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We study the cooling of isolated neutron stars, employing different nuclear equations of state with or
without active direct Urca process, and investigate the interplay with the nuclear pairing gaps. We find that
a consistent description of all current cooling data requires fast direct Urca cooling and reasonable proton
1S0 gaps, but no neutron 3P2 pairing. We then deduce the neutron star mass distributions compatible with
the cooling analysis and compare with current theoretical models. Reduced 1S0 gaps and unimodal mass
distributions are preferred by the analysis. The importance of statistical and systematic errors is also
investigated.
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I. INTRODUCTION

The cooling properties of neutron stars (NSs), observa-
tionally accessible in terms of temperature (or luminosity) vs.
age relations, are an important tool to obtain a glimpse on the
internal structure and composition of NS matter [1–4]. This
information is complementary to global observables like
gravitationalmass, radius, and tidal deformability, accessible
by other observational methods.
Together, these combined data of a single NS ideally

would be able to constrain the relevant equation of state
(EOS) of NS matter. Currently, due to the scarcity of such
combined data, and also the ambiguities and uncertainties of
theoretical models for the EOS, this goal has not been
achieved. However, recently great progress has been made
regarding observational information, and cooling data are
now available for about 60 objects [5,6], while global
observables have been strongly constrained by gravita-
tional-wave observations in particular [4,7–9]. This has
allowed to further restrict the currently “valid” theoretical
EOSs [4,10].
This article is an attempt to update the cooling calcu-

lations to the new data available, both regarding cooling
curves and theoretical EOS, following our previous articles
on this topic [11–15]. In particular, (a) it has become
increasingly clear [4,5,16–18] that fast neutrino cooling
processes are required in order to explain cold and not too
old objects, while also sufficiently slow cooling must be
accommodated theoretically to cover old and warm objects;
(b) the permissible nuclear EOS is more constrained now in
terms of maximum mass, radius, and tidal deformability, so
that several EOSs used in the past for cooling calculations
are not suitable any more.
Another particular feature of our work is the fact that

now the number of available cooling data is becoming

sufficiently large to allow a combined analysis of cooling
properties and NS mass distributions, as initiated in
[13,14,16,17,19]. This permits in particular to draw con-
clusions regarding the superfluid properties of NS matter,
and is an important objective of the present article as well.
This paper is organized as follows. In Sec. II we give a

brief overview of the theoretical framework, regarding the
nuclear EOSs, the various cooling processes, and the
related nucleonic pairing gaps. Section III is devoted to
the presentation and discussion of the cooling diagrams and
their dependence on the various theoretical degrees of
freedom. The relation between cooling diagrams and NS
mass distributions is exploited in Sec. IV to obtain
information on the pairing gaps of the matter. In Sec. V
we investigate the effect of the important statistical and
systematic errors. Conclusions are drawn in Sec. VI.

II. FORMALISM

In this work we employ a purely nucleonic scenario,
where NS matter is composed of nucleons and leptons only.
Exotic components like hyperons or quark matter are not
considered [4]. Even in this case, the solution of the many-
body problem for nuclear matter is still a very challenging
theoretical task. The currently used many-body methods
include ab initio microscopic methods and phenomeno-
logical approaches. The former ones start from bare two-
and three-nucleon interactions able to reproduce nucleon
scattering data and properties of bound few-nucleon sys-
tems, whereas the latter ones use effective interactions with
a simple structure dependent on a limited number of
parameters, usually fitted to different properties of finite
nuclei and nuclear matter. The ab initio methods can be
employed only for the description of homogeneous matter
in the NS core, whereas the phenomenological approaches
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are well suited also for the clustered matter typical of the
NS crust. A very rich literature does exist on this topic, and
the interested reader is referred to the recent Ref. [4] for
details on the current state of the art.

A. Cooling processes

In the context of NS cooling the one key property of the
nuclear EOS is whether it allows fast direct Urca (DU)
cooling by a large enough proton fraction [1,2,4,20–23].
The DU process is the most efficient one among all possible
cooling reactions involving nucleons and neutrino emission
and depends on the NS EOS and composition. It involves a
pair of charged weak-current reactions,

n → pþ lþ ν̄l and pþ l → nþ νl; ð1Þ

being l ¼ e, μ a lepton and νl the corresponding neutrino.
Those reactions are allowed by energy and momentum

conservation [24] only if kðnÞF < kðpÞF þ kðlÞF , where kðiÞF is the
Fermi momentum of the species i. This implies that the
proton fraction should be larger than a threshold value
(about 13%) for the DU process to take place, and therefore
the NS central density should be larger than the corre-
sponding threshold density.
Thus different EOSs predict different DU threshold

densities. Microscopic EOSs tend to predict higher proton
fractions than phenomenological ones [4], therefore we
choose here a microscopic Brueckner-Hartree-Fock (BHF)
EOS and two phenomenological relativistic-mean-field
(RMF) models, with and without DU cooling, respectively.
We employ the latest version of a BHF EOS obtained

with the Argonne V18 NN potential and compatible
three-body forces [25–28], see [29,30] for a more detailed
account. This EOS is compatiblewith all current low-density
constraints [4,15,31] and in particular also with those
imposed on NS maximum mass Mmax > 2M⊙ [32–34],
radius R1.4 ≈ 11–13 km [9,35–37], and tidal deformability
Λ1.4 ≈ 70–580 [7,13,38,39]. For the no-DU EOSs we
adopt the density-dependent covariant density functionals
TW99 [40] and DD2 [41,42], also fulfilling most men-
tioned constraints. In Table I the main saturation properties
of the selected EOSs are reported, in comparison with
experimental/observational data.

For completeness, we remind the reader that both
BHF and RMF methods provide the EOS for homo-
geneous nuclear matter, and therefore an EOS for the
low-density inhomogeneous crustal part has to be added.
For that, we adopt the well-known Negele-Vautherin
EOS [49] for the inner crust in the medium-density regime
(0.001 fm−3 < ρ < ρt), and the ones by Baym-Pethick-
Sutherland [50] and Feynman-Metropolis-Teller [51] for
the outer crust (ρ < 0.001 fm−3). By imposing a smooth
transition of pressure and energy density between both
branches of the betastable EOS [52], one finds a transition
density at about ρt ≈ 0.08 fm−3. In any case the NS
maximum mass domain is not affected by the crustal
EOS, with a limited influence on the radius and related
deformability for NSs with canonical mass value [52–55].
We also remind that, besides the DU process, other

cooling reactions come into play and involve nucleon
collisions, the strongest one being the modified Urca
(MU) process,

nþN → pþN þ lþ ν̄l and pþN þ l → nþN þ νl;

ð2Þ

where N is a spectator nucleon that ensures momentum
conservation. The nucleon-nucleon bremsstrahlung (BS)
reactions,

N þ N → N þ N þ νþ ν̄; ð3Þ

with N a nucleon and ν, ν̄ an (anti)neutrino of any flavor,
are also abundant in NS cores, and their rate increases
with the baryon density, but they are orders of magnitude
less powerful than the DU one, thus producing a slow
cooling [1]. All those cooling mechanisms can be strongly
affected by the superfluid properties of the stellar matter,
i.e., critical temperatures and gaps in the different pairing
channels. We will turn to this theoretical issue in Sec. II C.

B. Equation of state

In order to illustrate the relevant properties of the chosen
EOSs, we show in Fig. 1 the DU onset condition (upper
panel) and the proton fraction (lower panel). One notes that
both RMF EOSs predict very similar proton fractions, not

TABLE I. Saturation properties of the selected EOSs, i.e., density ρ0, binding energy per nucleon E0, compressibility K0, symmetry
energy S0, and its derivative L. Also given are the DU onset proton fraction xDU and density ρDU. Structure properties of spherically-
symmetric NSs, i.e., maximum mass Mmax, tidal deformability Λ1.4, and radius R1.4 of a 1.4M⊙ NS are also listed.

EOS ρ0 (fm−3) −E0 (MeV) K0 (MeV) S0 (MeV) L (MeV) xDU ρDU (fm−3) Mmax (M⊙) Λ1.4 R1.4 (km)

V18 0.178 13.9 207 32.3 63 0.135 0.37 2.36 440 12.3
DD2 0.149 16.0 243 31.7 55 – – 2.42 680 13.2
TW99 0.153 16.2 240 32.8 55 – – 2.08 400 12.3
Exp. 0.14–0.17 14–16 200–260 28–35 30–90 >2.35� 0.17 70–580 11.8–13.1
Ref. [43] [43] [44,45] [46,47] [46,47] [48] [7] [7]
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allowing the DU process, at variance with the BHF V18
EOS, for which the proton fraction reaches the DU
threshold xDU ¼ 0.135 at a density ρDU ≈ 0.37 fm−3. The
associated NS mass is MDU ¼ 1.01M⊙, hence all NSs
described with the V18 EOS can potentially cool very fast.
This is extensively illustrated in the next section.
In Fig. 2 the final EOS is plotted, i.e., pressure vs. energy

density, after imposing beta-stability and charge neutrality
conditions, whereas in Fig. 3 we display the resulting NS
mass-radius and mass-central density relations, obtained by
solving the Tolman-Oppenheimer-Volkoff equations. We
stress that the value of the maximum mass for all the
selected EOSs is compatible with the current observational
lower limits [32,34,56,57]; the recent data M ¼ 2.35�
0.17M⊙ for PSR J0952-0607 [48] is very constraining, and
would actually exclude the TW99 EOS. We also mention
the combined estimates of the mass and radius of the isolated
pulsar PSR J0030þ 0451 observed recently by NICER,
M ¼ 1.44þ0.15

−0.14M⊙ and R ¼ 13.02þ1.24
−1.06 km [58,59], or

M ¼ 1.36þ0.15
−0.16M⊙ and R ¼ 12.71þ1.14

−1.19 km [35,36], and in
particular the result of the combined GW170817þ NICER
analysis [36],R2.08 ¼ 12.35� 0.75 km andR1.4 ¼ 12.45�
0.65 km, with which only the V18 EOSwould fully comply,
see Fig. 3 and Table I.

C. Pairing gaps

One of the most important nuclear physics input for the
NS cooling simulations are the superfluid properties of
stellar matter, basically the neutron and proton pairing gaps
in the different reaction channels [1,4,60]. Usually the most
important ones are the proton 1S0 (p1S0) and neutron 3PF2
(n3P2) pairing channels; the proton 3PF2 gap is often
neglected due to its uncertain properties at large densities,

FIG. 1. The threshold condition for the DU process (upper
panel) and the proton fraction (lower panel) vs. the nucleon
density for all chosen EOSs. Markers indicate the Mmax con-
figurations and the onset of DU cooling.

FIG. 2. EOSs used in this work. Markers indicate the Mmax
configurations.

FIG. 3. NS gravitational mass vs central baryon density (left)
and radius (right) for the different EOSs. Dots indicate the
configurations of Mmax, and stars those of vanishing p1S0
BCS gap in the NS center. Observational constraints on masses
[34,48] and from NICER [36] are included.
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while the neutron 1S0 gap in the crust is of little relevance
for the cooling.
These superfluids are created by the formation of pp and

nn Cooper pairs due to the attractive part of the NN
potential, and are characterized by a critical temperature
Tc ≈ 0.567Δ. The occurrence of pairing when T < Tc
leads on one hand to an exponential reduction of the
emissivity of the neutrino processes the paired component
is involved in, and on the other hand to the onset of the
“pair breaking and formation” (PBF) process with asso-
ciated neutrino-antineutrino pair emission. This process
starts when the temperature reaches Tc of a given type of
baryons, becomes maximally efficient when T ≈ 0.8Tc,
and then is exponentially suppressed for T ≪ Tc [1].
In the simplest BCS approximation, the relevant pairing

gaps are computed by solving the (angle-averaged) gap
equation [61–66] for the L ¼ 0 and the two-component
L ¼ 1, 3 gap functions,

Δ0ðkÞ ¼ −
1

π

Z
∞

0

dk0k02
1

Eðk0ÞV00ðk; k0ÞΔ0ðk0Þ; ð4Þ

�Δ1

Δ3

�
ðkÞ¼−

1

π

Z
∞

0

dk0k02
1

Eðk0Þ
�
V11 V13

V31 V33

�
ðk;k0Þ

�Δ1

Δ3

�
ðk0Þ

ð5Þ

with

EðkÞ2 ¼ ½eðkÞ − μ�2 þ ΔðkÞ2; ð6Þ

ΔðkÞ2 ¼ fΔ0ðkÞ2;Δ1ðkÞ2 þ Δ3ðkÞ2g; ð7Þ

while fixing the (neutron or proton) density,

ρ ¼ k3F
3π2

¼ 2
X
k

1

2

�
1 −

eðkÞ − μ

EðkÞ
�
: ð8Þ

Here eðkÞ ¼ k2=2m is the s.p. energy, μ ≈ eðkFÞ is the
chemical potential determined self-consistently from
Eqs. (4)–(8), and

VLL0 ðk; k0Þ ¼
Z

∞

0

dr r2jL0 ðk0rÞVTS
LL0 ðrÞjLðkrÞ ð9Þ

are the relevant potential matrix elements (T ¼ 1 and
S ¼ 1; L; L0 ¼ 1, 3 for the 3PF2 channel, S ¼ 0; L;L0 ¼
0 for the 1S0 channel) with the bare potential V. The
relation between (angle-averaged) pairing gap at zero
temperature Δ≡ ΔðkFÞ obtained in this way and the
critical temperature of superfluidity is then Tc ≈ 0.567Δ.
At this simplest level of approximation, the gap is a

universal function of the particle density, ΔBCSðρÞ, and
thus valid for any EOS, independent of the NN interaction
used, provided that the associated NN phase shifts are

reproduced [67,68]. However, in-medium effects might
strongly modify these BCS results, as both the s.p. energy
eðkÞ and the interaction kernel V itself might include
the effects of three-body forces and polarization correc-
tions. It turns out that in the p1S0 channel all these
corrections lead to a suppression of both magnitude and
density domain of the BCS gap, see, e.g., [69,70] in the
BHF context, or [4,60,67] for a collection of different
theoretical approaches.
The situation is much worse for the gap in the n3P2

channel, which already on the BCS level depends on theNN
potential [63,65,66,71–73], as at high density there is no
constraint by the NN phase shifts. Furthermore TBF act
generally attractive in this channel, but effective mass
and quasiparticle strength reduce the gap, and polarization
effects on V might be of both signs, in particular in asym-
metric beta-stable matter [69,73–81]. Note that most theo-
retical investigations so far consider only pure neutron
matter. Thus, due to the high-density nature of this pairing,
the various medium effects might be very strong and com-
peting, and there is still no reliable quantitative theoretical
prediction for this gap. Themost recent investigation [80,81]
points to a complete disappearance of the gap, but previous
works predict enhancement instead [69,73,74].
Further important ingredients in the cooling simulations

are the neutron and proton effective masses, which we
actually used in [11]. In the BHF approach, the effective
masses can be expressed self-consistently in terms of the
s.p. energy eðkÞ [82],

m�ðkÞ
m

¼ k
m

�
deðkÞ
dk

�
−1
: ð10Þ

We actually found [11,14] that their effect can be absorbed
into a rescaling of the 1S0 BCS pairing gap, which we
perform by introducing global scaling factors sy and sx on
both magnitude and extension of the gap, i.e.,

ΔðρÞ≡ syΔBCSðρ=sxÞ: ð11Þ

As in [14], also in this paper we employ the same
procedure, and sy, sx will be considered as free parameters
in the cooling calculations. Their optimal values will be
determined later in a combined analysis of cooling data and
deduced NS mass distributions.
To illustrate the important role played by the super-

fluidity gaps, we first evaluate over which range of baryon
density inside a NS they are effective. The starred markers
in Fig. 3 label the configurations M1S0, for which the BCS
p1S0 gap vanishes in the NS center, i.e., M < M1S0 stars
are superfluid throughout, whereas forM > M1S0 there is a
growing nonsuperfluid core region. We see an important
difference among the three EOS: whereas for the V18
M1S0 ¼ 1.92M⊙ and thus for heavier stars proton super-
fluidity is only partially present, in the RMF cases the
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proton gap is fully active in all configurations. Just as the
absence of DU cooling, also this feature is due the small
proton fractions of the RMF models, which causes rela-
tively small proton partial densities. Thus in this case NS
cooling proceeds through the MU and BS processes,
modulated by superfluidity.
However, the parameter sx changes the active range of

pairing, and this is illustrated in Fig. 4 for the chosen EOSs,
which shows the p1S0 gaps in NS matter for several

combinations of the scaling parameters ðsx; syÞ. In each
panel we indicate the central densities for several NS
masses (vertical lines) and the mass ranges (shaded regions,
only V18) in which DU cooling is suppressed by the p1S0
gap. Due to the smaller proton fractions, the gap extension
over the baryon density range is larger for both RMF
models than the V18, such that for sx ≥ 1 pairing is always
fully active in all stellar configurations. For the V18 on the
contrary, for any choice of sx, there are always heavy NSs

FIG. 4. The BCS p1S0 pairing gap in NS matter as a function of baryon density for the adopted EOSs, with different scale factors sx
(rows) and sy (line styles) applied, Eq. (11). The shaded areas (only V18) indicate the density range in which the DU process is blocked
by superfluidity. Vertical dotted lines indicate the central densities for different NS massesM=M⊙ ¼ 1.0; 1.1; 1.2;… up to the maximum
mass. The unscaled n3P2 BCS gap is also shown in the upper panels.
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in which the DU process is unblocked, causing very rapid
cooling. This is essential for the confrontation with cooling
data in the next section.
In Table II we summarize the values of the (central)

density at which the p1S0 gap disappears, ρ1S0, and the
corresponding NS mass M1S0, for several values of the
scaling factor sx. For completeness, we also display
the unscaled n3P2 BCS gap in the upper panels of
Fig. 4. It extends over the entire mass and density range,
and therefore would block all cooling processes for all NSs.
However, the competing n3P2 PBF process provides too
strong cooling for old objects, in disagreement with some
data, as found in [14,83] and confirmed in the following
section.

III. COOLING SIMULATIONS

For the NS cooling simulations we employ the widely
known one-dimensional code NSCool [84], based on
an implicit scheme developed in [85] for solving the
general-relativistic equations of energy balance and energy
transport,

1

4πr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Gm
r

r
e−2ϕ

∂

∂r
ðe2ϕLÞ ¼ −Qν −

Cv

eϕ
∂T
∂t

; ð12Þ

L
4πr2

¼ −κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2Gm
r

r
e−ϕ

∂

∂r
ðeϕTÞ: ð13Þ

Local luminosity L and temperature T depend on the radial
coordinate r and time t. The metric function is denoted by
ϕ, whereas Qν, Cv, and κ are the neutrino emissivity, the
specific heat capacity, and the thermal conductivity,
respectively.
The code solves the partial differential equations on a grid

of spherical shells. The simulation is performed by artifi-
cially dividing the star into two parts at an outer boundary
given by the radius rb and density ρb ¼ 1010 g=cm3. At
ρ < ρb, the so-called envelope [86] includes the mass and
composition change, for instance, due to the accretion, and is
solved separately in the code. Here, we use the envelope
model obtained in [87]. At ρ > ρb ðr < rbÞ, the matter is
strongly degenerate and thus the structure of the star is
supposed to be unchanged with time. As a result, we obtain
for aNSof givenmass and composition of the envelope, a set
of cooling curves showing the luminosity L as a function of
NS age t. Each simulation starts with a constant initial
temperature profile, T̃ ≡ Teϕ ¼ 1010 K, and ends when T̃
drops to 104 K. Regarding the most important ingredient—
neutrino emissivity, this code comprises all relevant cooling
reactions: nucleonic DU, MU, BS, and PBF, including
modifications due to p1S0 and n3P2 pairing. Updates
for the PBF rates [88] are included. Moreover, various
processes in the crust are included, such as the most
important electron-nucleus bremsstrahlung, plasmon decay,
electron-ion bremsstrahlung, etc.
In Fig. 5 we show the cooling diagrams obtained with the

different EOSs, employing a Fe atmosphere (solid curves)
or a light-elements atmosphere (dashed curves), in com-
parison with the currently known data points [5,6,16] (with
partially large (estimated) error bars), namely for weakly-
magnetized NSs (WM, green), ordinary pulsars (OP, blue),
high-magnetic-field-B pulsars (HB, pink), the magnificent
seven (MS, violet), small hot spots (HS, magenta), and
upper limits (UL, orange). There are altogether 57 data
points, but we do not use the 6 UL data for the following
analyses.
The upper row displays the results obtained without

superfluidity. One notes the strong effect of the DU process
in the V18 EOS characterized by a far too rapid cooling
for all NSs with M > MDU ¼ 1.01M⊙, which is clearly
unrealistic. On the contrary the DD2 and TW99 EOSs
without DU process produce too slow cooling for middle-
aged objects and too fast for old objects. Thus the
assumption of no superfluidity appears inconsistent with
both including or not the DU process, regardless of the
atmosphere model.
Accordingly in the middle row we include the p1S0 BCS

(sx ¼ sy ¼ 1) gap. The main effect is the quenching of the
DU process for the V18 EOS, such that stars in the overlap
zone 1.01M⊙ ¼ MDU < M < M1S0 ¼ 1.92M⊙ cool mod-
erately fast now, and only high-mass stars, M > 1.92M⊙,
cool very rapidly. Altogether a very satisfying coverage of
the data is achieved, also taking advantage of the two

TABLE II. NS matter baryon densities ρ1S0 for the vanishing of
the p1S0 gap and corresponding NS masses M1S0 with that
central density, as a function of the scale parameter sx.

EOS sx ρ1S0 ½fm−3� M1S0 [M⊙]

V18 0.2 0.300 0.70
0.4 0.388 1.11
0.6 0.467 1.46
0.8 0.536 1.73
1.0 0.599 1.92
1.2 0.657 2.06
1.4 0.711 2.16

DD2 0.2 0.307 1.07
0.4 0.495 2.06
0.6 0.678 2.38
0.8 0.861 2.44
1.0 1.044
1.2 1.227
1.4 1.412

TW99 0.2 0.315 0.75
0.4 0.521 1.54
0.6 0.710 1.91
0.8 0.892 2.05
1.0 1.073 2.09
1.2 1.254
1.4 1.436
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atmosphere models. In fact all data points can be covered
within their error bars. On the contrary, both no-DU models
can still not explain most data.
In the lower row we investigate the effect of the n3P2

BCS gap: This extends over the entire density range, and
therefore blocks DU processes for all NSs. On the other
hand the competing n3P2 PBF process provides a too
strong cooling for the old (≳106 yr) objects [15], with or
without DU process, as already found by other authors
[5,14,16,17,83,89,90]. As a side remark, also the proposed
explanation of the claimed fast cooling of the Cas A NS
by a suitably chosen n3P2 gap is problematic, see [18,91]
for reference and recent works, apart from the fact
that the claim itself is disputed as being due to detector
degradation [92].

In conclusion, an EOS featuring DU cooling for a wide
enough mass range of NSs together with (partial) quench-
ing by the p1S0 BCS gap seems to be required to reproduce
the cooling data. It seems difficult to accommodate finite
n3P2 pairing in this setup. We therefore continue the
analysis with the V18 EOS including p1S0 pairing but
without n3P2 pairing. We have not investigated if a fine-
tuned n3P2 gap can still be adopted within our scenario, but
it is not required for reproducing current data.

IV. GAPS AND MASS DISTRIBUTIONS

Currently no information on the actual masses of the
various cooling objects is available, hence a comparison
between theoretically predicted masses and the actual

FIG. 5. Cooling diagrams obtained with different EOSs (columns) without superfluidity gaps (upper row), with p1S0 gap (middle
row), and with p1S0þ n3P2 pairing gaps (lower row), for different NS masses M=M⊙ ¼ 1.0; 1.1;…;Mmax (decreasing curves). The
solid (dashed) curves are obtained with a Fe (light elements) atmosphere. The data points are from [5,6]. See text for details.
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masses of the cooling diagram is not possible. In this
situation we can derive a NS mass distribution that is
consistent with the outcome of a given cooling simulation
by simply counting the number of data points that fall into a
given interval between two adjacent fixed-M cooling
curves [13,14]. (Error bars are disregarded at this level

of investigation). The resulting histogram can be compared
with mass distributions of NSs obtained in different,
independent theoretical ways [93–99].
In doing so, we assume that the mass distribution of

isolated NSs in the cooling diagram is not different from the
mass distributions of NSs in binary systems [95–98,100] or

FIG. 6. Deduced NS mass distributions for scaling factors ðsx ¼ 0.6;…; 1.4Þ ⊗ ðsy ¼ 0.2;…; 1.0Þ and with Fe (solid red histograms)
or light-elements (dotted blue histograms) atmosphere.N is the number of data points lying in a given mass intervalΔM ¼ 0.1M⊙ in the
proper (sx, sy) cooling diagram. Several panels show the best-fit theoretical results [95–99] of Fig. 7 superimposed, using solid (dashed)
lines for the Fe (light-elements) results. The top-right numbers indicate the number of data points in the histograms.
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all NSs in the Universe, and that the detection of these
sources is independent of their brightness (Malmquist bias
[101]); both of these assumptions being highly unlikely to
be fulfilled, and we will estimate their importance later. A
further principal problem is the lack of information on the
atmosphere of the data objects, which requires further
theoretical assumptions in this analysis, the simplest one
being to use a fixed atmosphere model.
In attendance of future improvement of information on

the data sources, we proceed nevertheless with this way of
derivation of the mass distribution: The masses of the 51
cooling data points are assumed to be those predicted
theoretically by their position in the cooling diagrams
among the theoretical curves displayed in Fig. 5, and
Fig. 6 shows the resulting mass histograms for different
choices of the p1S0 pairing parameters (sx, sy), assuming
either a common Fe (solid histograms) or a light-elements
atmosphere (dotted histograms) for all data points. This is
clearly unrealistic, and in fact in the first case up to 42 and
in the second case only up to 33 of the 51 sources can be
fitted, while a fit of more data would require a suitable
choice of atmosphere for each object. In this case only 4
objects would remain out of this analysis for the best
parameter choices (but their errors bars still reach the
external theoretical curves): Calvera, J0806, J2143, J1154.
One observes that increasing sx or to a lesser degree sy

shifts the centroid of the derived mass distributions to
higher values, since the cooling curves move upward due
to the increased suppression of the DU process, as shown
in Fig. 4 of [14].
The different results in Fig. 6 can now be compared

with other theoretical studies of the NS mass distribution
[93,95–99], in particular unimodal or bimodal distributions,
whichwere derivedon thebasis of distinct evolutionary paths
and accretion episodes. In this paper we also include the
analysis [99] for double neutron stars (DNS) and slowpulsars
(SP). Fig. 7 contains a compilation of the theoretical mass
distributions that we use for comparison. We provide a
binning and normalization consistent with Fig. 6 in order to
confront directly with our results. For a quantitative com-
parison we simply compute the rms deviations between the
histograms fNdat

i g in Fig. 6 and fNtheo
i g in Fig. 7,

δN ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ndat

X
i

ðNdat
i − Ntheo

i Þ2
s

; ð14Þ

where i labels the mass bins and Ndat ¼ 51 is the total
number of data points excluding the UL markers.
The results are visualized in the heatmap shown in

Fig. 8(a) for the various combinations, where we also
indicate the optimal values sx, sy (those predicting the
smallest δN) for each theoretical mass distribution and
the two atmosphere models separately. Of course the use
of a unique atmosphere model for the whole dataset is

unrealistic, but currently impossible to overcome without
further constraints on the data. Nevertheless some quali-
tative conclusions can be drawn:
For a Fe atmosphere the best agreement with most

considered distributions seems to require values of
sx ≈ 0.8 and sy ≈ 0.6, which would also be consistent
with microscopic investigations of the 1S0 pairing gap,
as discussed before. The quality of agreement is worst
for the DNS Özel one. In Fig. 6 [panels (0.6, 0.2) and

FIG. 7. Theoretical NS mass distributions [95–99] (red curves)
binned in the same way as Fig. 6 (black histograms). The norma-
lization is to 51points.Vertical lines indicateM ¼ 1.0; 1.4; 2.0M⊙.
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(0.8, 0.2)] it can clearly be seen that the mass median
∼1M⊙ of this distribution is unrealistically low. The best
overall fit is provided by the Bimodal Rocha distribution
(median ∼1.4M⊙) and (0.8, 0.6). The corresponding panel
in Fig. 6 shows a decent agreement between solid histo-
gram and corresponding theoretical curves, confirming the
numerical analysis. Also Unimodal Rocha, Unimodal
Antoniadis, and Unimodal Zhang distributions provide fits
of similar quality. All these distributions have in common
that their main peak is located at about 1.4M⊙. The
existence of a minor second peak or in fact the extended
tail of the Bimodal Rocha distribution cannot be rejected
clearly by the current data.
It is remarkable that also for a light-elements atmos-

phere, the theoretical models Bimodal Rocha and
Unimodal Zhang and sx ¼ 0.8 and sy ¼ 0.4–0.6 are
singled out as preferred values, but the quality of the fits
is worse than for the Fe atmosphere, which is also due to
the fact that less data points are comprised in the analysis
(31–33) than for the Fe atmosphere (37–42).
The (sx, sy) configurations which fit best a given

theoretical model, have that theoretical curve superimposed

in Fig. 6, and five of the models single out (0.8, 0.6) as
‘best’ parameter set.
We conclude that in most cases the comparison between

cooling diagrams and population models indicates a reduc-
tionof thepairing range to sx ≈ 0.8 and also a reductionof the
magnitude sy ≈ 0.6, which is however less well determined
and more model dependent. This agrees qualitatively well
with theoretical estimates of the reduction of the BCS gap by
medium effects [4].While pronounced bimodal distributions
appear slightly disfavored, the current limitations of theo-
retical method and available data do not allow to clearly
identify a preferred theoretical population model, though. In
particular, we stress again a probable selection effect that
would make heavy and faint NSs unobservable and thus not
appear in the high-mass part of the histograms. This would
put a bias on a too low centroid of the derived mass
distributions and accordingly too strong suppression of the
p1S0 gap.We illustrate this problem in the next section, but it
is currently impossible to quantify this assertion, and our
analysis remains at an exploratory state.
We have also carried out an alternative comparison

of derived and theoretical mass distributions by a

FIG. 8. (a) Root-mean-square variance δN, Eq. (14), and (b) Kolmogorov-Smirnov p value between deduced NS mass distributions
and various theoretical distributions (shown in Fig. 7), obtained with different p1S0 gap scale factors sx, sy for a Fe or light-elements
atmosphere. Preferred values are indicated in squared boxes.
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Kolmogorov-Smirnov test [102]. This test is much more
selective, as demonstrated by the p values (consistency
probability) shown in Fig. 8(b). Interestingly, Unimodal
Zhang and Unimodal Antoniades are again the best-fit
distributions with the same preferred ðsx; syÞ values as for
the RMS test, while DNS Özel, SP Özel, and Bimodal
Antoniades can be discarded based on the KS test.
We conclude this section by showing in Fig. 9 the mass

assignment to the various data points for ðsx; syÞ ¼ ð1; 1Þ
and Fe atmosphere. It is obvious that due to the tight
spacing between some adjacent fixed-M cooling curves, the
error bars of the data become significant. Also this issue is
discussed in the following section in more detail.

V. ANALYSIS OF ERRORS

We investigate here briefly the main errors affecting
the current procedure, namely (a) the statistical errors
characterizing the current data, and (b) the systematic
selection effect favoring the detection and presence of
luminous sources in the data catalog.
Regarding (a), the fairly large error bars on both

luminosity and age of the various data sources in Fig. 5
imply that also the derived mass histograms in Fig. 6 should
have associated errors. We simulate them by a Monte-Carlo
procedure generating a large number of pseudodatasets by
assuming Gaussian variations of each data point according
to its associated error bars. For each pseudodataset a new
histogram is generated and those are accumulated and
averaged. A typical result it shown in Fig. 10(a) in the form
of a heat plot for the sx ¼ sy ¼ 1, Fe-atmosphere histo-
gram, in comparison with the original bare histogram
employing the original dataset, shown in the relevant panel
of Fig. 6.

One can see that the bare histogram lies still within the
error bars of the averaged result and the centroid is not
modified. We conclude that even taking account of the
substantial observational error bars, the deduced mass
histograms are still fairly well defined to perform the
comparison with theoretical mass distributions as carried
out in this work. However, we do not perform a complete
error analysis of this aspect, which seem futile facing the
other systematic uncertainties regarding data and theoreti-
cal mass distributions at the present stage, in particular the
following.
(b) the elimination of the bias on bright sources in a data

sample (Malmquist bias) is a very difficult problem [101]
that we do not attempt to solve here. We rather illustrate
the qualitative consequences of such a procedure in the
following. For that we apply a luminosity correction factor
∼L−γ to each data point when filling the mass histograms
(and renormalize to the original histogram at the end).
In the naive Newtonian case γ ¼ 3=2, which compen-
sates for the observationally available volume, but this is

FIG. 9. Mass assignment to the various data points for
ðsx; syÞ ¼ ð1; 1Þ and Fe atmosphere, using the same color as
the closest upper fixed-M cooling curve. Black data are not in the
mass histogram.

FIG. 10. (a) Mass-distribution histogram for sx ¼ sy ¼ 1 and a
Fe atmosphere, smoothed by inclusion of the data error bars in a
Monte-Carlo method, see text for details. The mean values and
variances for each mass bin are indicated by error bars. The solid
green histogram indicates the results disregarding data errors.
(b) The effect of a luminosity correction ∼L−γ on the mass
histogram.
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invalidated by general relativity on cosmological scales
[101] or due to nonuniform distribution of NSs in our galaxy
[103]. We therefore choose empirically γ ¼ 0; 1=2; 1; 3=2,
ranging from no correction (results used in this work) to the
exaggerated Newtonian correction. The results are shown in
Fig. 10(b), again for the sx ¼ sy ¼ 1, Fe-atmosphere case.
As expected, an increasing luminosity correction causes

a shift of the mass histogram to higher values, as now the
importance of massive (and therefore faint) stars is ampli-
fied in the sampling. However, the procedure cannot fill
bins with masses higher than those present in the original
sample, M < 1.9M⊙ in this case, and is thus of limited
use for too small samples: Already for γ ¼ 1=2 the peak of
the mass distribution is located at its upper border. Also, the
most realistic way to remove the luminosity bias is not
known, and would require a much more profound data
analysis than attempted in this work, apart from a better and
much larger dataset. We thus leave such attempt for the
future, when at least a bigger dataset will be available.

VI. CONCLUSIONS

We have presented a global combined analysis of NS
cooling and mass distributions, employing the most recent
set of cooling data. We confirm that those data demand a
fast cooling mechanism like the DU process (or alternative
scenarios [83,104–107] not considered in this work). This
imposes an important constraint on the proton fraction and
symmetry energy of a realistic nucleonic NS EOS, com-
plementary to those obtained from nuclear structure, global
NS observables, and recent gravitational wave observa-
tions. We employed here the V18 BHF EOS that fulfills
all these constraints and predicts DU cooling for even the
lightest NSs.

Cooling can then be modulated by the strength of the
p1S0 pairing gap, while the PBF process associated with
n3P2 pairing seems to provide too strong cooling for a
satisfactory description of the data. The best simultaneous
reproduction of various theoretical NS mass distributions
is possible with a p1S0 gap slightly reduced in magnitude
and density extension, in qualitative agreement with theo-
retical investigations of that gap, while the disappearance
of the n3P2 gap is also supported by recent theoretical
investigations.
Currently this method is mainly hampered by missing

information on masses and atmospheres of the cooling data,
which will constitute very effective constraints in the future.
Also both statistical and in particular the systematic error
associated withMalmquist luminosity bias of the sources are
too important to allow quantitative conclusions, so that our
method should be considered as a proof-of-concept that will
become quantitative when more abundant and precise data
become available in the future. This will also allow to pin
down the density range (onset density) of (blocked) DU
cooling in the EOS, which is another important degree of
freedom that was not studied in this work.
Our general framework was a purely nucleonic scenario,

and exotic types of matter like hyperons or quark matter
were not considered in this work. Those still present a
formidable challenge to cooling calculations due to their
largely unknown microphysics ingredients relevant for
cooling, like cooling rates, heat capacities, transport proper-
ties, and most of all superfluid properties.
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