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Modeling nonstationary noise in pulsar timing array data analysis
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Pulsar timing array (PTA) collaborations recently reported evidence for the presence of a gravitational
wave background (GWB) in their datasets. The main candidate that is expected to produce such a GWB is
the population of supermassive black hole binaries. Some analyses showed that the recovered signal may
exhibit time-dependent properties, i.e., nonstationarity. In this paper, we propose an approximated
nonstationary Gaussian process model obtained from the perturbation of stationary processes. The
presented method is applied to the second data release of the European Pulsar Timing Array to search for
nonstationary features in the GWB. We analyzed the data in different time slices and showed that the
inferred properties of the GWB evolve with time. We find no evidence for such nonstationary behavior and
the Bayes factor in favor of the latter is BI;S = 1.5. We argue that the evolution of the GWB properties most
likely comes from the improvement of the observation cadence with time and better characterization of the
noise of individual pulsars. Such nonstationary GWB could also be produced by the leakage of
nonstationary features in the noise of individual pulsars or by the presence of an eccentric single source.

DOI: 10.1103/PhysRevD.109.123010

I. INTRODUCTION

Supermassive black holes (SMBHs) are incredibly mas-
sive, over a million times heavier than the Sun, and are
typically located at the centers of galaxies. When these
black holes come together, they form binary systems that
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emit strong gravitational waves as they approach each other
[1]. The combined effect of many such binaries produces a
continuous and stationary noise signal in the nanohertz
frequency band [2], known as the gravitational wave
background (GWB). Pulsar timing array (PTA) collabora-
tions search for the induced effect of this GWB in the
timing measurements of millisecond pulsars. They specifi-
cally target the characteristic spatial correlations it would
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exhibit between pairs of pulsars, known as the Hellings-
Downs (HD) correlation pattern [3]. Recent studies
have shown strong evidence for the presence of such a
signal [4-6]. However, it does not exactly match what was
expected for a population of supermassive black hole
binaries (SMBHBs) in circular orbits. In particular, it
was observed that the inferred GWB properties differed
when datasets of different lengths were analyzed. Several
hypotheses have been proposed to explain this discrepancy,
one of which is the possible nonstationarity of the GWB.

The European Pulsar Timing Array (EPTA) Collabo-
ration has released its second dataset, combining the timing
data of 25 pulsars over a span of up to 24.7 years of
observation. Several radio telescopes were used to collect
the data: the Effelsberg Radio Telescope in Germany,
Lovell Telescope in the UK, Nangay Radio Telescope
in France, Westerbork Synthesis Radio Telescope in the
Netherlands, Sardinia Telescope in Italy, and Large
European Array for Pulsars. In their analysis [6], the
EPTA searches for the presence of a GWB in the dataset
by evaluating the Bayes factor, comparing common HD
correlated noise against common uncorrelated noise
denoted as BfDgy- The significance and properties of
the GWB vary notably across the dataset. When analyzing
the entire dataset, the Bayes factor is only B0z = 4, but it
is shown that, using only the latest 10.33 years of data, the
Bayes factor rises to BiPyy = 60. The justification for
trimming the dataset is the evolution of data quality. Legacy
data have a worse cadence of observation and fewer
multifrequency band observations [7]. These two qualities
are crucial for performing a good characterization of all
sources of noise present in the timing data, essential for an
accurate observation of the GWB [8]. Radio observatories
are equipped with receiver-backend systems where the
receiver collects the raw radio data that goes through a real-
time processing stage in the backend systems, providing
analyzable data [7]. The latest 10.33 years of data were
obtained from new-generation backends with greatly
improved observing abilities. However, the evolution of
properties of the observed signal was not only reported by
the EPTA Collaboration. The Parkes Pulsar Timing Array
performed a time-slice analysis where their dataset was
analyzed in slices of 3 or 9 years and showed that the
amplitude of the signal varied with time [5]. The reason
behind this time-evolving property remains unexplained as
the GWB is expected to be stationary [1,2]. One advanced
hypothesis is nonstationarity of noise present in the pulsars
themselves that would contaminate our estimate of the
signal. The two dominant sources of time-correlated noise
in pulsar timing are the red noise (RN), due to stochastic
variation of the pulsar’s spin rate, and the dispersion
measure (DM) noise, due to the fluctuation of the electron
density in the interstellar medium during the path that the
pulses take to Earth [8] (this noise has an amplitude
proportional to v~ with v being the incoming photon’s

frequency). The noise contributions are typically assumed
to be stationary. Other potential sources of nonstationarity
of astrophysical origin are eccentric SMBHBs. They
produce gravitational waves (GWs) with significantly
varying frequency content within one orbital period of
the binary [9,10]. The presence of one or more eccentric
sources could influence a stationary GWB and make it
nonstationary.

In this paper, we propose a way to model nonstationary
noise. Previous works explored the idea of modeling non-
stationary signals in GW analysis using wavelets [11,12].
Here, we develop a model that is a perturbation of the
Gaussian process (GP) methods that are commonly used in
PTA data analysis [13]. The main motivation behind this
model is to evaluate the significance of nonstationary
features in noise through the evaluation of the Bayes factor
by allowing time dependence of the noise spectrum proper-
ties. Strong variations in time result in strong correlations
between different frequencies of the spectrum that are not
accounted for by ordinary Fourier decomposition [12]. In
general, the data are cut into smaller intervals where the
noise is considered approximately stationary, and a Fourier
transform is applied in each window to monitor the
evolution of the frequency content. The assumption of
local stationarity presupposes that the properties of the
spectrum evolve slowly in the analyzed interval [14].

This paper is organized as follows. In the first section, we
will present a nonstationary GP model. The ability of this
model to correctly infer parameters is then tested on mock
datasets in which nonstationary noise is injected. Finally,
we will search for the possible presence of a nonstationary
GWRB in the EPTA dataset and argue that nearby eccentric
SMBH binaries could introduce nonstationary features in
the GWB.

II. MODEL

A. Stationary Gaussian process

A stationary process is a stochastic process whose
properties, typically its mean and variance, remain constant
over time. In practice, we often encounter what we refer to
as weak-sense stationary processes, where the mean and
correlation functions remain invariant under shifts in time,
i.e., they are time-translation symmetric [15]. Given the
one-sided power spectral density (PSD) Sy(f) of the
process, the correlation function C(#, ") can be expressed
using the Wiener—Khinchin theorem integral,

(e, ) = /0 A So(f) cos(2rf(t— 1)), (2.1)

which is a function of the time difference 7 — 7.

Alternatively, we can define a zero-mean stationary
Gaussian process expressed as a finite Fourier sum with
normally distributed coefficients [13,16],

123010-2



MODELING NONSTATIONARY NOISE IN PULSAR TIMING ...

PHYS. REV. D 109, 123010 (2024)

—_

N
ZX’ sin(2zf;t) + Y, cos(2xnf;t)
N

D a;

i=1

- i(1), (2.2)

§1

where ¢, (1) = [sin(2zf;t),cos(2zf;t)] and @; = [X;, Y]
with X;,Y; ~ N(0,67).

The ba51s ¢,( ) of cosine and sine functions is evaluated
at a discrete set of frequencies f;. For stationary signals,
the random weights @, are uncorrelated because the under-
lying Fourier basis of the process is orthogonal. Thus,
using (@;, ®;) = (®?)ij = 671,5ij (where (a,b) denotes
the ensemble averaged inner product between a and b, and
I, is the identity matrix of rank 2), we have

C(t, 1) = (n(1), <f>>
= er,

= Zoi cos(2zfi(t=1)),

@)1

(2.3)

which is an approximation of the integral in Eq. (2.1) for
o7 = So(fo)Afi with Afi = fi = fi [171.

B. Nonstationary Gaussian process

By definition, a nonstationary process exhibits spectral
properties that vary with time [18,19]. Let us consider
a time-dependent evolutionary power spectral density
defined as

S(f.1) = So(f) x g*(f.1). (2.4)
where S, (f) represents a stationary PSD, and g(f, ) is an
arbitrary function of time that introduces perturbations to
the stationary PSD.

Using this approach, we extend the definition of the
zero-mean GP presented in Eq. (2.2) by introducing time-
varying coefficients X;(r) and Y;(r), where X,(1),
Yi(1) ~N(0,67()) and o7 (1) = So(f;) x ¢*(fi,t)Af ;. By
applying the identity N\ (0, a%6?) = a/N (0, 0?), the func-
tion g(f, ) factors out of the Gaussian weights, yielding

N

n(t) = in(fo)g(fi’ 1) sin(2xfit) + Y(t0)g(fi. 1)

i=1

x cos(2zf;t) (2.5)

Mz

i=1

with @;(1) = g(fi. 1) x ¢:(1).
This expression is identical to the stationary case, except
the basis ®;(¢) can now be modulated over time through the
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FIG. 1. Example of a simulated nonstationary colored noise for

logg A(tg) = —14 and y(#y) = 2 observed in the timing residuals
of a PTA pulsar with 15 years of observation. The noise was
simulated using a first-order Taylor expanded power law [see
Eq. (4.1)] with a = 0.8 and b = —1.2, meaning that we have a
noise with increasing amplitude and decreasing spectral index
(i.e., the noise whitens with time). Top: the evolutionary PSD
S(f, ). Bottom: the corresponding time-domain representation.

function ¢(f;, ). This modulation of the basis gives a
description of the nonstationarity of the signal (see Fig. 1).
In this context, the relationship (&;,&;) = (w?);; does not
necessarily maintain a diagonal form because the weights
are not expected to be uncorrelated. However, we proceed
by making an assumption of diagonality. In other words,
we assume that the basis ®;(¢) is the natural (eigen)basis of
the process. In that case, the covariance matrix becomes

ZCD
~ Z(f,g fiut)

This kernel can be seen as a specific instance of non-
stationary generalized spectral kernels (see Refs. [20,21]
and the Appendix). It is simplified by considering sta-
tionary frequency components f; accompanied by time-
varying weights (a consequence of the assumption that
(0, @;) = (w*);; = 071,8;; is diagonal). This assumption
is reasonable if the evolutlon of frequencies f; of the basis
@, (1) is negligible during the considered time span of
observation T (i.e., stationary phase). Such drifts in f;
(typically chirplike signals) would produce correlations
between consecutive frequencies that are not accounted for
in the expression of this kernel. Nevertheless, modeling the

)P (1)

g(fi, ¥)cosafi(t—1)). (2.6)
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time-dependent variance of each weight with this expres-
sion still captures information about nonstationary behav-
iors through the function g(f, 1).

The previous expression is valid for slowly evolving
spectra that can be considered locally stationary. The notion
of local stationarity is defined in [14] as when the signal is
approximately stationary over some sliding interval z. In
our case, because we want to model slowly evolving
spectra, the stationarity timescale z should be comparable
to the total time of observation 7. This condition translates
to the function ¢(f,7) as having most of its Fourier
spectrum concentrated at frequencies around 1/7.
Essentially, we approximate nonstationary kernels by con-
centrating the 2D spectral measure S(f,f’) along the
diagonal where f = f’ (see Appendix A 1).

In the upcoming section, we propose conducting simu-
lations to assess the impact of this approximation on
parameter recovery. The primary goal is to estimate whether
neglecting correlations between Gaussian weights in
Eq. (2.6) significantly influences the inference of parameters
within a Bayesian framework.

C. Colored noise

In PTAs, pulsar noise is typically described with a
power-law spectrum Sy (f) o« Af~7, where A represents
the amplitude and y denotes the spectral index [8,22,23].
Let us consider a time-dependent power spectral density
with time-varying amplitude and spectral index

A1) (F\TO
T 1222 <> 157

yr

S(f.1) (2.7)
with f, the frequency corresponding to one year. Any
arbitrary functions of time for A(¢) and y(¢) can be used as
long as we ensure S(f,7) > 0. We choose to express the
amplitude and spectral index as

logioA(t) = logioA(ty) + Y arPi(t — o),
k

y(1) = r(to) + Y _bePi(t = o), (2.8)
k

where ¢, denotes the reference time, a; and b, are constant
coefficients, and P, are polynomial functions (such as
Chebysheyv, spline, etc.). We can factor out the stationary
PSD S (f) « A%(to)f~7") from a time-dependent function

g(f. 1),

(f t) - S(f IO) X 1022 aPy(t=to) ( > Zkb"Pk 1—to)

= So(f) x &*(f.1).

f\r
(2.9)
providing an expression for the function ¢(f,) as pre-

sented in the previous section. According to Eq. (2.6), we
then have

C(t, 1) =

o} o< A2(10)f;" A S,

> 0tg(fi. 0)g(fis ') cos(2af (1 — 1))

(2.10)

yr

g(f.t) = 1021 @Pe(t=10) (f ) S &Py (- W,

In the next sections of this paper, we will only utilize the

first-order term of this expression. We will assume slowly
varying properties of the signal.

III. INJECTION RECOVERY TEST
A. Likelihood

To perform inference of the parameters, we need to
define a likelihood. The GP model previously described
assumes that the noise in the data is Gaussian. Hence for a
time series s(7) of length N measured at times 7, we will
consider a Gaussian likelihood of the form

- 1
L(s|0) =——=—
O el

Xexp{—zz t, ,)s(zj)}, (3.1)

where C~! is the inverse of the covariance matrix C, 5 1s
the vector of the model parameters, and |.| denotes the
determinant.

In the Bayesian framework, we define prior probability
distributions 7(6) for the parameters 6 of the model.
Combining the prior distributions with the likelihood, we
can update our knowledge about 0, defining the posterior
distribution p(s),

= L(s|0)z(6)/ 2,

with Z the so-called “evidence” of the model acting as a
normalizing constant.

The key quantity to evaluate the significance of model A
against model B in Bayesian analysis is the Bayes factor
Bg. It is defined as the ratio of the evidences

p(6]s) (32)

Z

By =24 3.3
=3 (33)
In this paper, the posterior distribution is sampled using
Markov chain Monte Carlo (MCMC) sampler PTMCMC [24]

or nested sampling library DYNESTY [25].

B. Time-varying filter

In order to test our model, we want to simulate a colored
noise with evolving properties in time using a method that
is independent of the one developed in the previous section.
Various methods are available to generate such noise, for

123010-4



MODELING NONSTATIONARY NOISE IN PULSAR TIMING ...

PHYS. REV. D 109, 123010 (2024)

example, one can utilize autoregressive models [12]. Here
we chose to generate nonstationary data with a time-
varying filter that allows one to control the amplitude
and spectral index of the noise at each instant [14,18].
We first generate an evenly sampled white noise series
y~N(0,1) of size N; + 1 with a cadence Ar and a total
duration N At. Then, the time series y is filtered using a

time-dependent filter i(f, ¢). The filtering is performed in
the frequency domain. For a colored noise, we define a

filter in Fourier domain /(f, ) at time 7 as

0 for f <1/N At

T o) porrzi/wa

(3.4)

where H|, is the gain of the filter, and « is the slope. The
gain and slope can be controlled over time using the
function g(f, 7).

For a time series y and its Fourier transform $(f), the

output y'(z) of the filter is
() = FH(h(f.0)3(f)). (3.5)
with F~! the inverse Fourier transform.

Finally, we fit a quadratic polynomial of the form a +
bt + c* to the generated time series. The obtained poly-
nomial is then subtracted from the time series. This final
step mimics the timing model fit performed in PTA data
[7,8], which accommodates the quadratic spin-down
(deceleration) of the pulsar rotation while also eliminating
part of the moving average component attributed to the
nonstationarity.

C. Setting the model and priors

To test the model, we aim to estimate the Bayes factor for
the nonstationary case versus the stationary case given the
generated data. As mentioned earlier, we want to restrict
ourselves to first-order variations in time of the power-law
spectrum amplitude and spectral index. We evaluate the
covariance matrix in Eq. (2.6) on a discrete set of
frequencies f; =i/t with i = [1,...,N,] an integer, N,
the size of the basis, and 7 the considered stationarity
timescale. In this context, the function g(f;,7) can be
expressed as

- 1 -
togio (1) = a2 2p U= hog 7).

(3.6)

where T is the total time of observation, f,, = 1/(1 yr)isa
reference frequency, and ¢, is the initial time.

In this work, we chose to fix 7, at the start time of
the entire dataset to directly measure the evolution of

1.0 I
: \ I == f/fyr=01
‘&\ I —— f/fyTZl
0.8 ‘{\\\ I < f/fyr=10
NN
_ ‘._\‘\\ :
S L
< 06 2\ \
= .S,
: AN
= 041 ., S
“\I\ \\\
L I N
0.2 1. Nt
.... s, e
I e T —. —
0.0 +— | ; ; ;
0 1 3 4

FIG. 2. Norm of the Fourier transform of g(f;, ) expressed in
Eq. (3.6) for a = 1, b = 1, and three ratios f;/f,,. The x axis
corresponds to the harmonics of 1/7. We show [§(n)|/]3(0)] for
better visibility and comparison.

amplitude and spectral index from

log g A(to) and (o).

To perform inference of the parameters, we need to set
prior probability distributions. For a slowly evolving
signal observed within a time interval 7, we assume
that the stationarity timescale r7~T7, so the chosen
function g(f;,¢) must have most of its Fourier spectrum
concentrated around the lowest frequency 1/7. This
ensures that the 2D spectral measure is concentrated
on the diagonal f = f’, minimizing leakage between
different frequencies (see Appendix A1l). If not,
g(fi, 1) is rapidly evolving, and the assumption of local
stationarity is no longer valid.

In Fig. 2, we display the Fourier spectrum of g(f;,f)
on the interval [ty, 7y + 7], denoted as §(n), where n
corresponds to the harmonics of 1/7. We can observe
that, for parameter values a = b = 1, the condition is
roughly fulfilled. However, as we decrease the ratio
fi/fy, in the expression of g(f;.?), the condition is less
respected. This implies that the Fourier transform §(n) of
the function ¢(f;,¢) has a wider spread at lower f;,
leading to more significant changes occurring within
timescales shorter than 7. Thus, we choose a =b =1
to represent typical parameter values where the
assumption of a slowly evolving spectrum begins to
break down for T ~ 10 yr. We decide to set a normal
distributed prior N'(0,1) for a and b (see Table I) to
confine their values around the interval [—1,1]. The
inference of parameters may not be precise enough to
accurately estimate the evolutionary PSD of the process
within the Bayesian scheme (resulting in wide posterior
uncertainty). In this sense, this model remains an
approximation. Nevertheless, we should be able to
capture the nonstationarity of the process through the
evaluation of the Bayes factor if a and b deviate too
much from 0. This last point is crucial to test whether we
are actually dealing with nonstationary noise.

starting values
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TABLE 1. Prior probability distributions used for the param-
eters of a nonstationary colored noise.

Parameter Prior probability
logo A(ty) Uniform(-18, —10)
(1) Uniform(1, 6)

a N(0,1)

b N(0,1)

D. Simulation results

Following the procedure presented in Sec. III B, we
generate 1000 simulations with 500 samples and 20 years
of data containing nonstationary red noise with a low white
noise level of 10~ s. For each simulation, the parameters a
and b are drawn from their respective prior probability
distribution, while the initial gain H, and slope « are fixed
at 1077 and 3, respectively. Inference is performed using the
expressions of the likelihood and posterior probability
presented in Sec. III A. The prior distributions we use
are given in Table I. We employ nested sampling to explore
the parameter space for both stationary and nonstationary
models to estimate the Bayes factors [25]. We denote the
Bayes factor for nonstationarity against stationarity of noise
as BYS.

Figure 3 illustrates the precision of nonstationary param-
eter recovery. We present a histogram showing the
differences in each simulation between the injected and
recovered maximum likelihood values of parameters a
and b. The uncertainties are narrower than the prior
distribution, indicating that the model is informative.
However, the histogram for b appears broader than param-
eter a, which makes an accurate estimate of the evolution of
the spectral index challenging.

Figure 4 demonstrates the ability to accurately predict
nonstationarity through the evaluation of the Bayes factor
BI;S. We present a histogram of the Bayes factors evaluated
for each simulation. The distribution peaks at low Bayes

3.04 === N(0,1)
2.5

2.0

pdf

1.0 1

0.5 1

=
-
-
—_————

0.0 T T

FIG. 3. Normalized histogram of the differences Af between
injected and recovered maximum likelihood parameter value.

0.16

mm p(logyo BY®)
=== Median Va? + b2
30-70 quantiles
40-60 quantiles

r0.4

0.2

0 5 10 15 20
logy Bg/s

FIG. 4. Normalized histogram of the Bayes factor B}> non-
stationary versus stationary noise obtained from each simulation.
We define the level of nonstationarity va®> + b*> combining
parameters a and b. We plot the distribution obtained from their
recovered maximum likelihood values for the corresponding
simulation and Bayes factor in the x axis.

factors, which corresponds to the fact that we draw a and b
from N (0, 1), hence they are often near zero. If a and b
are small, the stationary model should be equally preferred.
Additionally, we observe that the Bayes factor rapidly
increases if a and b significantly deviate from zero.
However, in this simulation, due to the large uncertainties
on therecovery of b, the information it provides is limited, and
the recovered maximum likelihood value does not effectively
convey this lack of information (see Appendix A 2). In Fig. 4,

the nonstationarity level v/a® + b*> and the increase in the
Bayes factor are predominantly influenced by the value of
parameter a.

IV. RESULTS

The results section will focus on the search for a GWB in
the second data release of the EPTA Collaboration [7]. The
following analyses use the same methods, priors, and noise
models presented in [6,8]. We use the 24.7 years of dataset
referred to as DR2full in [6]. The search is for a GWB with a
power-law spectrum modeled as stochastic noise spatially
correlated between pairs of pulsars, following the so-called
Hellings-Downs correlation pattern [3]. The individual pulsar
noise models are constructed from a combination of RN and
DM noise, also modeled with power-law spectra [8]. These
pulsar noise models are built using ENTERPRISE [26].

First, we study the GWB using the stationary formulation
of the covariance matrix, as described in [6], but across
different time slices of the dataset. Then, we investigate the
GWRB using the nonstationary formulation of the covariance
that was developed in the previous sections.

A. Time-slice analysis of GWB

Time-slice analyses of the GWB were previously con-
ducted by the Parkes Pulsar Timing Array Collaboration for
their third data release [5], where the dataset was segmented
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FIG. 5. Timeline representation (to scale) of the three analyzed

slices represented by the colors blue, orange, and green with
respect to the full time of observation 7.

into several slices and analyzed as a stationary GWB in
each slice. In this section, we perform a similar analysis on
three different slices of our dataset. For T, the total time
span of observation, and ¢, the initial time, we analyze the
slices [ty, T/2], [T/4, 3T /4], and [T /2, T], as illustrated
in Fig. 5.

In all three slices, we search for a stationary GWB with a
power-law spectrum on a 30-frequency linearly spaced
Fourier basis with the lowest frequency 2/7, allowing the
spectral index y and amplitude log,, A to vary (see Ref. [6]
for details). We denote the recovered GWB posteriors in
slices 1, 2, and 3 as GWB;, GWB,, and GWB; respec-
tively. The results are presented in Fig. 6.

The GWB, posterior appears to be much broader than
the others. This is expected because the cadence of early
observations was lower than those of today (some pulsars
may have a cadence of 1 point/month in the early data
versus one every 3 days in the latest). The level of white
noise is directly influenced by the cadence of observation.'
The interplay between the power-law spectrum of red noise
and the flat white noise tail may strongly influence the
estimate of the red noise parameters. Moreover, the quality
of the backends’ processing raw data from the radio
observatories has improved over time. Their ability to
simultaneously observe incoming photons at multiple
frequency bands (larger bandwidth) allows for a better
characterization of the DM noise due to pulses traveling
through the interstellar medium [8]. The latter induces a
delay in the time of arrival of the pulses with an amplitude
that is inversely proportional to the square of the incoming
photon’s frequency. Its characterization requires good
multiband observing capabilities; otherwise, it could be
mistaken for RN and contaminate GWB parameter esti-
mation. Improved cadence and noise characterization
should provide better constraints on the GWB posteriors,
which could explain why GWB, appears less informative
than GWB, and GWB;. Moreover, if some of the indi-
vidual pulsar noises are nonstationary, they may leak into
the GWB signal. This last point will be explored in the next
subsection. It is important to note that this first slice,

'For an evenly sampled dataset with measurement uncer-
tainties ¢ and red noise, the PSD can be expressed as
S(f) = Af7" + 26*At, where At is the cadence of observation
that directly influences the tail of the spectrum [27].

log,y A Y

FIG. 6. 2D posterior distributions of GWB parameters analyzed
in three time slices. The contours on the 2D histograms are the
68% and 95% credible regions.

GWB,, corresponds to the first data release from EPTA,
where no GWB was less significant. The recovered
posteriors are similar to what was observed in [28].

The GWB, and GWB; posteriors nearly overlap and
closely resemble the recovered posteriors using the latest ten
years of data in [6]. We observe a slight shift of the spectral
index y toward lower values. Figure 7 displays the 1D
posteriors of y for the three slices, indicating an estimated
decrease in y of approximately 0.66 from the median values.
Regarding the amplitude, the median values show little to no
evolution. However, evaluating the evolution of y and
log g A, especially for GWB,, is challenging due to the
large uncertainties.

0.8 — ;
11 I GWB,
0.7 ' | GWB»
L ! ! GWBj
0.6 1 i
(I | 1
[} 1
0.5 1 11 1
(I | 1
% 041 Y
s 11 1
[} ]
0.3 1 11 1
[ 1
11 1
0.2 11 1
(| 1
11 1
o (I | 1
0.1 i [
11 1
0.0 +— T — — T T
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v
FIG.7. 1D marginalized posterior distribution of GWB spectral

index y analyzed in three time slices.
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One caveat of this analysis is that we lose information
about the low-frequency range after performing the slices.
Indeed, the lowest sampled frequency bin is at frequency
1/T, and increasing T raises its value. In PTAs, the lowest
frequencies contain important information when searching
for a GWB. Additionally, this analysis prevents us from
estimating a Bayes factor in favor of nonstationary behav-
ior against stationarity. The model presented in this paper
should address both issues.

B. Nonstationary power-law spectrum GWB

We will now analyze the data using a GWB model with
HD correlations and an evolutionary power-law spectrum.
In Sec. II B, we developed an expression for such a model.

The previous time-slice analysis only reveals small
variations in the amplitude and spectral index of the power
law. For this reason, we chose to limit ourselves to the
simplest possible model where the evolution of amplitude
and spectral index is approximated to first order in time. We
have

logoA(t) ~logipA(ty) + a(t — 1) /T,

y(t) ~y(to) + b(t = 10)/T, (4.1)
where 7, is the minimum time of the dataset, a is the
parameter controlling the evolution of log-amplitude, and b
is the parameter controlling the evolution in y.

We performed the analysis using a normal prior (0, 1)
on a and b and show the recovered posteriors in Fig. 8. We
find a GWB with log,y A(ty) = —14.4703, y(t,) = 3.75)2,
a=0.0703, and b = —0.7)/, fitting a spectrum with a
constant amplitude and decreasing spectral index. This
behavior aligns with the estimated evolution of the param-
eters using the medians of the 1D posteriors in the slice
analysis. Still, the uncertainties on the estimate of param-
eter b are very large and b = 0 lies within the 1-o credible
interval. For this GWB model, we estimate a Bayes factor
of nonstationarity against stationarity B3> = 1.5, indicating
no evidence for a nonstationary GWB. The apparent
evolution of the spectral properties of this process is likely
due to improvements in receiver-backend systems and the
enhanced cadence of observation over the years. As
demonstrated in the previous section, the inferred posteriors
of the GWB parameters in the oldest slice of our dataset are
very uninformative. This limitation may impede our ability
to characterize the time-dependent features of the spectrum
effectively.

C. Nonstationary individual noise

Earlier we mentioned the possible nonstationarity of
individual pulsar noise. In the Introduction, we presented
the two dominating sources of time-correlated noise in
pulsar timing: the RN, due to stochastic variation of the
pulsar’s spin rate, and the DM noise, due to the variation of

o +0.33
a=—0.0140%

70(71#»0 68

b = —0.64

- H
> ()
D1 3 4.
@ e
log)g A = —14.357)33
O /‘/ \ /J\' \\ 1 3
N e ﬂ\ Q} 1IN
T \J\/\/ \,J
gy |
’ v
N o o < ) & .5 L0
/ PUB RSN RN R ISR NN P /\@ /\bfb /\Q‘ /\wb
a b v logp A
FIG. 8. Corner plot of nonstationary GWB parameters inferred

from the EPTA dataset. The contours on the 2D histograms are
the 68% and 95% credible regions. The dashed lines on the 1D
histograms show the 14%/50%/86% percentiles.

the interstellar medium electron density throughout the
travel of the pulses to Earth [8]. Another source of
frequency-dependent noise is identified, chromatic noise,
with an amplitude proportional to v~* with v the incoming
photon frequency. This type of noise is assumed to be
stationary in PTA data analysis. Incorrect modeling of
pulsar noise could deteriorate the inference of the GWB
parameters.

In this section, we compare the stationary formulation of
the custom noise models presented in [8] to the nonstationary
formula of Sec. II B in order to assess the stationarity of
pulsar noises. Every noise spectrum is modeled as a power-
law spectrum. We only test the first-order model with
function ¢(f,f) given by Eq. (3.6) to allow each noise
component to vary with time. We perform MCMC analysis
using product-space sampling [29] to estimate the Bayes
factor B}°. Results are gathered in Table IL

According to the distribution of Bayes factors, it appears
that the pulsar noise does not exhibit first-order variations
in time, with the exception of J1713 + 0747 for which
log,o BYS = 4.3, hence favoring the nonstationary model.

Given the noise parameter values in Table III, it seems
that the recovered nonstationarity originates from the DM
noise with a relatively well constrained apy — 0.71’8;22
indicating that the DM amplitude decreases with time
and bpy = 0'4:()):2 indicating an increasing spectral index
(though with large posterior uncertainties). For the RN, the
agn and bgy parameters are consistent with zero within the
1-0 credible interval suggesting stationary behavior.
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TABLE II. Bayes factors for nonstationary against stationary
noise models. The pulsar with log;o BYS > 2 is shown in bold
font. We observe that, in general, pulsars do not exhibit evidence
of nonstationary noise, except for J1713 4 0747, for which we
show the two values of log; BI;S obtained with (left) and without
(right) including the exponential dip events in the model. The
case of J1713 4+ (0747 is discussed in the text.

Pulsar log,o BY®
JO030 + 0451 0.0
J0613 — 0200 —0.6
JO751 + 1807 -0.3
J0900 — 3144 -0.3
J1012 + 5307 -1.2
J1022 + 1001 -0.2
J1024 — 0719 -0.3
J1455 — 3330 0.0
J1600 — 3053 0.0
J1640 + 2224 -0.2
J1713 + 0747 4.3/-0.6
J1730 — 2304 1.1
J1738 + 0333 0.1
J1744 — 1134 -0.5
J1751 — 2857 -0.2
J1801 — 1417 0.3
J1804 — 2717 0.2
J1843 - 1113 -0.4
J1857 + 0943 —-0.4
J1909 — 3744 0.7
J1910 + 1256 0.0
J1911 + 1347 -0.4
J1918 — 0642 -0.3
J2124 — 3358 -0.3
J2322 + 2057 0.0

However, J1713 4+ 0747 is known to have challenging
noise properties [30-32] and nonstationary DM events were
already reported for this pulsar in [33]. In [8], two expo-
nential dip events were reported in the timing residuals of
J1713 + 0747. An exponential dip is a deterministic DM-
like effect that could be induced by extreme scattering events
in the interstellar medium or a sudden change in the pulse
profile of the pulsar, introducing transitory frequency-
dependent timing delays that can last up to a few months
[34,35]. In Table III, we see that the inclusion of the
exponential dips in our model removes the apparent non-
stationary behavior of J1713 4 0747, now showing apy =
—0.2703 and bpy = —0.470-7. The Bayes factor for nonsta-
tionary noise versus stationary noise after the inclusion of
exponential dip events is now log;, BYS = —0.6.

Although not the best description, the nonstationary
model was able to hint toward the presence of time-
dependent features in the timing residuals of pulsar
J1713 4 0747 through the evaluation of the Bayes factor.
We tried searching again for a GWB in the EPTA dataset,
now considering the nonstationarity (exponential dips) of

TABLE III. Table of median noise parameters (RN and DM)
inferred from pulsar J1713 4 0747 timing data for the nonsta-
tionary model (NS), nonstationary model with exponential dips
(NSed), and the stationary model with exponential dips (Sed).
The displayed quantiles are 0.14 and 0.86.

Parameter  Median (NS)  Median (NSed)  Median (Sed)
YpM 1.0X0 19198 1.6192
logi9 Apm ~13.0501 ~13.6103 —13.7:5%:
apy -0.7593 -0.2593

b 0.4+06 -0.4157

7RN 3.2103 32705 3.5%0¢
logipAgy  —13.9704 -14.0104 -14.3103
agrn -0.3592 -0.2192 :

brn -0.299 ~0.3105

J1713 4+ 0747, and found no difference in the estimate of
the Bayes factor in favor of HD or in the inferred GWB
parameters with respect to [6]. The stationary model of
individual pulsar noise seems to be enough an approxi-
mation when searching for a GWB.

D. Eccentric single source as nonstationary GWB

If a binary system of SMBHs is eccentric, it will radiate
polychromatic GWs, contrary to the monochromatic cir-
cular binaries [36]. On average, the GW signal can be
decomposed as a sum of frequencies, which are the
harmonics of the orbital frequency of the binary system.
The waveform of an eccentric GW shows that the instanta-
neous frequency of the signal changes significantly within
one orbital period [9,10].

In [37], it was shown that single binaries could be mistaken
for a GWB with a power-law spectrum. For eccentric binaries
with orbital periods comparable to the total time of obser-
vation of a PTA, the instantaneous change in frequency of the
GW signal can be seen as a GWB with evolving spectral
index y () (see Fig. 9). Indeed, the y controls the balance
between low and high frequencies of the power-law spectrum
and the presence of an eccentric signal would introduce time-
dependent features. GW sources of higher eccentricity and
higher amplitude would introduce more nonstationarity
because of their stronger frequency evolution or higher
signal to noise ratio (SNR). In this section, we want to
investigate what we would see when a stationary GWB is
influenced by an eccentric single source with low SNR.

We create a simulation with 10 pulsars (isotropically
distributed in the sky), 15 years of observation, and only
white noise at a level of 10~7 s. The simulation contains a
stationary GWB with log;gA = —14.2 and y = 3. We
generate two cases: (i) only a stationary GWB is present
in the data; (ii) the same stationary GWB is accompanied
by an eccentric source located at the Virgo galaxy cluster
with amplitude 7 = 107133 and orbital period of 15 years
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FIG.9. One period of an eccentric signal (Earth term only) with
eccentricity 0.6 and orbital period of 15 years. We see that the
instantaneous frequency significantly changes within one period.
The waveform was generated using ENTERPRISE extensions [38].

(here corresponding to SNR ~ 1.8). We produce eight
datasets with different eccentricities of the source e ranging
from 0.1 to 0.8. We analyzed these datasets with the
nonstationary model presented in Sec. II B, considering
HD correlations. In Fig. 10, we show that the presence of an
eccentric source with e = 0.5 introduces nonstationarity in
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FIG. 10. Corner plot of nonstationary GWB parameters. In
orange, we show the results for a simulated stationary GWB with
log;p A = —14.2 and y = 3. In blue, we show the results for the
same realization of GWB “contaminated” by an eccentric single
source with 15 years orbital period and eccentricity ¢y = 0.5. The
dashed lines are the medians. The displayed values of parameters
correspond to the medians of the orange histograms. The
contours on the 2D histograms are the 68% and 95% credible
regions.
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FIG. 11. Top: Bayes factor for nonstationary against stationary
GWB models as a function of the eccentricity of the injected
source. Bottom: recovered posterior median of nonstationary
parameters a and b as a function of eccentricity. The shaded
region around a and b represents the 1-¢ credible interval.

the inferred GWB parameters. For case (i), parameters a
and b are near zero, meaning that we are dealing with a
stationary signal. In case (ii), where the eccentric signal is
introduced, they deviate significantly from zero. Note that,
in our simulation, the parameter b is negative (i.e., y is
decreasing) showing that some specific realizations of
eccentric binaries can somewhat reproduce the behavior
observed in the real data.

The evolution of the recovered Bayes factor BY> and
parameters a and b, as a function of the eccentricity e of the
injected GW signal, is illustrated in Fig. 11. It is evident
that the model effectively captures the nonstationary
features induced by the presence of the eccentric source
when the latter is loud enough. The Bayes factor begins to
favor the nonstationary model for eccentricities higher than
0.4. For this analysis, we have utilized the expression of
g(f, 1) from Eq. (3.6). In future work, it might be beneficial
to design a g(f, ¢) that better suits this problem.

V. DISCUSSION AND CONCLUSION

The derived kernel serves the purpose of modeling
nonstationarity in noise. It resembles the stationary
kernels commonly used in PTA analyses, but incorporates
the capability to capture the time-dependent variance of
the Gaussian weights. In its current form, this kernel
remains an approximation and is valid only for small
deviations from a stationary model. A significant chal-
lenge lies in understanding how correlations between
frequencies can be accurately modeled, leading to an
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exact and nonapproximated version of the nonstationary
kernel. Further exploration in this area is necessary to
improve our understanding and refine the methodology.

This approach necessitates a prior assumption about the
expression of the evolutionary PSD. One significant ad-
vantage is its consistent expression of the covariance matrix
for the entire dataset, unlike the time-slice analysis, which
necessitates cutting the data into several segments. This can
be particularly valuable for applications like PTAs, where
noise is most pronounced in the lowest frequency bins.

In Sec. III D, we showed that our model can occasionally
produce broad posterior uncertainties for the nonstationary
parameters, and the stationary solution may fall within the
1-0 credible interval. Consequently, accurately character-
izing the evolutionary PSD can be challenging. Thus, it
becomes crucial to assess the Bayes factor against the
stationary model to determine whether the preference lies
with a genuinely nonstationary signal.

The slice analysis reveals a clear evolution in the inferred
GWB properties. The first epoch appears much less inform-
ative than the following two. This can be attributed to an
evolution of the data quality over time or the leakage of
nonstationary features of individual pulsar noises into the
GWB estimate. We conducted individual analyses for each
pulsar to investigate nonstationary features and found that
only J1713 4+ 0747 seemed to exhibit time-dependent DM
noise amplitude variations. Nonstationary DM events were
already reported for this pulsar in previous studies. Exponential
dip events offer the best description of these events.

The nonstationary model developed indicates that there
is no evidence for a nonstationary GWB in the second data
release of the EPTA data. Based on the results of the slice
analysis, we infer that the apparent evolution of the inferred
parameter values may stem from a poor characterization of
individual pulsar noise contaminating the observed GWB.
However, there is still a possibility that the presence of GW
signals induced by eccentric SMBHBs in the data could
produce similar nonstationary behaviors. The last section
explored this hypothesis and showed that PTAs could
detect nonstationary features of the GWB if an eccentric
source is present in the data.

With the current dataset, it remains inconclusive whether
the observed evolution solely results from a change in
backend quality or represents a genuine nonstationary
feature of the GWB. Furthermore, if the noise from
individual pulsars exhibits nonstationarity, it could poten-
tially contaminate the GWB estimate, making it appear as
nonstationary. Further investigation into this matter is
warranted in future studies. Additionally, the upcoming
release of the International Pulsar Timing Array third data
release, with enhanced observation cadence and improved
frequency coverage, is expected to provide better noise
characterization and definitive insights into this issue.

The EPTA data are publicly available, see Ref. [39].
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APPENDIX: TO BE PROVIDED BY AUTHOR

1. 2D spectral measure

The generalized Wiener-Khintchine relations are defined
in [18] as

cw.t) = [ agarsis. e

S(f. f) = /dtdt’C(t, ') e=2miltf=11"), (A1)

From the definition of the nonstationary covariance
matrix in Eq. (2.6), we can estimate the 2D spectral density,

SU7.f1) = [ dde Y g e)os(¢) e 2
+ e~ 2mit(fi=f) g=2xil (f'=f) } (A2)

with §;(f) the Fourier transform of the function g;(¢),
we have
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FIG. 12. Time-domain plot of a nonstationary noise generated
with the method presented in Sec. III B.
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Note that if §;(f) = &;(f) (a Dirac delta) and applying
Eq. (Al), we recover the stationary covariance matrix of
Eq. (2.3), giving a 2D spectral measure S(f, f’) that is only
defined on the diagonal f = f’ and evaluated at discrete

(A3)
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FIG. 14. PP plot comparing the fraction of simulations within
confidence interval (CI) and CI. The gray shaded region repre-
sents the 1-o error from y = x.

frequencies f;. The spread of the function g;(f) determines
how much we deviate from the stationary covariance matrix.

2. Simulations

In Sec. IIIB, we presented a method to generate a
nonstationary colored noise. Here, we show an example
of one realization of nonstationary noise using this method.
In Fig. 12, we show an example of one realization of
nonstationary noise using this method. Fig. 13 shows the
corresponding corner plots with the injected versus recov-
ered values of parameter. We can see that the model performs
well, except for parameter b, where the posterior uncertain-
ties are quite large.

3. PP plots

In [40], a validation method is presented. It necessitates
both data-generation and model-fitting software. In this
context, our model-fitting software is PTMCMC [24], which
has been previously utilized. During the fitting process, we
sample the posterior distribution employing our model,
specifically the nonstationary kernel, using the fitting soft-
ware. In each simulation, we possess knowledge of the
injected parameter values 6, allowing us to calculate the

corresponding quantiles q(éo) with respect to the posterior
distribution derived from the fitting software. The method-
ology in [40] demonstrates that if the fitting software operates
accurately and the generated data adhere to the same posterior
distribution for parameters as the constructed model, then the

quantiles q(éo) must be distributed as Uniform(0, 1).
In Fig. 14 we show the PP plot for the quantiles ¢(6,)
obtained from simulations. They seem to follow the
relationship y = x, but we notice discrepancies, especially
for parameter » which is the one with larger uncertainty.
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