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Premerger detection of massive black hole binaries using deep learning
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Coalescing massive black hole binaries (MBHBs) are one of primary sources for space-based gravi-
tational wave (GW) observations. The mergers of these binaries are expected to give rise to detectable
electromagnetic (EM) emissions with a narrow time window. The premerger detection of GW signals is
vital for follow-up EM observations. The conventional approach for searching GW signals involves high
computational costs. In this study, we present a deep learning model to search for GW signals from
MBHBs. Our model is able to process 4.7 days of simulated data within 0.01 seconds and detect GW
signals several hours to days before the final merger. The model provides the possibility of the coincident

GW and EM detection of MBHBs.
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I. INTRODUCTION

Since the first detection of gravitational wave (GW)
signals from compact binary coalescence in 2015, the
ground-based GW detectors have discovered an increasing
number of GW events [1-4]. These detectors are primarily
sensitive to GW signals in the tens of hertz to kilohertz
frequency range. Moreover, stochastic GW backgrounds in
the nanohertz frequency range are detectable via pulsar
timing arrays [5—7]. Nonetheless, there remain extensive
frequency ranges awaiting exploration. By around 2030,
several space-based GW detectors, including the Laser
Interferometer Space Antenna (LISA) [8], Taiji [9], and
TianQin [10], are scheduled to be launched, opening a
window in the millihertz frequency range for GW
observations.

It is known that there exists massive black holes at the
centers of galaxies [11,12]. Massive black hole binaries
(MBHBs) are thought to form as galaxies evolve over
time [13]. For space-based detectors, they are a highly
significant class of GW sources [8,14]. We can test gravity
in the highly nonlinear strong-field regime with GW signals
from them [15-18]. Furthermore, the coincident GW
and electromagnetic (EM) detections for MBHBs will
inaugurate a new era of multimessenger astrophysics,
facilitating the comprehension of galaxy evolution at high
redshifts [18]. It also provides a new perspective for
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resolving Hubble tension through standard sirens [19-22].
There is anticipation of observing a variety of EM emissions
associated with the environment surrounding MBHBs [23].
However, some of them have short observational time-
scales [23-27], leading to the demand for low-latency data
analysis in GW observations. Specifically, EM emissions
from minidisks gradually disappear before the merger of
MBHBs due to the shrinkage of minidisks, while they can
provide a method for measuring spins of massive black
holes [24]. Moreover, EM emissions from hot accretion
flows [25] or magnetized circumbinary disks [26,27]
exhibit a transient peak around the merger of MBHBs.
Therefore, the pre-merger detection of GW signals facil-
itates prompt localization of the MBHB, enabling detailed
planning for the observation of EM emissions.

Currently, the commonly used approach for identifying
GW signals amidst noise relies on matched filtering tech-
niques [28], which have demonstrated remarkable efficacy
in ground-based GW observations [29-31]. However, it is
computationally expensive due to the requirements of
calculating a detection statistic, such as the signal-to-noise
ratio (SNR) [32], for numerous waveform templates. To
search for GW signals from compact binary coalescence,
a template bank containing about 250,000 waveform
templates was employed in the first observational run of
Advanced LIGO [33]. Moreover, it is estimated that around
10"3 templates are required to search for GW signals from
nonspinning MBHBs [18,34]. A gridless search based on
Metropolis-Hastings sampling and simulated annealing
can be considered to significantly reduce the frequency
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of calculating the detection statistic [34]. Nevertheless, in
light of the demand to observe EM counterparts of MBHBs
and further reduce the computational costs, there is con-
siderable value in developing novel techniques for identi-
fying GW signals.

Deep learning presents a great potential in GW data
analysis due to its capacity for automatic feature extraction
and complex pattern recognition. Deep learning models
have been extensively studied for the identification of GW
signals [35-67]. Specifically, the models designed in
Refs. [66,67] are capable of identifying GW signals from
coalescing MBHBs. However, these models are tailored
for MBHB signals that have reached the ringdown phase
and Ref. [67] does not account for the confusion noise
generated by numerous galactic binaries [68]. In this work,
we present a novel model based on residual network
(ResNet) [69] and Transformer architecture [70], named
RTGW (ResNet-Transformer for Gravitational Waves),
to identify MBHB signals prior to the final merger.
The architecture of ResNet has been widely used in
neural networks designed for identification of GW signals
[41,47-49,58-62]. The galactic confusion noise is consid-
ered in the training and testing phases of our model. The
RTGW model has the ability to analyze data segments
spanning several days, extracted from the detector strain
data, within 0.01 seconds, enabling near real-time data
analysis during detector operation. It can be integrated as a
search module into low-latency data analysis pipelines,
such as the pipelines proposed in Ref. [71-73], to effi-
ciently identify MBHB signals before the final merger at
low cost. In this case, rapid localization of the MBHB can

be achieved through the analysis of GW data, which guides
the follow-up observation of EM counterparts. The RTGW
model is designed to process LISA data in this paper, but it
can be easily adapted for other space-based GW detectors,
such as Taiji and TianQin.

The paper is organized as follows. In Sec. II, we describe
the structure of the RTGW model. Following that, we
introduce the generation of training data in Sec. III. In
Sec. IV, we demonstrate the reliability and effectiveness of
our model across various test sets. Finally, summary and
discussion are provided in Sec. V.

II. MODEL ARCHITECTURE

For a deep learning model, the task of detecting GW
signals in noisy data can be framed as a binary classifi-
cation problem. Specifically, when presented with a seg-
ment of strain data s, the model categorizes it into one of
two classes, where these classes represent the presence or
absence of a GW signal in the given segment. To achieve
this objective, we develop a model architecture, as illus-
trated in Fig. 1, which seamlessly integrates ResNet and
Transformer. The architecture is inspired by the Vision
Transformer [74]; a model designed particularly for image
recognition. In this work, the RTGW model fully leverages
the capability of residual networks to extract hidden
features and the capability of Transformer to deal with
long-range dependencies in data.

As shown in Fig. 1, the RTGW model takes time-domain
data extracted from detector strain data as its initial input.
The data segment undergoes a Fast Fourier Transform
(FFT) [75] to transition into the frequency domain, and it is
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whitened by the power spectral density (PSD) of instru-
mental noise. This process can be regarded as data
preprocessing. Subsequently, the preprocessed data is fed
into a ResNet. The ResNet, proposed in Ref. [69], exhibits
strong feature extraction capabilities. The residual con-
nection structure used in it can effectively address the issue
of degradation in deep networks. In this paper, we employ
ResNet-50 [69], originally designed for image recognition,
with modifications to enable it to handle one-dimensional
GW data. The ResNet ultimately outputs a feature map
Xmap € RL for analysis by subsequent layers in the net-
work. We fix the channel of the feature map at C = 1024,
and the length L depends on the size of the initial input.

The remaining part of the RTGW model is built upon the
Transformer architecture. The Transformer, introduced in
Ref. [70] as a generative model, demonstrated its applica-
tion in machine translation tasks. The Transformer is adept
at handling long sequence data and effectively captures
global features, making it successful in natural language
processing. Additionally, it has found application in
computer vision [74]. In the context of space-based GW
data analysis, GW signals can be observed by detectors
for extended durations. The Transformer is well-suited
for capturing long-range dependencies of GW signals
obscured by noise. In this work, we construct the Trans-
former architecture with three modules; embedding,
encoder, and classification head, as indicated by dashed
gray box in Fig. 1.

The embedding module takes the feature map X, €
RSL as input. Firstly, in the patch-embedding layer, the
feature map is reshaped into a sequence of one-dimensional
patches x, € R™(CP) which can be written as

1

x, = [xh;x2;--;x5]  for xi, €RCP, (1)

where the size of patches is denoted as P and the number
L

of patches is denoted as n = 5. Then the patches will be
mapped to the latent vector size of the encoder module
(denoted as d,.) through a trainable linear projection
E € R(¢P)*dac Following that, we concatenate a learnable
class token, denoted as X € R, to the resulting
patches, which is used to learn class information during the
training process. This token’s state at the output of the
encoder module will be utilized for classification predic-
tions. Moreover, the encoder does not have an inherent
sense of sequential order because it processes the patches in
parallel. In order for the Transformer to make use of the
order of a sequence, it is common practice to encode
relative or absolute positional information of patches within
the sequence, and subsequently input this encoded infor-
mation into the encoder. In this work, we directly add a
learnable positional encoding E ,, € R to the input
sequence. Therefore, the embedding module finally outputs
a sequence z, that is given by

Zy = [Xclass; leE; X%)E; T ;X;E} + EpOS' (2)

The next module in the Transformer architecture is the
encoder. As shown in Fig. 1, the sequence z, will pass
through a stack of N encoder blocks. We employ the
architecture of a standard Transformer encoder proposed
in Ref. [70], but do layer norm prior to the multihead
self-attention (MSA) mechanism and the positionwise
feed-forward network (FFN). Thus, the encoder block is
composed of

z; = Dropout(MSA (LayerNorm(z;_,))) + z,_i,
z; = Dropout(FFN(LayerNorm(z}))) + 2/, (3)

with j = 1,2, ..., N. Note that, the MSA is a key innova-
tion that contributes to the Transformer’s success in
handling sequential data. It allows the model to maintain
sensitivity to the global context of elements when process-
ing long sequences. In the MSA mechanism, each element
of an input sequence z undergoes n., times linear
projection into d, d; and d, dimensions,

[Qi:Ki; V] = [2W2zWK zWY ] for i = 1.2, ..., Bpega.
(4)

where W€ € R WK € Rédenxdi and WY € R are
learnable parameter matrices. Then, an output of scaled
dot-product attention [70], denoted as head; € R"*+1)x4 g
computed from

QK
Vdy

These heads are concatenated and once again projected

using a learnable parameter matrix WO & R (e di)xdene
resulting in the final output of MSA,

head; = Attention(Q;; K;; V;) = Softmax < > V.. (5)

MSA(z) = Concat(headl,headQ, ...,head )WO. (6)

Nhead
Furthermore, the FFN in the encoder block consists of two
linear transformations with a GeLU activation [76] in
between, which can be presented by

FFN(Z) = GCLU(ZWl + b1>W2 + b2, (7)

where W, € Réax(dec) W, € RWdenc)Xdenc by, €
RO+1Dx(#denc) and b, € R(*1)*dec are learnable parameter
matrices. Note that, the Transformer was initially designed
for natural language processing as a generative model with
both encoder and decoder. However, in this work, we only
need the encoder to address the classification task.

The last module of our model is the classification
head which is implemented by a multilayer perceptron
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(MLP) [77]. The MLP transforms the class token z%,
extracted from the output of the last encoder block into
a class prediction. In the binary classification task, the
prediction can be expressed as two predicted probabilities
through a softmax function [78], which are between 0 and
1 and their sum equals 1. The entire RTGW model is
implemented using the PYTORCH framework [79].

To train a classification model, the cross-entropy loss is
commonly used. It measures the difference between the
predicted probabilities output by the model and the true
class labels, encouraging the model to assign higher
probabilities to the correct classes. For the binary classi-
fication task, the cross-entropy loss is given by

1 A
L= —ﬁs;yilog(y,) +(1

where y; denotes the true label of the ith training sample, J;
denotes one of the predicted probabilities and N is the total
number of samples. We minimize the loss function using
the Adam optimizer [80], enabling the RTGW model to
adjust its parameters more effectively to make the predicted
results closer to reality.

—y;)log(1=3;), (8)

III. DATASETS

In this work, we consider the strain data recorded by a
GW detector consists of a random noise, and possibly a
GW signal. Thus, the true label of a data sample s(7) to be
analyzed by the RTGW model can be set as

Label 0: s(1) =

Label 1: s(r) = n(t) + h(1;0), 9)
where n(t) denotes the random noise and h(7; ®) denotes
the GW signal with a set of physical parameters ®. We refer
to samples labeled as O as negative and samples labeled as 1
as positive.

Specifically, we generate GW signals using IMRPhenomD
model [81,82], which models nonprecessing spinning
inspiral-merger-ringdown waveforms. Furthermore, the
time-delay interferometry (TDI) techniques [83] are neces-
sary to suppress laser frequency noise in space-based GW
detectors. In this paper, we apply the response of TDI A
and E channels [84] to the IMRPhenomD waveforms.
A simulated signal h(t;®) is characterized by eleven-
dimensional set of physical parameters {M,q,s., s,.,
dp,te,pe vy, p,A}. Here, M, g, and (s;.,s,.) denote
the total mass, mass ratio, and dimensionless spins of
MBHB respectively, d; is the luminosity distance to the
binary, ¢, is the coalescence time, ¢, is the coalescence
phase, 1 is the angle between the orbital angular momentum
of the binary and the line-of-sight and y is the polarization
angle. The sky location of the binary is determined by the
ecliptic latitude and ecliptic longitude (3, 1). In the training

TABLE 1. Prior parameter distribution for simulated GW
signals.

Parameter Prior

M LogUniform[10°M, 107 M)
q Uniform[1, 10]

le Uniform[3d, 365d]
SNR Uniform[15, 60]

(5125 82:) Uniform[—1, 1]

cos1 Uniform[—1, 1]

sin 8 Uniform[—1, 1]

A Uniform[0, 271']

be Uniform[0, 27|

v Uniform[0, 7]

stage, we simulate GW signals with a fixed luminosity
distance and the other 10 physical parameters randomly
sampled from the prior in Table I. In order to make the
RTGW model sensitive to the inspiral phase of MBHB
signal, each training sample is generated by extracting a
segment before final merger from a simulated signal. The
time interval between the segment and the final merger is
uniformly randomly sampled within [0.2d, 2.0d], which
ensures diversity in the training data. Moreover, the seg-
ment is rescaled to achieve a SNR that is randomly
sampled. The prior of SNR is also given in the Table I.
We set the number of points of training data sample as
81,920 and the sampling time interval as 5 seconds. Hence,
each sample represents a 4.7-day segment of LISA data.
The MBHB signals are generated using codes provided by
LISA Data Challenge group [85].

In this work, the random noise present in strain data is
composed of the instrumental noise and the confusion noise
due to galactic binaries. The instrumental noise is simulated
as a colored Gaussian noise with the design PSD of TDI A
and E channels, which is given by [86,87]

Sins () = 8sin?wl [4(1 + cos wl + cos’®!) S,
+ (2 4 cos @) Soms] (10)

3x10—‘5\/ <o.4x10—3>2
_2X T e (R
2xfc f

S 4
X\/1+<8><10—3> veoh

B L 2af <2x10‘3>4[ 1 }
Som(f) = 15 x 107122 \/1+ ; vk

(11)

Here, [ represents the arm length of LISA detector, ¢
denotes the speed of light and w is calculated as 27z f/c.

with

Sacc (f)
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Additionally, the confusion noise resulted from tens of
millions of galactic binaries can be estimated by [88]

Scon = %f—7/3€—(f/f1)“(1 + tanh ((fknee - f)/fZ))’ (12)
with

logio(f1) = a1logio(Tops/yr) + b1,
10g10(finee) = @xlogio(Tops/yT) + by (13)

Here, T, denotes the observation duration of LISA
detector and {A, a, ay, ay, by, by, f>} is a set of calibration
parameters. During the training process, we choose a
fixed observation duration at 7, = 1.0 yr. The values
of the calibration parameters are set as A = 1.15 x 107%,
a=1.56, a;=-0.15, a, =-0.37, by =-2.72, b, =-2.49,
and f, = 0.00067, which are given in Ref. [88]. The
confusion noise is simulated from Eq. (12), with modu-
lations resulted from TDI channels. The total noise n() in a
training sample is the sum of the instrumental noise and the
confusion noise. We generate the two components of noise
using the PYCBC package [89].

IV. RESULTS

In this work, all the training and testing process are
conducted on an NVIDIA Tesla A40 GPU. We generate
10,000 samples as the training set and 3,000 samples as the
validation set in each epoch of the training process, which
is effective in preventing overfitting. Both the training and
validation sets have half of the samples containing only
random noise (negative samples), while the other half
contain noise and MBHB signal (positive samples). We
train models with different selections of the hyperpara-
meters, and evaluate their performance based on the final
validation loss. The hyperparameters are ultimately deter-
mined as the patch size P = 2, the number of encoder
blocks N = 6, the latent vector size of encoder block
depe =768, and the number of heads g = 12.
Furthermore, the learning rate gradually decreases due to
cosine annealing [90] with a beginning at 0.00008. The
training process of the RTGW model, which takes nearly
three days, is stopped at epoch 500. The losses for the
training and validation sets are shown in Fig. 2. The trained
model can analyze a segment of simulated LISA data
spanning 4.7 days within 0.01 seconds.

A. Tests on independent data segments

To evaluate the sensitivity of our model to MBHB
signals, we test it on datasets with different SNRs.
Specifically, each dataset consists of 5,000 test samples,
with an equal split between positive and negative samples.
The injected signals in positive samples are simulated at a

0.7 —— Training

Validation
0.61
0.5
@
o 04r &
|

0.3 \L
0.2} \‘L\\w

s

01k . AN Ayl Wi otk ]
0 100 200 300 200 500
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FIG. 2. Evolution of the losses for the training and validation
sets. The training process is stopped at epoch 500.

fixed SNR of 15, 20, 25, 30, and 35, respectively. The other
physical parameters are randomly sampled from the prior
in Table I, which is the same with the training set. The
performances of our model on these datasets are visualized
by the receiver operating characteristic (ROC) curves [91]
shown in Fig. 3(a). The ROC curve depicts the true positive
rate (TPR) against the false positive rate (FPR) for various
threshold values applied to the predicted probabilities
produced by the model. Moreover, the area under the
ROC curve (AUC) [91-93] can be used as a numerical
summary of the model’s performance, with AUC closer to 1
indicating better performance. As illustrated in Fig. 3(a),
the model performs better on the datasets with a higher
SNR. With the FPR fixed at 0.01, our model achieves a
TPR of over 0.9 on datasets with a SNR above 25. As the
SNR decreases to 15, the TPR drops to 0.55. The RTGW
model exhibits high sensitivity to MBHB signals from the
premerger stages while keeping a low false alarm, indicat-
ing its potential to detect signals when the SNR accumu-
lates to 15. In practice, a predefined threshold is required to
determine the decision boundary between the presence and
absence of MBHB signals. Figure 3(b) shows the FPR and
the TPR as functions of the threshold. The TPR is obtained
from the test dataset with a fixed SNR of 15. The results
indicate that the false alarm rate decreases as the threshold
increases, but the model becomes less sensitive to MBHB
signals.

Furthermore, the RTGW model demonstrates varying
sensitivity to MBHB signals with different total masses.
We regenerate the datasets in the same manner, with the only
difference being that the total mass of the MBHB:s is fixed at
10M o, 10°M g, and 107 M ,, respectively. The ROC curves
obtained from tests on datasets with SNR of 15 and 20 are
depicted in Fig. 4. The results indicate that, when SNR is
fixed, our model is more sensitive to signals with larger total
masses, which typically reside in lower frequency bands.
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FIG. 3. ROC analysis for the RTGW model. (a) The ROC curves for test datasets with different SNRs. Each test dataset comprises

5,000 samples, with an equal split between positive and negative samples. The positive samples contain injected segments of MBHB
signals simulated with fixed SNRs of 15, 20, 25, 30, and 35. The black dotted line denotes the line of random classifier. (b) The FPR and
TPR as functions of the threshold. The TPR is obtained from the test dataset with a fixed SNR of 15.

0.8f

0.6f I

True Positive Rate

04r 1
> SNR =15

— M=105M,

M =10°M., SNR = 15
—— M=10"M,, SNR = 15
02 —— M=10°M,, SNR =20 |
M =105M., SNR = 20
—— M=10"M,, SNR = 20

00325 0.2 0.4 06 0.8 10

False Positive Rate

FIG. 4. The ROC curves for test datasets with different total
masses and SNRs. Each test dataset comprises 5,000 samples,
with an equal split between positive and negative samples. The
positive samples contain injected segments of MBHB signals
simulated with fixed total masses and SNRs of (10°Mg, 15),
(10°M g, 15), (107My,15), (10°M,20), (10°M,20), and
(10’M ¢, 20). The black dotted line denotes the line of random
classifier.

B. Tests on continuous signals

In both training and the aforementioned testing, all
samples provided to the RTGW model are independent
data segments. However, in real data analysis, we need to
deal with continuously lengthening sequences as the accu-
mulation of observation time. As mentioned in Sec. III, our
model takes input data segment which covers an observa-
tional time of about 4.7 days for a detector. The model is

capable of processing the data segment within 0.01 seconds.
Therefore, as the detector’s strain data updates, our model
enables near real-time analysis. It sequentially processes
segments extracted from the updated data stream, produc-
ing a series of predicted probabilities. The identification of
a MBHB signal can be triggered by setting a threshold on
the predicted probability. Specifically, in this work, if the
predicted probability for label 1 exceeds 0.999, we classify
it as indicating the presence of a MBHB signal in the strain
data. The high threshold ensures a low false alarm rate
but compromises the model’s sensitivity to MBHB signals.
Figure 5 shows the model’s predictions on a 30-day
simulated LISA data, which contains a GW signal from a
MBHB with a total mass of 10°M and a mass ratio of 5.
The signal covers the inspiral, merger, and ringdown phases,
and its SNR is set to 200. The time interval between two
consecutive predictions of the RTGW model is set to 2 hours.
Based on a threshold of 0.999, our model can identify the
MBHB signal approximately 23.3 hours before the final
merger, with an accumulated SNR reaching 21.0.

More generally, we generate a test set consisting of 2,000
samples to evaluate the model’s performance on long-
duration data. Half of these samples are noise-only, while
the other half are a mixture of noise and MBHB signal.
Each sample represents a 30-day simulated strain data.
Similar to the MBHB signal shown in Fig. 5, the signals
generated for this test set also cover the inspiral, merger,
and ringdown phases, with their SNRs uniformly randomly
sampled from the range of [100, 500]. The values of other
physical parameters are sampled from the prior given in
Table I. In the test, we also choose a threshold of 0.999 for
the model’s predicted probabilities. Our model can identify
97.4% of the MBHB signals before the final merger, and
achieve an FPR of 0.5%. This indicates that the threshold
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enables the model to maintain a low false alarm while
achieving a high sensitivity to MBHB signals. Furthermore,
Fig. 6(a) illustrates the time prior to the final merger at
which the MBHB signals are identified by our model.

53.5730%
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Considering 90% of the samples, the signals are detected

hours before the final merger. At the moment of

being detected, the SNRs of these signals reach 18.3“:%'5 ,
as depicted in Fig. 6(b). Hence, the RTGW model
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FIG. 7. Distribution of SNRs at the time of identification for

MBHB signals with different total masses. The RTGW model is
tested on three datasets generated with fixed total masses of
10°M, 10°M, and 10" M, respectively.

demonstrates the ability to detect MBHB signals with low
SNR before the final merger, thereby providing essential
lead time for subsequent EM observations.

The results shown in Fig. 3 indicate that the sensitivity of
our model depends on the total mass of MBHB. To assess
the model’s detection boundary concerning various total
masses, we generated datasets with total masses fixed at
10°M g, 10°M, and 10"M, each containing 1,000 sam-
ples. The samples here are the same as those employed in
the test shown in Fig. 6, consisting of a mixture of noise
and MBHB signal spanning a 30-day duration, with the
additional physical parameters sampled from the same
prior. As shown in Fig. 7, for 90% of the samples, the
model detects the signals when the SNRs accumulate to
4437133 for MBHBs with a total mass of 10°M.
Correspondingly, for MBHBs with total masses of
10°M, and 10’M,, the required SNRs are 18.075Y and
11.7f26:§, respectively. It suggests that the RTGW model is
less sensitive to signals from MBHBs with smaller total
masses. However, this does not imply that our model will
only detect them when the final merger approaches
more closely. Actually, due to variations in noise PSD at
different frequencies, GW signals simulated from a total
mass of 10°M accumulate a significant SNR earlier in
the inspiral phase. Thus, despite the model having lower
sensitivity to these signals, it can still detect them well in
advance of the final merger. In 90% of the test cases, our
model identifies the signals 255.3f12353_'62 hours before the
final merger. For MBHBs with total masses of 10°M, and
10'M, the lead times are 59.67374° hours and 9.7735%
hours, respectively.

V. SUMMARY AND DISCUSSION

In this study, we have developed an effective deep
learning approach for identifying MBHB signals for
space-based GW observations. Compared to the convolu-
tional neural network based model in Ref. [66], we employ
the Transformer architecture in the RTGW model, which
contributes to effectively capturing the global dependencies
of GW signals. The MSA mechanism in the Transformer
architecture dynamically adjusts attention weights based
on different parts of input sequence, enabling the RTGW
model to better focus on the relevant parts of signal and
mitigate the impact of noise. Therefore, the model has
ability to identify signals even under low SNR conditions.

The computational cost of a deep learning model pre-
dominantly stems from the iterative optimization process,
which entails training on extensive data. The RTGW model,
once trained, is capable of processing a segment of LISA data
spanning 4.7 days within 0.01 seconds. Furthermore, the
model demonstrates high sensitivity to GW signals from
MBHBs while maintaining a low false alarm. Based on its
predictions, it is expected to detect the signals several hours
to over ten days prior to the final merger. This premerger
detection lays the foundation for the rapid localization of
MBHBs, which is crucial for the observation of EM
signatures appearing before, during or immediately after
the merger. The coincident GW and EM detection of MBHBs
provides a new avenue for multimessenger astronomy.

The confusion noise, formed by GW signals from
numerous galactic binaries, is simulated as Gaussian and
stationary in this work. However, in real-world scenarios, it
is anticipated to manifest non-Gaussian behavior and
evolve over time. In future work, the RTGW model is
supposed to be trained with simulated noise that more
closely resembles real-world conditions, enabling it to
accommodate authentic noise patterns. Besides MBHBs,
some other sources are also detectable for space-based GW
detectors, such as extreme mass-ratio inspirals [94] and
possible intermediate mass black hole binaries [95]. GW
signals from these sources may overlap with MBHB
signals, which are not considered in this study. In addition,
real data may exhibit disturbances like glitches and data
gaps [71]. Our model has successfully learned to capture
the essential characteristics of MBHB signals. The pre-
trained model should be fine-tuned through transfer learn-
ing to leverage existing knowledge in adapting to new
features present in real-world data.
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