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The percent-level precision attained by modern cosmic ray (CR) observations motivates reaching
a comparable or better control of theoretical uncertainties. Here we focus on energy-loss processes
affecting low-energy CR protons (∼0.1–5 GeV), where the experimental errors are small and collisional
effects play a comparatively larger role with respect to collisionless transport ones. We study three
aspects of the problem: (i) We quantitatively assess the role of the nuclear elastic cross section, for the
first time, providing analytical formulas for the stopping power and inelasticity; (ii) We discuss the error
arising from treating both elastic and pion production inelastic interactions as continuous energy loss
processes, as opposed to catastrophic ones. The former is the approximation used in virtually all modern
numerical calculations; (iii) We consider subleading effects such as relativistic corrections, radiative and
medium processes in ionization energy losses. Our analysis reveals that neglecting (i) leads to errors
close to 1%, notably around and below 1 GeV, neglecting (ii) leads to errors reaching about 3% within
the considered energy range, (iii) contributes to a minor effect, gauged at the level of 0.1%.
Consequently, while (iii) can currently be neglected, (ii) warrants consideration, and we also recommend
incorporating (i) into computations. We conclude with some perspectives on further steps to be taken
towards a high-precision goal of theoretical CR predictions regarding the treatment of energy losses.
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I. INTRODUCTION

Over the past decade, a wealth of balloon-borne and
space-borne detectors has ushered the study of Galactic
cosmic rays (CR) into a precision era, stimulating numer-
ous new questions on the underlying physics (for reviews,
see e.g., [1–4]). This also allows one to tackle some
important applications in astroparticle physics with a
sharpened diagnostic tool: A notable example is provided
by the impact that a refined understanding and error budget
of antiproton CR [5–8] has on constraints on weakly
interacting dark matter particles [9–12].
In particular, we have recently witnessed both a remark-

able reduction of errors and an extension of the dynamical
range covered by the data. In these respects, AMS-021

measured proton fluxes have a statistical precision often

below the per mille level, and the overall systematic errors
are typically estimated at the 1% level [13]. Additionally,
the Voyager mission has provided a notable advance by
acquiring sub-GeV CR data beyond the heliosphere for the
first time, free of solar modulation effects [14]. To get the
most out of the newly acquired diagnostic power, this
reduction in the size of experimental errors must be
accompanied by a refinement in theoretical errors.
One important ingredient in that direction consists in

nuclear, hadronic and particle physics cross sections (for
the context of collisional vs collisionless effects shaping
the CR dynamics, see e.g., the lecture notes [15]). The
limitations of current libraries, ultimately due to scarce and
sparse data, are well-known, and extensively studied for
spallation cross sections [16–18]. This has stimulated
meetings between collider physicists, CR experimentalists,
and theorists to advance knowledge in this direction, such
as the Cross sections for Cosmic Rays series at
CERN.2 In this context, a more overlooked direction
consists in assessing how much of known physics is
actually included in current CR treatments. In the past
decade, some efforts have been made towards a better
modeling of yields of secondary particles in CR collisions,
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2The website of the latest in the series is at https://indico.cern
.ch/event/1377509/.
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see e.g., [19–21]. Here we tackle a somewhat complemen-
tary avenue towards this precision goal, focusing on the
description of energy losses, along three directions:

(i) We revisit the processes affecting protons in the low-
energy regime in particular below 5 GeV, which is
where losses are most relevant compared to diffusive
transport phenomena, and CR data have the best
precision. We provide for the first time a realistic
assessment of proton-proton (pp) nuclear elastic
energy losses, only qualitatively gauged as unim-
portant in the past (see e.g., the comments in [22] or
on the USINE propagation code webpage [23]). We
provide our results in rather compact analytical
formulas, which should be included in propaga-
tion-loss treatments aiming at reaching percent-level
predictions around 1 GeV;

(ii) Additionally, we notice that all current popular CR
codes (such as GALPROP,3 [24] DRAGON,4 USINE,5

[25], and PICARD
6 [26]) deal with pp inelastic cross

sections as a continuous energy loss channel, typ-
ically relying on the analytical formulation for the
stopping power reported in [27], exclusively or as an
alternative to a catastrophic energy loss, in this case
without assessing the relative difference of the two
approaches. We gauge the accuracy of this approxi-
mation, both for the inelastic and elastic channels,
and find it insufficient for current precision, leading
to ∼3% errors. An iterative scheme for more
correctly incorporating catastrophic losses is pre-
sented;

(iii) As an ancillary task, we also assess the level of error
committed when neglecting subleading effects in
ionization losses which, contrary to the above-
mentioned processes, are electromagnetic in nature.
These corrections to the leading effects (typically
included by relying on the formulas presented
in [28]) are often small, at the 0.1% level for protons,
and may still be neglected. We note, however, that
they are expected to be one order of magnitude
bigger for iron, and neglecting them becomes then
more questionable, especially for the precision
expected in future measurements.

The structure of the article is the following. In Sec. II we
describe the main analytical results of our article, pertaining
the treatment of elastic pp E-losses. In Sec. III we describe
the semianalytical model used to gauge the effects on the
CR energy fluxes, our approximations and iterative
schemes. Our main results are presented in Sec. IV, while
Sec. V reports our conclusions and perspectives for future
investigation. In the Appendix, we briefly introduce and

display the subleading effects in ionization energy-losses
for both protons and Fe nuclei.

II. PROTON-PROTON ELASTIC CROSS SECTION
AND COSMIC RAY ENERGY LOSSES

The essential ingredients required to leverage a two-body
scattering process, 1þ 2 → 3þ 4, within the transport
equation are the total and differential cross sections
associated with the process. In Sec. II A, we report the
expressions for such cross sections for the pp-elastic
process. In Sec. II B, based on these results, we derive
analytical relations for its mass stopping power and
inelasticity, crucial derived quantities to incorporate into
the transport equation, and compare the magnitude of the
stopping power for elastic process to the other processes
already accounted for. Unless stated otherwise, we use
natural units in our symbolic equations.

A. The differential elastic pp cross section

As a preliminary step, we introduce the expressions of
the Mandelstam variables, s, u, and t, in terms of the
incident particle’s momentum plab, the ith body kinetic
energy Ki and the transferred energy W ≡ E1 − E3 ¼
K1 − K3. In the lab frame, where the body 2 is at rest,
for the pþ p → pþ p reaction energy conservation
implies,

E1 þmp ¼ E3 þ E4; ð1Þ

and one has additionally

t ¼ ðp1 − p3Þ2 ¼ ðp2 − p4Þ2 ¼ 2m2
p − 2mpE4

¼ −2mpðE4 −mpÞ ¼ −2mpK4; ð2Þ

where Ei ¼ Ki þmp is the ith proton’s total energy. The
other variables of interest write W ¼ −t=2mp,

s¼2mp

�
mpþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

pþp2
lab

q �
¼2mpð2mpþKÞ, and u ¼

−2mpK3. Henceforth, we denote the kinetic energy of
the projectile in the lab frame simply as K.
The pp-elastic differential cross section can be para-

metrized in terms of the Mandelstam variables as [29]7

dσ
dt

¼ AðsÞ½eBppðsÞt þ eBppðsÞu�; ð3Þ

where we adopt the parametrization given in Eq. (8) of
Ref. [29], in units [ðGeV=cÞ−2],

3https://galprop.stanford.edu
4https://github.com/cosmicrays
5https://lpsc.in2p3.fr/usine
6https://astro-staff.uibk.ac.at/~kissmrbu/Picard.html

7Here we are taking into account the symmetrized form, which
is stated to be the correct one but not actually reported in [29].
Also, we are neglecting the Coulomb term, which is negligible for
measured CR energies ≳0.1 GeV.
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Bpp¼
8<
:

5.5p8
lab

7.7þp8
lab

ðplab<2GeV=c2Þ
5.334þ0.67ðplab−2Þ ðplab>2GeV=c2Þ

: ð4Þ

The normalization factor AðsÞ in Eq. (3) can be
determined by integrating the differential cross section
over t to match the total elastic cross section σel, in turn
parametrized in the following according to [29]

σel ¼

8>><
>>:

23.5þ 1000ðplab − 0.7Þ4 plab < 0.8
1250

plabþ50
− 4ðplab − 1.3Þ2 0.8 < plab < 2

77
plabþ1.5 plab > 2

: ð5Þ

From the relation t ¼ −2mpW, we can write

dσ
dW

¼ dσ
dt

dt
dW

¼ −2mp
dσ
dt

: ð6Þ

Note that the Eq. (3) exhibits symmetry under the exchange
of particles 3 ↔ 4. This symmetry is expected, reflecting
the indistinguishability of the final state protons. Thus, to
obtain the energy-loss rate and the average kinetic energy
fraction carried by the leading outgoing proton, we need to
restrict the transferred energy range to [0,K=2]. Hence,

σel ¼
Z

K=2

0

dW
dσ
dW

¼ −2mpA
Z

K=2

0

dW
�
e−2mpBppW þ e−2mpBppðK−WÞ�

¼ −
A
Bpp

ð1 − e−2mpBppKÞ; ð7Þ

so that

dσ
dW

¼ 2σelBppmp
e−2mpBppW þ e−2mpBppðK−WÞ

1 − e−2mpBppK
Θ
�
K
2
−W

�
:

ð8Þ

This cross section, whose trend is illustrated in Fig. 1, is
almost flat for nonrelativistic proton energies, while more
and more forward-peaked in the relativistic limit, without
however being accompanied by a significant growth of its
normalization; we expect thus that the most prominent
effect for energy losses is obtained at low energies, as we
confirm in the next section.

B. Stopping power and inelasticity

The primary input to assess the impact of any process
onto CR energy losses is the stopping power, which is
defined for the process i as

�
−
dE
dx

�
i
¼ n

Z
Kmax

0

dWW
dσi
dW

; ð9Þ

where n is the interstellar medium target density. Since
nuclear effects are beyond our interest here, in the follow-
ing a pure hydrogen composition is assumed.
Based on Eq. (8), we can compute,

�
−
dE
dx

�
el
¼ −2mpnA

Z
K=2

0

dW

×W
�
e−2mpBppW þ e−2mpBppðK−WÞ�

¼ −
nA

2B2
ppmp

e−2mpBppKðempBppK − 1Þ2; ð10Þ

and using Eq. (7), we obtain

�
−
dE
dx

�
el
¼ nσel

2Bppmp
tanh

�
BppmpK

2

�
; ð11Þ

as well as

ηel ≡ hWiel
K

¼
RK=2
0 dWW dσ

dW

K
RK=2
0 dW dσ

dW

¼
tanh

�
BppmpK

2

�
2BppmpK

; ð12Þ

where we introduced the inelasticity η, such that 1 − η is the
average fraction of initial kinetic energy retained by the
projectile after the collision. In Fig. 2(a), we show this
function vs K for the elastic channel, computed according
to Eq. (12); ηel is exceeding∼10% atK ≲ 1 GeV and is still
of a few percent up to ∼5 GeV. In the following, we will
focus on this energy range.
It is instructive to compare the above quantities with the

analogue ones for competing processes. At low energies,
the dominant CR proton loss channel is associated to
ionization (and, to a less extent, Coulomb losses).

FIG. 1. Differential energy-transfer cross section, Eq. (8), as a
function of W=K.
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For the ionization stopping power, ð−dE=dxÞion, we use
the results from the code Crange,8 associated to Ref. [30].
See Appendix for further details.
Above its kinematical threshold at K ≃ 290 MeV [15], a

key inelastic process affecting protons at low energies is
(mostly single) pion production; its main effect is to drain
on average κπ ≃ 17% of the impinging proton kinetic
energy into the produced pion, see Refs. [31,32], so that
the resulting downscattered nucleon retains a kinetic energy
fraction ηin ≡ 1 − κπ . The inelastic cross section is obtained
from Ref. [29], subtracting from the total cross section in
Eq. (1) the total elastic one in Eq. (5). Within this
approximation, one has

�
−
dE
dx

�
in
¼ nσinκπK: ð13Þ

In Fig. 2(b), we see that the elastic interaction channel
can exceed 20% of the total energy-loss term, hence it
makes sense to assess its impact on observable quantities.
However, loss processes are not the dominant transport

for protons, as noncollisional processes, notably diffusion,
prevail. To assess the importance of the elastic interactions
on the observable, i.e., the CR fluxes, we must introduce
the transport equation and elucidate our approach to its
solution. This is the goal of the following section.

III. ASSESSING THE RELATIVE EFFECT ON
COSMIC-RAY PROTON FLUXES

In a ‘modified weighted slab’ propagation model (see
e.g., [33], henceforth reported in the notation of [34]), the
proton flux at kinetic energy K, denoted by IðKÞ, can be
obtained by solving the transport equation,

IðKÞ
XðKÞ þ

d
dK

	
−
�
dE
dX

�
IðKÞ




¼ 2hd
Ap2q0ðpÞ

μv
−
σpIðKÞ
mp

þ
X
α0

Z
dKα0

Iα0 ðKα0 Þ
m

dσα0→pðKα0 ; KÞ
dKα0

; ð14Þ

where p is the momentum (pðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ 2Kmp

q
), σp is

the total proton cross section, dσα0→p=dKα0 is the differ-
ential cross section for a nucleus α0 of kinetic energy Kα0 to
yield a proton of kinetic energy K, q0ðpÞ is the rate of
injection per unit volume in the disc of the Galaxy, v
is the velocity of the nuclei type α (in units of c ¼ 1),
μ ¼ 2hdndm is the surface gas density in the disc with hd
being the half-thickness of the Galactic disc, nd is the gas
number density in the disc, and

XðKÞ ¼ μv
2vA

	
1 − exp

�
−
vA
D

H

�

ð15Þ

is the grammage experienced by protons. Here vA is
advection velocity (in units of c ¼ 1), expected to be of
the order of the Alfvén velocity, and D is the diffusion
coefficient for protons. For our illustrative purposes, we
adopt nd ¼ 1 cm−3 and μ ¼ 2.4 mg=cm2 [34]. The diffu-
sion coefficient D is a universal function (i.e., applies to all
CR species) if expressed in terms of the rigidity R, i.e.,
momentum over charge, simply reducing to momentum for
protons. In particular, we use the fits of the BIG and SLIM
models discussed in [35,36], with the parametrization

DðRÞ¼βηD0

�
1þ

�
R
Rl

�δl−δ
sl

�sl� R
1GV

�
δ
�
1þ

�
R
Rh

�δ−δh
sh

�−sh
:

ð16Þ

(a) (b)

FIG. 2. (a) The average energy fraction retained in the collision, 1 − ηel, from Eq. (12). (b) Relative weight of the elastic stopping
power with respect to the total stopping power.

8https://www.thedreamweaver.org/crange/index.html
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We address the reader to [36] for the meaning and values of
the parameters. Also, in this parametrization a halo size of
L ¼ 5 kpc is adopted.
The bracket in Eq. (14) contains all approximately

continuous energy-loss terms, expressed in terms of gram-
mage, dX ¼ ρdx, with ρ ¼ mpnd the ISM medium mass
density.
In the baseline model, we include�

dE
dX

�
¼

�
dE
dX

�
ad
þ
�
dE
dX

�
ion

≡ −SðKÞ; ð17Þ

for the advection and ionization loss terms, respectively.
The advection stopping power is given by�

dE
dX

�
ad
¼ −

2vA
3μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þmpc2Þ

q
: ð18Þ

To solve the propagation equation, we proceed as
follows. First, we ignore all but continuous energy losses,
which reduces the equation to

IðKÞ
XðKÞ þ

d
dK

	
−
�
dE
dX

�
IðKÞ



¼ 2hd

Ap2q0ðpÞ
μv

: ð19Þ

Equation (14) can be rewritten as

Λ1ðKÞI þ Λ2ðKÞ
dI
dK

¼ QðKÞ; ð20Þ

where we assume

QðKÞ ¼ κ

�
pðKÞ
mp

�
−γ
; ð21Þ

with γ ≃ 2.2–2.4, while the normalization factor κ holds no
significance for our purposes, as will be clear from the
subsequent discussions. The coefficients in the Eq. (20) can
be explicitly written as

Λ1 ¼
1

XðKÞ þ
dS
dK

ð22Þ

and

Λ2ðKÞ ¼ SðKÞ: ð23Þ

Hence, the solution to Eq. (21), vanishing at K → ∞,
writes

IðKÞ ¼
Z

∞

K
dK0 QðK0Þ

Λ2ðK0Þ exp
	
−
Z

K0

K
dK00 Λ1ðK00Þ

Λ2ðK00Þ


: ð24Þ

In practice, since the integrand in the exponential is rather
large, the following approximation is pretty accurate
(typically at 0.1% level or better):

IðKÞ≃
Z

∞

K
dK0 QðK0Þ

Λ2ðK0Þexp
	
−ðK0−KÞ Λ1ððKþK0Þ=2Þ

Λ2ððKþK0Þ=2ÞÞ


:

ð25Þ

For rough expectations, a more radical approximation valid
in the limit KΛ1 ≫ Λ2 is

IðKÞ ≃QðKÞ
Λ1

: ð26Þ

In Fig. 3, we illustrate the grammage of Eq. (15) as well
as the traditionally used proxies K=Si for the loss terms
entering the expression of Λ1. Based on the rough expect-
ation of Eq. (26), we anticipate that losses contribute only at
the Oð10%Þ level in shaping the spectrum. Hence, the
effects on the CR flux observable should be one order of
magnitude smaller than those gauged by merely comparing
energy losses.
Once the simplified solution of Eq. (25), henceforth

denoted with I0, has been obtained, an iterative approach is
adopted to account for catastrophic energy-loss terms,
neglected till now.
Within the approximation described in Sec. II B, the loss

and gain terms associated to inelastic, pion-production
channel can be described by changing the rhs of Eq. (20)
into

QiðKÞ ¼ QðKÞ −
	
σinðKÞ
mp

Ii−1ðKÞ −
σin

�
K
ηin

�
ηinmp

Ii−1

�
K
ηin

�

;

ð27Þ

at iteration stage i ¼ 1; 2; 3;… Usually three iterations are
sufficient to obtain convergence at the ∼0.1% level.
In order to account for the elastic cross section process,

we follow a similar approach, just now

FIG. 3. Stopping range scale (in terms of grammage) associated
to different energy loss channels, compared with the diffusive
transport grammage for the BIG model.
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QiðKÞ ¼ QðKÞ −
"
σinðKÞ
mp

Ii−1ðKÞ −
σin

�
K
ηin

�
ηinmp

Ii−1

�
K
ηin

�#

−

"
σelðKÞ
mp

Ii−1ðKÞ −
σel

�
K
ηel

�
ηelmp

Ii−1

�
K
ηel

�#
: ð28Þ

The rapid convergence of this method is illustrated in
Fig. 4, for the case γ ¼ 2.2 and the BIG model.
In this treatment, the main approximation consists in

neglecting secondary protons coming from spallations of
heavier CR nuclei, such as He, C, O,… Fe, allowing us to
reduce the problem to the integration of a single differential
equation, instead of a coupled system. Since we are only
interested in the relative effect of including the elastic
process, and both primaries and secondary protons undergo
losses, accounting for secondaries from nuclear spallations
is largely degenerate with the injection spectrum (or index)
effect, which we briefly discuss in the next section.

IV. RESULTS

In Fig. 5, we illustrate the relative effect of the inclusion of
the elastic loss process with respect to neglecting it, for two
propagation models and two injection spectra. The shape of
the curves is easy to explain; the process takes protons at
higher energies and reinjects them at lower ones, hence the
peak-dip structure. Its magnitude is of the order of 0.8%
slightly below or slightly above 1 GeV, and should therefore
be included whenever the ambition is stated to control the
theoretical error to below such a level. The effect is similar in
the two propagation models considered; a bit smaller in the
SLIM model because the relative weight of the diffusion
coefficient is more pronounced at low energies. Also note
that steeper power laws reduce the relative repopulation
effect and enhance the depletion one, as intuitively expected.
The effect of including secondary protons should be similar,
as discussed in the previous section.

In the limit where η → 0, we expect that the ‘cata-
strophic’ energy losses described via the brackets in
Eq. (28) admit a simpler description in terms of a
continuous energy loss mechanism. We can easily switch
to such a treatment for the elastic channel, for instance, by
setting the elastic channel bracket in Eq. (28) to zero while
modifying,

SðKÞ → SðKÞ ¼ −
�
dE
dX

�
ad
−
�
dE
dX

�
ion

−
�
dE
dX

�
el
: ð29Þ

This change applies to the functions Λ1 and Λ2, as a
consequence of the new function SðKÞ entering them. Of
course, we can apply a similar treatment to the inelastic
channel (together with or alternatively to the elastic one). In
fact, current studies via popular CR propagation codes do

FIG. 4. Illustration of the iterative solution using Eqs. (28) and
(25). A rapid convergence is manifest. See the text for the details.

FIG. 5. Relative effect of including vs neglecting the pp-elastic
process, for the BIG (blue) and SLIM (red) models, and for two
injection spectral indices, 2.2 (solid) and 2.4 (dashed).

FIG. 6. CR proton flux ratio between the solution obtained with
the continuous approximation for the elastic channel (blue, solid),
the inelastic channel (dashed, red) or both (dot-dashed) over the
solution obtained with the catastrophic treatment for both
channels.
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adopt this approximation for pion-production losses. In
Fig. 6 we see the effect of this continuous approximation.
We see that it is definitely inappropriate for current
accuracy goals, with errors reaching 3%. It is easy to
explain the different energy behavior for the elastic and
inelastic cases: For the elastic case, the biggest effect is
when the elastic process matters the most, basically, just
below 1 GeV, reflecting the drop of the inelasticity well-
above that value. For the pion production, the inelasticity is
constant (within our approximation); the impact is higher at
higher energies just because the pion-production process
becomes the dominant loss channel there (see Fig. 3).

V. DISCUSSION AND CONCLUSIONS

In the ongoing effort towards refining theoretical pre-
dictions for CR studies, we have focused in this article on
the energy-loss processes affecting protons, particularly
relevant at low energies. Our main driver has been to raise
awareness of the insufficient accuracy with which known
physics is currently treated. We have scrutinized the
currently used approximation in the field, notably the
Bethe limit of the ionization energy loss, the neglecting
of the elastic energy losses, and the continuous approxi-
mation to treat what are more exactly described as
catastrophic losses. While we confirm that, at least for
protons, the former is sufficient, the latter two effects (and
definitely the latter one, reaching 3%) should be accounted
for precision studies; note that these are all leading to
energy-dependent effects, not reducible to a normalization
uncertainty. We have also provided the reader with com-
pact analytical formulas for the quantities of interest for the
elastic collision process, and shown that an iterative
approach can successfully be used to tackle the last issue.
This is but a step in a more extended effort, of course. A

natural follow-up would be to incorporate these inputs in
existing codes, and performing data analyses with/without
the processes included to directly assess the systematics
on astrophysical parameters of interest. This would also
naturally account for secondary proton sources. Extending
the treatment of these collisional losses to nuclei is another
natural direction.
A further avenue consists in improving over existing

parametrizations and fits of cross section data, notably if
new laboratory data should be available, and assess the
errors affecting any parametrization used. As a preliminary
step, we have compared the cross section for the inelastic
channel used here to the FLUKA9-based cross section [37]
used e.g., in [19], reported in Fig. 7. The corresponding
effect on fluxes is displayed in Fig. 8. We see that, despite
the differences in fluxes being typically at around the 0.1%
level, differences up to 1% can arise just above the
threshold, and should be further examined. In particular,

a trade-off may be at play between fits applicable over wide
energy ranges and locally optimal fits. For instance, the
single-pion production and the assumption of a fixed
energy transfer κπ into the produced pion become inad-
equate at high energies. Additionally, since these processes
are stochastic, one may explore the role of fluctuations in
collision via a Monte Carlo study.
There are also other processes that we have not included.

In particular, we have neglected the spallations that protons
induce on interstellar medium nuclei. Accounting for these
would not change qualitatively the above approach nor
quantitatively the assessment for the effects we have
considered. Our expectations is that, despite the fact that
the cross sections for the process p-4He, say, reach
∼300 mb, only a very small fraction of the projectile

FIG. 7. Total (black) and pp-elastic (blue) cross section from
[29] and their difference, i.e., the pp-inelastic (red). Comparison
with the pp-inelastic from FLUKA as reported in [19] (green
dashed).

FIG. 8. Ratio of CR proton fluxes obtained by using the FLUKA
pp-inelastic cross section used in [19] to the one from [29] which
is used in this article, i.e., the green-dashed curve with respect to
the solid red curve in Fig. 7.

9http://www.fluka.org
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proton ends up in the scattered products, i.e., the inelasticity
is very small (see e.g., Figs. 4 and 6 in [19]). Yet, while
these processes are taken into account as secondary nuclei
sources, it is fair to say that neither the energy-loss effect on
the projectile nor the proton source from target spallation
are taken into account. These are all issues that we plan to
tackle in future works.
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APPENDIX: SUBLEADING EFFECTS IN THE
IONIZATION LOSSES

In each electromagnetic interaction with an electron of
the medium, a proton loses a tiny fraction of its energy,
hence a continuous energy-loss approximation is justified.
The stopping power for ionization for a CR nucleus of
charge Ze takes the well-known form,

�
−
dE
dx

�
ion

¼4πneZ2α2

meβ
2

L; L≃LBethe

	
ln

�
2meβ

2γ2

I

�
−β2



;

ðA1Þ

where the expression given for L corresponds to the result
obtained by Bethe (I being the effective ionization poten-
tial of the target). Although current treatments in CR
astrophysics limit themselves to this approximation, see
e.g., Appendix C.10.4 in [38], more refined calculations for
the dimensionless function L are available. Some of these
corrections are discussed in [28], but typically neglected
without quantitative assessment of their magnitude. Here,
we tackle this task, following the treatment given in [30],
associated to the code Crange

10 which we use for numerical
evaluation accounting for the following additional effects
(with two-letters code to label them in parentheses):

(i) Density effect (New Delta, ND);
(ii) Lindhard-Sørensen correction (LS);
(iii) Radiative correction (RA);
(iv) Finite nuclear size (NS);

(v) Barkas effect (BA);
(vi) Shell effect (SH);
(vii) Leung effect (LE);
(viii) Modern electron capture effect (EC);
(ix) Kinematic correction (KI);
(x) Pair production (PA);
(xi) Bremsstrahlung (BR).

We refrain here from a theoretical description of these
effects, which goes well-beyond the goals of our article. A
modern exposition can be found for instance in [39].
However, as a warning to the reader, we point out that,
while Crange does nominally include a density effect
correction for interstellar medium and galactic halo con-
ditions, its implementation is flawed and should not be
used.11 Following the results reported in Sec. 13.3 in

FIG. 9. Fractional corrections to the Bethe ionization stopping
power for CR protons. See text for the labels of the different
effects.

FIG. 10. Fractional corrections to the Bethe ionization stopping
power for CR Fe.

10https://www.thedreamweaver.org/crange/recalc.html

11We would like to thank Cypris Plantier for pointing out some
anomalous output associated to these choices that triggered our
investigation.
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Ref. [40], we checked that contrarily to what an uncritical
use of the code would indicate, this effect is completely
negligible for CR propagation conditions (i.e., in a very
rarefied medium) and can be safely neglected.
In Fig. 9 we show the relative correction to Eq. (A1) due

to different effects. The only one worth mentioning is the
Lindhard-Sørensen correction [41], since the radiative
correction dominating above 4 GeV (but still subpercent!)
intervenes at a point where ionization losses are already
subleading (see Fig. 3). The LS-correction accounts for the
solution of the relativistic Dirac-Coulomb equation, as
opposed to the nonrelativistic quantum mechanical treat-
ment of Bethe’s results. Anyway, since the corrections are
at the level of 0.1%, we conclude that they can be safely
ignored at the present accuracy goal.
Although in this article we have focused on CR protons,

the electromagnetic corrections dealt with in this appendix
are common to all nuclei, with a known parametric
dependence on the charge, mass, and size of the nucleus.
We have thus explored how the above conclusions are
altered in the case of Fe, which is the heaviest nucleus with
a sizable abundance among CRs. As far as energy losses are
concerned, we present our results in Fig. 10; we see that the
LS correction reaches about 2%.
To gauge the impact on fluxes, we also solve the

propagation equation for Fe. Technically, in this case we
do not adopt an iterative approach to solve the propagation
equation, since the catastrophic loss channel is dominated
by spallations onto the interstellar medium protons, but
these are not associated to a sizable injection term

counterpart, since iron is the heaviest nucleus with appre-
ciable CR flux. Hence, we simply integrate Eq. (25) taking

Λ1;Fe ¼
1

XFeðKÞ þ
dSFe

dK
þ σFein ðKÞ

mFe
; ðA2Þ

where Fe cross section with H target (σFein ) is taken from
Table II of [42]. The results are summarized in Fig. 11. We
see that the LS correction reaches 1.5% just below 1 GeV,
larger for instance than the statistical errors (albeit not
systematic ones) on Fe data taken by AMS-02 [43].
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