition allows one to find the optimal (equilibrium)
number density of nuclei, nN .
For the accreted crust, which is considered here, addi-

tional nuclei are provided by accretion, leading to a
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nonequilibrium nN and nonequilibrium crust [25,27]. As
shown in Sec. II A, for the nHD inner crust, Eq. (17) should
be replaced by Eq. (5).
For the sake of completeness, let us point out that the

minimization of the ψ potential with respect to Z can be
shown to be equivalent to the beta-equilibrium condition,

∂ψ

∂Z

����
P;μn

¼ μpi þ μe − μn ¼ 0: ð18Þ

Summarizing, Eqs. (14)–(16) and (5) constitute a com-
plete system of equations that allows one to calculate all the
thermodynamic quantities if the parameter C≡ μN=μn and
one of the thermodynamic quantities (e.g., nb or pressure
P) are given.

B. CLD+ sh model

Following Ref. [31], we derive the CLDþ sh model by
constraining the nuclear charge Z in the smooth CLD
model to integer values and incorporating precalculated
shell energies. Consequently, the total energy density is
expressed in the form

ϵ
�
nb; nN; Z; n

ðtotÞ
no ; w

�
¼ ϵCLD þ Δϵshell; ð19Þ

where we employ the notations of Sec. III A; ϵCLD is the
energy density as it is given by the CLD model, and Δϵshell
is a correction to the energy density, associated with the
shell effects.
It is important to emphasize that in Refs. [31,33,54,55]

the shell corrections were primarily applied to determine
Z for the ground state composition, i.e., Z that minimizes
energy density at a fixed nb. However, shell corrections
appear to have been overlooked when calculating the
“secondary” thermodynamic quantities, such as pressure.
As a result, the pressure, as it was calculated in [53,54],
may not be fully thermodynamically consistent. While this
inconsistency is likely insignificant for determining the
catalyzed EOS, it could be important in the context of the
energy release in the accreted crust discussed here.
Therefore, we endeavor to avoid this inconsistency.
In general, proceeding within the CLD approach, the

shell correction Δϵshell to the energy density should be
considered as a function of five independent thermody-

namic variables: nb, nN , Z, n
ðtotÞ
ni , and w. However, in this

section, for the sake of simplicity, we postulate that the
shell energy corrections can be expressed in the form

Δϵshell ¼ nNEshellðnb; nN; ZÞ: ð20Þ

This assumption is made taking into account that the shell
corrections are computed on top of the CLD model, which

is minimized over internal CLD variables (nðtotÞno and w)

according to Eqs. (14) and (15). As a result, we arrive
at the three-parameter mEOS, with the energy density
ϵðnb; nN; ZÞ, which should be used to calculate the remain-
ing thermodynamic quantities consistently. In particular,
the pressure can be determined as

P ¼ −
∂ðϵVÞ
∂V

¼ −ϵþ μbnb þ μNnN; ð21Þ

where the chemical potentials are given by

μb ≡ ∂ϵðnb; nN; ZÞ
∂nb

¼ μn ¼ μCLDn þ μshelln ; ð22Þ

μN ≡ ∂ϵðnb; nN; ZÞ
∂nN

¼ μCLDN þ μshellN : ð23Þ

Here, as in Sec. II A, the baryon chemical potential μb
corresponds to the energy change due to addition of a
baryon at fixed proton number density, ZnN . Since ZnN is
fixed, the added baryon is a neutron, and μb can (again)
be identified with the neutron chemical potential, μb ¼ μn.
In Eqs. (22) and (23) μCLDn and μCLDN are corresponding
chemical potentials obtained from the CLD model

μCLDn ¼ ∂ϵCLDðnb; nN; ZÞ
∂nb

; ð24Þ

μCLDN ¼ ∂ϵCLDðnb; nN; ZÞ
∂nN

; ð25Þ

while corrections, associated with the shell effects are

μshelln ¼ nN
∂Eshellðnb; nN; ZÞ

∂nb
; ð26Þ

μshellN ¼ Eshell þ nN
∂Eshellðnb; nN; ZÞ

∂nN
: ð27Þ

Technically, to derive mEOS in the form ϵðP; μn; ZÞ,
utilized in Sec. II B, we employ numerical solvers to obtain
the parameters nb, nN for given P, μn and Z, in accordance
with Eqs. (21) and (22).

C. Models of the shell effects and numerical
implementation

In this section, we discuss the proton shell models used
in this study. We recall that calculating shell effects in the
inner crust is a model-dependent problem. Given the un-
certainties outlined below, we consider the results obtained
with shell models employed in this paper as a reasonable
first step and a proof-of-principle calculation, providing a
foundation for subsequent calculations with more refined
models.

THERMODYNAMICALLY CONSISTENT ACCRETED CRUST OF … PHYS. REV. D 109, 123032 (2024)

123032-7



All our shell models are primarily based on the supple-
mentary tables presented in Ref. [33,53].1 However, adapt-
ing these tables to our problem is not straightforward, and
thus, we need to delve into certain technical details and
assumptions to clarify their application.
Firstly, it is important to note that the tables presented as

supplementary data in Ref. [53] may not be directly
applicable to our case. The reported values were obtained
by minimizing the ETF energy density over nN at fixed Z
and nb, which is not appropriate for accreted crust (see
Sec. III A). Nevertheless, given that the resulting EOS
closely resembles the catalyzed case, it seems reasonable
that actual shell energies can be well approximated by
assuming that Eshell does not explicitly depend on nb, but
primarily depends on the cell size, i.e., nN . Consequently,
the shell corrections are expressed in the form

Δϵshell ¼ nNEshellðnN; ZÞ; ð28Þ

where EshellðnN; ZÞ can be obtained from the tables of
Ref. [53]. Note that, in this approximation, shell corrections
to the neutron chemical potential vanish, μshelln ¼ 0
[see Eq. (26)].
Secondly, it is worth mentioning that for nucleon

interaction potential BSK24, applied in this work, the
tables in Ref. [53] only provide shell energies for even Z.
However, to consider beta-capture and beta-emission reac-
tions, we need information about energies of odd-Z nuclei.
To analyze the role of the pairing effects, we consider two
models for odd-Z nuclei. In the first model, referred to as
“Shell,” the shell energies for odd Z are assumed to vanish.
In the second model, referred to as “Shellþ Pairing,” we
set the shell energies for odd-Z nuclei to be equal to the
pairing term. The latter is estimated within the qualitative
model suggested in [56] and also used by Mackie and
Baym [57]:

EshellðnN; ZÞ ¼
11 MeVffiffiffiffiffiffiffiffiffiffiffiffiffi
AðnNÞ

p for oddZ: ð29Þ

Here AðnNÞ represents the dependence of the mass number
A on the number density of nuclei nN , which, for simplicity,
was adopted from the results of Z-fixed calculations
(see below).
Thirdly, we assume that shell corrections become neg-

ligible above the proton drip density. This implies that
we set EshellðnN; ZÞ ¼ 0, if nb in the respective line of the
table [53] exceeds the proton drip density np;dripb . For
simplicity, we assume the proton drip density to be the
same for all Z, np;dripb ¼ 0.073 fm−3 [33]. For some Z, we
apply a smooth suppression of the function EshellðnN; ZÞ as

we approach the proton drip to avoid unrealistically sharp
jumps, which could impact the pressure in our thermody-
namically consistent approach [see Eqs. (21)–(23)]. For
numerical applications, we also eliminate some outliers
from the tables in Ref. [53] and fit the remaining data on the
shell energies as functions of nN separately for each Z.
Finally, it is worth noting that the shell energy tables

in [53] also do not contain data for Z < 18. For such nuclei,
the shell energy was assumed to be zero, which most
certainly has a negligible effect on our calculations because
formation of nuclei with Z < 18 is blocked by high
potential ψ for Z ¼ 18 nuclei (see Fig. 4).
We also employ the third (simplified) model as a

sensitivity test for our results. In this model we assume
that the charge number Z remains fixed, Z ¼ 20, up to the
proton drip, effectively mimicking very strong shell and
pairing effects. While, strictly speaking, the dependence of
the shell energy on nN influences the results by affecting
the pressure, we simplify this model by assuming
EshellðnN; Z ¼ 20Þ ¼ 0. The results for the Z-fixed model
are qualitatively aligned with both the Shell and Shellþ
Pairing models. The quantitative differences can be used to
estimate uncertainties associated with shell effects (see
Secs. IV B and VII for details).

IV. NHD MODELS OF FAC

A. Smooth CLD model

Let us begin the discussion of the results for the smooth
CLD model by examining the profiles of the potential ψ as
a function of Z for five values of pressure. The panels (from
top to bottom) correspond to P ¼ 0.085, 0.22, 0.25, 0.27,
and 0.28 MeV fm−3, respectively. In each panel, three

members of the nHD EOS family are shown: Poi ¼
PðcatÞ
nd (solid line), Poi ¼ 1.005PðcatÞ

nd (dotted line), and Poi ¼
PðminÞ
oi ≈ 1.011PðcatÞ

nd (dashed line). Here PðcatÞ
nd is the pres-

sure at the oi interface for catalyzed crust, which coincides
with the neutron drip pressure (see [58] for discussion).
Following [27], we indicate this by the subscript “nd”.
In the smooth CLD model, the nHD EOS for the entire

crust can be specified by setting the pressure Poi at the
outer-inner crust interface. Consequently, the solid line,

corresponding to Poi ¼ PðcatÞ
nd , represents the ψ profiles

for catalyzed crust. At each pressure the profiles exhi-
bit profound minima, as clearly visible in Fig. 2. These
minima correspond to the catalyzed crust composition
(ψ ¼ μN ¼ 0 at the minima; see Sec. II A), indicating
the absence of disintegration instability. It is important
to note, however, that all panels, except the top one,
correspond to pressures where the pasta phases are more
energetically favorable in the CLD model, as reported in
Ref. [47]. Hence, nuclei with large Z (Z > 50) are likely
absent in the catalyzed crust, being shown here only for
illustrative purposes.

1The tables were downloaded from https://doi.org/10.1093/
mnras/stz800 on December 04, 2019.
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The dotted line represents a slightly higher value of

Poi ¼ 1.005PðcatÞ
nd , which, however, is not sufficient to

induce instability. The ψ profiles still exhibit minima at
all pressures, although these minima are less pronounced

than for solid curves (Poi ¼ PðcatÞ
nd ). Nonetheless, they still

correspond to a stable composition. Therefore, the FAC
model would require a larger Poi to reach instability.

The dashed line corresponds to Poi¼PðminÞ
oi ≈1.011PðcatÞ

nd ,
the lowest Poi value that leads to disintegration instability
in the nHD inner crust. For this Poi, the minima in the ψ
profiles become progressively shallower with increasing

pressure and eventually disappear, transforming into an
inflection point in the panel corresponding to P ¼
0.27 MeV fm−3 (the second panel from the bottom). At
this pressure, the nuclei disintegrate, allowing for the
existence of stationary accreted crust. However, it is worth
noting that the neutron chemical potential at this point does
not match the core μn (at the same pressure), and thus, the
crust must be extended to higher pressures. These layers
can be called “relic” [27], since the accreted nuclei do not
penetrate into these layers (they disintegrate earlier). The
relic layers can be filled with spherical nuclei formed
during the initial stages of accretion. Indeed, at a higher
pressure, P ¼ 0.28 MeV fm−3 (the bottom panel), a mini-
mum in the ψðZÞ profile for the dotted curve reappears,
suggesting that stable relic crust can exist. Alternatively, the
relic layers could be filled with pasta, or a layer of relic
spherical nuclei could be followed by a pasta layer.2 A
detailed study of the structure of relic layers is beyond the
scope of the present work.
For a smooth CLD model, the nHD solutions with

Poi > PðminÞ
oi contain an unstable region where Ψ=NN is

a monotonically increasing function of Z. This region is
located between the accreted and relic parts of the crust,

indicating that the crustal model with Poi > PðminÞ
oi is

thermodynamically inconsistent and cannot be applied to
describe neutron stars [25,27]. Therefore, the nHD model

with Poi ¼ PðminÞ
oi is the only possible stationary crust

model, and it is referred to as simply the “FAC model”
in what follows.
Figure 3 compares two EOSs: the catalyzed crust and the

FAC model. The density and composition of catalyzed crust
are shown by solid lines for P < Ppasta ≈ 0.13 MeV fm−3

and dotted lines for P ≥ Ppasta. The dotted lines are used to
indicate that the region P ≥ Ppasta may actually contain
strongly nonspherical (pastalike) structures [47], although
the curves were calculated assuming spherical nuclei.
The density and composition of the FAC model are

shown in Fig. 3 by thick dashes. The instability takes place
at Pinst ≈ 0.27 MeV fm−3, marked with asterisks in each
panel of Fig. 3. As discussed above, Pinst is lower than the
crust-core boundary, and the crust should continue with
relic layers. In Fig. 3, the density and composition of relic
layers are represented by thin dash-dotted lines, assuming
that these layers consist of spherical nuclei. It is worth
noting that for the smooth CLD model, the composition of
these layers can be unambiguously determined for a given
Poi, as the nHD equilibrium of relic layers allows us to
apply formulas from Sec. II A. However, if shell effects are
included, determining the composition of relic layers

FIG. 2. Profiles ψðZÞ ¼ Ψ=NN for several values of pressure P
for the three members of nHD EOS family, calculated with
smooth CLD model (see text for details). Crosses indicate
minima or an inflection point (marked as instability) of the
function Ψ=NN .

2To avoid any confusion, by “spherical nuclei” we mean,
following, e.g., Ref. [33] nuclei whose energy is calculated within
the ETFSI approach using a spherically symmetric single-particle
effective potential.
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generally requires consideration of their formation history
from the beginning of accretion process.
As seen from Fig. 3, both density and composition

profiles of the FAC state closely resemble those of the
catalyzed crust. The fact that the instability occurs at a
higher density than the crust-pasta transition, as predicted
by [47], suggests that the thickness of the pasta layers may
be affected by accretion. However, we defer a more detailed
discussion of these effects and the role of the pasta in the
accreted crust to subsequent studies.
The upper panel in Fig. 3 illustrates the difference in

μnðPÞ between the catalyzed crust and FAC model. It is
evident that the difference is quite small (≲20 keV) and

diminishes with increasing pressure. As in the other panels,
the dotted part of the curve is calculated assuming that the
catalyzed crust is composed of spherical nuclei at such
densities.

B. CLD model with shell effects

As for the smooth CLD model, let us begin the
discussion of the results by examining the profiles of the
potential ψ , which are shown in Fig. 4. In contrast to Fig. 2,
the lines in each panel correspond to different shell models
(see Sec. III C): Z-fixed (solid line), Shell (long dashes),
and Shellþ Pairing (short dashes). We have chosen

Poi to be equal to PðminÞ
oi , which is specific for each model

FIG. 3. Crustal EOS and composition for catalyzed crust and
FAC in the smooth CLD model. In the figure ρ ¼ ε=c2 is the
density, and Ac ¼ nb=nN is the total number of nucleons per one
nucleus.

FIG. 4. Profiles of the potential ψ ¼ Ψ=NN for the nHD inner

crust model, corresponding to Poi ¼ PðminÞ
oi , plotted for several

values of pressure P and three considered shell models.
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(PðminÞ
oi ≈ 0.432 keV fm−3 for Shell and Shellþ Pairing

models; PðminÞ
oi ≈ 0.424 keV fm−3 for the Z-fixed model).

The panels, from top to bottom, correspond to P ¼
0.085; 0.16; 0.22; 0.25 MeV fm−3 and P ¼ Pinst. The
charge of the nuclei is denoted by a cross (for each model
in each panel). As expected, for Shell and Shellþ Pairing
models, it corresponds to a local minimum of the potential
ψ in each panel. The exception is the bottom panel, where
the minimum disappears and becomes an unstable inflec-
tion point. For the Z-fixed model, the charge is artificially
fixed at Z ¼ 20 up to the proton drip (three upper panels).
That is, Z ¼ 20 does not correspond to the minimum of the
ψ potential.
In two upper panels (P ¼ 0.085 and 0.16 MeV fm−3) a

profound minimum of the ψ potential is formed by the shell
effects for both Shell and Shellþ Pairing models. This
guarantees the conservation of the nuclear charge number
since beta-capture and beta-emission reactions are not
energetically favorable. For the Z-fixed model Z is fixed;
thus for all considered models, Z is equal to 20 at these
pressures.
In the third panel (P ¼ 0.22 MeV fm−3) the charge

number starts to differ. For the Z-fixed model, it is kept
equal to 20 by construction, while for the Shell model it
evolves to Z ¼ 35. This is because the shell effects for low-
Z nuclei become small (according to the applied model),
and the shell structure cannot prevent beta-reactions driven
by the general trend of ψ provided by the CLD part of the
model. The proton drip has not yet been reached, and we
retain pairing effects in the Shellþ Pairing model. They
prevent a strong increase in Z; however, Z is increased to
Z ¼ 22 due to a pair of beta emissions, which occur
between P ¼ 0.16 MeV fm−3 and P ¼ 0.22 MeV fm−3,
when combination of the shell and pairing effects remove
a ψ-potential barrier for the transition to Z ¼ 21 nuclei via
beta emission.
The fourth panel, P ¼ 0.25 MeV fm−3, corresponds to

the matter after the proton drip. Within our approximation,
the shell and pairing corrections vanish, and ψðZÞ becomes
a smooth function of Z, as given by the CLD model. The
composition is driven to the minima located at Z ¼ 32, 34,
and 35 for Shell, Shellþ Pairing, and Z-fixed models,
respectively. The ψ profiles become rather close for all the
considered models. Note, however, that they do not
coincide exactly because the ψ potential depends not only
on P, but also on μn, which is specific for each of the

considered shell models due to differences in PðminÞ
oi and in

the respective EOSs. This feature leads to differences in
nuclear evolution after the proton drip (see Fig. 5 below).
In the bottom panel, where P ¼ Pinst, there are no

minima for all models; the “optimal” Z correspond to
the inflection point. Nuclei become unstable and disinte-
grate through a sequence of beta captures, driving them to
lower Z and ψ .

Let us now turn to discussing the evolution of nuclei in
the inner crust. For Z-fixed and Shellþ Pairing models, Z
at the oi interface starts from the value Z ¼ 20 for all the
considered members of the nHD family of crust models,
corresponding to different Poi. These nuclei are formed by
reactions in the outer crust and at the oi interface.
Subsequent compression up to P≲ 0.15 MeV fm−3 does
not lead to beta reactions, and the charge number remains to
be Z ¼ 20. No heat is released. The evolution consists of
continuous growth of nuclear mass numbers A and Ac with
pressure, P. Neutrons required for this growth are provided
by diffusion/superfluid flow from the higher-density
regions. The evolution for the Shell model is generally
the same, but Z ¼ 21 nuclei are formed at the oi interface
and converted into Z ¼ 20 nuclei by electron capture at a
slightly higher pressure. This is a clear artifact of neglecting
the pairing effects in that model. We expect that it does not
significantly affect our results. In particular, the electron
capture does not lead to any energy release, because it takes
place exactly at the threshold.
Nuclear evolution in the inner layers of the inner crust is

more interesting (see Fig. 5). Panels in that figure, from top
to bottom, present the accumulated heat Qi in the inner
crust (per accreted baryon, not including the heat released
at the oi interface), as well as Ac, A, and Z as functions
of P. Each panel contains two types of curves for each
model (Z-fixed, Shell, and Shellþ Pairing): the thin curve

shows the evolution for Poi ¼ PðminÞ
oi , while the thick curve

is for Poi ¼ PðcatÞ
nd . In the lower panels, all curves coincide at

low pressure. In the upper panel, the energy release for

Poi ¼ PðcatÞ
nd is divided by a factor of 5 to fit the scale of the

plot. The instability points are shown by asterisks (except in
the upper panel).

Let us first consider the case Poi ¼ PðcatÞ
nd . Then, for

Shell and Shellþ Pairing models, the instability occurs for
Z ¼ 20 nuclei before the proton drip. This is due to the high
value of Poi, for which the general trend in the ψðZÞ
dependence becomes so strong that the shell effects fail to
prevent beta captures. For the Z-fixed model, the instability
occurs exactly at the proton drip point, simply because we
do not allow Z to vary at lower P in this model. All the heat
Qi is released at the instability point, resulting in a jump in
the QiðPÞ dependence, as shown in the upper panel.

For Poi ¼ PðminÞ
oi , the nuclear evolution for the considered

shell models is somewhat different. However, the general
trend is a growth of Z up to 33–35 with subsequent
decrease before the onset of instability. The increase in
Z is accompanied by heat release; however, the released
heat at the instability is dominant for all models.
Let us discuss the details of nuclear evolution, starting

with the Shell model. The first electron emission takes
place at P ≈ 0.17 MeV fm−3, when the shell effects for
nuclei with Z ¼ 20 become small and cannot prevent beta
capture. The absence of pairing correction in this model
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allows for the formation of Z ¼ 21 nuclei. Subsequent
electron captures are associated with a further decrease
of the shell corrections, leading to gradual disappearance
of local minima of the function ψðZÞ. Finally, at P≈
0.20 MeV fm−3, the shell corrections vanish for low-Z
nuclei, and the nuclear charge arrives at a minimum of
ψðZÞ, determined by the smooth CLD model. The negative
shell energy corrections for high-Z nuclei constitute the
global minimum of ψðZÞ; however, this minimum remains
unattainable. This pattern stays the same with a subsequent
increase in pressure, and the proton drip does not leave any
imprints on the evolution, since the local shape of ψðZÞ is
already driven by the CLDmodel. The decrease of Z before
the instability onset is associated with changes in the ψðZÞ
shape with growing P.
Within the Shellþ Pairing model, the decrease of shell

corrections at P ≈ 0.17 MeV fm−3 does not affect the
evolution because the local minimum at Z ¼ 20 is well
defined by the pairing correction. Subsequent compression
leads to a pair of electron emissions and the associated
energy release from the second capture. However, the
pairing correction adopted in the Shellþ Pairing model
is strong enough to form a local minimum at Z ¼ 22 and
prevent subsequent electron emissions until the proton drip
takes place. At the proton drip, we suppress the pairing
corrections along with shell corrections, and the ψðZÞ
profile becomes determined by the CLD model. The
nuclear charge reaches a minimum of ψðZÞ potential,
located at Z ¼ 34. During subsequent compression, Z
follows the position of the minimum (see the second from
the bottom panel in Fig. 4).
The Z-fixed model is applied as a sensitivity test for

shell effects. It prevents any evolution of the nuclear charge
Z until the proton drip point. For higher pressure, as in
the Shell and Shellþ Pairing models, the ψðZÞ profile
becomes determined by the CLD model, which drives the
subsequent evolution.
Figure 6 presents the dependence of Pinst on Poi for the

considered models. One can observe that Pinst decreases
with an increase in Poi for all models.
Let us begin the discussion of this dependence with the

Z-fixed model. As seen in Fig. 5, for Poi ¼ PðminÞ
oi , the

instability occurs after the proton drip. An increase in Poi

shifts the instability point to lower pressure, closer to the
proton drip, located at P ≈ 0.231 MeV fm−3. Finally, at
Poi ≈ 0.425 keV fm−3, the instability starts at the proton
drip. In the Z-fixed model, we do not allow Z to evolve
before the proton drip. As a result, the instability cannot
occur at a lower pressure. Consequently, for Poi >
0.425 keV fm−3, the instability always takes place at the
proton drip point (some fluctuations in Fig. 6 are numerical
noise). This behavior is an artifact of the simplified Z-fixed
approach, prompting us to switch to more realistic models.

FIG. 5. Accumulated heat per accreted baryon Qi and compo-
sition (Z, A, and the total number of nucleons Ac per one nucleus)
versus P for nHD crust are shown for Shell, Shellþ Pairing, and
Z-fixed models. For each model, Qi and composition are shown

for the two values of the pressure at the oi interface: Poi ¼ PðminÞ
oi

(thin lines) and Poi ¼ PðcatÞ
nd (thick lines).
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For the Shell model, as we discussed above, even for

Poi ¼ PðminÞ
oi , the nuclear charge starts to evolve before the

proton drip point, and the proton drip does not affect the
evolution. This statement holds true for higher Poi values,
and PinstðPoiÞ is a monotonically decreasing function with
no peculiarities at the proton drip point. The break at Poi ≈
0.44 keV fm−3 is associated with a change in the nuclear
evolution behavior: for lower Poi, the nuclear charge starts
to grow (above some pressure), and the instability occurs
for Z > 20, while for higher Poi, the instability occurs for
Z ¼ 20 nuclei without any charge evolution before it (see

the thick line for Poi ¼ PðcatÞ
nd and the thin line for Poi ¼

PðminÞ
oi in Fig. 5).
The behavior of PinstðPoiÞ is a bit more complicated for

the Shellþ Pairing model. As with the Shell model, for

Poi ¼ PðminÞ
oi , the nuclear charge starts to evolve before the

proton drip, but this evolution is not too strong; pairing
effects prevent Z from growing above Z ¼ 22 (see Fig. 5).
At the proton drip point, we remove shell and pairing
corrections, and the nuclear charge increases.
Increasing Poi results in a decrease in Pinst, while

qualitatively nuclear evolution remains unchanged: The
nuclear charge increases at the proton drip point and
(generally) evolves a little further before the instability
onset. However, at Poi ≈ 0.433 keV fm−3, the instability
point reaches the proton drip, where instability leads to the
disintegration of Z ¼ 22 nuclei. Subsequent growth of Poi

up to 0.44 keV fm−3 does not affect Pinst, because the
pairing effects prevent disintegration of Z ¼ 22 nuclei
before the proton drip. However, as with the Shell model,
for Poi > 0.44 keV fm−3, the instability occurs before the

proton drip in the form of disintegration of Z ¼ 20 nuclei,
without an increase of nuclear charge before the instability.
In this high-Poi region, the value of Pinst is slightly higher
for the Shellþ Pairing model than for the Shell model
because the pairing correction provides additional stabili-
zation for Z ¼ 20 nuclei.

V. CONSTRAINTS ON Poi

In the previous section, we considered nHD models of
the accreted crust, parametrized by the pressure at the oi
interface, Poi. In this section, we discuss constraints for this
quantity in the FAC state.
Firstly, as discussed in Ref. [25], there is a mechanism

for nuclei disintegration, which is required in the stationary
FAC state to prevent the accumulation of nuclei supplied
through accretion. Within the nHD approach, this mecha-

nism naturally arises at Poi > PðminÞ
oi in the form of

instability, associated with the disappearance of the local
minimum of the potential ψðZÞ (see Figs. 2 and 4). This
establishes a lower bound for Poi.
But what about the upper bound?
For the smooth CLD model, it arises naturally when one

assumes that nuclei are spherical throughout the entire
crust. In this case, as discussed in Sec. IVA, the relic crust
can be unambiguously constructed using formulas from
Sec. II B. The parameter C ¼ μN=μn [see Eq. (5)] should
remain constant throughout the entire inner crust, including
the relic region. However, the relic region is stable and can

connect the accreted crust and core only when Poi ¼ PðminÞ
oi

(see Fig. 2 and the corresponding discussion). For

Poi > PðminÞ
oi , there exists a pressure region, where the

beta-equilibrium equation (18) cannot be satisfied because
ψðZÞ increases monotonically with an increase in Z.

Hence, a crust cannot exist for Poi > PðminÞ
oi and Poi ¼

PðminÞ
oi represents the only possible value for Poi in the nHD

FAC for the smooth CLD model. Note, however, that this
conclusion should be reconsidered if we allow for non-
spherical nuclei in relic crustal layers. We do not explore
this possibility here, but we anticipate that it may allow for
slightly higher values of Poi, although an upper limit for Poi
should still exist.
As demonstrated in the previous section, for more

realistic nHD models that include shell effects, Pinst can
be calculated for a given Poi, and the general trend is that
Pinst decreases with Poi (see Fig. 6). As discussed in the
Introduction, Poi and the composition of the relic part
located at P > Pinst, can, in principle, be calculated by
considering crustal evolution from the very beginning of
the accretion process. This is a very complicated (and
model-dependent) problem that is beyond the scope of this
work. Instead, here we constrain the allowed Poi region
based on the requirement that the relic crust, which
connects the instability point with the stellar core in a

FIG. 6. Pinst vs Poi for Shell (short dashes), Shellþ Pairing
(long dashes) and Z-fixed (solid line) models.
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thermodynamically consistent way,3 should be allowed at
least for some compositions. Indeed, if the region before
the instability point cannot be connected with the core, the
respective crustal model cannot occur in a real neutron star
and should be disregarded.
If one attempts to constrain Poi by formally applying the

shell models from this work (see Sec. III B), one should

arrive at the conclusion that Poi cannot exceed PðminÞ
oi .

Namely, within these models the shell corrections are
absent after the proton drip, which is located lower than
the crust-core boundary. Consequently, the part of the crust
between the proton drip and the core is governed by the
smooth CLD model. As discussed above, for the smooth
CLD model the nHD crust is determined by the constant C,
and there exists one and only one value of this constant
allowing one to connect the instability point and the core
with a stable relic crust, and this value corresponds to

Poi ¼ PðminÞ
oi . However, this conclusion relies heavily on the

simplifications made in our shell models; therefore it might
not be very reliable.
To establish a more reliable upper bound for Poi, we

impose a less stringent requirement: the relic part, starting
from the instability point, should remain stable up to the
proton drip point for some composition of the relic part.
It is rather difficult to check for this condition numeri-

cally, even if we restrict ourselves to the assumption that the
relic crust region is composed of spherical nuclei. In
particular, the result evidently depends on the applied shell
model. However, as anticipated, the general trend is that the
lower the value of Pinst, the more challenging it becomes to
identify a relic crust composition. The reason is straightfor-
ward: the relic region becomes thicker, and the slope of the
smooth CLD part of the ψðZÞ function becomes larger
(more unstable).
We have verified that a stable relic crust does not exist for

the Shell model with Poi ¼ PðcatÞ
nd . Therefore, we propose

using PðcatÞ
nd as a reference upper bound for Poi for 56Fe ash.

We do not attempt to determine the upper bound for the
Shell model more precisely because it appears to be model
dependent. We refrain from establishing an upper bound
for the Shellþ Pairing model, which relies on rather
artificial accounting for pairing corrections that would
clearly affect the numerical results. Finally, for the Z-fixed
model the instability cannot occur before the proton drip by
construction.
Finalizing this section, we should stress that the above

discussion is based on the assumption that the relic part of

the crust contains only spherical nuclei. If it is (at least
partially) composed of nonspherical nuclear clusters (pasta
phases), the constraints should be reconsidered, but we
leave this problem beyond the scope of this work.

VI. ENERGY RELEASE IN DEEP LAYERS
OF THE NHD CRUST AS FUNCTION OF Pinst

As discussed in Sec. IV B, the pressure Pinst can be
calculated as a function of Poi for a given shell model.
Thus, Pinst can be used to parametrize the family of nHD
models instead of Poi. Figure 7 illustrates this point by
demonstrating Qi as a function of Pinst. Long and short
dashes represent the Shell and Z-fixed models, while open
circles denote the Shellþ Pairing model. Figure 7 also
displays the heat release at the instability, Qinst. Dash-
dotted line, short dashes, and crosses present Qinst for the
Shell, Z-fixed, and Shellþ Pairing models, respectively.
The difference between Qi and Qinst is associated with

the heat released in the inner crust before the instability,
P < Pinst. However, for all considered models, this heat
release takes place in the very deep layers (P >
0.1 MeV fm−3), and for Pinst < 0.18 MeV fm−3, all the
heat is released at the instability point for both Shell and
Shellþ Pairing models. The reason has been already
discussed in Sec. IV B: at low enough Pinst, the instability
occurs for Z ¼ 20 nuclei without any energy release in the
intermediate layers of the inner crust (i.e., between the oi
interface and the instability point).
For the Z-fixed model, the lowest possible value of Pinst

corresponds, by construction, to the proton drip. If the

FIG. 7. Heat release in the inner crust Qi and at the instability
point Qinst as function of the instability pressure Pinst for Z-fixed,
Shell, and Shellþ Pairing models.

3Thermodynamic consistency requires that 1) the relic part of
the crust must be mechanically stable at each point; 2) the nHD
condition must be satisfied; 3) the pressure and neutron chemical
potential must be continuous at both the instability point and
crust-core interface.
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instability occurs at the proton drip, all heat is released at
that point.
For high instability pressures, Pinst > 0.24 MeV fm−3,

Qinst becomes the same for all shell models applied in this
work. Indeed, for such Pinst the instability occurs after the
proton drip, where all shell corrections for our models are
set to zero (see Sec. III B). Correspondingly, EOS near
P ¼ Pinst should be fully determined by the smooth CLD
model. In particular, immediately at the instability point
one should satisfy the conditions (10) and (11) (see
Sec. II C for details). Imposing them, we can determine
the parameters of the CLD model, namely Z and μn, and
eventually calculate the potential ψ at the instability point.
Because all incoming nuclei disintegrate at P ¼ Pinst, the
energy release (per nucleus) there is equal to the potential
ψðPinstÞ, being the same for all models [34]. Since fusion
reactions are absent for ashes composed of 56Fe, the number
of disintegrating nuclei should be the same as the number
of nuclei supplied by the accretion. That is, the energy
release per accreted nucleon should be given by Qinst ¼
ψðPinstÞ=Aash [34], being the function of Pinst (Aash ¼ 56 is
the number of nucleons per one nuclei in the ash).

A. Minimal energy release

For each shell model, one can determine QðminÞ
inst —the

minimum possible Qinst. According to Fig. 7, this corre-

sponds to the highest possible pressure, PðmaxÞ
inst , and numeri-

cally QðminÞ
inst is the same for all considered shell models,

QðminÞ
inst ≈ 0.05 MeV per accreted nucleon.
This latter statement should hold true for any shell model

added on top of a given smooth CLD model, provided that
shell effects are negligible at high pressures. The proof of
this crucial statement is, in fact, straightforward: if shell
effects are neglected at high pressures, the nuclear physics
there is specified by the smooth model.4 As previously
stated, in the smooth model the amount of energy release is
determined by Pinst. Thus, the function QinstðPinstÞ and its

minimum, QðminÞ
inst , are not affected by the shell effects.

In principle, QðminÞ
inst can depend on the applied smooth

model. The detailed analysis of this dependence is left
for future work. Here we would like to point out that for
another Skyrme-type nuclear potential (Sly4 [59]), the
smooth CLD model leads to a very similar value for the
minimal heat release (0.04 MeV per accreted nucleon,
see supplementary material in Ref. [27]). This suggests that

QðminÞ
inst ∼ ð0.04 ÷ 0.05Þ MeV per accreted nucleon can be

considered a rather model-independent estimate.

VII. HEURISTIC PREDICTIONS FOR THE NHD
INNER CRUST

In this work, we analyze the nHD accreted crust for the
three CLDþ sh models described in Sec. III B. We believe
that these models provide a reasonable framework for the
up-to-date description of the nuclear physics in the deepest
layers of the inner crust. However, for the shallow regions
of the inner crust, where the number density of unbound
neutrons is negligible, a better approach exists. It is based
on the (theoretical) atomic mass tables (AMTs) (see
Refs. [37,40], for applications of AMTs to accreted crust
modeling). Currently available AMTs are constructed using
detailed HFB calculations (e.g., [60–62]), finite-range
droplet macroscopic model [63,64], machine learning/
statistical methods [65,66] etc. The description of the
shallow crust, obtained with AMTs is expected to be more
accurate and reliable than that achieved with CLDMþ sh
models based on the ETFSI approach.
In this section, we will assume that we have a hypothetical

advanced shell model that, on the one hand, reproduces the
AMT-based mEOS for the shallow region of the inner crust
and, on the other hand, reduces to one of our three CLDþ sh
models for the deepest inner crust layers. Note that we will
not make any assumptions about the form of shell correc-
tions in the crustal region with intermediate densities, except
for assuming that their behavior is physically reasonable
(smooth and continuous; see below for more precise
applicability conditions). Our goal will be to address the
question of how a more realistic description of the shallow
regions can affect the main parameters of the theory, such as
the values of the pressures Poi and Pinst.
To answer this question, we will follow the approach

based on the energy conservation law. The approach
requires almost no additional calculations, provided that
the nHD inner crust has been preanalyzed making use of a
CLDþ sh model. As a byproduct, we will demonstrate that
the considered nHD properties do not depend on the details
of the behavior of shell corrections in the intermediate
layers of the inner crust.
The starting point for our energy-based approach is one of

the central results of Ref. [27]. In that reference it was shown
that the heat releaseQi can be calculated as a function of Poi
by using AMT and analyzing only nuclear reactions in the
outer crust and at the oi interface. The resulting function
QAMT

i ðPoiÞ is independent of the inner crust physics and
hence should be valid for the advanced shell model. Below
QAMT

i ðPoiÞ is assumed to be known (precalculated; see
Refs. [27,28] for examples of such a calculation).

A. Heuristic constraints on Poi

In Ref. [27], we constrained Poi by imposing a condition
that QAMT

i ðPoiÞ > 0. The corresponding lower bound for

the pressure was denoted as Pð0Þ
oi . Here we suggest applying

a tighter constraint: QAMT
i ðPoiÞ > QðminÞ

inst , where QðminÞ
inst

4It can be either a CLD model (as in the present work) or, for
example, a more sophisticated smooth model based on the ETF
calculations [33,53]).
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represents the minimal energy release at the instability. As

discussed in Sec. VI A, for BSK24 and SLy4 modelsQðminÞ
inst

can be estimated as QðminÞ
inst ∼ ð0.04 ÷ 0.05Þ MeV per

accreted nucleon, provided that shell corrections are neg-
ligible in the deepest layers of the inner crust. By using the
dependence QAMT

i ðPoiÞ calculated in Ref. [27] [see inset in

Fig. 8, QðminÞ
inst ∼ ð0.04 ÷ 0.05Þ MeV is filled in gray in the

inset] for the BSK24 HFB mass tables [61], we obtain
Poi ≥ 0.46 keV fm−3. However, this constraint is only
slightly stronger (by ∼2%) than the originally suggested

lower bound Pð0Þ
oi [27]. Note, however, that a detailed

analysis within the advanced shell model will likely lead to
the same result.

As discussed in Sec. VI A, QðminÞ
inst is determined by the

CLD model and thus should not depend on the initial
composition. Thus, the approach discussed in this sub-
section is likely applicable to accreted crust with a
multicomponent composition of initial ashes. Note, how-
ever, that in the latter case, noticeable fraction of the heat
can be released in the intermediate layers of the inner crust
[29,30], so that the constraint should be applied to the
residual part of the heat release, which also can be
estimated within the AMT approach [29,30].

B. Heuristic predictions for PinstðPoiÞ
Here we extend the approach from Sec. VII A in order to

heuristically predict the dependence of PinstðPoiÞ for the

advanced shell model. As before, we employ the energy
conservation law. In addition, we make use of the
assumption of constancy of Z for the majority of the inner
crust, up to the innermost regions, where the advanced shell
model aligns with the respective CLDþ sh model. This
assumption is supported by our calculations (see Secs. IV B
and VI) and can be considered as an applicability condition
for the approach proposed in this subsection.
As pointed out above, QAMT

i ðPoiÞ calculated following
Ref. [27], should be equally valid for the advanced shell
model, i.e., QiðPoiÞ ¼ QAMT

i ðPoiÞ. At the same time, one
can calculate QiðPinstÞ for a certain CLDþ sh model (see
Sec. VI). If all heat release in the inner crust is concentrated
in its deepest layers, it is reasonable to assume thatQiðPinstÞ
is fully determined by the nuclear physics in the deepest
layers of the inner crust (see Sec. VI), and thus QiðPinstÞ as
calculated for the CLDþ sh model, should also be valid for
the advanced shell model.
Using the (known) functions QiðPinstÞ and QiðPoiÞ ¼

QAMT
i ðPoiÞ, it is straightforward to find Pinst as a function

of Poi. This prediction does not require any additional
calculation for the advanced shell model; it indicates that
the function PinstðPoiÞ does not depend on the form of the
shell corrections in the interiors of the inner crust, provided
that the shell effects are strong enough to prevent the
evolution of Z (and thus heat release) up to the deepest
layers of the inner crust.
To illustrate this approach, we combined the function

QiðPinstÞ calculated in this work (Fig. 7) with the function
QAMT

i ðPoiÞ calculated for the BSK24 HFB mass tables [61]
in Ref. [27] (see inset in Fig. 8). The resulting heuristic
prediction for the corrected dependence PinstðPoiÞ is shown
in Fig. 8.
Comparing Figs. 6 and 8, one can see that for low Poi the

corrected predictions for the Z-fixed model are closer to the
Shell and Shellþ Pairing models than in the case of our
original calculations in Sec. IV B. This is because the
nuclear physics input for CLDþ sh versions of these
models differs even in the outermost layers of the inner
crust. Specifically, as discussed in Sec. III B, we neglect
shell corrections for the Z-fixed model. As a result,QiðPoiÞ
calculated within the Z-fixed model differs from calcula-
tions for Shell and Shellþ Pairing models simply because
the mass of Z ¼ 20 nuclei predicted by the Z-fixed model
differs from the mass of the same nuclei, predicted by Shell
and Shellþ Pairing models. The corrected results rely on
the more accurate nuclear physics in the shallow inner crust
region and should be considered more reliable.

VIII. SUMMARY, CONCLUSIONS,
AND PERSPECTIVES

For the first time, we present detailed calculations of the
nHD crust taking into account proton shell effects in nuclei
(see also our preliminary results in Ref. [27]). Our work

FIG. 8. Heuristic prediction for the dependence PinstðPoiÞ for
the advanced Shell (short dashes), Shellþ Pairing (long dashes)
and Z-fixed (solid line) models (see text for details). The inset
indicates QAMT

i ðPoiÞ dependence as it was calculated in Ref. [27]

for the BSK24 HFB mass tables [61]; QðminÞ
inst ∼ð0.04÷0.05ÞMeV

is filled in gray.
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clearly demonstrates that the shell corrections have a
profound effect on the FAC models (compare the results
in Secs. IV B and IVA; see also the numbered list below).5

The general calculation algorithm is described in
Sec. II C; it is based on the recently suggested thermo-
dynamic potential Ψ [34], which should be minimized in
the nHD crust. Our algorithm can be applied in future
studies of nHD accreted crust models.
We numerically construct a family of nHD models,

parametrized by the pressure Poi at the outer-inner crust
interface (Sec. IV). Next, we analyze this family to deter-
mine the range of permissible Poi values (see Sec. V). This
two-step procedure is required because the redistribution of
unbound neutrons in the inner crust does not allow us to
predict Poi in advance, as it was in the traditional models,
where the outer-inner crust interface was assumed to be
associated with the neutron drip point (e.g., [35,58,68]).
Within the nHD model, neutrons penetrate to lower pres-
sures, shifting the outer-inner crust interface accordingly.
Obviously, to construct nHD models numerically, one

should specify a microphysical model. Here, we employ
the CLDþ sh model of Ref. [31], in which the shell effects
are added on top of the CLD model based on ETFSI
calculations of Refs. [33,53]. The absence of data for odd-Z
nuclei in supplementary tables from those references
forces us to consider two models, labeled as “Shell” and
“Shellþ Pairing”. In the Shellþ Pairing model, we add
pairing corrections to the energy of odd-Z nuclei using a
simplified model, while in the Shell model, these correc-
tions were neglected (see Sec. III B for details). As a
sensitivity test, we also apply the Z-fixed model, in which Z
is assumed to be fixed at the value Z ¼ 20 up to the proton
drip point (to mimic strong proton shell closure at this value
of Z). In addition, we also use the smooth CLD model,
where pairing and shell corrections are ignored.
Although numerical details of our calculations depend

on the applied shell model, some universal features can
be revealed, confirming the preliminary conclusions
of Ref. [27]:
(1) Shell corrections suppress beta reactions in most of

the inner crust, leading to a composition of low-Z
(Z ∼ 20) nuclei rather than the Z ∼ 40 nuclei pre-
dicted by the smooth CLD model (see Fig. 3).

(2) For all the considered microphysical models
(smoothed and with shell corrections), there exists
a minimum pressure PðminÞ

oi , such that for any

Poi > PðminÞ
oi , there is an instability at pressure

PinstðPoiÞ, leading to the disintegration of nuclei.
Considering the function ψðZÞ, which is the appro-
priate thermodynamic potential for describing the
nHD inner crust [34], the instability reveals itself
in the disappearance of the local minima of ψðZÞ

(see Figs. 1, 2, and 4). Both the function PinstðPoiÞ
and the pressure PðminÞ

oi are strongly affected by the
shell corrections (see Fig. 6).

(3) Pinst decreases with an increase in Poi for all
considered models (Ref. [25] demonstrated qualita-
tively the same behavior for the smooth CLD model
based on the SLy4 potential). Pinst can be lower than
the pressure at the crust-core boundary, Pcc. If this is
the case, the part of the crust between Pinst and Pcc
should be considered “relic,” indicating that it has
been formed during the initial phases of accretion
from the pristine crust and remained unchanged
thereafter (except for possible small secular evolu-
tion associated with the increase in the mass of the
accreting neutron star).

(4) Poi in the FAC can be constrained using general
arguments.

The lower bound Poi ≥ PðminÞ
oi comes from the

requirement that the nuclei disintegration mecha-
nism should be active in the FAC to keep the crust
structure stationary and avoid the accumulation of
nuclei there.
The upper bound for Poi is more complicated (see

Sec. V). It arises from the condition that for too large
Poi, the instability takes place at such a low pressure
Pinst that the accreted crust cannot be connected with
the stellar core in a thermodynamically consistent
way for any composition of the relic part of the crust.
For the smooth CLD model, this requirement sets

PðminÞ
oi as an upper bound, making it the only allowed

value for Poi. The presence of shell corrections can
stabilize the relic crust, allowing for a larger Poi,
which makes accurate determination of the upper
bound challenging. By applying our Shell model
from Sec. III B to the relic part of the crust and
assuming that the relic region is composed of

spherical nuclei, we conclude that Poi < PðcatÞ
nd for

pure 56Fe ash. However, the validity of this constraint
should be checked for the presence of the pasta
phases in the relic region.

(5) For pure 56Fe ash, all heat in the inner crust is
released in the deep layers, close to the instability
point. While a similar statement holds true for nHD
models based on smooth CLD [27], the actual
reaction chains are strongly influenced by the shell
effects. The heat release in the deep layers, para-
metrized by Pinst, increases as Pinst decreases.

(6) There is a minimal heat release ∼0.04–0.05 MeV
per accreted nucleon in the deep layers of the inner
crust (Sec. VI A). It is not significantly affected by
the shell effects.

(7) We propose a heuristic approach (Sec. VII), enabling
the prediction of the properties of the nHD accreted
crust for advanced nuclear physical models that

5Shell effects also appear to be crucial for calculations made
within the traditional approach [67].
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align with atomic mass tables at lower densities and
resemble CLDþ sh models at the highest densities.

Subsequent studies should analyze to what extent our
results are sensitive to the ash composition (the present
work is limited to the pure 56Fe ash), nuclear physical
models, and so on. These problems can be approached
using the algorithm suggested and applied here (see
Sec. II C). We expect that the majority of our qualitative
conclusions will remain unaffected even in this, more
general situation.
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