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In astronomy, we frequently face the decision problem: does this data contain a signal? Typically, a
statistical approach is used, which requires a threshold. The choice of threshold presents a common
challenge in settings where signals and noise must be delineated, but their distributions overlap.
Gravitational-wave astronomy, which has gone from the first discovery to catalogs of hundreds of events
in less than a decade, presents a fascinating case study. For signals from colliding compact objects, the field
has evolved from a frequentist to a Bayesian methodology. However, the issue of choosing a threshold and
validating noise contamination in a catalog persists. Confusion and debate often arise due to the
misapplication of statistical concepts, the complicated nature of the detection statistics, and the inclusion of
astrophysical background models. We introduce conformal prediction (CP), a framework developed in
machine learning to provide distribution-free uncertainty quantification to point predictors. We show that
CP can be viewed as an extension of the traditional statistical frameworks whereby thresholds are
calibrated such that the uncertainty intervals are statistically rigorous and the error rate can be validated.
Moreover, we discuss how CP offers a framework to optimally build a metapipeline combining the outputs
from multiple independent searches. We introduce CP with a toy cosmic-ray detector, which captures the
salient features of most astrophysical search problems and allows us to demonstrate the features of CP in a
simple context. We then apply the approach to a recent gravitational-wave mock data challenge using
multiple search algorithms for compact binary coalescence signals in interferometric gravitational-wave
data. Finally, we conclude with a discussion on the future potential of the method for gravitational-wave
astronomy.
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I. INTRODUCTION

The burgeoning field of gravitational-wave astronomy is
in a state of rapid evolution. Second-generation detectors
[1–3] have progressed from the first observation of a binary
black hole merger [4] to the compilation of extensive
transient event catalogs [5–7] including also binary neutron
star and black hole neutron star mergers. With this progress,
the methodologies for evaluating the statistical significance
of compact binary coalescence (CBC) signals have under-
gone notable transformations. While the significance of the
initial detection [4] was assessed through the frequentist
false alarm rate (FAR), contemporary catalogs [5–7] now
use probabilistic Bayesian methods.

However, astrophysicists aiming to learn from gravita-
tional-wave data are confronted with a challenge: the
difficulty in identifying signals when their distribution
and the noise distributions overlap. This issue is by no
means unique in astronomy (see, e.g., Feigelson and
Babu [8]). However, gravitational-wave astronomy is an
especially intriguing case study because the signal-to-noise
ratio (SNR) of sources is low, but the potential scientific
reward is high. Moreover, much of the insights derive from
studying the population of identified sources [9]. The
events producing signals within current sensitivities are
isotropically distributed, so the number of detections scales
with the cube of the horizon distance (a measure of the
detector sensitivity). Therefore, there are always more
events just beyond the horizon than within: increasing
the horizon distance by just 25% will double the number of
events. The conundrum facing anyone wishing to utilize the
hundreds of sources now reported is how to select a
threshold to cut between the signals and the noise. On
the one hand, we can choose a conservative threshold,
ensuring a high catalog purity (the fraction of true signals).
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However, the conservative threshold also entails a loss of
accuracy; after all, we must discard many low-significance
astrophysical signals buried in the noise. On the other hand,
choosing a liberal threshold would include a larger number
of astrophysical signals but at the cost of bias induced by
nonastrophysical catalog contamination.
Along with the threshold problem, difficulties arise

from concurrently applying multiple search algorithms
(hereafter referred to as “pipelines”). The Gravitational-
Wave Transient Catalog (GWTC) produced by the LIGO
Scientific, Virgo, and KAGRA (LVK) Collaborations (e.g.,
Abbott et al. [5]) include results from several indepen-
dent pipelines (specifically, GstLAL [10–15], MBTA [16,17],
PyCBC [18–22], SPIIR [23,24], and COHERENT WAVEBURST

[25]). For a given candidate event, the significance between
pipelines can vary substantially, reflecting inherent uncer-
tainty in the significance estimate and varying pipeline
performance. However, for those not intimately knowl-
edgeable about the ever-evolving internal workings of the
pipelines, it is hard to know when a particular pipeline is
more reliable or more sensitive than another.
There are efforts underway to address these issues. For

example, population-level analyses can utilize hierarchical
models to assess mixed catalogs of signals and noise,
avoiding the contamination problem altogether [26–29] and
recent efforts are also underway to produce a unified
significance estimate [30]. Nevertheless, the problem of
choosing thresholds will continue to be of interest as mixed
methods are in their infancy, and some of the most
interesting events will inevitably come from close to the
detection horizon: the question of “do these data contain an
astrophysical signal?” will inevitably persist.
This work will introduce a new and transformative

framework to solve this problem using conformal predic-
tion (CP) [31]. CP is an approach to uncertainty quanti-
fication developed within the context of machine learning
(ML). CP takes an existing point-prediction algorithm and
a calibration dataset (consisting of correctly labeled data)
and generalizes the underlying algorithm’s point prediction
to a “prediction set” with a guaranteed “validity” (where
valid means that the true label is guaranteed to belong to the
set with a predefined confidence). Its appeal arises from its
universal applicability, guarantees, and single assumption:
exchangeability of the data. Moreover, the prediction
guarantees are distribution-free: there is no asymptotic
assumption or underlying model. It can be used for
classification and regression or, correspondingly, search/
detection and inference/measurement in the language of
astronomy [32]. This work will explore the classification
(or search/detection) problem. We will demonstrate how
CP can be applied to calibrate pipelines without requiring
knowledge of its internal behavior. Moreover, we will
discuss how CP offers an alternative approach to devel-
oping a metapipeline: taking the inputs from multiple
search algorithms and providing a single statement which
optimally combines their outputs and is well calibrated.

As we will show, CP is simple to implement, easily
tested, has minimal assumptions, and no required astro-
physical model. For these reasons, we anticipate that CP
will be of general interest to the field. While we will discuss
CP exclusively in the context of searching for CBC signals,
we anticipate it will find utility for searches for other
sources of gravitational-wave radiation and beyond.
The remainder of this article is structured as follows.

In Sec. II, we introduce the existing traditional approaches
for significance estimation within gravitational-wave
astronomy and further motivate this work by considering
their real-world performance. We provide a lay guide to CP
in Sec. III. We apply it in Sec. IV to a toy cosmic-ray
detector problem to demonstrate the basic algorithm and
extensions in the noise-dominated regime. Moreover, we
also use our toy problem to explain some of the subtleties of
CP. In Sec. VI, we then go on to apply CP to the recent
mock data challenge of LIGO-Virgo data [33]. Finally, we
end with a discussion on the advantages, difficulties, and
future prospects of CP for gravitational-wave astronomy
in Sec. VII.

II. METHODOLOGY: QUANTIFYING
SIGNIFICANCE WITH TRADITIONAL

APPROACHES

To begin our discussion, we first review the data, search
algorithms, detection statistics, and two dominant quan-
tities used to assess candidate significance: FAR and pastro.
Gravitational-wave strain data comprise quasistationary
colored Gaussian background noise, astrophysical
signals, and a variety of nonastrophysical transient noise
sources termed “glitches” [34,35]. Absent glitches, the
optimal detection statistic is the colored Gaussian noise
matched-filter SNR. When the signal source properties
(e.g., the mass of the system) are unknown (as is typical), a
bank of templates is searched, often in combination
with techniques to maximize or marginalize over subsets
of the full parameter space (see, e.g., Sathyaprakash and
Dhurandhar [36]). However, in the presence of glitches, the
optimal statistic is unknown. To guide the reader on how the
leading searches remain sensitive to astrophysical signals
despite frequent glitches, we now describe in broad terms a
typical search algorithm or pipeline: the interested reader
maywish to reviewAbbott et al. [35] for a deeper discussion.
The central tools used by most pipelines to distinguish

between signals and glitches are the coincidence between
detectors and signal consistency checks such as the χ2

detection statistic [18], which discriminates cases where the
data are likely to contain a glitch by analyzing the way
power is distributed in the broadband signal. Typically, the
χ2 and matched-filter SNR are combined to produce a
“combined ranking statistic” which we label ρ. Additional
terms may also be included in the combined ranking
statistics, such as weights based on whether the region
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of parameter space is expected to contain more astrophysi-
cal signals and amplitude-phase-time consistency checks
between detectors. The combined ranking statistic can be
tuned to maximize the separation of signals from noise (as
verified by simulations). Since the combined ranking
statistic is ad hoc, its background distribution (where the
background is taken to mean in the absence of any
astrophysical signal) is inherently unknown and must be
empirically estimated from the data. However, gravita-
tional-wave detectors cannot be shielded from astrophysi-
cal signals. Therefore, pipelines use approaches such as
“time sliding” between separate independent detectors to
destroy correlations between astrophysical signals (see,
e.g., [37,38]), resulting in empirical measurement of the
background. We denote such a background as the set fρg ¼
fρ0; ρ1;…; ρn−1g of n values measured on the background.
Once the background has been estimated for a new

candidate event with ranking statistic ρ0, the pipeline
estimates its significance by calculating the FAR.
Informally, the FAR is the amount of background data
one must observe to see a ranking statistic as large as ρ0.
Such a dimensionful approach results in an intuitive
understanding of the significance given knowledge of
the amount of data searched. For example, for a search
of onemonth of data, an event with a FAR of 1 per millennia
is a clear detection, while a FAR of 1 per day is more likely
to be noise. More precisely, the FAR is calculated empiri-
cally as the inverse of the number of background events
with a ranking statistic of ρ0 or greater divided by the
segment duration used in the search. One sees then that the
FAR is the one-sided right-tail empirical p-value divided by
the segment duration

FAR ¼ 1

T
Prðρ > ρ0jH0Þ ¼

1

T
jfρi∶ρi > ρ0gj

jfρgj ; ð1Þ

where H0 is the null hypothesis, we apply set-builder
notation, and define the set size by j · j.
The FAR of the first detection was reported in the

paper abstract: “less than 1 event per 203 000 years” [4].
However, once a population of signals was established, it
became preferential to move to a probabilistic approach
instead. Following Farr et al. [39], the foreground and
background distributions are modeled by a Poisson mixture
model with prior choices informed by the pipeline outputs
and previously observed signals. From this, each pipeline
produces a new significance estimate, pastro: the probability
that the signal is astrophysical [40–43]. Moreover, the
modeled approach allows further subclassification as
pastro ¼ pBNS þ pNSBH þ pBBH (and a complementary
probability of terrestrial origin; BNS, binary neutron star;
NSBH, binary neutron star; BBH, binary black hole). With
this new approach, GWTC-1 [44] defined “GW” events as
those with a FAR less than 1 per 30 days and a pastro greater
than 1=2. This latter definition has become a de facto

standard. For example, a pastro greater than 1=2 is the
threshold used to identify events for further follow-up in
several recent catalogs [5–7]. Yet, it demonstrates that, even
with a probabilistic interpretation of the nature of a
candidate, researchers still like to establish a threshold
and draw a clear delineation, and it is quite common to see
astrophysics research take the provided thresholds at
face value.
The final complicating piece of this picture is that

multiple pipelines analyze the same data. Our typical
pipeline above described the core features, but each
employs a unique arsenal of techniques built over many
years by many people. The result is that, for any given
candidate, we end up with multiple estimates of its
significance: a FAR and pastro per pipeline. The pipelines
broadly agree for unambiguous signals and noise events
where apples-to-apples comparisons can be made.
However, it is in the gray middle ground where things
become complicated. To demonstrate this, we use data from
the recent GWTC-3 catalog [5], which reported on data
from the second part of the third LIGO-Virgo observing
run. We use the associated data release, which includes
triggers where at least one pipeline had a FAR of less than
2 per day: as such, we expect this to include both the
astrophysical signals and a great number of nonastrophys-
ical candidates.
In Fig. 1, we scatterplot the pastro of each trigger for pairs

of CBC search pipelines used in GWTC-3 (we exclude the
COHERENT WAVEBURST pipeline that applies an unmodeled
search approach). In the off-diagonal corners, two dense

FIG. 1. Comparison of the probability of astrophysical origin
estimated by pairs of pipelines for all candidates reported in
GWTC-3 (including subthreshold candidates). While clear signal
(top right) and clear noise (bottom left) cases usually agree, a
significant off-diagonal scatter remains between these points.
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regions correspond to the clear signal (top right) and clear
noise (bottom left) cases where pipelines agree. However,
scattered through the plane are confusion cases where one
pipeline finds pastro > 0.5, indicating the data contained an
astrophysical source, while the other pipeline is more
pessimistic (pastro < 0.5). If we are lucky enough to know
experts from both pipelines, we can understand the cause of
the discrepancy. Sometimes, it is well understood different
choices lead to different sensitivities in different parts of the
parameter space. If the more sensitive pipeline found the
event while the other did not, this explains the difference,
and we may gain confidence that this is an astrophysical
signal. Other times, the differences are more contentious or
yet to be understood—this should be expected, as these are
complicated multistage pipelines with differing and often
implicit assumptions. Nevertheless, it leaves the unin-
formed with the previously described choice-of-threshold
conundrum exacerbated by the need to learn the detailed
inner workings of the pipeline to understand the results.
One standard solution is to take the maximum pastro,
implicitly trusting that the only explanation is variations
in sensitivity. However, another explanation is random
uncertainty in significance or even that one pipeline is
malperforming.
One may imagine that the inclusion of different astro-

physical foreground prior models in the Bayesian analysis
may explain the scatter in Fig. 1 between pipelines;
however, Fig. 2 demonstrates that the scatter is also
inherent in the underlying and simpler FAR. Finally, in
Fig. 3, we plot each pipeline’s FAR against pastro. Here, we

see the approximate sigmoid relationship with significant
scatter.
The GWTC-3 results demonstrate the inherent difficulty

facing anyone wishing to select a set of events for further
analysis. However, these results are only part of the
picture. They present only the pipelines used by the
LVK Collaborations. There are external groups that pro-
duce independent catalogs where the same conclusions
hold up: scatter between significance estimates. Moreover,
pipelines are not static: they are constantly developed,
improved, and reconfigured. It is well known that the same
pipeline with a different configuration can produce a
different significance estimate (usually for well-understood
reasons understood by the pipeline experts). Therefore,
even choosing a single pipeline can effectively represent a
different pipeline per observing run (or period in which the
methodology and configuration are static). Finally, using
pastro as a threshold also utilizes information from estimates
of the population properties. Since we are constantly
learning new information and improving estimates, this
can lead to the reranking of past data, resulting in the
possibility of reclassifying old candidates.
One naive way of describing the situation is that

significance estimates (i.e., the FAR or pastro) do not
come with an associated uncertainty (from, e.g., intrinsic
configuration choices, population choices, or data
choices). The oft-used approach to resolve this is to take
the scatter from multiple pipelines as a proxy indication of
the uncertainty. This has primarily been the community
approach: confidence in the first detection from a new
source class is validated by the involvement of multiple
pipelines. However, this is not satisfactory and discards

FIG. 2. Comparison of the FAR estimated by pairs of pipelines
demonstrating the intrinsic scatter for all candidates reported in
GWTC-3 (including subthreshold candidates). While clear signal
(bottom left) and clear noise (top right) cases usually agree, a
significant off-diagonal scatter remains between these points.

FIG. 3. Comparison by pipeline between pastro and FAR for
all candidates reported in GWTC-3 (including subthreshold
candidates).
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inherent information about pipeline sensitivity. In the
remainder of this article, we will introduce a formal
alternative based on CP. Our fundamental interest is to
develop a tool that takes the FAR or pastro as a heuristic and
calibrates it, enabling standardization between pipelines
and proper uncertainty estimates for whether a candidate is
of astrophysical origin.

III. METHODOLOGY: QUANTIFYING
SIGNIFICANCE WITH CONFORMAL

PREDICTION

We now introduce the CP methodology. We intend to
give the reader a guide to the application without delving
into the foundational theory, which can be found in reviews
such as Angelopoulos and Bates [45] and Shafer and
Vovk [46].
To begin, it should be understood that CPwas developed

in the machine learning classification algorithm context.
Specifically, it can be applied to any classification algo-
rithm, i.e., given some observed data x, an algorithm that
produces a single predicted “label yðlÞ” drawn from a set of
N possible labels fyð0Þ; yð1Þ;…; yðN−1Þg. CP calibrates the
classification algorithm by producing a prediction set Γα

where α∈ ½0; 1� is the allowed “error rate,” also known as
the “significance level.” The steps to generate the prediction
set are as follows:
(1) Definitions: Define a nonconformity measure

Aðx; yðlÞÞ, which returns a nonconformity score s
for each label in the complete set. The requirements
for the nonconformity score are loose; it must simply
be a real-valued number. However, for the algorithm
to be useful, the score should be large when yðlÞ is
not the correct label (i.e., it measures how unusual
the labeling would be).

(2) Calibration: Now define the calibration data: n pairs
of (x, yðl̂Þ) where x is the observed data and yðl̂Þ is
the true label (indicated by the hat on the index). In
our context, calibration data will always be drawn
from simulations. Now, for each element of the
calibration data, calculate the equivalent score for
the true label and store this in a set of calibration

scores si ¼ Aðxi; yðl̂Þi Þ where the lower subscript i is
added to indicate the ith element of the calibra-
tion data.

(3) Quantile: The final step before generating the
prediction set is to define the allowed error rate
α∈ ½0; 1�, then given a set of calibration scores,
we calculate

q̂ ¼ sð⌈ðnþ1Þð1−αÞ⌉Þ; ð2Þ

where ⌈ · ⌉ is the ceiling function, and we indicate by
the use of sðjÞ the jth value of the ordered set of si.
As described in Angelopoulos and Bates [45], q̂ is

essentially the 1 − α quantile of the calibration
scores with a small correction.

(4) Prediction: Finally, given a new observed data
point x0, we generate the prediction set

Γα ¼
n
yðlÞ∶ Aðx0; yðlÞÞ < q̂

o
; ð3Þ

that is, for each label yðlÞ, we first calculate the
corresponding score Aðx0; yðlÞÞ, then if the score is
less than q̂ we include the label in Γα, the set of
predicted labels.

CP guarantees that the probability that the true label is
contained in Γα is approximately 1 − α; this is known as
“marginal coverage.”More concretely, it can be shown [45]
that

1 − α ≤ Prðyðl̂Þ ∈ΓαÞ ≤ 1 − αþ 1

N þ 1
; ð4Þ

such that if N, the number of calibration data points, is
sufficiently large, we recover the standard approximate
result of 1 − α.
Is this useful? Practitioners in the field will no doubt

know that there is a well-built-up statistical literature on
decision theory behind the FAR and pastro introduced in
Sec. II (and we will explore this in detail in our toy model;
cf. Sec. IV). However, as discussed, pipelines can be
miscalibrated and disagree with one another. The core
motivation behind studying CP is that we can treat the
statistical quantities arising from pipelines as heuristics and
use the calibration dataset to adjust it, ensuring robust
performance. As we will see later in Sec. VI C: this
calibration process can, in fact, be viewed as a generali-
zation of the empirical measurement of the FAR itself.
It is worthwhile to consider how CP quantifies uncer-

tainty in the label. As scientists, we are used to talking
about uncertainty on a measurement, e.g., a real-valued
number accompanied by an uncertainty interval. CP can
also tackle this problem (the realm of parameter estimation
or regression), but in our current context, we do not have a
real-valued number; instead, we have a label. For example,
should we classify this chunk of data as containing a
“signal” or just “noise”? CP provides uncertainty on the
point prediction made by an underlying classifier by
introducing the prediction set Γα. Inspecting Eq. (3), one
can see that, for binary classification of signal or noise, the
four possible prediction sets are the empty set∅, one of two
singleton sets {noise} and {signal}, or the double label
{noise, signal}. As an anthropomorphic explanation,
when asked “do these data contain a signal or noise?”
the CP algorithm can respond “neither,” “noise,” “signal,”
or “either noise or signal.”
Varying the error rate for a fixed test data point will vary

the size of the prediction set. In the extremes, α close to
zero or one, the CP algorithm will be forced to respond
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with the double label or empty set (in the case of binary
classification). Between the extremes, the performance will
depend on the problem setup and choice of nonconformity
score (we will demonstrate this later). This observation
leads to the identification of what is known as the CP
“confidence” [46], which we discuss later in Sec. IV C.

IV. CONFORMAL PREDICTION FOR A TOY
COSMIC-RAY DETECTOR

We now provide a guide to CP in the context of
classification and a simple astrophysics problem: a cos-
mic-ray detector. We will describe the problem and
implementation qualitatively here, but the reader may wish
to refer to the data release associated with this article, which
contains program code to reproduce all parts of this
section [47].

A. Problem setup

Consider a toy cosmic-ray detector consisting of a
Geiger counter, which records the number of incidents
of ionizing radiation it receives per minute while pointing
to the sky (this example is not intended to be realistic but
indicative of typical astronomy problems). Absent a cosmic
ray, the detector will be subject to background radiation
from terrestrial sources, which we model as Poisson
distributed with a mean of λb counts per minute. The
detector will observe a cosmic ray as a transient burst of Nc
ionizing particles in some time δt, which, for the sake of
this discussion, we take to be δt ≪ 1 min. As such, we can
identify and localize a cosmic ray in the data by searching
for minute-long bins where the count rate exceeds the
background. The excess amount will depend on Nc, which
we will model again as Poisson distributed with mean λc.
Finally, we will also model the number of cosmic rays as
Poisson distributed with some rate λr per minute. In Fig. 4,
we provide an illustrative example of data from our toy
detector showing minute-long bins with background, clear
cosmic-ray events (far above the background), and mar-
ginal cases in between.
The standard statistical search algorithm used in cases

such as this to identify if a bin contains a cosmic-ray event
is the frequentist one-sided p-value or, equivalently, the
FAR. Namely, for an observed count c0 and given the
background rate λb,

FAR ¼ 1

T
Prðc ≥ c0jλbÞ ¼

X∞

c¼c0

λcbe
−λb

c!
; ð5Þ

where T is the bin duration of 1 minute. Note, for this toy
model, we know the FAR in closed form; this differs from
the empirical FAR, Eq. (1), we use in gravitational-wave
astronomy.
Finally, our search algorithm proceeds by applying a

threshold to the p-value or FAR: bins above the threshold

likely contain a cosmic ray, while those below do not. In
Fig. 4, we apply a p-value threshold of 1=20 or, equiv-
alently, a FAR of 1 per 20 min. At this threshold, we can
identify four categories: several actual signals are identified
(true positives, TP), but four background events above
the threshold are identified as cosmic rays (false positives,
FP). Meanwhile, several cosmic rays are missed and
classified as background (false negative, FN), but most
background events are correctly classified as background
(true negative, TN). The nonzero counts of FP and FN are
not a deficiency of the algorithm but rather inherent: with
the true labels colored in Fig. 4, it is obvious which contains
a cosmic ray and which does not, but our search algorithm
has only the count rate leading, inevitably, to errors in
classification.
Of course, this is a well-studied problem of statistical

decision theory (see, e.g., Cowan [48]). In Figs. 5 and 6, we
reproduce two standard figures of merit which demonstrate
this behavior. First, the receiver operating characteristic
(ROC) curve shows the true positive rate against the false
positive rate. The ROC curve is generated by varying the
FAR threshold, repeatedly simulating our cosmic-ray
detector, and empirically measuring the two rates. The
curve demonstrates the trade-off between true positives and
false positives possible with our given search algorithm:
points closer to the ideal case (top-left corner) are better in
maximizing the true positive rate while minimizing the

FIG. 4. An illustrative example of data from our toy cosmic-ray
detector. Each data point records the number of counts within a
minute-long interval or bin. Thick circles mark bins containing a
cosmic ray. Data points are filled according to the prediction of
the FAR detection approach: blue circles correspond to data
points which surpass the threshold and, hence, where we reject
the null hypothesis. In contrast, orange circles indicate those that
are consistent with background noise.
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false positive rate. Second, in Fig. 6, we show an
alternative visualization of the same data: the precision
and miss rate. Considering the case of a catalog of
gravitational-wave signals, these are of more direct
relevance. The precision tells of the purity of the catalog.
If the precision is sufficiently close to 1, one can be
reasonably assured the catalog is pure and does not
contain any potentially biasing terrestrial artifacts.
However, such a guarantee comes at a cost: the miss
rate tends to 0 in the same limit, indicating the catalog
size will shrink.

B. Conformal prediction

At this point, we now step beyond the confines of classical
statistical decision theory and introduce the application of
CP. In this context, the cosmic-ray detector search algorithm
described above can be considered a classification algorithm
that produces a label y∈ fbackground; cosmic rayg
(whereby “cosmic ray” we implicitly mean there is both a
cosmic ray and background).
We apply the CP approach defined in Sec. III to our

cosmic-ray detector problem. We generate a large set of
calibration data points consisting of simulated data and the
true classification (i.e., whether a cosmic ray was present or
not).Next,we define our nonconformity score.We choose to
use the complement of the Poisson probabilitymass function
(noting that for the backgroundþ cosmic-ray case, the sum
of two Poisson distributed variables is itself Poisson dis-
tributed with a rate equal to the sum of the rates), i.e.,

Aðx; backgroundÞ ¼ 1 − Poissonðx; λbÞ; ð6Þ
Aðx; cosmic rayÞ ¼ 1 − Poissonðx; λb þ λcÞ: ð7Þ

In Fig. 7, we visualize our nonconformity scores,
showing that close to the mean, the nonconformity is at
a minimum for each class, while away from these, they are
close to unity. We note that the absolute magnitude of the
variation in nonconformity measure is not important: what
matters is the relative quantile they appear when ranked by
the conformal algorithm. In this sense, the relative magni-
tude between classes is important (though this will not
be the case later when we consider the class-conditional
Mondrian conformal prediction later on).
Once our nonconformity score is defined, we can apply

the conformal algorithm to new test data given some choice

FIG. 5. Measured ROC curve for the simple cosmic-ray
detector search algorithm. We measure false positive and true
positive rates while varying the FAR (or, equivalently, the
p-value) threshold.

FIG. 6. The precision and miss rate for the simple cosmic-ray
detector search algorithm as a function of 1 − α where α is the
p-value (or, equivalently, the FAR).

FIG. 7. Visualization of the nonconformity scores expressed in
Eqs. (6) and (7).
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of α. For each data point, the output of the algorithm will be
the prediction set Γα. In our binary case, Γα can be the empty
set∅, one of two singleton sets {background} and {cosmic-
ray}, or the double label {background, cosmic ray}.
The marginal coverage guarantee, Eq. (3), states that, if

implemented correctly, the correct label will be in Γα a
fraction ∼1 − α of the time. To check this, in Fig. 8, we plot
the empirically measured coverage after applying the
conformal algorithm to a large simulated cosmic-ray data-
set. The marginal coverage (the number of times the true
label appears in the prediction set) follows the one-to-one
mapping guaranteed by Eq. (3), demonstrating proper
algorithm implementation. There is some variation when
1 − α is close to 0 as the set sizes become small; moreover,
the steplike nature of the empirical coverage arises from the
discrete nature of the Poisson data in our toy model.
Figure 8 also provides an insight into the limitation of the

simpleCP algorithm: the coverage guarantee applies only to
the marginal, not the conditional labels. As a result, the
conditional labelsmay be over- or undercovered (i.e., exceed
the allowed error rate). We see this manifest in Fig. 8 for the
cosmic-ray label, which strays away from the diagonal. This
is problematic: in gravitational-wave astronomy, we are not
interested in ensuring that the label is correct as averaged
over both the signal and noise labels. We want the validity
guarantee [i.e., Eq. (3)] to apply to conditional labels. To
achieve the guarantee for all labels individually, we can use
Mondrian conformal prediction (MCP) [49], where the data
are split by class, and then the conformal prediction

algorithm is applied to each group separately. Using this
technique, both the conditional labels are guaranteed to
follow Eq. (3) and, by extension, the marginal labels do too.
The cost of MCP is that the number of calibration data

points entering Eq. (3) is no longer the total number but the
number per label. Therefore, the intrinsic error on rare
classes consistently exceeds more common labels by
design. We apply the simple classwise algorithm where
the possible labels define the groups [49]. However, more
advanced approaches are possible: see Ding et al. [50] for a
formal introduction to the topic and discussion of a
clustered algorithm capable of extending to many sets.
To apply MCP, we split our calibration dataset into

simulated data points containing a cosmic ray and those
that do not. Then, we apply CP to each label and the
corresponding calibration set separately for the test data.
For this reason, unlike the standard CP algorithm, the
relative values between nonconformity measures do not
matter in MCP. In Fig. 9, we reproduce Fig. 8 but having
applied MCP. Now, Eq. (3) is valid for both the marginal
and class-conditional labels. Finally, in Fig. 10 we provide
an illustration of the example data from Fig. 4, but
demonstrating the application of MCP; this illustrates
how CP adds uncertainty to the prediction near to the
boundary where the distributions overlap.

C. Confidence

There is a defined quantity within the CP framework
known as the confidence [46]. This arises from noting that

FIG. 8. The empirically measured coverage (the fraction of
events for which the true label is in the prediction set) for the
cosmic-ray test dataset after applying CP. A gray band marks the
95% binomial confidence interval expected given the size of
the test data; we see variations around this due to the discrete
nature of the underlying data.

FIG. 9. The empirically measured coverage (the fraction of
events for which the true label is in the prediction set) for the
cosmic-ray test dataset after applying MCP. A gray band marks
the 95% binomial confidence interval expected given the size of
the cosmic-ray test data; we see variations around this due to the
discrete nature of the underlying data.
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the Γα prediction sets are nested, such that if α1 ≥ α2, then
Γα1 ⊆ Γα2 . Since the size of Γα is a discrete quantity, it
varies in steps, and these change points can be used to
assign significance statements. This observation leads us to
the standard definition of confidence:
Definition 1. The confidence is the value of α such that

the size of Γα changes from 1 to 2 (i.e., the point where we
go from the single to the double label).
Necessarily, each data point has a unique confidence

assigned to whichever label is the single label given
the data.
In Fig. 11, we take our demonstration cosmic-ray data

and add the confidence, assigning [0, 1] as the confidence
for data points with single-label prediction cosmic ray and
flip the confidence to ½−1; 0� for data points with single-
label prediction “background” (this is nonstandard, but
allows in the binary case to plot the confidence on a single
diverging color scale). From this figure, we observe a sharp
divide near the boundary between the nonconformity
scores of the two labels (cf. Fig. 7). This notion of
confidence does have uses; for example, it automatically
produces a potential decision algorithm for calling some-
thing a signal: only those data points for which the single
label is cosmic ray. However, it is limited in that it does not
allow one to talk about the confidence that an arbitrary data
point contains a signal because, for those with a single-label
background, the confidence is the background confidence.
To further understand the confidence, we note that, in

this toy example, it is a function only of the observed count
rate. Therefore, as in Fig. 12, we can plot the confidence as
a function of the count rate to see the mapping. In this
figure, we see that, at a count rate of 110 (the point where

the nonconformity scores of background and cosmic-ray
labels are equal, cf. Fig. 7), the confidence flips between the
cosmic-ray and background single label. There is a mini-
mum, and on either side, the confidence monotonically
increases for either label.
This motivates us to consider an alternative definition,

the conditional confidence:

FIG. 10. The illustrative example of data from Fig. 4, but with
the labels as predicted by the MCP algorithm and using α ¼ 0.1
(i.e., at a 90% coverage guarantee).

FIG. 11. The illustrative example of data from Fig. 4 colored by
the confidence as defined in Definition 1. To aid visualization,
positive values are assigned to data points where the single-label
prediction is cosmic ray while we assign negative confidences to
those where the single-label prediction is background (i.e., values
closer to −1 indicate greater confidence in the noise label).

FIG. 12. The mapping from counts to confidence (cf. Defini-
tion 1). In blue, we show the confidence of counts where the
single-label prediction is cosmic ray, in orange cases where the
single-label prediction is background. We also plot the mapping
to the conditional confidence (cf. Definition 2), the cosmic-ray
(green) and background (red) labels.
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Definition 2. The conditional confidence in label y is the
minimum value of α such that y∈Γα.
We add this to Fig. 12 for both the cosmic-ray and

background labels, demonstrating that it can be calculated
for any data point. Comparing Figs. 12 and 7, it is apparent
that, in this example, the conditional confidence is the
scaled complement of the nonconformity score. In a sense,
this may seem circular. However, it is worth noting that the
conditional confidence depends on the distribution of
nonconformity scores in the calibration set and not solely
on the nonconformity score itself. Intuitively, the condi-
tional confidence in label y can be understood as the
probability (interpreted as a relative frequency) that the true
label is y as measured from the calibration dataset. We
believe conditional confidence is useful in providing an
intuitive guide to understanding the significance associated
with each label for a given data point. To conclude, we
finally apply the conditional confidence to our demonstra-
tion data in Fig. 13 which, contrasted with Fig. 11,
demonstrates a smoother variation in assigned confidence
and the ability to assign confidence in the cosmic-ray label
to all data points.

D. Measuring performance by set size

Figure 9 may give the impression that we achieved
perfect performance at no cost: the calibrated CP label sets
always contain the true labels a fraction 1 − α of the time
despite us never testing the performance of the conformity
scores. However, we did not consider the set size, i.e., how
many labels are given singleton labels cosmic ray or
background, the double label, or no label at all? Indeed,
the set size is critical to practical utility and where we
should measure the performance of our nonconformity
scores.

In Fig. 14, we plot the set size for all four possible
prediction sets as a function of 1 − α. In doing so, we show
the performance: the ability to identify cosmic-ray and
background events uniquely varies as a function of the
allowed error rate. At the lower extreme, we have the
limiting behavior of the algorithm. Namely, for 1 − α ∼ 0
(the maximum allowed error rate), all data points are in the
empty set while the size of the singleton and double labels
is close to 0. For 1 − α≲ 0.6, the set size of the singleton
labels grows linearly with the size of the empty set
decreasing. Above 1 − α ∼ 0.6, the set size of the single-
tons and empty set decrease while the set size of the double
label rapidly increases.
Figure 14 explains why there is no free lunch with CP.

While we can choose 1 − α arbitrarily close to 1 (i.e.,
minimize the allowed error rate), this comes at the cost of
increasing the size of the double label. That is, the cost is a
majority of triggers for which the algorithm is essentially
uninformative. Here, there is a parallel with Fig. 6 in which
we saw that choosing a conservative threshold increased the
precision at the cost of increasing the miss rate. Such
behavior is unavoidable, but by measuring the set size, one
can compare and optimize choices of nonconformity score.

E. Performance of a poor nonconformity score

Finally, it is helpful to take an illustrative example of
what happens when the nonconformity score performs
poorly. To demonstrate this, we take our cosmic-ray
detector example and consider an alternative choice of
nonconformity score,

Aðx; backgroundÞ ¼ 1 − Poissonðx; λbÞ; ð8Þ

FIG. 13. The illustrative example of data from Fig. 4 colored by
the “conditional confidence” (i.e., the minimum value of α such
that the conditional label is included in the set, cf. Definition 2)
for the cosmic-ray label.

FIG. 14. The set sizes for the four possible prediction sets after
applying MCP to 1000 test points for the cosmic-ray detector
problem.
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Aðx; cosmic rayÞ ¼ Uð0; 1Þ; ð9Þ
i.e., while the background score stays the same, we replace
the cosmic-ray score with a uniform random number gen-
erator. We show the results by applying this to our demon-
stration data in Fig. 15. At first, it may appear to still perform
reasonably well: most of the cosmic-ray events are labeled as
cosmic ray.However, on closer inspection,we see that almost
all the noise events are given the double label, multiple
prominent cosmic rays have no label assigned, and back-
ground data points are labeled as cosmic rays.
This choice of the nonconformity score is extreme but

yields insights intowhat to expect if a poor choice ismade for
the nonconformity score. We can further study the behavior
by looking at the set sizes as a function of 1 − α; this is done
in Fig. 15 and shows that at 1 − α ¼ 0.5, labels are randomly
assigned between the four choices while at either extreme
either no label is assigned or the double label.
The set size is one way to measure the performance

of a nonconformity score. For example, comparing Figs. 14
and 16 we see that, around 1 − α ∼ 0.7, the standard
nonconformity score produces more single labels than
either the double or background. Meanwhile, this is never
true for the alternative [i.e., Eqs. (8) and (9) which are
intentionally broken] nonconformity scores demonstrating
that the informative nonconformity measure outperformed
the alternative. The choice of nonconformity score can
therefore be viewed as an optimization problem. However,
the choice of objective function is itself subjective and will
depend on the use case. For example, one option is to
choose a nonconformity score that minimizes the number
of double labels, aiming to increase the algorithms’

capacity to unambiguously label the data. However, such
a choice may come at the cost of increasing the empty label
set. Alternatively, one may choose to maximize the TP rate
(or minimize the FP rate) at some fixed α. Extending this
idea, the nonconformity score itself can be parametrized,
enabling direct optimization (see, e.g., Colombo [51]).
Regardless of the methodology, the choice of objective
function for the optimization will always be subjective and
the best choice will depend on the overarching use case. For
gravitational-wave astronomy, we anticipate some combi-
nation of maximizing the number of single labels while
minimizing the number of false positives, but we intend to
explore this in future work.

V. CONCLUSION: TOY MODEL

In this section, we have used a simplistic toy model to
introduce CP. In the main, we use this as a tool to
understand CP and not as a demonstration of the applica-
tion of CP to realistic astrophysical problems. We recog-
nize that there are steps that do not transcend, e.g., here, we
know the statistical properties of the signal and noise
distributions perfectly and can use these to construct a
nonconformity score. Nevertheless, we hope it may prove
useful as a starting point for others to apply CP using the
accompanying notebook [47].

VI. CONFORMAL PREDICTION
FOR GRAVITATIONAL-WAVE ASTRONOMY

Having introduced CP for a simple toy model, we now
extend the discussion to gravitational-wave astronomy.
We will focus on the use case of modeled transient searches

FIG. 15. Reanalysis of Fig. 10 with α ¼ 0.1, using Eqs. (8)
and (9): a noninformative conformity measure for the cosmic-ray
label.

FIG. 16. The set sizes of the four possible prediction sets after
applying MCP to 1000 test points with the nonconformity scores
given in Eqs. (8) and (9).
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for CBC signals. However, the discussion applies generally
since the standard statistical framework is applied across
the field.
Our primary task is to define the nonconformity measure

Aðx; yÞ. Considering the binary classification problem,
signal or noise, two obvious initial choices exist: using
the FAR or the Bayesian pastro quantities. For source
classification, e.g., binary black hole, neutron star black
hole, binary neutron star, or terrestrial, one could use the
multiclass CP algorithm and the Bayesian probabilities
provided by the pipeline for each source class. Therefore,
these choices are readily applied to the outputs of existing
pipelines, which is what we choose to do in this work.
However, CP offers scope for further development.

For example, the FAR used by pipelines uses a ranking
statistic combining the matched-filter SNR and χ2 statistic
amongst other quantities. Such a combined ranking statistic
can itself be used as a nonconformity score: in effect, the
“calibration” dataset of CP is then analogous to the
background data used in a traditional search pipeline.
Building on this idea, if the combination is parametrized,
one could optimize the ranking statistic (nonconformity
score) to minimize the counts of the empty set of multilabel
prediction sets on some test data. Such an idea builds on a
similar application by McIsaac and Harry [52], which seeks
to maximize the separation of signals and noise. Many
more such innovations are likely possible.

A. Using conformal prediction to calibrate multiple
competing pipelines

To demonstrate the application of CP to gravitational-
wave astronomy, we will use the results of a recent mock
data challenge (MDC) study in advance of the LVK fourth
observing run [33]. In this MDC, four low-latency CBC
online search algorithms were applied to a real-time data
replay from the third observing run. Simulated signals were
added to the data at a rate much greater than the anticipated
astrophysical rate under current detector sensitivities. This
higher rate was used to stress test the low-latency infra-
structure: the primary goal of the MDC was to measure
expected performance in producing public alerts used to
trigger event follow-up. Taking the MDC data, we adjust
classifications for all real gravitational-wave detector
events present in the MDC, but do note there are potential
subthreshold signals that remain. We also remove all early
warning triggers from the MDC and use the corrected pastro
values from Ray et al. [43].
The MDC data products provide a perfect test bed for

CP. The increased rate produces a sizable set of simulated
triggers, e.g., points in the data stream that the search pipe-
lines identify as likely to contain a signal. Most recorded
triggers in the MDC are simulated signals (this differs
from the astrophysical scenario where, at a high FAR
threshold, most triggers will be nonastrophysical noise).
Moreover, the configuration of the pipelines was in

development during the MDC, leading to imperfect per-
formance. For these reasons, the performance of the pipe-
lines is not representative of the tuned performance
expected during the run. This point is discussed within
Chaudhary et al. [33] specifically for the case of PyCBC:
“The FAR values for injections recovered during the MDC
are subject to a substantial upward bias due to the high rate
of high-SNR injected events, which significantly influences
the background estimation.” As a result, in the context of
candidate significance estimation, we can consider the
MDC data as the application of poorly calibrated pipelines
to a given dataset. It, therefore, is a good test bed to
show how CP can automatically calibrate the pipelines.
However, we stress that the following discussion should not
be taken as indicative of the performance of the pipelines,
only as an example where they are known to be ill tuned.
Let us begin by studying the performance of the pipe-

lines using traditional significant estimation approaches.
We start by thinking about the catalog of events that would
be produced at a given threshold. In Fig. 17, we plot the
purity of the resulting catalog as a function of pastro; we
present results separated by pipeline. We calculate the
purity as the fraction of triggers with pastro greater than
the threshold which pertains to an injected signal. We plot
the actual purity (the true number of simulated signals
in the trigger set) and the estimated purity: the sum of
the pastro for all triggers above the threshold. The sum of
pastro to estimate the number of astrophysical signals is

FIG. 17. The estimated and actual purity for the MDC results as
a function of the pastro threshold split by pipeline. Estimated
purity refers to the sum of pastro above the threshold, while actual
purity refers to the count of triggers pertaining to signals above
the threshold. We use purity here as it is the common language of
the field. However, we note that it is identical to the coverage
defined in the field of CP.
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commonly used in the context of a catalog of triggers
(see, e.g., Abbott et al. [5]). It formally amounts to the
posterior-estimated number of foreground events in the Farr
et al. [39] framework. Figure 17 shows varying behavior by
pipeline, with all pipelines underestimating the actual
purity by varying amounts. (We note that, due to the
presence of potential subthreshold real signals in the MDC
data, the “actual” estimate here is potentially biased;
however, given the expected purity of subthreshold candi-
dates in GWTC-3 [5], the level of bias is at most a few
percent.) By comparison, the advantage of CP is that α, the
allowed error rate of the algorithm, maps directly onto the
actual purity of the resulting catalog.
To demonstrate CP in practice, for the set of candidates

from each pipeline, we evenly split the MDC data results
into a calibration and test set. We then apply MCP using the
FAR as the nonconformity score for signal and the inverse
False Alarm Rate (iFAR) as the nonconformity score for
noise. This way, we use the pipeline outputs directly
without adding additional information. We then apply
MCP to each trigger in the test dataset, using the calibration
data for producing a prediction set. Note that the computa-
tional effort required for this step is negligible (a few CPU
seconds on any modern computer).
In Fig. 18, we plot the label coverage for each pipeline,

demonstrating it satisfies Eq. (3), i.e., for all α, the fraction

of test triggers which contain a simulated signal has a
one-to-one correspondence with 1 − α. Moreover, we note
that all pipelines satisfy this: irrespective of their under-
lying performance, once calibrated by CP the coverage
guarantee is ensured. We now note that what is known in
the field of CP as coverage is equivalent to the catalog
purity. As such, Figs. 18 and 17 can be contrasted to show
how calibrating with CP regularizes the meaning of the
threshold between pipelines. The implication is that once
calibrated by CP, the catalog produced at a fixed α
threshold contains an a priori known contamination rate:
α. Therefore, downstream analysis can decide the contami-
nation rate they are willing to accept and then use that to set
the threshold for inclusion.

B. Understanding individual events: Confidence

In the last subsection, we saw how a catalog could be
created by applying MCP to calibrate the significance
estimates. Such an application guarantees the purity of the
resulting catalog. It is, therefore, directly applicable to the
case of population analyses, where one often needs to
control the purity over a set of triggers. However, this
leaves the question of assessing individual events and
deciding if they are astrophysical, which we now discuss.
In the traditional framework, candidate significance is

assessed by combining the FAR, pastro, their constituent
elements (e.g., the χ2 statistic), and a deep knowledge of the
performance of the pipeline. For example, the first direct
observation of gravitational waves from GW150914 [4]
reported a FAR of 1 event per 203,000 years (and gave an
equivalent >5σ estimate). However, once a source class is
established, pastro is generally the preferred mechanism to
identify new events (for example, independent reanalyses
use this criterion Venumadhav et al. [53]). However, for
newly detected source classes, because pastro requires an
astrophysical model of the rates, which is generally poorly
constrained, it is common to revert to a more detailed study
of the FAR (see, e.g., the discovery of the first neutron star
black hole mergers [54]).
In the CP framework, we can use the confidence to

assess candidate significance. As discussed in Sec. IV C,
one can compute either the standard definition of con-
fidence, Definition 1, or the conditional confidence,
Definition 2. We now consider how these definitions of
the confidence can be applied to CBC signals using the
MDC for illustration.
In the left-hand panel of Fig. 19, we plot the standard

confidence (Definition 1) for all triggers in the MDC
against their iFAR. We find a one-to-one mapping, which
is expected since we use the FAR as the nonconformity
score for the signal label. The standard confidence that the
data contain a signal can only be computed when the
single-label prediction is for a signal (see Sec. IV C).
Therefore, we find there is a minimum iFAR below which
the conditional confidence that the data contain a signal

FIG. 18. The marginal and conditional coverage for all MDC
results after applying MCP, demonstrating they satisfy the
validity guarantee. Recall that the marginal coverage is averaged
over all labels, while conditional coverage is as applied to a single
label at a time. A gray band marks the 95% binomial confidence
interval expected, given the size of the entire test data for each
pipeline. Note that for the conditional labels, the size of the
effective test dataset is smaller, and therefore, the anticipated
Poisson counting error can be larger, as is the case of the GstLAL
conditional noise label.
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cannot be computed. Instead, we can compute the con-
fidence that the data are noise (since, in this binary case,
that is now the single-label prediction). We illustrate this by
adding the noise confidence as a dashed line.
In the middle panel, we go on to show the mapping

between the conditional confidence in the signal label,
Definition 2, against the iFAR. Unlike the standard con-
fidence, the conditional confidence can be computed for all
values.
For both the standard and conditional confidence, we

note that they behave broadly as we expect: the confidence
increases monotonically with the iFAR. However, it is
notable that the mapping is at odds with the expectation of
seasoned analysts in this field: namely, we find that even
at a FAR of 1 per 1000 years, the confidence of some
pipelines is barely above 0.5. For comparison, in Fig. 3, at a
FAR of 1 per 1000 years, all pipelines report a pastro close
to unity.
Moreover, the confidence is pipeline dependent, with

substantial disagreements between pipelines. This occurs
due to our choice of nonconformity score: we use the FAR.
The nonconformity score ranks how signal-like the data are
compared to the most significant signal in the data: smaller
FARs are more signal-like. As a result, pipelines that have a
long tail in the iFAR for signals will consequently produce
less confidence at the same iFAR relative to pipelines with
shorter tails. (It should be remembered, however, at this
point that CP is distribution-free in the sense that the
distributions are never explicit but learned via the calibra-
tion dataset.) There is nothing inherently wrong here, but
we do concur that what is known as confidence in CP does

not reflect what a gravitational-wave analyst might under-
stand the term to mean.
If we would like the confidence to better reflect our

understanding, we can either look at the choice of
nonconformity score or the definition of the confidence.
An obvious alternative choice for the nonconformity score
is pastro: however, since this is closely related to the FAR
(cf. Fig. 3), we encounter similar issues. Meanwhile, it is
worthwhile reflecting on why the seasoned analysts’
intuition suggests that a signal with an iFAR of 1000 years
should confidently be called a signal. This is because, if the
pipeline is well calibrated (which we anticipate to be the
case most often), then the iFAR intrinsically suggests
the data are not consistent with the background. With this
in mind, we define another definition of confidence, the
“not-noise” confidence:
Definition 3. The not-noise confidence is the minimum

1 − α such that the noise label is not included in Γα.
Applying this definition in the right-hand panel of Fig. 19,

we recover a mapping much more in line with expectation:
we see a rapid increase in the not-noise confidence, and for
values above 1 yr, the confidence is close to unity. This
demonstrates the power ofCP: it should be remembered that
the underlying algorithm is distribution-free, it has learned
this intuitive threshold directly from the calibration data.
Moreover, if the underlying algorithm itself was not well
calibrated, the confidence still would be (this would manifest
as a significant departure from the four calibrated pipelines
in the right-hand panel of Fig. 19).
The three definitions of confidence presented in Fig. 19

all offer different ways to assess the confidence we may

FIG. 19. The relation between the iFAR and three definitions of confidence within theCP framework: the standard confidence given in
Definition 1 (left-hand panel), the conditional signal confidence given in Definition 2 (middle panel), and the not-noise confidence given
in Definition 3 (right-hand panel). For each definition, we plot the confidence against the iFAR for all triggers (separated by pipeline) in
the MDC. For the standard definition, Definition 1, the confidence that the data contain a signal can only be calculated when the single-
label prediction is for a signal (see Sec. IV C); we mark these points by a solid line in the left-hand panel. Meanwhile, for values of the
iFAR where the single-label prediction is for noise, we use a dashed line. We, therefore, see a turnover in the leftmost panel, a minimum
iFAR below which we cannot assign any confidence that the data contain a signal. We sort triggers by iFAR to produce a continuous line
showing the learned mapping. In all cases, we truncate the figure at an iFAR of 104 yr for visualization purposes: the mapping extends
up to the maximum iFAR in the dataset and monotonically approaches unity in that limit. In the right-hand panel, we add an inset
showing the behavior as each curve approaches unity.
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have in an individual event. However, we believe that
further work needs to be done to identify which of these
(or perhaps an alternative definition) is best suited to
providing a summary of the significance of an individual
event. Moreover, careful future study will need to be
made of how these interact with the choice of
nonconformity score. We also suggest that alternative
choices of nonconformity be explored to see if these can
better represent our understanding.
Finally, if the CP calibration has succeeded, we should

expect it to regularize pipeline behavior, i.e., we would
expect that the same event found by different pipelines
would have a similar confidence. We would not expect it to
give the same confidence to a given event since pipeline
performance differs. To investigate this, in Fig. 20, we plot
histograms of the normalized difference between the not-
noise confidence for all pairs of pipelines. We also show the
difference between pastro for the same pairs. Notably, while
the pastro difference has a bimodal structure, with frequent
cases in which the pipelines completely disagree about a
candidate, the confidence difference peaks at zero, dem-
onstrating a spread up to the extremes. This demonstrates
that the confidence measured by CP regularizes behavior
between pipelines by learning from the calibration dataset.

C. Conformal prediction as a generalization
of the traditional framework

To conclude our discussion, we finally discuss how the
CP and traditional FAR thresholds are related. In the
traditional framework, to determine if the data contain a

signal, we calculate the FAR [cf. Eq. (1)] and then apply a
threshold: FAR0. If the FAR is below the threshold, we
reject the null hypothesis and determine it is likely a signal.
We can, therefore, formulate this in the language of CP by
saying that the prediction set of the traditional framework is

fsignal∶FAR < FAR0g: ð10Þ

Formally, this is incorrect as it falls into the “inverse
fallacy” in that by rejecting the null hypothesis, we
assume the data contain a signal. However, in practice, it
is very often done. Meanwhile, in MCP, if the signal
nonconformity measure is given by the FAR while the
noise nonconformity by the iFAR, the prediction set is
given by

fsignal∶FAR < q̂sg ∪ fnoise∶iFAR < q̂ng; ð11Þ

where q̂s and q̂n are (effectively) the 1 − α quantile FAR
and iFAR of the calibration dataset (cf. Sec. III).
Comparing Eqs. (10) and (11), we now see the following

three connections between the two methods in the binary
classification case where the FAR (or equivalently the
p-value) is used as the nonconformity score. We use these
to explain the differences and advantages of CP.
First, in the traditional framework, the threshold for

determining if the data contain a signal is chosen by hand.
In contrast, in the CP framework, the threshold is auto-
matically decided by the algorithm and calibration dataset
(i.e., q̂ is determined by the user choice of α). Of course, if

FIG. 20. Histogram of the normalized difference (i.e., the difference divided by the sum) in the not-noise confidence and pastro for all
pairs of pipelines in the MDC. Note, we filter to only cases where both pipelines identify the signal (defined as finding a trigger within a
0.1 s window) and take the closest match in trigger time. We also filter cases where pastro is not predicted by one or both pipelines.
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the FAR is already well calibrated, the CP framework
offers no advantage in this respect. However, if that is not
the case, CP calibrates the pipeline automatically.
Second, CP extends the labeling: while in the traditional

framework, one either learns the data are a signal or not, for
CP, the prediction set can be used to assess significance.
That is, at a fixed choice of α, the set may contain both
signal and noise: this provides the user with a means to
understand the inherent uncertainty, and a choice of
definition can be applied to calculate a confidence in a
given label.
Finally, we see that in CP, one does not fall foul of the

inverse fallacy: the signal label arises naturally from the
definition of the nonconformity score without assuming it
is the negation of the noise label.
Taken together, we therefore argue that CP can be

viewed as an extension of the traditional statistical
framework.

VII. DISCUSSION AND APPLICATIONS OF
CONFORMAL PREDICTION

Conformal prediction offers a generalization of the
traditional framework for significance quantification in
gravitational-wave astronomy. In this work, we aim to
introduce and explore CP in the context of CBC searches:
we do not seek to demonstrate real application yet and
envision this for future work.
We now outline three ways where CP may enhance

existing efforts.
First, the conditional confidence can provide a calibrated

alternative to the pastro and FAR in assessing the signifi-
cance of single events. A motivating question we posed in
the Introduction is how to answer questions such as “do
these data contain an astrophysical signal?” The traditional
framework answers this by comparing the FAR to a
threshold or with the astrophysical probability pastro. In
contrast, CP offers the confidence: the key difference
between these concepts is that the confidence does not
rely on an explicit astrophysical model like the pastro and is
learned from the performance of the pipeline on calibration
data. As shown in Fig. 20, this moderates the differences
between pipelines, leading to a more stable estimate of the
significance.
Second, CP provides a means to the purity of a catalog.

With CP we can circumvent the problem of determining a
threshold on the significance by instead only requiring the
user to specify the error rate. Specifically, given the
appropriate tools, a user could set an error rate of 1%
and then take all events where the signal label is in the
prediction set and be assured by Eq. (3) that at least 99% of
the catalog are astrophysical signals (within the bounds of
the exchangeability assumption). As shown in Fig. 18, this
guarantees the user that the catalog contains a fixed
contamination fraction.

Finally, CP offers a framework to develop a postpro-
cessing search pipeline combining the outputs from multi-
ple search pipelines. Specifically, in future work, we will
develop a parametrized nonconformity score combining the
outputs from multiple pipelines into a single metapipeline.
This has the advantage that the between-pipeline behavior
can be regularized using the test and calibration data and
we can optimize the score leveraging parameter-space-
dependent pipeline performance.
For any of these applications to be successful, the critical

missing ingredient is a large-scale MDC, which accurately
captures the actual pipeline performance on realistic data.
The MDC used in this work used an unrealistically high
event rate and, therefore, is inappropriate for application to
astrophysical signals. Indeed, this underlines the primary
limiting factor of CP: the assumption of exchangeability
between the calibration and test data. Ensuring this in
practice will not be easy. Unlike many ML use cases, we
must simulate the calibration dataset for gravitational-wave
applications since we do not have a ready training dataset.
In the simulation, assumptions must be introduced, e.g.,
about the waveform models and the rate: assessing and
validating these will be critical. Moreover, using data from
past observing runs breaks exchangeability as the detector
sensitivity changes dramatically (Moreover, since it changes
during an observing run, this is also a concern). In conformal
prediction, such nonexchangeability cases are known as
“distribution drift” and can be accounted for by applying
weighted conformal procedures [45]. Nevertheless, we
expect this to be a challenge for any successful application.
We acknowledge that the direction of CP is in many

respects orthogonal to the overall direction of the field
where the pastro approach has become dominant. However,
we believe that in some cases, end users of the data
products do not sufficiently understand the assumptions
and caveats of the many pastro methodologies to interpret
them fully. While pastro offers a valuable and powerful
approach, CP offers an alternative in which the end user
can, given existing open access to the data and software,
calibrate the pipeline themselves, allowing CP to learn the
uncertainty inherent in the underlying method. Moreover,
we want to emphasize that, for either the pastro or FAR (or,
equivalently, p-value approach), if the underlying assump-
tions are met, CP cannot improve on them. That is, CP
does not offer a mechanism to improve the sensitivity of
well-calibrated searches. However, it does enable calibra-
tion without requiring an understanding of the internal
models or making asymptotic assumptions.
Finally, in this work, we have discussed the potential

application for CBC search. However, CP may also find
utility in other areas of the field, such as the low-latency
alert products attached to open public alerts, the search for
continuous gravitational waves from rapidly rotating neu-
tron stars, or the search for bursts of GWs from unknown
sources.
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The source program behind Sec. IV is openly available
from the Zenodo repository [47].
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