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We use numerical relativity simulations of binary neutron star mergers to show that high density
deconfinement phase transitions to quark matter can be probed using multimodal postmerger gravitational
wave (GW) spectroscopy. Our simulations suggest that hadron-quark phase transitions may suppress the
one-armed spiral instability in the remnant. This is manifested in an anticorrelation between the energy
carried in the l ¼ 2, m ¼ 1 GW mode and energy density gap which separates the two phases. Our work
demonstrates a potential connection between features of the postmerger GW spectrum and microphysical
features of the high-density equation of state.
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I. INTRODUCTION

Binary neutron star (BNS) mergers produce some of the
most extreme conditions in nature, compressing matter to
several times the nuclear density and to temperatures of
tens of MeV [1]. More extreme conditions are only found in
the early Universe and in the interior of black holes.
Multimessenger observations of BNS mergers can be used
to probe the properties of matter in these conditions,
providing a unique avenue to study the nonperturbative
regime of QCD [2–27].
Presently, there are large uncertainties in the fundamental

physics of strongly interacting matter at densities of a few
times nuclear saturation [28–30]. It is not even clear what the
relevant degrees of freedom are for the densities and
temperatures reached in the core of remnant massive neutron
stars (RMNS) of BNS mergers. It is possible that matter
remains composed of nucleons, together with leptons
(electrons, positrons, and muons) and photons [1,31]. The
appearance of more exotic baryons, such as hyperons, is not
excluded [5,8,32]. It is also possible for a transition to the
deconfined quark-gluon plasma phase to take place in BNS
mergers [13–15,27]. The determination of the state of matter
formed in BNS mergers is one of the most pressing scientific
objectives of multimessenger astronomy [33,34].
Previous work has shown that the presence of phase

transitions (PTs) to deconfined quarks can be revealed

by a shift of the postmerger gravitational wave (GW)
peak frequency f2 from the value expected for hadronic
equations of state (EOSs) [15,35–37]. However, such
frequency shifts can be degenerate with deviations from
universal relations due to hadronic physics or other effects
[13,26,27,35,38,39]. It has also been suggested that the
presence of a PT could be inferred from a measurement of
the threshold mass for prompt collapse of BNS systems
[24,25,40,41]. In this work, we consider 14 state-of-the-art
numerical relativity simulations to show, for the first time,
that the presence and strength of a QCD PT could be
unambiguously determined through multimodal GW spec-
troscopy of RMNS. Such measurements will be possible
with the next-generation of GW experiments like Cosmic
Explorer [42], Einstein Telescope [43], and NEMO [44].
We vary many system properties including the mass ratio,
eccentricity, and EOS model. Crucially, our simulations
employ EOS models which cover a wide range of features
for the PT, including different constructions and energy
density gaps separating the two phases. The remainder of
the paper is organized as follows. In Sec. II we discuss the
features of the EOS models we consider, with particular
focus on a quantity that measures the effective “strength” of
the PT. In Sec. III we discuss our numerical methods and
discuss the construction of the initial data for our simu-
lations. In Sec. IV we detail our main results and discuss
the use of multimodal GW spectroscopy as a tool for
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understanding the nuclear structure of the NS EOS. Finally,
we conclude in Sec. V and discuss future directions of
investigation. Throughout the work we assume geom-
etrized units, with G ¼ c ¼ 1, unless otherwise stated.

II. EQUATION OF STATE MODELS

For a clear understanding of the role that high-density
deconfinement PTs could play in the development of the
one-arm spiral instability, we consider a total of six EOS
models and run a total of ten simulations with varying PT
features. In particular, the size of the energy density gap
which separates the hadronic and quark phases is a useful
way to classify hybrid hadron-quark EOS models and
provides a qualitative measure of the “strength” of the
phase transition [45]. For example, EOS models that use
smaller energy gaps tend to produce more gradual effects
such as a small “softening” (i.e., a relative lowering of the
pressure when compared to purely hadronic EOS models)
at high densities, whereas EOS models which use larger
energy gaps can produce more drastic effects such as the
production of a disjoint third branch of compact stars,
separated from the neutron star branch by a sequence of
unstable equilibria [45]. Key relevant parameters for
describing the nature of EOS models with deconfinement
PTs are the energy density and pressure corresponding to
the onset of the transition ϵtrans and ptrans, respectively, such
that fluid elements with pressure and energy densities
above this are expected to be in the mixed or pure quark
phase. Also important is the gap in energy density which
separates the pure hadronic and pure quark phases [45]

Δϵ≡ ϵquark − ϵtrans; ð1Þ

where ϵquark is the energy density above which the EOS
describes pure quark matter. In principle, the parameters
ϵtrans, ptrans, and Δϵ are functions of the electron fraction Ye
and temperature T, but for simplicity we assume that the
values of these quantities are those for cold (T ≲ 1 MeV),
β-equilibrated matter when discussing them. We identify the
end and beginning of each phase by considering the change
in the approximate adiabatic index Γ ¼ d logp=d logðρÞ,
where p and ρ are the fluid pressure and rest mass density,
respectively, of the cold, β-equilibrium, barotropic EOS for
each EOS model considered. The region corresponding to
the PT is always unambiguously marked by discontinuities
in, or sudden changes in the slope of, the adiabatic index for
the EOS models we consider.
In Table I we list the relevant details of the EOS models

considered in our work, along with references to literature
where the models are described in further detail or used in
general relativistic hydrodynamics (GRHD) simulations. We
consider EOS models that cover several sizes of the energy
density gap, ranging from nonexistent (i.e., a purely hadronic
EOS) to significantly large (such that the aforementioned
more “drastic” effects on the sequence of stable stars is

achieved), while maintaining consistency with current astro-
physical constraints on the dense matter EOS. We consider
both phenomenological EOS models [46–50] (in the form of
piecewise polytropic approximations [51], abbreviated in
Table I as “PP”) and microphysical, finite temperature EOS
models [27,52–54] (abbreviated in Table I as “FT”). In
simulations that employ piecewise polytropic approxima-
tions to the EOS, we consider a thermal treatment via the
standard Γ-law EOS with thermal adiabatic index Γth ¼ 1.8.
While a finer sampling of the Δϵ parameter space would
provide a more extensive study, the design of new EOS
models consistent with astrophysical observations of NS
properties was outside the scope of this work. As such, we
considered as wide a range in Δϵ as possible considering
existing and available EOS models. We leave the exploration
of a wider and more finely sampled (in Δϵ) EOS model
space to future work.

III. METHODS

We consider binaries in both quasicircular orbits and
highly eccentric encounters on nearly parabolic orbits.
Initial data for the quasicircular binaries is created using
the conformal thin sandwich formalism [55] and assuming
a helical Killing vector and irrotational flows. The resulting
elliptic equations are solved using the pseudospectral code
LORENE [56–58]. Initial data for the eccentric encounters is
constructed by superimposing two isolated, boosted, neu-
tron stars (NSs), following [59]. The initial separation of
the stellar barycenters for parabolic encounters is set to
100 km, which is sufficiently large so that the level of
constraint violation in the initial data is comparable to that
of the quasicircular binaries.

TABLE I. Summary of key properties for the EOS models
considered in this work. We list the EOS model name, relevant
degrees of freedom (d.o.f.) considered (with h and q standing for
hadrons and quarks, respectively), energy density gap Δϵ in units
of 1015 g cm−3, type of EOS considered (where “PP” stands for
piecewise polytropic and “T” stands for a tabulated EOS model;
all PP and T type EOS models consider a Γ-law EOS with Γ ¼
1.8 and microphysical finite temperature thermal EOS treatment,
respectively), and literature reference with further details on the
model (Ref.). For EOS models that include a deconfinement PT
to quark matter, we also list the counterpart hadronic EOS which
is identical to the model below the threshold densities for quark
deconfinement (Count).

EOS d.o.f. Δϵ Type Ref. Counterpart

BLh h 0.0 T [27,53,54] –
DD2F h 0.0 T [27,52] –
DD2F-SF1 h-q 0.1967 T [27,52] DD2F
DD2F-SF5 h-q 0.1967 T [27,52] DD2F
BBKF1.5 h-q 0.2048 PP – DD2F
BLQ h-q 0.319 T [27,53,54] BLh
T9 h-q 0.5922 PP [46–50] DD2FPP
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We perform NS merger simulations using the WhiskyTHC

code [60–62]. WhiskyTHC makes use of the CTGamma space-
time solver [63], which is a part of the Einstein Toolkit [64].
The adaptive mesh refinement driver Carpet [65] is used to
generate the dynamical grid structure employed in the
simulations. All simulations considered here, with the
exception of two, have been performed using at least two
grid resolutions. Although there are small quantitative
differences in the GW waveforms computed at different
resolutions, the effects of PTs on the GW spectrum discussed
here are robust across all simulations. Unless otherwise
specified, we discuss results from simulations using the
standard grid resolution (SR) (with grid spacing Δx ≃
184.6 m in the finest refinement level). The grid for lower
resolution (LR) simulations is approximately 30% coarser
than that of our SR grids. The grid structure for the
simulations is the same adapted in [59] and [66]) for the
quasicircular and eccentric simulations, respectively.
Neutrino emission and reabsorption are not included for
binaries in eccentric orbits. All quasicircular binaries include
a neutrino treatment via the moment based M0 scheme [66].
Additionally, magnetic fields are not accounted for in any of
our simulations, although all simulations account for angular
momentum transport in the postmerger RMNS with the use
of a subgrid viscosity large eddy simulation model that
remains fixed across models.
The complete set of simulations considered in this work

cover a wide variety of initial conditions and modeling
assumptions. To further clarify the conditions considered
we summarize in Table II the initial conditions and
modeling assumptions that vary across the simulations.
We note that several of the variable modeling assumptions
are not expected to influence the development of the
dynamics of the RMNS on the timescales we consider,
including the use of an M0 neutrino scheme [67,68] and
the eccentricity of the orbit. The most relevant model
assumptions are the subgrid viscosity large eddy simu-
lation model and the mass ratio. Specifically, the use of a
subgrid viscosity model accounts for angular momentum
transport in the RMNS, which largely dictates the differ-
ential rotation profile crucial for the development of the
one-armed spiral instability [69]. Moreover, the use of
nonunity mass-ratio ensures an inherent perturbation in
the system that reliably seeds the one-armed spiral
instability. We emphasize that the important modeling
assumptions, including the subgrid viscosity model and
mass ratio (with the exception of a single pair of
simulations to understand the effects of mass ratio),
remain fixed across all of our simulations. We also
emphasize that our main focus is the relative growth of
the one-armed spiral instability in each pair of simulations
and that we only compare simulations with identical initial
conditions and modeling assumptions. The only differ-
ence between the pairs of simulations which we compare
is whether the EOS includes a deconfinement phase

transition or not. From this perspective, all potential
modeling differences across our simulations should in
principle not play a role in the effects we report.

IV. RESULTS

A. Development of the one-armed spiral instability
in BNS mergers

The one-armed spiral instability is a nonaxisymmetric
mode in a rapidly rotating fluid which, when saturated, leads
to the dominance of a single high-density mode in the fluid
density that is displaced from the fluid barycenter [70–73].
The one-armed spiral instability has been observed to
develop commonly in BNS merger simulations that produce
long-lived, massive postmerger remnants on timescales of
Oð10 msÞ [74–78] and in simulations of many other
astrophysical systems including supernovae [79,80], white
dwarfs [81,82], and accretion disks [82,83].
A unique feature of the one-arm spiral mode is that it can

be sustained on significantly longer timescales than other
nonaxisymmetric modes. In the context of BNS mergers,
the growth and saturation of the one-arm spiral mode may
be numerically observed by considering azimuthal decom-
positions of the rest mass density on the orbital plane.
Specifically, we consider the amplitudes of these rest mass
density decompositions as

Cm ¼
Z

W
ffiffiffi
γ

p
ρe−imϕdxdy; ð2Þ

where W is the Lorentz factor, γ is the determinant of the
three metric, ρ is the rest mass density, and ϕ ¼ tan−1ðy=xÞ
is the azimuthal angle in the center of mass frame. An
indicative dynamical probe of the growth of the one-arm

TABLE II. Summary of the modeling assumption and initial
conditions for the simulations considered in this work. We list the
EOS, relevant d.o.f. modeled in the EOS (with h and q standing
for hadrons and quarks, respectively), orbital condition imposed,
neutrino model assumed, grid resolutions considered, total
system mass, and mass ratio q ¼ M1=M2 [where M1 (M2) is
the mass of the less (more) massive star in the configuration].

EOS d.o.f. Orbit ν Resolution MðM⊙Þ q

BLh h Quasicircular M0 LR/SR 2.6 1
BLh h Quasicircular M0 SR 2.6 0.85
DD2F h Quasicircular M0 LR/SR 2.6 1
DD2F h Quasicircular M0 LR/SR 2.7 1
DD2F h Eccentric – LR/SR 2.7 1
DD2F-SF1 h-q Quasicircular M0 LR/SR 2.6 1
DD2F-SF1 h-q Quasicircular M0 LR/SR 2.7 1
DD2F-SF5 h-q Eccentric – LR/SR 2.7 1
BBKF1.5 h-q Eccentric – LR/SR 2.7 1
BLQ h-q Quasicircular M0 LR/SR 2.6 1
BLQ h-q Quasicircular M0 SR 2.6 0.85
T9 h-q Eccentric – LR/SR 2.7 1
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spiral instability is the dominance of the C1 mode over the
typically initially dominant C2 mode. On dynamical time-
scales the one-arm instability leads to the growth of the C1

density mode, while the C2 mode simultaneously decays.
Each fluid density mode that arises during the evolution of

a massive NS remnant is associated with GW emission at a
characteristic frequency stemming from its respective pattern
speed. For example, the growth of the C1 mode, which has
half the pattern frequency as the C2 mode, is associated with
GW emission at half the characteristic frequency of the
initially dominantC2 mode. As such, the development of the
one-armed spiral instability in astrophysical systems may be
observed by considering multimodal GW spectroscopy [77].
For the simulations considered in this work we extract
multimodal GW information within the Newman-Penrose
formalism. We compute the coefficients of s ¼ −2 spin-
weighted sphericalharmonicdecompositionsof theNewman-
Penrose scalar Ψ4, which we label as Ψl;m

4 . The one-armed
spiral instability can therefore be observed in the GW
spectrum extracted from our simulations as a growth in the
power and amplitude of the l ¼ 2, m ¼ 1 GW mode
(i.e., Ψ2;1

4 ) and simultaneous decay of the dominant l ¼ 2,
m ¼ 2 GW mode (i.e., Ψ2;2

4 ).

B. The effect of deconfinement phase transitions on the
one-armed spiral instability

Our simulations show that high-density deconfinement
PTs may act to suppress the one-armed spiral instability.
Specifically, hadron-quark PTs lead to a relative suppres-
sion of the instability when compared to analogous cases
with purely hadronic degrees of freedom. We refer to this
effect simply as a “relative suppression” throughout the

manuscript for the sake of brevity. There are several
potential mechanisms via which the instability may be
relatively suppressed. For example, it has been shown that
the physical extent of the remnant plays an important role in
the development of the instability, with larger remnants
being more conducive to the development of the instability
on shorter timescales [77,78,84,85]. The significant soft-
ening at high densities introduced by the PT results in more
compact postmerger remnants (relative to scenarios that
consider only hadronic degrees of freedom). As such, the
more compact hybrid star remnants may see a weaker
development of the one-armed spiral instability when
compared to neutron star remnants.
In Fig. 1 we depict the density mode decomposition for

two representative simulations which begin from the same
initial conditions. The left and right panel of Fig. 1 depict
the dominant density modes for a simulation employing a
hadronic (DD2F) and hadron-quark (DD2F-SF5) EOS,
respectively. In the left panel of Fig. 1 we see the clear
growth and eventual dominance of the C1 mode on
dynamical timescales, which is indicative of the develop-
ment of the one-armed spiral instability. On the other hand,
the right panel of Fig. 1 clearly shows that the C1 mode
never dominates the fluid evolution, suggesting a suppres-
sion of that density mode relative to the analogous hadronic
case depicted in the left panel.
In the left panel of Fig. 2 we show the energy carried by

the l ¼ 2; m ¼ 1 GW mode as a function of time for
simulations employing the DD2F (hadronic) and DD2F-
SF5 (hybrid hadron-quark) EOSs. We find that the energy
carried in the l ¼ 2, m ¼ 1 mode of the GWs is signifi-
cantly smaller in the simulation employing a hybrid
hadron-quark EOS, indicating that the one-armed spiral

FIG. 1. Left panel: Density mode decomposition following Eq. (2) for a simulation which employs a purely hadronic EOS (DD2F).
We depict the dominant density modes (C2 and C1) scaled by the C0 mode to show the relative strength of each fluid pattern. Right
panel: Same as the left panel but for a simulation which employs an EOS with a hadron-quark PT (DD2F-SF5, which is identical to the
hadronic DD2F model below the threshold densities for the phase transition).
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instability is relatively suppressed in scenarios with decon-
finement PTs at densities relevant for BNS mergers. We
emphasize that in Fig. 1 and in the left panel of Fig. 2 we
showcase results for a set of EOS models which are
identical below the threshold for a PT, and as such the
simulations have identical initial conditions. We find that
this relative suppression exists for all of our simulations,
regardless of initial condition, modeling assumptions as
listed in Table II, or pair of EOS models considered.
In the right panel of Fig. 2, we show the time-averaged

energy emitted by the l ¼ 2; m ¼ 1 GW mode hE2;1
GWi as a

function of the energy density gap Δϵ for all of our
simulations. For the results depicted in the right panel of
Fig. 2, we time average over a window of Δt ≈ 40 ms after
the merger except for cases that lead to a remnant collapse
on shorter timescales (in such cases, we time average until
the collapse of the NS remnant). To account for differences
and uncertainties in the hadronic sector of the NS EOS, we
normalize all data by that corresponding to a complemen-
tary simulation that uses identical initial data and modeling
assumptions but employs a purely hadronic EOS having the
same low-density behavior below the PT threshold as the
hybrid hadron-quark EOS. As such, we depict the point
corresponding to all hadronic EOS simulations with a black
square at Δϵ ¼ 0. Each simulation is time averaged to the
same extent as its complementary hadronic simulation. The
scatter of data suggest a potential anticorrelation between
the energy carried in the l ¼ 2; m ¼ 1 GW mode and the
size of the energy density gap, although we note significant
variability in the trend. Our findings suggest that as the size
of the energy density gap (and thereby the qualitative
“strength” of the PT) increases, GWemission in the l ¼ 2,
m ¼ 1 mode decreases; the simulation employing the

strongest PT leads to a relative suppression in hE2;1
GWi of

approximately an order of magnitude.
Note that in Fig. 2we also show the relative suppressionof

theGWenergy in the l ¼ 2,m ¼ 1mode, but for the case of
a system with mass ratio q ¼ 0.85, marked with a black star
marker. The datum for the pair of unequal mass ratio
simulations shown in Fig. 2 demonstrates that there is
significant agreement in the relative suppression of the
one-armed spiral instability between the unequal mass ratio
and equal mass ratio cases at the same value of Δϵ.
Specifically, we find that there is only a 3% difference in
the relative growth of E2;1

GW between the unequal and equal
mass ratio cases of the sameΔϵ. In principle, the one-armed
spiral instability is expected to be seeded at a stronger level
for systems with q ≠ 1. However, in this work we consider
the effect of deconfinement on the development of the one-
armed spiral instability PTs, relative to cases with identical
initial conditions and modeling assumptions that employ
purely hadronic EOSs. As such, system properties such as
the mass ratio and other modeling assumptions are expected
to cancel out between comparison cases; the only difference
between the simulationswhichwe compare iswhether or not
the EOS contains a deconfinement PT to quark matter.
As the present work is the first ever to report the potential

relative suppression of the one-armed spiral instability due
to deconfinement PTs, a significant amount of work
remains to be done to understand whether the potential
anticorrelation suggested by the right panel of Fig. 2 is
robust, including the consideration of EOS models
that more finely sample the parameter space of Δϵ and a
further investigation of the effects of system properties
such as the mass ratio. We leave such investigations to
future work.

FIG. 2. Left panel: Energy carried by GWs in the l ¼ 2, m ¼ 1 mode as a function of time. The development of the one-armed spiral
instability can be observed in the purely hadronic simulation, as the energy in the l ¼ 2; m ¼ 1 GW mode continues to grow, but is
suppressed in the hadron-quark simulation. Right panel: Time-averaged energy emitted by GWs in the l ¼ 2,m ¼ 1 mode, normalized
by the same quantity for the corresponding hadronic EOS, as a function of the energy density gap separating the hadronic and quark
phases. We depict results for quasicircular and eccentric mergers with pink triangles and green circles, respectively. We find that the
energy emitted by the l ¼ 2; m ¼ 1 GW mode decreases by up to approximately an order of magnitude for larger energy density gaps.
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V. DISCUSSION AND CONCLUSION

The characteristic frequency associatedwith peak emission
in the l ¼ 2; m ¼ 1 GW mode has half the value of that
associated with the l ¼ 2, m ¼ 2 mode (i.e., f2;1peak ¼
f2;2peak=2). Observationally, a GW signal would contain infor-
mation at all contributing frequencies.However, thedominant
GW emission associated with binary coalescence is always
expected to be from the l ¼ 2,m ¼ 2 contribution, such that
fpeak ¼ f2;2peak. Therefore, a potential observational signature
of the one-armed spiral instability is the growth in power of an
incomingGWsignal at a frequency that is half of thedominant
frequency; if it develops in the postmerger environment, the
one-armed spiral instability will continuously power the
emission of GWs at fpeak=2, while emission in the dominant
fpeak decays in time [86].
In Fig. 3 we show the postmerger GW amplitude

spectrum density (ASD) for a symmetric, edge-on binary
situated at a distance of 40 Mpc, which is consistent with
the luminosity distance observed for GW170817 [87]. The
edge-on configuration is the most optimal for the detection
of an m ¼ 1 mode. As expected, we see a relative
suppression of power in the m ¼ 1 mode (with respect
to the complementary hadronic simulation) with the onset
of a deconfinement PT. In this configuration, the appear-
ance of quarks in the post-merger remnant results in a
relative suppression of the postmerger signal-to-noise ratio
(SNR) of the ðl ¼ 2; m ¼ 1Þ mode by a factor of 2, from
2.14 in the hadronic case to 1.08 in the hadron-quark case
in the 40 km Cosmic Explorer detector [42]. The GWASD
peak of the l ¼ 2,m ¼ 1mode (between 1–2 kHz) and the

postmerger ASD peak of the l ¼ 2, m ¼ 2 mode (between
2–4 kHz), lie, respectively, in the most sensitive regions of
the 40 km and the 20 km postmerger optimized Cosmic
Explorer configurations. Our analysis recommends an
increase in detector sensitivities in the high-frequency
regimes (see also [88]) for best possible constraints on
deconfinement PTs in BNS mergers, within the context of
multimodal GW spectroscopy. In cases where the one-
armed spiral instability develops, all binary inclinations
except directly face on will produce GWs with a l ¼ 2,
m ¼ 1 component. The one-armed spiral instability leads to
a unique bimodal GW spectrum where the two most
dominant peaks correspond exactly to fpeak and fpeak=2.
As such, a superposition of all signal modes may still in
principle be used to extract the relative strength of the one-
armed spiral instability. For instance, the SNR of a
postmerger GW signal can be measured in a range of
frequencies up to the inferred fpeak; in cases where the one-
armed spiral instability develops the dominant contribution
to the signal in this range of frequencies is expected to be
from the l ¼ 2, m ¼ 1 mode for all inclinations except
directly face on. We note that the only way to completely
remove the l ¼ 2, m ¼ 1 mode from the signal is in the
highly specific scenario of an equal mass, directly face on
binary. Given reasonable expectations for distributions in
the inclination and mass ratio of BNS systems, we may
typically expect a contribution from the l ¼ 2, m ¼ 1
mode. However, deconfinement PTs may act to suppress
the instability. In other words, except for the highly specific
scenario of a face-on q ¼ 1 binary, the lack of significant
SNR over fpeak=2 may be used to constrain the high-density

FIG. 3. Multimodal GWamplitude spectrum computed for symmetric binaries of total mass M ¼ 2.6M⊙ in an edge-on configuration.
Also shown are the noise sensitivity curves for advanced LIGO (aLIGO), Einstein Telescope (ET), the 20 km postmerger-optimized
configuration for the Cosmic Explorer (CE20), and the 40 km configuration for Cosmic Explorer (CE40). A suppression in the
amplitude spectral density as a result of the deconfinement PT may be detectable with the third generation detectors and most cleanly
with CE40.

ESPINO, PRAKASH, RADICE, and LOGOTETA PHYS. REV. D 109, 123009 (2024)

123009-6



EOS as highlighted by our work. For further detail on the
detectability of the one-armed spiral instability via GW
spectroscopy, we refer the reader to [77].
In [15] it was established that quasiuniversal relations in

the value of fpeak may be established for hadronic EOS
models, and that EOS models which include a deconfine-
ment PT unambiguously deviate from such universal
relations (although recent work suggests that EOS features
other than phase transitions may be responsible for devia-
tions away from these quasiuniversal relations [89]). As it is
not presently understood whether similar relations exist in a
quantity that measures the strength of the one-armed spiral
instability (such as hE2;1

GWi), we cannot establish whether the
hadron-quark EOS models considered in this work deviate
from such hypothetical quasiuniversal relations. We may
instead consider the effect showcased in this work as an
additional tool to infer the presence and nature of PTs in
BNS mergers. For example, when considered in combina-
tion with other known effects of PTs on BNS merger
observables such as fpeak [15] and the associated kilonova
(KN) brightness [27], the measurement of SNRðfpeak=2Þ
(which is directly proportional to hE2;1

GWi as considered in
our work) may allow for significant constraints on proper-
ties of the deconfinement PT. In principle the effects we
discuss in this paper may be conflated with the effects of
relatively soft EOS models [77] or potentially other effects
such as nonconvexity in the EOS [89]. In order to state
definitively whether deconfinement PTs have a comparable
effect on the one-armed spiral instability as relatively soft
EOSs, we would need to consider hadronic EOS models
over a significantly wider range of stiffness. Such a study
would help establish whether quasiuniversal relations exist
in hE2;1

GWi or comparable metrics for the strength of the one-
armed spiral instability in the case of hadronic EOSs, which
we could then use as a standard against which to compare
the effects presented in our work. We leave the inves-
tigation of quasiuniversal relations for the strength of the
one-armed spiral instability to future work.
In this work we have highlighted, for the first time, that

high-density deconfinement PTs may act to relatively
suppress the one-armed spiral instability. We find an
anticorrelation between the energy carried in the l ¼ 2;
m ¼ 1 GW mode and the size of the energy density
gap that qualitatively separates the hadronic and quark
phases. Our findings reveal a potential deep connection
between observable multimodal GW emission and the
microphysical description of matter in the postmerger
environment. We expect the one-armed spiral instability
to be detectable at distances of 40 Mpc using future
generation detectors [77]. If evidence of a strong one-
armed spiral mode can be inferred from GW observations
of the post-BNS merger environment, our findings suggest
that a strong high-density deconfinement PTat the densities
relevant to BNS mergers would be disfavored. On the other
hand, if evidence for the one-armed spiral instability is not
found for close-by BNS mergers, this could also point to

the possibility of a deconfinement PT taking place at
densities relevant to BNS mergers.
Similar studies considering the effect of PTs on BNS

GWobservables have not observed the relative suppression
reflected in our simulations. For example, the Appendix of
[35] considers a single comparison between a simulation
with hadronic degrees of freedom and a hadron-quark PT.
There, they show a potential relative amplification of the
GW amplitude in the l ¼ 2, m ¼ 1 mode when allowing
for a hadron-quark PT. However, that single comparison
scenario is markedly different from those considered in this
work. Specifically, in [35] the PT only occurs t ¼ 3–4 ms
after the merger, whereas the PT occurs within t ≈ 0.5 ms
for the simulations in this work. As such, the early
development of the instability may not be impacted by
the PT in the scenario considered in [35]. Moreover, we
note that in our study we consider the time averaged GW
energy carried in the l ¼ 2, m ¼ 1 mode. Without compar-
ing the same quantities used in our study to understand the
development of the one-armed spiral, it is impossible to say
whether the single comparison considered in [35] is
contrary to the trend depicted in Fig. 2. Finally, we
emphasize that [35] considers coarser numerical grids than
our study for the single relevant comparison (a roughly
30% coarser numerical grid when compared to the standard
resolution simulations in our work, which is consistent with
our LR simulations), and does not consider an exploration
of relevant effects as was done in our study (e.g., the size of
Δϵ and different phase constructions). Importantly, the
authors of [35] do not establish that their simulations, in
the context of the one armed spiral instability, are in the
convergent regime, as the amplification of the l ¼ 2,m ¼ 1
after a hadron-quark PToccurs in the remnant reported in that
work is not observed using higher resolution simulations. As
such, it remains unclearwhether the potential deviationof that
result from the trend established in Fig. 2 is not due to
relatively higher numerical error in [35]. In the Appendix we
discuss the complexity of understanding fluid instabilities in
BNS mergers using LR grids.
Binary neutron star mergers with nonunity mass ratios

are in principle more generic and common than the equal
mass ratio systems considered in this work. Moreover, the
inherent asymmetry in unequal mass ratio mergers may
provide a reliable mechanism for efficiently seeding the
one-armed spiral instability after the merger and has been
shown to result in a stronger, faster development of the
instability [78]. Although we present only a single case
study for cases with unequal mass ratios in the present
work, we find support for our main claim (that high-density
deconfinement PTs may suppress the development of the
one-armed spiral instability when compared to analogous
cases with purely hadronic degrees of freedom) there as
well. Due to the scope of the present work and the increased
parameter space when considering unequal mass ratio
cases, we find that a more systematic consideration of
unequal mass ratio cases than can be presented in here is
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warranted. As such, we leave a full investigation of the
effects of unequal mass ratio to future studies. We point out
that other effects relevant in the postmerger environment—
such as the presence of strong magnetic fields [90] and
additional degrees of freedom that can cause a sudden
softening of the EOS—may affect the development of the
one-armed spiral instability. However, the relevant time-
scales and extent to which the aforementioned phenomena
can affect the development of nonaxisymmetric instabilities
or the GW spectrum remains uncertain [77,91], and may
not impact our conclusions [92,93]. The effects discussed
in the present work arise on dynamical timescales
∼Oð10 msÞ and may be the dominant mechanism for
the relative suppression of the one-armed spiral instability.
Additionally, although we find a trend in the decrease of
energy carried by the l ¼ 2; m ¼ 1 GW mode for larger
values of Δϵ, additional studies will help establish a more
robust trend and provide an understanding of the potential
spread in the trend. In particular, future lines of inves-
tigation will include the following: (1) considering the
combined effects of the mass ratio and high-density PTs on
the development of the one-armed spiral instability to a
greater extent than could be done in this work; (2) consid-
ering the effects of accurate neutrino transport on high-
density deconfinement PTs, as neutrinos may modify the
composition of matter and thereby potentially affect the
onset of the PT; (3) employing EOS models at systemati-
cally increasing values of Δϵ while holding the hadronic
region of the EOS fixed, as a limitation of the present work
is the assumption that the l ¼ 2; m ¼ 1 GW mode is
perfectly known in the case of hadronic EOSs; and
(4) investigating the effects discussed in this work in
scenarios with a crossover to quark matter, as our present
work only considers EOS models with phase transitions.
We leave such studies to future work.
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APPENDIX: ON THE EFFECTS
OF GRID RESOLUTION

Our main diagnostic for monitoring the development of
the one-armed spiral instability is the energy carried in the
l ¼ 2, m ¼ 1 mode of the GWs, which we further discuss

in Sec. IV B. We find that for most cases in our study, the
relative suppression of the one armed spiral instability is
observed at lower grid resolutions. However, there are
notable exceptions for two pairs of simulations at lower
resolutions. Specifically, we find that the LR versions for
two of our simulations that employ high-density deconfine-
ment phase transitions do not show a relative suppression of
hE2;1

GWi, but instead a relative growth with respect to the
analogous simulations employing a purely hadronic EOS.
These cases seemingly contradict the discussion in the main
text and are more consistent with the single case study
showcased in [35]. However, we note that grid effects are
crucial in determining the growth and saturation of the one-
armed spiral instability. Specifically, the one-armed spiral
instability may be seeded in a variable nature in the context
of numerical studies. Unless it is explicitly excited as a
nonaxisymmetric perturbation of a known amplitude (e.g.,
as a fixed-amplitude perturbation in the rest mass density),
the one-armed spiral instability arises numerically from
error at the level of floating-point precision [94]. As such,
small differences in the early postmerger evolution of the
fluid can result in the instability being seeded at different
strengths; this is potentially affected most strongly by the
grid resolution. We do not explicitly seed the one-armed
spiral instability using fluid perturbations in this work and,
as a result, simulations that either run on different machines
or use different grid resolutions libraries may result in
different strengths for the initial instability seed.
To discuss the relative strength of the one-armed spiral

instabilities across simulations which employ different grid
structures, we considerE2;1

GW normalized to its value at a time
shortly after the merger; we depict normalized quantities
because of the variable nature in which the one-armed spiral
instability is seeded in the immediate postmerger environ-
ment in the context of numerical studies. In Fig. 4 we show
the energy in thel ¼ 2; m ¼ 1 GWmodeE2;1

GW as a function
of time for a set of low resolution simulations. The left panel
of Fig. 4 shows E2;1

GW as extracted from our simulations and
appears to show that the simulation employing a hadron-
quark EOS produces a larger energy in the l ¼ 2; m ¼
1 GW mode. However, it is clear that the energy at a time
shortly after the merger E2;1

GWðtmerger þ τϵÞ (where τϵ is a
small additive time) is larger for the hadron-quark simu-
lation, suggesting that the one-armed spiral instability was
seeded at a larger amplitude in that case. In order to account
for the different levels at which the one-armed spiral
instability is seeded in the immediate postmerger environ-
ment, we normalize the quantities used to diagnose the
relative strength of the instability at a time shortly after the
merger tnorm ¼ tmer þ τϵ. We find that setting τϵ ¼ 0.5 ms
results in all simulations in our work having roughly equal
values of E2;1

GW in the few ms immediately following merger.
We find that setting τϵ between 0.1 and 1 ms ensures
that all simulations have approximate equality in the level
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atwhich theone-armedspiral instability is seeded, regardless
of grid resolution or computational hardware used.
We emphasize that our results at higher resolution are
observed without the aforementioned normalization, but
considering the normalization allows us to more suitably
compare the development of the one-armed spiral instability
across different grid resolutions. In Fig. 5 we show the
time-averaged GWenergy carried in the l ¼ 2,m ¼ 1mode
as a function of Δϵ for all LR simulations in our work. We
find that without accounting for disparate levels of the

instability seed (left panel of Fig. 5), our data does not closely
follow the potential trend established by the SR simulations
in Fig. 2. However, normalizing all LR simulation data
at a time consistent with Fig. 4 results in a much
closer scatter of data between the LR and SR sets (right
panel of Fig. 5). We leave the investigation of grid
resolution effects, as well as the consideration of even higher
resolution grids than could be included in this study, to
future work.

FIG. 4. Left panel: Energy in the l ¼ 2; m ¼ 1 GW mode as a function of time for simulations employing a hadronic (DD2F) and
hadron-quark (BBKF1.5) EOS; the simulations use identical initial conditions and are run with a grid resolution of Δx ¼ 369.2 m in the
finest grid. These results showcase that the one-armed spiral instability may be seeded at different levels in the postmerger environment
for different simulations. Right panel: Same quantity as the left panel, but normalized to the value at a time shortly after merger,
tnorm ¼ tmerger þ 0.5 ms. Normalizing at this time accounts for the one-armed spiral instability being seeded at disparate levels across
simulations.

FIG. 5. Left panel: Time-averaged energy emitted by GWs in the l ¼ 2, m ¼ 1 mode, normalized by the same quantity for the
complementary hadronic EOS, as a function of the energy density gap separating the hadronic and quark phases. We show results for the
LR simulations in our work. Right panel: Same as the left panel, but normalizing all data at a time shortly after merger, tnorm ¼
tmerger þ 0.5 ms as consistent with Fig. 4.
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