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Gravitational wave signals from core-collapse supernovae are one of the important observables for
extracting the information of dense matter. To extract the properties of protoneutron stars produced via
core-collapse supernovae by asteroseismology, we perform a linear perturbation analysis using data
obtained from two-dimensional numerical simulations. We employ 12 and 20 solar-mass progenitors and
compare two different treatments of gravity. One is a general relativistic one with a conformal flatness
condition and the other is an effective gravitational potential mimicking the Tolman-Oppenheimer-Volkoff
solution. We discuss how the frequencies of the protoneutron star oscillations corresponding to the
gravitational wave signals in the simulations depend on the protoneutron star properties. In our models, we
find that the gravitational wave frequencies of the protoneutron stars determined with the Cowling
approximation can be expressed to very good approximation as a function of the protoneutron star average
density almost independently of the progenitor mass, treatment of gravity in the simulations, and the
interpolations in the simulations. On the other hand, if one considers the gravitational wave frequencies as a
function of the surface gravity of protoneutron stars, such a relation appears sensitive to the treatment of
gravity and other numerical details in the simulations. Thus, the average density of protoneutron stars
seems more suitable for universally expressing the supernova gravitational wave frequencies, instead of the
surface gravity.

DOI: 10.1103/PhysRevD.109.123021

I. INTRODUCTION

Direct detection of gravitational waves from binary black
holes and neutron stars have opened the door to a new era
of observational astronomy. Gravitational waves have now
become one of the important observables to see (or hear)
from a compact object, complementing astronomical infor-
mation together with electromagnetic waves and neutrinos.
In the gravitational wave event due to a merger of the binary
neutron stars, GW170817 [1], the electromagnetic waves
have also been observed from the same object as counter-
parts [2]. The fourth observing (O4) run by the LIGO-
Virgo-KAGRA Collaboration has been operating since
May 2023 and promises to deliver a multitude of new
detections of merger events. Next to mergers of compact
binary systems, core-collapse supernovae are among the
most promising sources of gravitational waves. Since

supernovae are less aspherical than merging binary sys-
tems, the energy of gravitational waves from the super-
novae is weaker by comparison and limits the achievable
detection distance. Because of this greater difficulty in the
detection of supernova gravitational waves, we have to gear
up for such an interesting event with thoroughgoing
preparation to optimize detectability and the extraction
of physical information from a prospective signal.
Studies about supernova gravitational wave signals have

mainly been done via numerical simulations, e.g., [3–22].
These studies showed the existence of time-dependent
gravitational wave signals (ramp-up signals), whose
frequencies increase from a few hundred Hz up to the
kHz range within ∼1 second after core bounce. This signal
was originally considered to correspond to the Brunt-
Väisälä frequency [or the surface gravity (g-) mode] at
the protoneutron star surface [4,6]. More precise analysis
has identified the dominant frequency as that of funda-
mental (f-) mode oscillations (or g-mode sometimes*sotani@yukawa.kyoto-u.ac.jp
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although the mode classification may be different from the
standard one) of protoneutron stars [e.g., [23–33]]. In
addition to the ramp-up signal, depending on the EOS,
the excitation of gravitational waves, whose frequencies are
around 100 Hz, is also reported, which is considered as
a result of standing accretion-shock instability (SASI)
outside the protoneutron star [8,9,15,16,19,34–36].
Furthermore, there may be secondary signals, whose
frequencies are decreasing with time [21,23,34], from
the g1 oscillation mode of the protoneutron star, whose
time-dependent behavior is strongly associated with the
Brunt-Väisälä frequency below the protoneutron star con-
vection zone [21,25]. Linear analysis has proved extremely
important for identifying the origin of the gravitational
wave signals appearing in the numerical simulations.
The linear analysis of oscillations in compact objects has

been used for cold neutron stars since early times [37]. The
spectrum of oscillation modes encodes abundant informa-
tion about the neutron star structure and microphysics.
Thus, one can extract the corresponding physics as an
inverse problem, if one can identify the observed frequen-
cies with specific modes [38,39]. This technique is known
as neutron star asteroseismology, which is analogous to
the use of seismology on Earth and helioseismology on
the Sun to probe inside of these objects using the
oscillation patterns. Even for compact objects, this tech-
nique is powerful for extracting physical information. For
example, the neutron star properties are constrained by
identifying the quasiperiodic oscillations observed in the
magnetar giant flares with the crustal torsional oscillations,
e.g., [40–43]. Similarly, if one observes the gravitational
waves from compact objects, one may extract the infor-
mation of neutron star mass, radius, and equation of state
(EOS) for neutron star matter, e.g., [38,39,44–49].
In principle, the technique of asteroseismology can also

be adapted to protoneutron stars formed in core-collapse
supernovae. However, compared to the case of cold neutron
stars, the asteroseismology of protoneutron stars is more
complicated. Importantly, it is more difficult to obtain the
protoneutron background structure from which oscillation
modes can be computed by means of linear analysis. Cold
(zero temperature) neutron star models can be constructed
simply with the relation between the density and pressure,
i.e., the EOS with zero temperature, while one needs the
information of the radial profiles of the electron fraction
and entropy per baryon as well as the pressure and density
to construct the protoneutron star models. The requisite
radial profiles need to be obtained from dynamical core-
collapse supernova simulations. One can then determine
the specific oscillation modes of protoneutron stars using
the simulation data and linear perturbation theory. The
linear analysis can be done with any background models in
principle, but up to now, several groups have simply done
the asteroseismology on the spherically symmetric (1D)
protoneutron star models, obtained either as spherical

averages from multidimensional simulations or from 1D
simulations [e.g., [23–29,50–60]].
Since protoneutron stars are not surrounded by vacuum,

but by a dense accretion flow, the choice of boundary
conditions in the linear oscillation problem is nontrivial.
Broadly speaking, two different approaches have been
mainly adopted by different groups. The difference
between them concerns the domain where one performs
the linear analysis. The first approach follows the usual
practice in asteroseismology by considering the dense
(≳1011 g=cm3) hydrostatic central region as a protoneutron
star background model, and imposes the boundary con-
dition that the Lagrangian perturbation of pressure should
be zero at “the protoneutron star surface.” With this
approach, one can classify the resultant oscillation frequen-
cies into specific eigenmodes by definition because the
problem to solve is mathematically the same as in standard
asteroseismology, but one faces uncertainties about how to
define the position of the protoneutron star surface.
Nevertheless, the frequencies of at least the f- and g1-
modes, which we focus on in this study, seem to be almost
independent of the selection of the surface density [23,25].
In this study, we adopt this approach with the surface
density being 1011 g=cm3. The second approach considers
the whole region inside the shock radius. Because of the
presence of matter outside the protoneutron star, this
approach is plausible, but the boundary condition imposed
at the shock radius is that the radial displacement should be
zero [26–28], which is a completely different problem from
the usual asteroseismology. So, one has to newly develop
an appropriate classification of the resultant oscillation
modes. Furthermore, the background structure cannot be
treated as hydrostatic any longer if the postshock region is
included. Regardless of the technical approach, however,
the ramp-up signals appearing in the numerical simulations
can be confidently identified with the f-mode (or the 2g2-
mode in the classification with the second approach).
In the event of a gravitational wave observation from a

supernova, one does not know many of the relevant
physical parameters for constructing detailed supernova
models to match gravitational waveforms, such as the
progenitor mass and EOS for dense matter. Thus, realis-
tically, detailed simulations cannot scan the relevant high-
dimensional parameter space to provide enough template
waveforms for parameter inference. For this reason, iden-
tifying “universal” relations between the gravitational wave
frequencies and protoneutron star properties that are almost
independent of the supernova models is useful and critical
for extracting physical information from prospective gravi-
tational wave signals. Some universal relations have
already been proposed in the literature for expressing the
f-mode gravitational wave frequencies as a function of
protoneutron star average density, MPNS=R3

PNS, or surface
gravity, MPNS=R2

PNS, and hence ultimately as a function
protoneutron star mass MPNS and radius RPNS [28,29].
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4We note that universal relations for cold neutron stars have
also been discussed sometimes in the literature, e.g., [61–63].
Nevertheless, the proposed universal relations some-

times do not seem to capture numerical simulations well
[e.g., [32]]. This may be due to differences in the treatment
of gravity, or other details of the numerical schemes and
physical assumptions in different simulations. In this study,
we will therefore investigate which physical quantities can
be used to construct universal relations for supernova
gravitational wave frequencies by examining their depend-
ence on different treatments of gravity and numerical
methods.
This paper is organized as follows. In Sec. II, we describe

the supernova simulations and resultant protoneutron star
(PNS) models considered in this study. In Sec. III, we
calculate the eigenfrequencies of gravitational waves from
the PNS within the Cowling approximation, compare the
gravitational wave signals appearing in the numerical
simulations to frequencies of the protoneutron star oscil-
lations, and discuss the universal relations for the gravita-
tional wave frequencies. We present our conclusions in
Sec. IV. Unless otherwise stated, we adopt geometric units
in the following, c ¼ G ¼ 1, where c denotes the speed of
light, and the metric signature is ð−;þ;þ;þÞ.

II. BACKGROUND MODELS

To discuss the connection between the time-frequency
structure of gravitational wave signals, protoneutron star
oscillation modes, and protoneutron star properties, multi-
dimensional simulations of core-collapse supernovae are
required to provide input for linear mode analysis. In this
section, we describe the supernova simulations and the
resultant protoneutron star models considered in this study.

A. Supernova models

In this study, we perform two-dimensional (2D) simu-
lations with the 12M⊙ and 20M⊙ progenitor models from
Ref. [64]. Hereafter we refer to these two models as S12
and S20, respectively. The simulations are performed with
the SFHo EOS [65]. In order to investigate how the
gravitational wave spectrograms and the neutron star mode
frequencies depend on the treatment of gravity in the
simulations, we perform simulations with two different
treatments of gravity, i.e., with an effective relativistic
potential [effective general relativity (GR)] and GR gravity
in the conformally flat approximation.
The effective GR is done with the Newtonian hydro-

dynamic simulation, approximately taking into account the
general relativistic effect (especially with case A in [66]). In
this study, as in our previous studies [25,29] and the other
studies, e.g., [67–72], the numerical simulations have been
done with 3DnSNe code [67,73,74]. In particular, the simu-
lations in this study have been performed with fifth-order
interpolation [74] with Harten-Lax–van Leer discontinuities

(HLLD) [73,75], which is a different interpolation from that
adopted in our previous studies, e.g., [25,29]. We use
monopole approximation ignoring multipole expansion of
the gravitational potential [76]. The spatial range of the
computational domain is within r < 5; 000 km in radius,
covered by 512 nonuniform zones. The polar grid in the
spherical coordinate is in the range from 0 to π, covered by
128 zones.
Secondly, we conduct a general relativistic simulation

using the extended conformal flatness condition (xCFC) [77]
for the space-time metric. We use the CoCoNuT-FMT code,
which combines the xCFC approximation of the metric with
a finite-volume hydrodynamics solver using sixth-order
piecewise parabolic reconstruction [78] and the Harten-
Lax–van Leer contact (HLLC) Riemann solver [79], and
treats neutrino with the fast-multigroup transport (FMT)
method [80]. The CoCoNuT-FMT simulation uses spherical
polar coordinates with a nonequidistant radial grid of 550
zones extending from the origin to a radius of 1010 cm and
128 zones in latitude. CoCoNuT-FMT can compute the multi-
dimensional space-time metric using a multipole expansion
for solving the nonlinear Poisson equations in the elliptic
xCFC system, or apply the monopole approximation. For
comparison with the linear mode analysis in the Cowling
approximation (see also Sec. III), dynamical perturbations in
the quadrupole component of the metric functions should be
neglected in the simulations, i.e., the monopole approxima-
tion is appropriate.
Furthermore, the gravitational wave emission and mode

frequencies in the simulations may also depend on other
details of the numerical implementation, even if one adopts
the same progenitor model, EOS, and treatment of gravity.
In particular, numerical damping, which depends on the
reconstruction method and the Riemann solver, may
affect the oscillation modes in simulations. To see such
a dependence on the numerical scheme, we also consider
the results discussed in [29], which was obtained with
effective GR using the S20 progenitor model and the SFHo
EOS, i.e., with the same setup for the physics as the other
3DnSNe simulation in this study. Hereafter, the results shown
in [29] will be denoted as STT21. In contrast to our new
3DnSNe simulation, a different reconstruction scheme has
been adopted in STT21, i.e., second-order reconstruction
with van Leer limiter combined with the HLLC Riemann
solver.
By comparing simulations with effective GR and GR

in the xCFC approximation, different reconstruction
schemes, and different progenitor models, we are able to
investigate which form of mode relations is most suitable
and robust for capturing the mode frequencies in supernova
simulations.
It is useful to also compare the dynamical evolution

of the various supernova models to ascertain that the
simulations are similar enough, in general, to allow for a
meaningful comparison of the gravitational wave emission.
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Moreover, only a limited number of code comparisons have
been conducted so far for multidimensional supernova
simulations [81,82]. Besides our main purpose of studying
protoneutron star oscillation modes, our model set also
serves the sensitivity of supernova dynamics and proto-
neutron star structure to the numerics and physics assumed
in the models as a secondary purpose.
In Fig. 1, we show the time dependence of the shock

radius for the supernova models considered in this study.
First, one can observe that the behavior with effective GR
using the S20 model is very similar to that obtained in
STT21, i.e., the behavior of explosion may be less sensitive
to the reconstruction scheme in performing the simulations.
Moreover, one can observe that the S20 model explodes
more quickly than the S12 model, both for the simulations
with effective GR and the GR ones. The GR CoCoNuT-FMT

models are characterized by somewhat larger shock radii
than the 3DnSNe models prior to the explosion. However, the
explosion develops at a similar time for S20, and the shock
trajectories during the explosion phase are similar. For S12,
shock revival in the 3DnSNe model is delayed more visibly,
but the shock radius still crosses 400 km at a similar time
(within 50 km of each other).

B. Protoneutron star properties

For making a linear analysis, we have to prepare a
spherically symmetric background protoneutron star
model. So, using the simulation data shown above, the
properties such as pressure, density, sound velocity, and so
on, are averaged in the angular direction. Unlike a cold
neutron star, the surface of a protoneutron star is not a sharp
boundary, i.e., the matter exists even outside the proto-
neutron star. In this study, as usual, we set the protoneutron
star surface where the density becomes 1011 g=cm3.
In general, the protoneutron star mass increases with

time due to the mass accretion, while the radius decreases
due to the relativistic effect. In Fig. 2, we show the mass

and radius of the protoneutron stars considered in this study
as a function of the core bounce time, Tpb, where the open
and filled marks denote the results with effective GR and
GR, respectively. For reference, we also show the results
shown in STT21 with double circles.
We note that the GR models with CoCoNuT-FMT show

slightly lower protoneutron star masses, indicative of small
structural differences in the protoneutron star. Such small
differences can arise, e.g., because the dynamics of the
collapse phase is not perfectly identical, which is also
reflected in different bounce times. Furthermore, one can
see that the protoneutron star radius with GR shrinks faster
than that with effective GR. The radii are in close agree-
ment in the first 0.2 s after the bounce, but then start to
diverge more markedly. We also find that the protoneutron
star mass and radius slightly depend on the numerical
scheme by comparing the result with effective GR using the
S20 model to the result in STT21, even though the behavior
of shock radius is very similar to each other as shown in
Fig. 1. Second-order results in a slightly smaller final
protoneutron star mass in the STT21 simulation (with
second-order reconstruction) for model S20 compared to
the new model with fifth-order reconstruction.
In Fig. 3, we show the time evolution of the average

density (top panel), (Newtonian) surface gravity (middle
panel), and compactness (bottom panel) for the various
protoneutron star models, which are important properties
for discussing the universal relations for the characteristic

FIG. 1. Evolution of the shock radius for the supernova models
considered in this study. The dotted and solid lines denote the
results with effective GR and GR treatments, while the dashed
line denotes the results shown in STT21 with effective GR but a
different numerical scheme (see the text for details).

FIG. 2. The time evolution of the PNS mass (top) and radius
(bottom), Tpb denotes the core bounce time. The surface density
is chosen to be 1011 g=cm3. The open marks denote the results
with effective GR, while the filled marks denote those with GR.
For reference, the results with effective GR discussed in STT21
are also shown by double circles.
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gravitational wave frequencies. From this figure, one can
see a small deviation of the results in STT21 from those
calculated in this study with effective GR using the S20
model, i.e., the time evolution of MPNS=R3

PNS, MPSN=R2
PNS,

and MPNS=RPNS are slightly sensitive to the numerical
scheme in the simulation. The differences between GR and
effective GR are more pronounced, especially after 200 ms
postbounce. This is mainly due to the divergence of the
protoneutron star radii and is particularly noteworthy in the
average density (since the radius enters into this quantity as
the third power).
Furthermore, as pointed out in [29,59], we can confirm

that the surface gravity is tightly correlated with the average
protoneutron star density, almost independently of the
stellar progenitor model (and the numerical scheme used
in performing the simulations) as shown in Fig. 4. The
physical origin of this strong correlation yet has not been
explained so far, but we explain the likely reason below.
Since one can see the small, but systematic deviation in
the results with GR by carefully observing Fig. 4, the

correlation between the surface gravity and the average
density may be associated with the treatment of gravity.
The correlation between the average density and the

surface gravity can be explained by the protoneutron star
contraction law. During the few hundred milliseconds after
the bounce, the contraction of the gain radius rg approx-
imately follows the relation rg ∝ Ṁ1=3M−1 in terms of the
protoneutron star mass M and the accretion rate Ṁ [83].
The ratio between the neutron star radius RPNS and the gain
radius is fairly constant, and hence a similar relation holds
between RPNS andM. Therefore, the surface gravity and the
average density scale as

MPNS

R2
PNS

∝
M3

PNS

Ṁ2=3 ; ð1Þ

MPNS

R3
PNS

∝
M4

PNS

Ṁ
: ð2Þ

This leads to

MPNS

R2
PNS

∝
�
MPNS

R3
PNS

�
3=4

Ṁ1=12; ð3Þ

i.e., a power-law dependence between MPNS=R2
PNS,

MPNS=R3
PNS and the accretion rate Ṁ. As the dependence

on the accretion rate is weak (see Fig. 5), this effectively
amounts to a tight relation between surface gravity and
average density. The dependence on the accretion rate in
fact explains the slightly higher values of MPNS=R2

PNS for
the S20 simulations.

III. GRAVITATIONAL WAVE
ASTEROSEISMOLOGY

Using the protoneutron star models discussed in the
previous section as input, we perform a linear eigenmode
analysis. We adopt the relativistic Cowling approximation,
i.e., the metric perturbations are neglected when formulat-
ing the eigenvalue problem for the fluid oscillations.

FIG. 3. Same as in Fig. 2, but for the stellar average density (top
panel), the surface gravity (middle panel), and compactness
(bottom panel).

FIG. 4. Relation between the stellar average density and surface
gravity.
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The perturbation equations are derived from the linearized
energy-momentum conservation law. In formulating the
oscillation equations one has to impose boundary con-
ditions at the stellar center and surface. We impose the
regularity condition at the center and the condition that the
Lagrangian perturbation of pressure should be zero at
the protoneutron star surface. The concrete form of the
perturbation equations and boundary conditions are the
same as shown in [24]. Finally, adopting the normalized
condition somewhere inside the star, the problem to solve
becomes an eigenvalue problem with respect to the
eigenvalue, ω. The eigenfrequencies of the protoneutron
star at each time step are then given by f ¼ ω=ð2πÞ. We
note that the f-mode frequencies, which correspond to the
gravitational wave signal in the simulations, determined
with the full metric perturbations or even with parts of
metric perturbations become lower than those determined
with the Cowling approximation, if one adopts the same
background protoneutron star models [60]. Actually, the
g-mode (p-mode) frequencies with Cowling approximation
tend to be underestimated (overestimated), compared to the
same modes determined with full metric perturbations.
We first consider the results with effective GR. In Fig. 6

we compare the gravitational wave spectrograms from
the numerical simulations (background contour) and the

specific oscillation frequencies of the protoneutron star
(marks), where we plot the f-, gi-, and pi-modes for i ¼
1–5 with circles, squares, and diamonds, respectively,
where the spectrograms is obtained by short-time Fourier
transforms (see Ref. [25] for detail). The left and right
panels show the results for the S12 and S20 models. As
discussed in our previous studies, the gravitational wave
emission bands in the simulations seem to correspond to the
f-mode (g1-mode) oscillations of the protoneutron star in
the later (earlier) phase after (before) the avoided crossing
between the f- and g1-modes. However, as also mentioned
in STT21, the frequencies of protoneutron stars calculated
with the Cowling approximation are systematically lower
than the gravitational wave signals in the simulations done
with effective GR (see Fig. 9 in STT21). This feature is
consistent with the previous results, i.e., the presence of a
systematic deviation is not sensitive to the numerical
scheme. However, the deviation of f-mode frequencies
from the gravitational wave signals in the simulation with
the S20 model newly done in this study becomes signifi-
cantly larger than the other models with the S12 model and
the results in STT21. For example, the deviation at Tpb ¼
0.6 sec is ∼100 Hz for STT21 and S12 model, while it
becomes ∼200 Hz for S20 model.
Next, we investigate the match of different proposed

universal frequency relations from the literature to the
actual dominant gravitational wave frequency fGW. We
consider the dependence on the square root of the average
protoneutron star density proposed by STT21, adopting
five different supernova models obtained by 2D simulations
in effective GR,

fGW ∝
�
MPNS

R3
PNS

�
1=2

; ð4Þ

and the dependence on surface gravity proposed by [28],

fGW ∝
MPNS

R2
PNS

: ð5Þ

FIG. 5. Evolution of the value of ðM=R2Þ=ðM=R3Þ3=4 for
various protoneutron star models.

FIG. 6. Comparison of the gravitational wave signals obtained from the numerical simulations with effective GR (background
contour) with the specific protoneutron star oscillations (open marks), where the left and right panels correspond to the results with the
S12 and S20 models. The circles, squares, and diamonds denote the f-, gi-, and pi-mode frequencies for i ¼ 1–5.
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We note that the empirical relation with the average
protoneutron star density has been derived with the
eigenfrequencies determined with the Colwing approxima-
tion, while the relation with the surface gravity is with the
eigenfrequencies determined with GREAT [27], which
includes parts of the metric perturbations. In Fig. 7, the
frequencies of the f- and g1-mode oscillations are shown as
a function of the root square of the average density (left
panel) and the surface gravity of the protoneutron stars
(right panel). The solid lines denote the empirical relations
derived in STT21, while the dotted line denotes that derived
in [28]. From this figure, one can see that the actual
trajectory of the dominant frequency of the gravitational
wave signals from the branches of the g1- to f-modes is best
expressed with the empirical relation as a function of the
root square of the average density. Interestingly, the f-
mode frequency somewhat depends on the numerical
scheme before the avoided crossing, but not after the
crossing when fGW follows the f-mode. For the g1-mode
the opposite is true. Intriguingly, the reconstruction method

in the hydrodynamics solver seems to matter less when
either of the two modes is actually the dominant emitter of
gravitational waves.
By contrast, the frequencies of the g1- to f modes depend

noticeably on the numerical scheme if we plot them as a
function of surface gravity. In fact, in the right panel, one
can observe that the results obtained in this study signifi-
cantly deviate from our empirical relation as a function of
the surface gravity (solid line), but they are more or less
expressed with the empirical relation by [28] (dotted line).
However, the scatter around the proposed scaling with
surface gravity is clearly much bigger than for the density-
frequency relation. We thus conclude that the average
density is a more suitable property for universally express-
ing the sequence from the g1- to f-mode frequencies
instead of the surface gravity.
Next, we consider the effect of the treatment of gravity.

Similar to Fig. 6, in Fig. 8, we compare the specific
frequencies of protoneutron star oscillations (open marks)
with the gravitational wave spectrograms from the

FIG. 7. The f- and g1-mode frequencies on the evolving protoneutron stars with effective GR are shown as a function of the
normalized stellar average density (left panel) and surface gravity (right panel). The open squares and open diamonds correspond to the
results with the S12 and S20 models, while the double circles denote the results shown in STT21 with the S20 model. The thick solid
lines denote the empirical formulae derived in STT21, while the dotted line in the right panel is that derived in [28].

FIG. 8. Comparison of the gravitational wave signals obtained from the numerical simulations with GR (background contour) with the
specific protoneutron star oscillations (open marks), where the left and right panels correspond to the results with the S12 and S20
models. The circles, squares, and diamonds denote the f-, gi-, and pi-mode frequencies for i ¼ 1–5.
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numerical simulation with GR (background contour).
Again one can see a good agreement between the linear
mode analysis and the actual signals from the simulations,
but if this result is carefully compared to the results with
effective GR shown in Fig. 6, we find that the resultant
frequencies of protoneutron star oscillations slightly
become larger than the frequencies of the gravitational
wave signals in the simulations with GR, which is an
opposite feature in the results with effective GR.
It is interesting to consider to what extent the GR

treatment and other details of the numerical implementation
affect the trajectories of the mode frequencies. In Fig. 9, we
therefore compare the time evolution of the protoneutron
star oscillation frequencies obtained with the numerical
simulations with effective GR (solid lines) and with GR
(dotted lines), where the squares and diamonds denote the
results with the S12 and S20 models. For reference, the
results in STT21 are also shown as double-circles. From

this figure, one can observe that the GR treatment and other
details of the numerical implementation (such as the
reconstruction scheme and the different neutrino transport
in 3DnSNe and CoCoNuT) introduce significant deviations in
the evolution of the protoneutron star frequencies. These
variations tend to be larger than the progenitor dependence,
especially for the f- and g-modes.
However, these differences in the frequency trajectories

are largely a result of different protoneutron star structures
in the simulations. The uncertainties related to the numeri-
cal implementation prove much less significant when one
tries to directly relate mode frequencies to protoneutron star
parameters.
To illustrate this, we show the g1- and f-mode frequen-

cies of the protoneutron stars depend on the protoneutron
star properties both for the GR simulations and the effective
GR simulations in Fig. 10. Again we plot the mode
frequencies both as a function of the square root of the
normalized average density (left panel) and surface gravity
(right panel). We observe that the sequence from the g1- to
f-mode frequencies corresponding to the gravitational
wave signals in the simulations are well-expressed with
the protoneutron star average density, even for the case with
GR simulations, with very little scatter between the GR and
the effective GR models. Again, the variations between the
simulations are much bigger where the g1- to f-mode
happen not to be the dominant emission mode. On the
trajectory of the dominant frequency, as a consequence, the
GR treatment affects the avoided crossing between the f
and g1-modes (which may be observable as an emission
gap in the spectrum [23]) with GR seems to occur with
more massive and dense protoneutron star models than that
with effective GR. We also find that the dependence of the
g1- and f-modes on the surface gravity with GR simulation
are more or less similar to those with effective GR
simulations newly done in this study.
We conclude that, independently of the treatment of

gravity in the simulations or other differences in the
numerical implementation, the average density always
appears a more suitable predictor for the f-mode frequen-
cies excited in protoneutron stars determined with the
Cowling approximation than the surface gravity. On the
other hand, how well the frequencies of protoneutron stars
match the gravitational wave signal in the numerical
calculations depends on the treatment of gravity in the
simulations, even though the dominant gravitational wave
signals in the simulations seem to be identified with the
f-mode (g1-mode) frequencies of the protoneutron stars in
the later (earlier) phase after the core bounce. Nevertheless,
this statement may still depend on the supernova models,
because we obtained the conclusion from a few models.
The comparison of the protoneutron star frequencies with
the fitting formula with the surface gravity is beginning to
be made, e.g., the top panel of Fig. 7 in [31]. Similar to our
discussion, some models deviate from the fitting formula

FIG. 9. Comparison of the time evolution of the protoneutron
star oscillation frequencies (the p1-, f-, g1-modes from top to
bottom panels), using the data of numerical simulations with
effective GR (solid lines) and with GR (dotted lines). The squares
and diamonds denote the results with the S12 and S20 models.
For reference, the results in STT21 are also shown with the
double circles.
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(see Fig. 8 in [32]). The scatter from the formula is
evaluated in Ref. [30]. On the other hand, the fitting
formula with the average density has not been extensively
compared to oscillation frequencies of protoneutron stars
obtained from other supernova models yet, except for
Ref. [31]. Although the horizontal axis of the bottom panel
of Fig. 7 in Ref. [31] seems to contain some error, their
protoneutron star frequencies deviate from our fitting
formula with the average density, where the simulation
has been done in GR1D using the progenitor model with
9.6M⊙ and zero-initial metallicity. This deviation may
come from the light progenitor mass, the simulation in
one dimension, and/or the long-simulation time, i.e.,
20 seconds postbounce. So, it may be important to verify
our conclusion in this study, using various models
[e.g., [20,22,30,32,84]]. In addition, we showed that the

universal relation discussed here is independent of the
EOSs at least for the EOSs we adopted here, i.e., DD2,
SFHo, Togashi, and LS220. But, to confirm the EOS
independence of our relation, one may additionally have
to check the protoneutron star models with other EOSs.
Finally, we have comments on the mode classification.

We simply identify the oscillation modes by counting the
nodal number of the eigenfunctions in this study, as in our
previous studies, e.g., Fig. 3 in Ref. [25], while one may
also identify the modes by checking the behavior of the
eigenfunctions in phase diagram [26,33]. That is, if one
plots the displacement in the radial direction,W, and in the
angular direction, V, as the radial coordinate, r, increases,
the trajectory rotates counterclockwise for a gravity wave
(or g-modelike oscillations) and clockwise for a sound
wave (or p-modelike oscillations). We note that, since the

FIG. 10. Same as Fig. 7, but we also add the results with GR. The filled squares and diamonds correspond to the results with the S12
and S20 models with GR.

FIG. 11. Phase diagram for the g1- and g2-modes in the top panels, while p1- and p2-modes in the bottom panels for the protoneutron
stars at Tpb ∼ 0.5 sec. The left and right panels correspond to the results with effective GR and GR, respectively.
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definition of our angular displacement is an opposite sign
(See Ref. [24]) compared to Refs. [26,33], the rotational
direction is also reversed. In practice, as shown in Fig. 11,
the g-modes (p-modes) rotate counterclockwise (clock-
wise) in the phase diagram, where the top (bottom) panels
correspond to the g-modes (p-modes), while the left (right)
panels correspond to the case with effective GR (GR) at
Tpb ∼ 0.5 sec. In Fig. 11, we also show the f-mode for
reference, and W ¼ 0 with the thin-dotted (vertical) line.
In addition to the standard mode classification, another

classification based on modal property can be considered.
Adopting this classification, it has been reported that the
avoided crossing appearing in the standard classification
disappears [26], and the universal relations of the gravita-
tional frequencies with protoneutron star properties, e.g.,
the stellar average density, seem to extremely become tight
[33]. In fact, the universal relations of the gravitational
wave frequencies with the classification based on the modal
property have been derived as a function of stellar average
density [33], even though the unit of the fitting coefficients
listed in Table 2 in Ref. [33] might be kHz instead of Hz. In
Fig. 12, we compare their universal relations to our results
obtained in this study. The reason why the universal
relation in [33] deviates from our results even though their
relation is also as a function of the stellar average density,
maybe the difference in how to construct the protoneutron
star models. That is, in Ref. [33] they reconstructed the
protoneutron star models by solving the Tolman-
Oppenheimer-Volkoff equations as Ref. [53], using the
three-dimensional simulation data, while our models are
prepared directly from the two-dimensional simulation data
by averaging in the angular direction. In addition to the
difference in the protoneutron star models, the metric
perturbation has been partially taken into account in
Ref. [33], while we simply calculate the frequencies with
the Cowling approximation. Anyway, it is important to
stress that our study shows, quite remarkably, that the same
universal relation in terms of average density holds in two
different codes independent of the treatment of gravity

(modified potential vs conformal flatness condition), which
is nontrivial.

IV. CONCLUSION

The supernova gravitational waves are one of the most
promising candidates next to the gravitational waves from
the compact binary mergers. To extract the physical proper-
ties using the observed gravitational wave signals, a kind
of supernova-model-independent universal relation(s)
between the signal and protoneutron star properties is quite
useful, if exists, because the spectrogram of gravitational
waves strongly depends on the supernova models. Up to
now, the universal relations expressing the g1- and
f-mode frequencies of the protoneutron stars, which cor-
respond to the gravitational wave signals in numerical
simulations, as a function of average density or surface
gravity of the protoneutron stars have mainly been dis-
cussed. In this study, to seewhich protoneutron star property
ismore suitable to universally express the gravitationalwave
signals, we examine the specific oscillation frequencies of
the protoneutron stars, using the numerical simulation with
effectively relativistic (effective GR) and GR treatment of
gravity. In addition to these examinations, to see the
dependence on the interpolations in the simulations, we
also compare the results with the previous results shown in
[29]. Then, we find that the f-mode frequencies of the
protoneutron stars determined with the Cowling approxi-
mation are estimated smaller (larger) than the gravitational
wave signals in numerical simulations with effective GR
treatment. Furthermore, we find that the sequence from the
g1- to f-mode frequencies is expressed as a function of the
average density almost independently of the progenitor
mass, the treatment of gravity, and the interpolations in
the simulations. On the other hand, the relation between the
frequencies of the corresponding sequence and surface
gravity depends on the treatment of gravity and especially
the interpolations in the simulations. Therefore, the average
density must be more suitable to universally express the
supernova gravitationalwaves rather than the surfacegravity
of the protoneutron stars, at least in our models for the with
∼1 s of the postbounce phase. In this study, we discuss the
universal relation for the frequencies of protoneutron star
oscillations determined with the Cowling approximation,
but one can expect that a similar universal relation may exist
even without the Cowling approximation. We will examine
such a possibility in the future.
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Obergaulinger, P. Cerdá-Durán, N. Christensen, J. A. Font,
and R. Meyer, Phys. Rev. D 103, 063006 (2021).

[31] M. Mori, Y. Suwa, and T. Takiwaki, Phys. Rev. D 107,
083015 (2023).

[32] N. E. Wolfe, C. Fröhlich, J. M. Miller, A. Torres-Forné, and
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