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In this paper, we focus on the effect of mass-transfer between compact binaries like neutron star–neutron
star systems and neutron star–white dwarf systems on gravitational waves (GWs). We adopt the mass
quadrupole formula with 2.5 order post-Newtonian approximation to calculate the GW radiation and the
orbital evolution. After a reasonable discussion of astrophysical processes concerning our scenario, two
kinds of mass-transfer models are applied here. One is the mass overflow of the atmosphere, where the
companion star orbits into the primary’s Roche limit and its atmosphere overflows into the common
envelope. The other one is the tidal disruption of the core, which is viewed as incompressible fluid towards
the primary star, and in the near region branches into an accretion disk and direct accretion flow. Viewing
this envelope and as a background, the GW of its spin can be calculated as a rotating nonspherically
symmetric star. We eventually obtain the corrected gravitational waveform templates for different initial
states in the inspiral phase.
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I. INTRODUCTION

The galactic compact binaries are important sources of
celestial gravitational wave (GW) detection [1,2]. They are
within the sensitive frequency band (0.1 mHz–0.1 Hz) of
detectors and they are rich in number [3]. GW signals from
these sources contain a wealth of information about their
formation and evolution, mass transfer, and the equation of
state [4]. Establishing an accurate gravitational waveform
(GWF) template library for close compact binary stars
with Roche lobe overflow, material exchange, and other
influences can not only help to analyze waveforms but also
benefit data processing for numerous compact binaries.
Along with that, when searching for other outer galactic
objects we are interested in, noises from inner compact
binaries can be reduced [5–9].
The strain and frequency of GWs vary from different

compact gravitational wave sources, which commonly
include black hole–black hole (BH-BH), black

hole–neutron star (BH-NS), neutron star–neutron star
(NS-NS), neutron star–white dwarf (NS-WD), and white
dwarf–white dwarf (WD-WD) [10]. The GWs of extreme
mass-ratio inspirals (EMRI) and compact binary coales-
cence (CBC) are research hotspots of this field and have
been widely studied. The current terrestrial detectors like
LIGO and Virgo, along with celestial detectors like LISA,
TaiJi, TianQin, and DECIGO [11–13], have different
sensitivity in the strain and frequency domain. Thus,
corresponding GW templates are required as a priority
to determine the detection band. For NS-NS and NS-WD
binaries, the detection distance is at the order of 102 Mpc
[14,15], and we are expected to detect several or dozens of
NS-NS merger signals in the future [16].
The post-Newtonian (PN) approximation [17–21] is

widely used in the approximate solutions of the Einstein
field equation, expanding it to higher-order terms than
Newtonian to make the solution more precise. It plays a
significant role in the theoretical calculation of GWs from
slow-moving objects in weak fields, which are in most
cases in binary systems. The theoretical framework of the
post-Newtonian approximation approach to a binary
system consists of two parts; binary dynamics and GW
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emissions [22]. The post-Newtonian dynamical equations
of this two-body problem generally take two forms [23];
the Hamiltonian form and the Lagrangian form. In some
situations, the Lagrangian form may give chaotic orbits,
while the latter is always compatible with Keplerian-
type parametric solutions that we are used to. These are
also crucial parameters in calculating the GWF of binaries
inspiraling along post-Newtonian accurate eccentric
orbits [24]. So our procedure is to first solve the dynamics
equations, and then plug the orbit into the GW formula to
obtain the waveform.
GW signals generated by the inspiral and merger

of binary stars are the main targets of future celestial GW
detectors. And merger and ringdown phases of the BH-BH
binary are always calculated by the numerical relativity [25],
This paper aims to discuss the post-Newtonian evolution of
NS-NS and NS-WD binary systems and calculate their
GWFs using the approximation. Notice that the mass range
of NSs is generally between 1.35–2.1M⊙, and the radius is
between 1.4 × 10−5–3.3 × 10−5R⊙, while WDs are much
looser with amass range generally between 0.4–1.2M⊙, and
radius between 8 × 10−3–2 × 10−2R⊙, so more attention is
paid on the NS-WD binaries when we investigate the effect
of mass transfer [26–28].
As for the outcome of the NS-NS merger, it varies

depending on the angular momentum, mass ratio, equation
of state, and other conditions. Usually, the total mass of an
inner Milky Way NS-NS binary is within 2.5–2.88M⊙, and
the mass ratio is between 0.77 and 0.91. When the
total mass reaches 3.15–4.10M⊙, the binary may immedi-
ately collapse into a black hole with angular momentum
density a�BH ¼ J=M around 0.7–0.8 [29,30]. The
material of its accretion disk will eventually fall into the
black hole along with the GW radiation and angular
momentum loss in the ringdown phase. That is the situation
we take into consideration at the end of evolution,
whose GW can be calculated by black hole perturbation
theory.
The theoretical analysis and numerical computation in

this paper are arranged in the following sections. In
Sec. II, we briefly review the standard routine to simplify
the independent variables in Einstein field equation in the
transverse-traceless (TT) gauge where the final metric
perturbation hμν has only two independent variables hþðtÞ
and h×ðtÞ. In Sec. III, we give the evolution equation of
the binary system and use the 2.5 PN approximation of
Hamiltonian form to calculate the trajectory and radiation
power. In Sec. IV, we propose the tidal disruption model
[31–33], and mass overflow model [34,35], where the
GW of the mass background (common envelope and
accretion disk [36]) is treated as a rotating nonspherically
symmetric star [37,38]. Finally, waveforms concerning
different branch parameters and initial mass ratios are
discussed. All calculations are in natural units where
G ¼ c ¼ 1.

II. TWO POLARIZATION MODES

We begin with the Einstein field equation, where the
metric gμν is a symmetric (0, 2) tensor with generally
ten independent variables constrained by ten correlated
second-order nonlinear partial differential equations,

GμνðgμνÞ ¼
8πG
c4

Tμν: ð1Þ

Due to the conservation of energy-momentum tensor, four
constraints are eliminated by Bianchi identity,

∇μGμν ¼ ∇μTμν ¼ 0: ð2Þ

The independence of coordinates also looses four con-
straints, leaving only two constraints with actual physical
meaning. To obtain the specific metric with those two
variables, supplemental constraints are required along with
the Einstein field equation, which is the harmonic gauge
and TT gauge [39] as

hTTij ¼ hTTji ;
X
i

hTTii ¼ 0;
X
i

∇ihTTij ¼ 0: ð3Þ

Writing down the spacetime metric as gμν ¼ ημν þ hμν,
where ημν is the flat metric and hμν are small perturbations,
the former reduces Einstein field equation to

▫h̃μν ¼ −
16πG
c4

Tμν; h̃μν ¼ hμν −
h
2
ημν ð4Þ

Choosing the GW transverse to the z-axis, the latter gives,

hTTab ðt; zÞ ¼
�
Cþ C×

C× −Cþ

�
cos

�
ω

�
t −

z
c

��
; ð5Þ

where a, b ¼ 1, 2, z is the direction of propagation,
and C is the time-independent strain of GW. Set
hab ≡ Cab · cos½ωðt − z

cÞ�, then we can get the metric,

ds2 ¼ −c2dt2 þ dz2 þ ð1þ hþÞdx2
þ ð1 − hþÞdy2 þ 2h×dxdy: ð6Þ

Based on this metric, we can get the equation of hþðtÞ and
h×ðtÞ by calculating the perturbation of metric tensor.

III. BINARY EVOLUTION AND GWFS

A. 2.5 PN approximation

To calculate the trajectory and GWF in the near-merger
phase where the orbiting velocity is large, we need post-
Newtonian expansions for higher-order terms of velocity.
Ignoring the spin of stars, here we adopt expansions up to
2.5PN [40], the metric can be written as
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g00¼−1þ 2

c2
V−

2

c4
V2þ 8

c6

�
X̂þViViþ

V3

6

�
þO

�
1

c8

�
;

ð7Þ

g0i ¼ −
4

c3
Vi −

8

c5
R̂i þO

�
1

c7

�
; ð8Þ

gij ¼ δij

�
1þ 2

c2
V þ 2

c4
V2

�
þ 4

c4
Ŵij þO

�
1

c6

�
; ð9Þ

where V and Vi are the Newtonian potentials, X̂, R̂i, and
Ŵij are the 2 PN retarded potentials of gravity.
Usually, the pressure and temperature are negligible for

regular compact binaries in weak fields [17,41]. Here we
only consider the dynamic equations of compact binaries
due to mass distribution. Parameters are introduced as the
total mass of system M ¼ mp þmc and the lost mass

δmc ¼ mð0Þ
c −mc of mc, where mð0Þ

c is the initial mass of

companion star and mc is the final mass. μ ¼ mpmc=M,
ν ¼ mpmc=M2, q ¼ mc=mp and in this paper we have
q ≤ 1. Let x and v ¼ dx=dt be the relative coordinate
vector and velocity vector, defining the unit vector n ¼ x=r
where r is the distance between two stars, and ṙ≡ n · v.
These post-Newtonian dynamics equations for the two-

body problem can be written as the Hamiltonian form or the
Lagrangian form [23]. Here we use the Hamiltonian to
avoid chaotic results by the Lagrangian form in harmonic
gauge. Choosing the center of the primary star to be the
origin, the 2.5 PN equations of motion are obtained as [40]

dv
dt

¼ −
GM
r2

½ð1þAÞnþ Bv� þO
�
1

c6

�
; ð10Þ

where the coefficients of velocity direction A and radial
direction B are

A¼ 1

c2

�
−
3ṙ2ν
2

þv2þ3νv−
GM
r

ð4þ2νÞ
�
þ 1

c4

�
15ṙ4ν
8

−
45ṙ4ν
8

−
9ṙ2νv2

2
þ6ṙ2ν2v2þ3νv4−4ν2v4

þGM
r

�
−2ṙ2−25ṙ2ν−2ṙ2ν2−

13νv2

2
þ2ν2v2

�
þG2M2

r2

�
9þ87ν

4

��
þ 1

c5

�
−
GM
r

24ṙνv2

5
−
G2M2

r2
136ṙν
15

�
; ð11Þ

B ¼ 1

c2
f−4ṙþ 2ṙνg þ 1

c4

�
9ṙ3ν
2

þ 3ṙ3ν2 −
15ṙνv2

2
− 2ṙν2v2 þGM

r

�
2ṙþ 41ṙν

2
þ 4ṙν2

��

þ 1

c5

�
GM
r

8νv2

5
þG2M2

r2
24ν

5

�
; ð12Þ

where the terms of 1 PN and 2 PN will bring the precession
effect, and 2.5 PN will bring the dissipation effect of
gravitational radiation. Furthermore, by combining the
Kepler orbital perturbation with the post-Newton correc-
tion, the energy of the binary system can be obtained,

E ¼ −
μc2x
2

�
1þ

�
−
3

4
−

ν

12

�
x2 þ

�
−
27

8
þ 19ν

8
−
ν2

24

�
x3
�

þO
�
1

c8

�
; ð13Þ

and the evolution equation of orbit angular momentum is

J ¼ GμM

cx1=2

�
1þ

�
3

2
þ ν

6

�
xþ

�
27

8
−
19ν

8
þ ν2

24

�
x2
�

þO
�
1

c6

�
; ð14Þ

which can be calculated with frequency-related parameter
x as

x≡
�
GMΩ
c3

�
2=3

¼ O
�
1

c2

�
; ð15Þ

where Ω ¼ ω=2π is the angular frequency.
We can also use the definitions E≡mcv2=2 −GM=r

and J ≡ μωr2, where ω is the rotation velocity. The energy
and angular momentum calculated in this way will be
different from the results of the Kepler orbit due to the
presence of precession. For orbits with eccentricity, we
calculate the angular velocity ω ¼ v × n=r by the tangen-
tial velocity around the orbit. The instantaneous orbit
eccentricity is calculated by system energy and angular
momentum,

e ¼
�
1þ 2EJ2

G2m2
pmc

�
1=2

: ð16Þ

Through the above equations, the dynamic evolution
process of the binary star system and the corresponding
orbital parameters in the dissipative system with gravita-
tional radiation can be described.

GRAVITATIONAL WAVE FORMS OF GALACTIC COMPACT … PHYS. REV. D 109, 123013 (2024)

123013-3



B. GWs from inspiral to merger

Due to the change of mass distribution, the metric
perturbation hμν as a function of time on the flat space-
time background ημν. The two polarization GW can be
represented by the unit polarization vector P, Q, which is
orthogonal to the transverse direction N,

hþ ¼ 1

2
ðPiPj −QiQjÞHTT

ij ; ð17Þ

h× ¼ 1

2
ðPiQj þ PjQiÞHTT

ij ; ð18Þ

Based on that, we can get

hðþ;×Þ ¼
2Gμx
c2R

Xþ∞

p¼0

xp=2Hp=2ðþ;×Þðψ ; ci; si; ln xÞ; ð19Þ

which is the expression of the gravitational waves strain in
the spherical harmonic function Y22 mode, in terms of the
changing rate of the mass quadrupole moment and rotation
frequency. And R is the distance from the detector to the
source, which does not affect the shape of the gravitational
wave waveform and can be chosen at will. For example,
that for the GW150914 is R ¼ 1.768 × 1020 R⊙.
The gravitational wave phase ψ is expressed as

ψ ¼ ϕ −
2GMADMΩ

c3
ln

�
Ω
Ω0

�
; ð20Þ

MADM ¼ M

�
1 −

ν

2
γ þ ν

8
ð7 − νÞγ2 þO

�
1

c6

��
; ð21Þ

where γ is the post-Newtonian parameter,

γ ¼ x

�
1þ

�
1 −

ν

3

�
xþ

�
1 −

65ν

12

�
x2
�
: ð22Þ

Here MADM is the ADM mass of binary and it is very
important to include its relevant post-Newtonian contribu-
tions. Ω0 is the constant frequency that comes from the
integration constant, for instance, to be the entry frequency
of some detector. Define i as the observation angle, let
si ¼ sin i; ci ¼ cos i, and Δ ¼ ðmp −mcÞ=M for the plus
polarization we have [40]

H0 ¼ −ð1þ c2i Þ cos 2ψ −
1

96
s2i ð17þ c2i Þ; ð23Þ

H1=2 ¼ −siΔ
�
cos 2ψ

�
5

8
þ 1

8
c2i

�
− cos 3ψ

�
9

8
þ 9

8
c2i

��
;

ð24Þ

H1 ¼ cos 2ψ

�
19

6
þ 3

2
c2i −

1

3
c4i þ ν

�
−
19

6
þ 11

6
c2i þ c4i

��
− cos 4ψ

�
4

3
s2i ð1þ c2i Þð1 − 3νÞ

�
; ð25Þ

H3=2 ¼ siΔ cosψ

�
19

64
þ 5

16
c2i −

1

192
c4i þ ν

�
−
49

96
þ 1

8
c2i þ

1

96
c4i

��
þ cos 2ψf−2πð1þ c2i Þg

þ siΔ cos 3ψ

�
−
657

128
−
45

16
c2i þ

81

128
c4i þ ν

�
225

64
−
9

8
c2i −

81

64
c4i

��
þ siΔ cos 5ψ

�
625

384
s2i ð1þ c2i Þð1 − 2νÞ

�
; ð26Þ

H2 ¼ πsiΔ cosψ

�
−
5

8
−
1

8
c2i

�
þ cos 2ψ

�
11

60
þ 33

10
c2i þ

29

24
c4i −

1

24
c6i þ ν

�
353

36
− 3c2i −

251

72
c4i þ

5

24
c6i

�

þ ν2
�
−
49

12
þ 9

2
c2i −

7

24
c4i −

5

24
c6i

��
þ πsiΔ cos 3ψ

�
27

8
ð1þ c2i Þ

�

þ 2

15
s2i cos 4ψ

�
59þ 35c2i − 8c4i −

5

3
νð131þ 59c2i − 24c4i Þ þ 5ν2ð21 − 3c2i − 8c4i Þ

�

þ cos 6ψ

�
−
81

40
s4i ð1þ c2i Þð1 − 5νþ 5ν2Þ

�

þ siΔ sinψ

�
11

40
þ 5 ln 2

4
þ c2i

�
7

40
þ ln 2

4

��
þ siΔ sin 3ψ

��
−
189

40
þ 27

4
ln

�
3

2

��
ð1þ c2i Þ

�
; ð27Þ
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H5=2 ¼ siΔ cosψ

�
1771

5120
−
1667

5120
c2i þ

217

9216
c4i −

1

9216
c6i þ ν

�
681

256
þ 13

768
c2i −

35

768
c4i þ

1

2304
c6i

�

þ ν2
�
−
3451

9216
þ 673

3072
c2i −

5

9216
c4i −

1

3072
c6i

��
þ π cos 2ψ

�
19

3
þ 3c2i −

2

3
c4i þ ν

�
−
16

3
þ 14

3
c2i þ 2c4i

��

þ siΔ cos 3ψ

�
3537

1024
−
22977

5120
c2i −

15309

5120
c4i þ

729

5120
c6i þ ν

�
−
23829

1280
þ 5529

1280
c2i þ

7749

1280
c4i −

729

1280
c6i

�

þ ν2
�
29127

5120
−
27267

5120
c2i −

1647

5120
c4i þ

2187

5120
c6i

��
þ cos 4ψ

�
−
16π

3
ð1þ c2i Þs2i ð1 − 3νÞ

�

þ siΔ cos 5ψ

�
−
108125

9216
þ 40625

9216
c2i þ

83125

9216
c4i −

15625

9216
c6i þ ν

�
8125

256
−
40625

2304
c2i −

48125

2304
c4i þ

15625

2304
c6i

�

þ ν2
�
−
119375

9216
þ 40625

3072
c2i þ

44375

9216
c4i −

15625

3072
c6i

��

þ Δ cos 7ψ

�
117649

46080
s5i ð1þ c2i Þð1 − 4νþ 3ν2Þ

�
þ sin 2ψ

�
−
9

5
þ 14

5
c2i þ

7

5
c4i þ ν

�
32þ 56

5
c2i −

28

5
c4i

��

þ s2i ð1þ c2i Þ sin 4ψ
�
56

5
−
32 ln 2

3
þ ν

�
−
1193

30
þ 32 ln 2

��
: ð28Þ

C. GWs in ringdown phase

In order to obtain the complete GWF, we consider
binaries merge to form a black hole. The evolutionary
process of binaries can be cut into three phases inspiral-
merger-ringdown by jump functions,

h ¼ hIMΘðt0 − tÞ þ hRDΘðt − t0Þ; ð29Þ

where t0 is the time of merger, Θ is jump function of t.
if t0 − t > 0, Θðt0 − tÞ ¼ 1, for the else Θðt0 − tÞ ¼ 0.
The GW of ringdown hRD is calculated by black hole
perturbation theory. In late ringdown trailing phase, we
have [42–44]

hlm ¼ 2GMνx
Rc2

ffiffiffiffiffiffiffiffi
16π

5

r
Hlme−πωt=Q cosðωtÞ: ð30Þ

When it is far enough, the above equation can be approxi-
mated as

Q ¼ 2ð1 − a�Þ− 9
20 ¼ 2

�
1 −

cJ
GM2

�
− 9
20

; ð31Þ

a� ¼ cJ=GM2 ¼ J=M2; ð32Þ

a� is the spin rate of black hole [45]. The angular
momentum J ¼ ri · pi, where ri, pi is the winding
radii and momentum of binaries. The usual compact
binary systems in the Milky Way, like GS2000þ 25 and
LMC X-3 systems, the values of their dimensionless spin
parameters are both a� ¼ 0.03 [46].

H22 ¼ 1þ x

�
−
107

42
þ 55

42
ν

�
þ 2πx3=2

þ x2
�
−
2173

1512
−
1069

216
νþ 2047

1512
ν2
�

þ x5=2
�
−
107π

21
− 24iνþ 34π

21
ν

�
þO

�
1

c6

�
: ð33Þ

Since mass transfer mainly happens in inspiral and
merger, our discussion on the GWF and binary evolution
correction are focused on that period. To make the whole
process more complete, we extend our GWF to ringdown
phase hRD, which also varies as the mass-transfer correction
is applied to the common envelope evolution mode.

D. Binary system evolution equations

Based on the results above, we set the gravitational
potential E, GW frequency f, and rotation period T as
functions of time. Plugging into formulas we obtain the
average radiation power F̄ , then we get the average orbital
parameters inKeplerian orbitwithNewton approximation as

da
dt

¼ −
64

5

μM2

a3ð1 − e2Þ72
�
1þ 73

24
e2 þ 37

96
e4
�
; ð34Þ

de
dt

¼ −
304

15

eμM2

a4ð1 − e2Þ52
�
1þ 121

304
e2
�
; ð35Þ

dT
dt

¼ −
96

5

TμM2

a4ð1 − e2Þ72
�
1þ 73

24
e2 þ 37

96
e4
�
: ð36Þ
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These orbital parameters can help us to analyze the change of
the trajectory, but the final motion equation is still given by
the 2.5 PN correction. Here we set the initial values as

mp ¼ 2½M�; mc ¼ 1.4½M�;
r0 ¼ a0ð1þ eÞ ¼ 50½M�; RNS ¼ 7½M�;

e ¼ 0.25; 0.30; 0.35:

The fourth-order Rounge-Kutta method is used to solve
those 2.5 PN differential equations numerically. The GWFs
are shown as follows by plugging data into formulas. A
comparative figure of different initial eccentricities of
NS-NS binaries without mass-transfer is given in Fig. 1.
To better reflect the evolution of the binary motion

equation and the corresponding GWF at this initial dis-
tance, we will take e ¼ 0.3 as the initial eccentricity in the
subsequent calculation.

IV. MASS-TRANSFER CORRECTION

Due to the violent fraction and distortion during the
transfer, much heat may accumulate inside the accretion
disk, triggering a nuclear reaction and causing supernova-
like detonation [47]. However, the WD nuclear burst is not
inevitable. It requires some ignition conditions, such as
temperature, accretion rate, initial mass of WD, and so on.
When the heat dissipation is good [48,49], the mass of the
WD is close to the Chandrasekhar mass or reaches central
densities sufficiently high (ρ0 ≳ 109.7–1010 g=cm3), the
WD may continue to collapse due to accretion and self-
gravitation as “accretion-induced collapse”, and instead of
supernova burst [50].
In this paper we considered the case of stable mass

transfer, which restricts our discussion to the WDs whose

thermonuclear composition is not explosive, so all burning
processes are quiescent enough to be negligible by dynami-
cal means. Second, the state of the stars may alter in
inspiral, especially when their mass changes. That is to say,
their volume may take a spontaneous expansion or con-
traction, passing through some critical boundary like the
Roche lobe, resulting in discontinuous transfer. Again, this
intrinsic property is determined by stars’ nuclear structure,
and we restrict to sufficient stable ones that show no such a
behavior. Third, the nongravity couplings, such as the
magnet field of the NS and emitted light pressure, are
assumed to be ignorable, so the whole transfer is dominated
by gravity [51].

A. Mass-transfer models

We establish a model where there is a stable and
conservative mass-loss flow between two stars and propose
the following two models of mass-transfer: the mass
overflow model and the tidal disruption model. For a
typical star consisting of a highly dense core and a
wrapping atmosphere, the mass transferring process can
be summarized as Fig. 2 In real cases, like a WD,
the process may be far more complicated than driven only
by gravity as we considered here. The main material
components considered include compact binary stars, the

FIG. 2. At the top of this figure is the compact binaries in
inspiral, where the primary star mp is more compact than the
companion star mc. Below are two mass transfer models, the left
one is the case with tidal disruption branches into and direct
accretion flow, and the right one is the case of the common
envelope. When calculating GWFs, the common envelope is
regarded as an overall mass background.

FIG. 1. This figure shows the terminal GWFs of NS-NS
systems with different initial eccentricities, which shows the
negative correlation between the eccentricity and orbiting time.
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incompressible fluid for mass transfer, and the accre-
tion disk.
The transferring process is constrained by the conserva-

tion of energy and mass. Driven only by gravity, we obtain
the Euler equation of incompressible fluid,

∂ρ

∂t
þ∇ðρvÞ ¼ 0; ð37Þ

∂ðρvÞ
∂t

þ∇ · ðρv ⊗ vþ PIÞ ¼ −ρ∇ϕR; ð38Þ

∂ðρεÞ
∂t

þ∇½ðρεþ PÞv� ¼ 0. ð39Þ

where ε is the energy per unit volume, ϕR is the Roche
potential, v is the 3D velocity vector of the mass flow, ρ is
the density of the mass flow, P is the pressure of the mass
flow, I is the unit matrix. Along with the two constrained
equations, we can solve them to gain the mass-transfer
speed of the common envelope and accretion process. The
mass-transfer influence on the binary system mainly con-
tains the following sections.

B. Mass overflow of the atmosphere

In the case of the common envelope evolution, we need
to calculate the mass that flows from mc to mp, and that
becomes the mass background. Here we introduce two
parameters to describe the stability of the mass transfer in
NS-WD systems,

ζP ¼ ∂ ln rp=∂ ln Ṁ; ζL ¼ ∂ ln rL=∂ ln Ṁ; ð40Þ

which are associated with the adiabatic mass-radius rp and
the NS Roche lobe radius rL [52,53]. When ζP − ζL > 0
we think it is a stable mass-transfer process. Actually,
three effects are competing for the transferring switch.
Newtonian angular momentum stretches the separation
between the two stars as mass ratio q decreases while
the gravitational radiation is contradictory. Also, the Roche
lobe itself has to do with mass ratio, so this is just a
calculation-convenient condition.
As the binary radiates its angular momentum, the

exterior of the donor’s atmosphere may exceed the border
of the shrinking Roche lobe, causing an overflow of its
mass [54,55]. The total mass of the overflow can be
expressed by the majority amount passing through the
L1 Lagrangian times a coefficient Qρ,

Qρ ¼
2π

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðA − 1Þp c2T; cT ¼ kB

m̄g
T0: ð41Þ

Here cT is the isothermal sound speed at L1, m̄g is the mean
mass of a gas particle, T0 is its temperature and kB is the
Boltzmann constant. Parameter A is defined as

A ¼ 4þ 104=25

24=25þ q1=3 þ q−1=3
: ð42Þ

The overflow pervades filling binary Roche lobe and
eventually forms a common envelope becoming a homo-
geneous mass background,

ṁc1 ¼ −
2π

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðA − 1Þp c2Tv0ρ0; ð43Þ

where v0 is the stream speed passing through L1. The scale
of ṁc has to do with a specific case and in the following
calculation we choose c2Tv0 ¼ 1.28 × 10−14c3.

C. Tidal disruption of the core

As the orbit shrinks to a smaller size, the core experi-
encing growing tidal force starts to disintegrate. The debris
forms an interstellar stream flowing towards the primary
star. Before finally accreting on the primary star surface, the
interstellar flow needs to first lose its angular momentum in
the taken by friction. For a priorly steady disk, this process
can be equivalently viewed as some interstellar flow
branches into the while some remain direct accretion flow.
Considering a straight incompressible flow of mass loss

from mc star to mp star in the Roche limit of the more
massive star. This mainly describes cases where the
companion star is disrupted very apace or the equivalent
current where the mass loss dramatically collides with the
intermediate debris and shows as a macroscopic transport.
In order to represent the strength of the mass transfer,
we introduced the Euler equations for incompressible
fluids [56,57],

ṁc2 ¼
�
∂mc

∂vf

dvf
dt

�
f

þ
�
∂mc

∂r
dr
dt

þ ∂mc

∂ω

dω
dt

�
o

ð44Þ

ρ
∂v

∂t
þ ðρv ·∇vþ∇PÞ ¼ ρg; ð45Þ

where f part means the parameter of mass flow and o part
means the parameters of orbit, vf is the velocity of mass
flow, P is the pressure of the mass flow, which will be
calculated from the equation of state of the stars in the
following sections, and g ¼ −∇ϕR are the components of
gravitational acceleration of the tidal gravity on the surface
of the companion star,

g ¼
�

Gmp

ðr − RcÞ2
−
Gmc

R2
c

− ω2ðr − RcÞ − ̈r
�
n; ð46Þ

where Rc is the radius of companion star.

D. The accretion disk

In order to obtain the analytical mass transfer model, we
assume that there is a stable rotationally symmetric
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accretion disk around the NS [36,58]. Due to this rotational
symmetry in the x–y plane, it has no GW emission in the
perpendicular direction. Therefore, we only consider the
influence of the accretion disk (AD) on the angular
momentum. In our model, the AD compressed to the
x–y plane, the surface density and radial velocity can be
expressed as

ρdisc ¼ Aρα
−4=5ṁ7=10

d→pm
1=4
p R−3=4

AD f14=5; ð47Þ

vR ¼ Avα
4=5ṁ3=10

d→pm
−1=4
p R−1=4

AD f−14=5; ð48Þ

f ¼ ½1 − ðRNS=RADÞ1=2�1=4; ð49Þ

where ṁd→p is the mass change rate of neutron star caused
by AD, RAD is the radius of disk and Rp is the radius of the
primary star. All aspects of the viscosity mechanism have
been packed into the prescription parameter α≲ 1, and
some [59] indicates α ∼ 0.1 in ADs in cataclysmic
variables.
By means of unit conversion, we obtain the constant

coefficients in the above formulas are

Aρ ¼ 87.2645; Av ¼ 0.0016089:

We can obtain the total mass of the AD through the mass
transfer model, so the final variable ṁd→p in the stable
accretion disk can be obtained by normalization,

ṁd→p ¼
�

mADA−1
ρ α4=5R

dθ
R
m1=4

p R−3=4
AD f14=5dRAD

�10=7

: ð50Þ

The tangential velocity of the accretion disk is determined
by the stable circular orbit of the radius, which means
that vτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmp=RAD

p
.

Through the above equation, we obtain the density
distribution and radial velocity distribution of the accretion
disk as shown in Fig. 3.
Then the density of the accretion disk is integrated into

the whole space as

JAD ¼ α−4=5ṁ7=10
d→pm

1=4
p

Z
2π

0

dθ
Z

Ro

Ri

dRAD

×

�
AρR

1=4
AD

�
1 −

�
RNS

RAD

�
1=2

�
14=12 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmp=RAD

q �
;

ð51Þ
where Ro is the out radius of disk, Ri ¼ 6mp is the internal
innermost stable circular orbit (ISCO) radius. We know that
Rp ≪ RAD, therefore, we expand the equation at R ¼ 0,
and obtain the density integral result under the first-order
approximation as

JAD¼2πα−4=5ṁ7=10
d→pm

1=4
p

ffiffiffiffiffiffiffiffiffiffi
Gmp

p �
4

3
R3=4
AD −

14

5
R1=2
NS R

1=4
AD

�				
Ro

Ri

:

ð52Þ
Through the conservation of the total angular momentum of
the system, the angular momentum of the rotating orbit of
the binary star system JL can be obtained as

JL ≡ μωr2 ¼ J −
Z

JAD
mAD

ðṁAD − ˙md→pÞdt − JMT . ð53Þ

where JMT ¼ ṁp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmparh

p
is the loss of Angular momen-

tum caused by mass transfer [60]. Among them, J is the
orbital angular momentum without accretion disk correc-
tion, which is given by the 2.5 PN correction, including the
total angular momentum loss caused by gravitational
radiation. The mp term is the part of the accretion disk
angularmomentumconverted into the spin angularmomen-
tum of the NS. Thus, the modified differential equation of
tangential velocity (or angular velocity) can be obtained.
There will be dynamical friction [61,62] when the mc

star enters the common envelope that winds inside the
primary star Roche lobe. This friction will obstruct
the motion of mc star and cause kinetic energy loss,
making the binary merge more rapidly. In our case, the
frictional force is much weaker than the gravitational force
and is negligible in the calculation.

E. The analytical expression of mass transfer

Through the analysis of the above sections, we combine
mass overflow of the atmosphere with tidal disruption of the
core, andget the finalmass loss rate formula ofWD is defined
as ṁc ≡ ṁc1 þ ṁc2, and the specific analytical expression is

FIG. 3. The left figure shows the surface density of the, which
decays quickly as the radius gets larger. Thus, the margin
contribution is negligible, and we only plot 0.1 times the
maximum density; the right figure shows the radial drift velocity
indicating accretion, which also decays very quickly along the
radius. Since the rotation of the disk is assumed to be Keplerian,
the azimuthal velocity is trivial and not plotted.
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ṁc ¼ −
2π

ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðA − 1Þp c2Tv0ρ0 þ

∂mc1

∂r
ṙþ ∂mc1

∂ω
ω̇

þ ∂mc1

∂vf

�
g −

1

ρ
j∇Pj

�
: ð54Þ

Using tidal gravity as amass transfer function, we then obtain
the mass change in the system at any time interval

m0
p ¼ mp þ ðκṁc þ ṁd→pÞdt; ð55Þ

m0
c ¼ mc − ṁcdt; ð56Þ

where 0 ≤ κ ≤ 1 is the branch parameter [63],

κ≡ ∂ ln ṁc=∂ ln r ¼ jðδmp − δmd→pÞ=δmcj: ð57Þ

Hereδmc is themass loss of the companion star and δmp is the
primary star’s gained mass. It can also be written as

κðηw; γaÞ ¼
1

2
½1 − ηwγa þ ð−5γ2a þ 10ηwγ

2
a þ η2wγ

2
a

þ 6γaÞ1=2�=ð−γa þ 2ηwγa þ 1Þ; ð58Þ

where γa ¼ 5=3; 4=3 is an adiabatic coefficient, and ηw is the
winding efficiency parameter, which depends on factors such
as the mass ratio, Keplerian orbital velocity, and
the asymptotic wind velocity. For ηw ∼ 1 this is a factor of
ϑ < 1 times smaller than the local dynamical timescale,
where ϑ is a function of mass ratio q.
We know that for a ð1.4þ 0.1ÞM⊙ NS–WD system,

κ ≳ 0.5 of the WD mass loss can be captured by its
companion NS, while for ð1.4þ 1.25ÞM⊙ NS–WD sys-
tem, the branch parameter κ drops steeply to 5.4 × 10−4

[60]. The relation between κ and q can be written in a more
explicit form. Expanding ηw to the linear term of q, we can
switch the above function into κðq; γÞ. In the following
calculation, we set γ ¼ 5=3.
Then, getting the evolution of inspiral semi-major axis

and GW frequency with mass-transfer correction are [60]

da
dt

¼ −
64

5

G3

c5
μM2

a4
− 2C

ṁc

mc
a; ð59Þ

df
dt

¼ 96

5
π8=3

G5=3

c5
mpmc

M1=3 f11=3 þ 3C
ṁc

mc
f; ð60Þ

C ¼ 1 − κq −
3

2
ð1 − κÞ q

qþ 1
− κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞrh

p
: ð61Þ

where rh ¼ 0.0883 − 0.04858 logqþ 0.11489 log2 q−
0.020475 log3 q. After adding the mass-transfer correction,
we calculated the GWFs of the NS-NS systems and the NS-
WD systems.

V. NUMERICAL RESULTS

A. NS-NS systems

The NS-NS binary system is a typical compact binary
system. The masses of most NSs lie in 1.4–2.1M⊙ and their
densities are all close to each other. Therefore, the tidal
disruption can only happen when the relative distance is
very close. Here we calculate a case of extreme mass ratio.
The thermonuclear reaction, electromagnetic effect, and the
change of the equation of state of the NS are not
considered.
As shown in Fig. 4, the density of double neutron stars is

close, which caused the small Roche limit, the mass
transfer correction is very tiny to NS-NS systems in the
inspiral phase. In the merge and ringdown phases, numeri-
cal relativity and neutron star state equations are needed to
calculate, thus our main focus of this paper is on NS-WD
systems.

FIG. 4. The upper picture shows the mass transfer correction on
the terminal GWF of a ð2þ 1.4ÞM⊙ NS-NS system starting with
velocity v0 ¼ 0.237c perpendicular to separation r ¼ 50½M� and
eccentricity e ¼ 0.1. Owing to the compactness of NSs, the
difference is tiny and only visible on the tips near the merger;
the bottom-left figure is the corresponding orbit where we set the
primary star on the origin. The difference in orbital trajectory is
even smaller where the termination is zoomed in and plotted on
its right, which shows that mass transfer will lead to a smaller
orbital change rate in the later stage of the inspiral phase relative
to no mass transfer.
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B. NS-WD system

When the density of the WD is high enough and the
temperature is cool compared to the Fermi temperature of
electrons, the WD can simply be treated as a ball stably
balancedby thedegeneracypressure of ionized electrons [64].
In the nonrelativistic case, the equation of states is

P ¼ 1

5
ð3π2Þ2=3 ℏ

2

me

�
ρ

μemN

�
5=3

: ð62Þ

This is a polytrope model of γ ¼ 5=3 and n ¼ 3=2 andmN is
the static mass of free nucleon.We can further obtain the total
mass mWD,

mWD ¼ 1

2

�
3π

8

�
1=2

ð2.714Þ
�

ℏ3=2c3=2

m2
Nμ

2
eG3=2

��
ρð0Þ
ρc

�
1=2

; ð63Þ

where ρð0Þ is a constant, ρc ¼ 1.687 × 10−18½M�−2 is the
central density and μe is the mean molecular weight per
electron.
The density distribution of a WD has a sharp decay, the

inner of which can be approximated to a homogeneous
sphere core of ρc, and outside is its atmosphere.
Due to the sparseness of the atmosphere, its overflow

has a minimal contribution to the orbital quadruple
moment [65], and the PN method is still valid ignoring
its influence. Through the above mass relationship, the
expression of the radius RWD of the white dwarf can be
obtained from the Chandrasekhar limit,

RWD ≃ 6784

�
MWD

0.7M⊙

�
−1
3

�
1 −

�
MWD

MCH

�4
3

�1
2

�
μe
2

�
−5
3 ð64Þ

where MCH is the Chandrasekhar mass. When the WD
enters the primary Roche limit,

aRlof ¼ RWD
0.6q2=3 þ lnð1þ q1=3Þ

0.49q2=3
; ð65Þ

mass overflow will occur and become the common
envelope of system. We can get the density distribution
and pressure distribution of the white dwarf in the critical
state of disintegration [48,66],

P ¼ ρ0
2GmWD

5R0

�
R0

r
−
1

2

�
R0

r sin θ

�
2

−
1

2d0

�
; ð66Þ

ρ0¼ρmax

��
2H
R0

�
2d0
d0−1

�
R0

r2
−
1

2

R0

rsinθ
−

1

2d0

��
7=2

; ð67Þ

where R0 ¼ aRlof=ð1 − qÞ2 is the radius of the center
(density maximum) of the torus, H is the torus scale
height, d0 ¼ 1.2, 1.5, 3 is a distortion parameter which
measures the internal energy content of the torus, and ρmax
is the maximum density, in most cases we adopt ρmax ¼ 1.

The density and pressure expressions are converted to
the white dwarf centroid coordinate system, and we obtain

sin θ ¼ aRlof − rc sinðθc þ ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Rlof þ r2c − 2rcaRlof sinðθc þ ϕÞ

q ; ð68Þ

r ¼ 

r2c þ a2Rlof − 2rcaRlof sinðθc þ ϕÞ�1=2; ð69Þ

where rc is the distance to center-of-mass of WD, θc is the
angle between r and rc. So that, we can obtain the analytical
solution of the WD density index in the whole inspiral
process.

C. Mass transfer of quasicircular orbit

In reality, when the mass of the binary is relatively large,
the orbit is closer to circular of smaller eccentricity. In this
orbit, the binary system is more stable and the mass transfer
is weaker. In order to study the overall trend of mass
transfer over time, we discuss the mass transfer with initial
eccentricity e ¼ 0.01 in Fig. 5.
Since the quasicircular orbit rotates in the same period,

the distance r, velocity v, and other orbit parameters change
little, so the whole mass transfer rate function tends to be

FIG. 5. In this figure, the initial distance of the binary system is
the Roche limit of NS with e ¼ 0.01, q ¼ 1=4. Below is an image
of the eccentricity change, which is basically stable at the initial
stage of the inspiral phase, and then decreases rapidly and tends
to near zero.
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monotonous and smooth, which helps us to analyze the
overall mass-transfer process. In the whole process of mass
transfer, the mass transfer rate rises rapidly in the first short
period of time and then keeps rising gently for a long time
until the later stage of evolution.

For more general cases, there will be a lot of binary
systems with large eccentricity. Due to the rotation along
the elliptical orbit, the WD will orbit in and out of the NS’s
Roche limit in each cycle. At this time, the mass transfer
rate will be based on the overall trend of the original

FIG. 6. In comparison with no mass transfer correction, the binary rotation in late stage is largely hastened by mass transfer. In addition
to that, a small mass ratio shows a stronger frequency-promoting effect on the GW, as well as a stronger strain suppressing against the
chirp, where the strain of the q ¼ 1=4 one even decays at the terminal. Detailed records are listed in Table I.
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quasicircular orbit, and the details of the oscillation changes
in each period will be added. Therefore, in the following
text, we mainly discuss the binary star system with
eccentricity e ¼ 0.4.

D. Binary systems of different mass ratios

According to our theoretical analysis, the NS-WD
binary has more complicated mass transfer processes,
and in Fig. 6 we plot three hþ waveforms of different
mass ratios with initial eccentricity e ¼ 0.4 and distance

r0 ¼ ð1þ eÞ=ð1 − eÞaðiÞRlof. On this initial condition, the
calculation begins at the instance when the WD first time
enters the NS Roche limit. Depending on the evolution, the
final states can be divided into radius truncation and mass
truncation. In the former condition, two stars collide
when their distance is smaller than the sum of their radii,
and in the latter condition, the WD loses all mass in the
form of mass overflow during the rotation with no violent
collision.
It can be seen in Table I that the radius of the WD is

inversely proportional to the mass, and its density decreases
rapidly as the mass decreases. The mass transfer rate
jδmcj=mc of WD increases as the mass ratio decreases,

and the branch parameter κ decreases as the mass
ratio decreases. When q ¼ 1=4, jδmcj=mc ¼ 1, the WD is
completely disintegrated during rotation and all its
mass enters the NS or accretion disk in the form of
interstellar flow.
In order to future investigate the underlying causes

of the variation in GWF, we investigate a general range
of mass ratios, which are still commonly seen in actual
cases [67,68]. We plot the evolution of dynamical param-
eters of ð2.0þ 0.5ÞM⊙ to ð2.0þ 1.0ÞM⊙ NS-WD systems,
including the radiation power, and orbital radius. The
radiation power increases significantly as it approaches
the merger, and we get the illustration of GW’s frequency-
time-strain in Fig. 7 in the cases of q ¼ 1=4. The main
difference appears in the late inspiral phase, when mc star
moves within the Roche limit of mp star, and before the
merger phase.
The power of gravitational radiation is selected as an

important parameter indicating the rotation of binaries,
shown in Fig. 8. As the mass ratio gets smaller, the initial
distance increases and the GW radiation gets weaker, so the
binary takes longer to merge. Due to the significant differ-
ence in the magnitude of gravitational radiation power of
different mass ratios, we draw it on the logarithmic coor-
dinate axis. The frequency and intensity of all three GWFs
show clear chirp behavior. Particularly, in the case of the
mass truncation, the gravitational radiation power decreases
straightly when the WD disintegrates after the chirp.
In Fig. 9,we draw the explicit orbits ofNS-WDsystemsof

two different mass ratios. Without the angular momentum
taken away by the, the ones without mass transfer are still

TABLE I. Key parameters of our simulation, including the initial radius of WD RðiÞ
WD, Roche limit aðiÞRlof and relative velocity v0 which

is set to be Keplerian, the final mass of the NSmðfÞ
NS, WDmðfÞ

WD, and ADmðfÞ
AD and branch parameter κ of three different initial mass ratios

q ¼ 1=2; 7=20; 1=4.

NS-WD mass RðiÞ
WD½M� aðiÞRlof ½M� v0 mðfÞ

NS½M� mðfÞ
WD½M� mðfÞ

AD½M� κ

ð2.0þ 1.0Þ½M� 3673.036 11450.037 0.0097 2.475 0.462 0.063 0.454
ð2.0þ 0.7Þ½M� 5239.930 17901.543 0.0073 2.476 0.174 0.050 0.396
ð2.0þ 0.5Þ½M� 6484.328 24231.317 0.0061 2.452 0 0.048 0.207

FIG. 7. The expressive strain and frequency evolution of the
q ¼ 1=4 one in Fig. 6. Owing to the terminal strain decay,
the frequency of the main detective signal is much lower, so the
extreme mass ratio ones are very similar to noises.

FIG. 8. The figure shows their gravitational radiation power,
which decreases rapidly as the mass ratio gets smaller.
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rotating peripherally when the corrected ones have already
merged. In q ¼ 1=2, the radial velocity is getting larger and
larger with a precession angle. When the final radius is
truncated, the binary distance r ¼ 2.0285 × 103½M�, which
is equal to the radius of theWD. In q ¼ 1=4, the eccentricity
gradually decreases to the quasicircular orbit.When the final
mass is truncated, the binary distance r ¼ 5.2265 × 103½M�,

and the remaining radius of the WD core is RWD ¼
28.7164½M�.
Since ṁ ¼ ṁðr;ωÞ is a function of the angular velocity

ω and the distance r, we plot the evolution of the mass loss
rate of the WD with time and the with radius in Fig. 10.
Considering only time, the mass transfer rate has to do with
the binary distance and velocity, leading to the nonlinear
result. The significant increase process of the mass transfer
rate in the previous period is the stage when the outer gas
overflows into the Roche limit, but the core has not yet
disintegrated. When the Lagrangian point L1 enters within
the radius of the WD, the WD core begins to tidal disrupt
and oscillates periodically with the change of orbital
parameters. Considering only distance r, the mass transfer
rate increases when the separation decreases. And in [69]
Metzger found the changing mass ratio is around

FIG. 9. The upper figure illustrates the orbit of the WD of q ¼
1=2 one truncated by radius, while the lower figure illustrate that
of q ¼ 1=4 one truncated by mass. Both set the origin to be the
center of NS. The orbits with no mass transfer hardly drop and are
plotted as shaded bands. The circular red-dotted line is the initial
Roche limit of the NS.

FIG. 10. The upper figure shows the mass transfer rate of the
three cases, which all increases rapidly as the distance shrinks.
The oscillation is due to the competition of tidal force and
centrifugal force. Take the q ¼ 1=2 for example, two figures
below give the mass transfer ratio concerning binary distance and
relative velocity in different time intervals.
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10−10–10−7 ⋍ 10−4–10−1M⊙=s for tidal disruption of a
WD by a NS, consistent with our results well.
In order to get the evolution information of mNSðtÞ,

mWDðtÞ, and mADðtÞ, we plot their curve in Fig. 11. It is
very characteristic that the final masses of NSs are all the
same, which is caused by the variation of the lost mass
of the WD δmc and the branch parameter κ. On the
contrary, there is a significant difference in the lost mass
of WDs.

We draw the angular momentum of three systems with
time in Fig. 12. Due to the dissipation of gravitational
radiation, the systems’ angular momentum is decreasing.
Along with that, the orbital angular momentum is also
decreasing due to the growing NS spin.
To summarize, as the mass of WD increases the binaries

tend to merge more quickly leading to an increase in
the changing rate of the mass quadrupole tensor, and the
gravitational radiation power and GW strain during the
inspiral also increase. From the discussion above we can
intuitively see mass-transfer’s prominent role in the orbit
evolution and GWF of NS-WD inspiral, especially at the
terminus close to merge.

E. Matching the template with GW170817

To verify our models, it is helpful to compare them
with the actual data. Since no NS-WD signals have ever
been detected, here we choose GW170817, the first
NS-NS merger signal, although the mass transfer effect
of the NS-NS system is not particularly obvious. This event
occurred at GPS time 1187008882.43 ¼ August 17 2017,
12:41:04.43 UTC, was widely observed by many electro-
magnetic bands simultaneously, and has a very high
confidence level to be a NS-NS binary. Since the masses
of the experimental signal are much more precise than the
distance, we follow the given mass and set the distance and
eccentricity to be fitting parameters. Our priority is to
match the merger signal with the highest confidence, which
turns out very well. The mismatch of the inspiral may come
from the choice of initial velocities. Also, due to the
frequency filter which would distort the low-frequency
inspiral, and the Livingston signal is scratched, the exper-
imental data may not be very faithful, so this mismatch is
preserved.
As for the postmerger waveform, we can see the unusual

amplitude increasing in the reference data [70,71]. This
results from the small mass of NS-NS binary, that this part
of the signal is beyond the LIGO’s sensitivity and of very
low confidence level [72]. Here we draw the black hole
ringdown waveform, simply for completeness, which does
not represent the real model image after the merger of
NS-NS binaries. This means that when we consider the
influence of the spin of the binary system in 2.5 PN, the
motion equation of the whole system will be more accurate.
We obtained the data from the Gravitational Wave Open

Science Center website, and let the whitened data pass a
low-frequency filter to reduce the background noise [73].
We see that the binary orbiting frequency is around 400 Hz;
thus, we portray the signals between [300 Hz, 500 Hz]. We
set the merger time to be the origin and focus on the
waveforms between [−0.023 s, 0.023 s], and the results are
shown in Fig. 13.
From the contrast above, our model is generally valid to

reach the expectations in practical terms. Due to the high
frequency of the binary neutron star system, it is beyond the

FIG. 11. This picture shows the NS, WD, and AD mass change
of the three cases respectively. Here we can see the mass of the
AD is a very tiny fraction of the system, so despite that of real
binary is not as symmetric as we assumed here, their contribution
to the GW is still negligible.

FIG. 12. This picture shows the corresponding angular mo-
mentum change of three cases. The stagelike behavior is inherited
from the severe oscillation of the mass transfer rate, the same as
the behavior of the previous picture. When q ¼ 1=4, due to the
mass loss, the final angular momentum tends to zero.
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detection range of the current gravitational wave detector,
so the accurate waveform template of the inspiral phase is
of great significance.

VI. CONCLUSIONS

In our research, it is found that the evolution of WDs
may be divided into two cases due to different external
conditions and degrees of evolution: 1. stable mass transfer;
2. white dwarfs break out due to thermonuclear reaction.
This paper focuses on constructing an analytical model of
stable mass transfer to correct the orbital dynamics evolu-
tion of the post-Newton method in the inspiral phase. Of
course, this assumption will inevitably exhibit a certain
deviation in systems characterized by violent nuclear
reaction processes to which our model does not apply.
In the later work, we will consider more about the equation

of state and evolution of WDs and the eccentricity of orbits
in detail.
For the tidal disruption type of mass-transfer, the overall

correction to NS-NS GWs is small, while a large
change occurs on the NS-WD binaries. We have theoreti-
cally derived the equation for mass transfer by tidal
gravity and then used the branch parameter κ to calculate
the various types of mass evolution in the binaries
and their corresponding GWs. We set the massive NS
mNS ¼ 2M⊙ and WD mWD ¼ 0.5–1M⊙, then obtained
κ ¼ 0.207–0.454, mass-loss ratio jδmWDj=mWD ¼
1 ∼ 0.638, and mass of ADs mAD ¼ 0.048–0.063. These
results are consistent with the current observation data, and
the calculation is concurrent throughout the mass ranges
of WD.
Based on 2.5 PN expansion, we derived the analytical

binary mass transfer equation through the Euler equation of

FIG. 13. The comparisons to the GW170817 data by LIGO [74,75], which is labeled by blue lines. The top panels are the initial data
drawn in the frequency domain, where we can see the chirp rising. The left one from L1 has encountered some technical issues showing
as the peak-shaped image, which leads to the failure of further processing. This is why the corresponding signal below is severely
distorted, where only the merger is readable. The precise fitting parameters are listed in Table II.

TABLE II. The detection data and the initial parameters of numerical calculation of GW170817. M is the chirp mass, M is the total
mass, R is the distance from us, θ is the viewing angle, χ is the effective spin parameter, q is the mass ratio, and e is the eccentricity of
orbit.

GW170817 m1ðM⊙Þ m2ðM⊙Þ MðM⊙Þ MðM⊙Þ RðMpcÞ θð°Þ χeff q e

Detection data 1.46þ0.12
−0.10 1.27þ0.09

−0.09 1.188þ0.004
−0.002 2.74þ0.04

−0.01 40þ7
−15 ≤ 56 0þ0.02

−0.01 1.15þ0.19
−0.15 � � �

Setting parameters 1.46 1.27 1.185 2.73 42 56 0 1.15 0.2
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mass and energy conservation. The equation is dominated
by the atmosphere overflow or core disruption depending
on the separation of stars, and the transferring rate is a
function of orbital velocity and distance. We also calculated
the mass received by the NS and gained a faster-merging
orbit due to AD angular momentum. With the equations
above, we discussed the mass transfer concerning different
initial mass ratios and their corresponding GWFs, which
differ obviously from those without correction and benefits
for constructing templates in search of Galactic compact
binaries.
In the discussions in preceding chapters, we have

assumed v0 ≪ c. The mass velocity v0 is a function of
only T0 and ρ0. So our transferring rate is determined by the
atmosphere density and its average macular mass. For more
details, specific WD components and equation of state must

be provided and are beyond the topic of this paper, and we
shall study them in the following research.

Note added. Recently, we became aware of a manuscript
that independently derives results similar to Fig. 5 for
mass transferring rate change of extremely small
eccentricity [76].
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