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Schemes for describing the light quark mass dependence of the nucleon mass calculated in lattice QCD
are compared. The three schemes in consideration include a fully relativistic and Lorentz covariant scheme,
one that is fully relativistic but not Lorentz covariant, and a semirelativistic scheme utilizing the heavy
baryon approximation. Calculations of observables involving pseudoscalar meson loop diagrams generate
nonanalytic terms proportional to square roots and logarithms of the quark mass. The three schemes all
yield the correct model-independent leading and next-to-leading nonanalytic terms of the chiral expansion
of the baryon mass. Results for the masses of the other members of the octet are also presented. Here, low-
energy coefficients of the analytic terms of the expansion for the nucleon and hyperons are constrained by
lattice QCD results and are demonstrated to be independent of the renormalization scheme used. The
differences in the leading coefficient of the chiral expansions are found to be consistent with strange quark
counting. Using the schemes examined herein, we report results for the pion-nucleon sigma commutator
based upon recent lattice results from the CLS Collaboration. We find o,y = 51.7 £3.2 + 1.4 MeV,
where the uncertainties are statistical and systematic, respectively.
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I. INTRODUCTION

The existence of lattice QCD calculations as a function
of light quark mass offers important opportunities for
gaining insight into hadron structure. There have been
many studies of the dependence of nucleon properties on
the masses of the light quarks, from its mass [1-22] to its
electromagnetic [23-32] and axial form factors [33-37],
the properties of its excited states [38—66], and most
recently, its generalized parton distributions [67-70].
Here we focus on the nucleon mass, and we report results
for the other members of the octet. We also present a new
result for the pion-nucleon light quark sigma commutator,
0.y, based upon an analysis of the most recent CLS
data [2].

In studying the nucleon mass, My, as a function of quark
mass, chiral symmetry provides important guidance. First,
we know that at leading order m?2 o m,, where this appears
to be a good approximation for values of m, as large as
0.8 GeV. For this reason, we will show baryon masses as
functions of m2. Second, terms involving odd powers of m,,
or In m,, are nonanalytic in the quark mass, with the leading
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and next-to-leading nonanalytic terms (LNA and NLNA)
being proportional to m> and m? In m,, respectively. These
terms arise from pion loops and have coefficients which
are, in principle, model independent.

Unfortunately, the convergence properties of an expan-
sion of M in powers of m2 plus the nonanalytic terms are
poor. Indeed, the series is badly divergent outside the so-
called power counting regime (PCR), which corresponds
roughly to m, below 0.2 to 0.3 GeV. Attempts to fit lattice
QCD results over a wider range of m, have often led to
values of the coefficients of the nonanalytic terms being
adjusted to values which are inconsistent with the model-
independent constraints of chiral symmetry.

Here, we have two key aims. First, we examine attempts
to describe the nucleon mass from lattice QCD over a wide
range of pion mass beyond the PCR. Of particular interest
is an examination of relativistic effects in the effective field
theory. We compare two relativistic formulations with the
heavy baryon approximation to discern these effects.
Finite-range regularization (FRR) is used to resum the
power-series expansion and address larger pion masses in a
careful manner, while preserving the leading and next-to-
leading nonanalytic behavior of chiral perturbation theory
exactly.

Three schemes are considered, including a fully relativ-
istic and Lorentz covariant scheme which uses a four-
dimensional regulator; a fully relativistic scheme, similar to
the covariant scheme, but using a three-dimensional
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regulator; and the semirelativistic heavy-baryon (HB)
approximation, corresponding to the limit of infinitely
heavy baryons but including relativistic meson energies
and using the three-dimensional regulator.

We find that the results obtained with these different
schemes yield accurate and mutually compatible renormal-
ized residual series coefficients (RSCs) of the lower powers
of m2. This is in contrast to claims in the literature [71].

Second, having established the efficacy of the various
formulations considered, we use them to tackle the highly
topical question of the pion-nucleon sigma commutator.

The structure of this paper is as follows: In Sec. II, we
outline the theoretical framework, including a discussion of
the nonanalytic behavior required by chiral symmetry, as
well as the finite-volume corrections to the lattice QCD
results. The degree of compatibility of the various schemes
considered is investigated in Sec. III over a large range of
m2 using data generated by the PACS-CS Collaboration
[1]. Results are also presented for the other members of the
nucleon octet. In Sec. IV, we analyze the latest lattice QCD
results from the CLS Collaboration [2] and compare the
extracted low-energy constants (LECs) with contemporary
analyses. This naturally leads to a study of the pion-nucleon
sigma commutator, o,y. In Secs. V and VI, we summarize
our key findings and make some concluding remarks.

II. THEORETICAL FRAMEWORK

A. Chiral effective field theory

We present a chiral perturbation theory (yPT)-inspired
model which gives the same leading and next-to-leading
model-independent terms in the chiral expansion. The
effective SU(3), x SU(3), chiral Lagrangian (density) is
given by

£:£¢+‘C¢B+£¢T+‘C¢BT’ (1)
where L consists of the free meson Lagrangian Ly,
the meson-octet Lagrangian Lz, the meson-decuplet
Lagrangian L7, and the meson-octet-decuplet Lagrangian
L,pr- Explicitly, at leading order, they are [71-74]

1 o 1o + +
Ly = TrAD,UDU)] + = Tr U™ + Uy,
_ D .
Ly = THB(D — My)B) = S Tr(Byys{u,. BY]
F_ -
- ETr[By”yS [l/lﬂ, BH ’
Lyr = (T,)H(ipD, = Myp™)(T, )%,

C..m .
Lypr = =5 [74(T,) """ (u,)" (B)™ + Heel, (2)

where f, is the pseudoscalar decay constant, D and F are
the meson-octet coupling constants, C is the meson-octet-

decuplet constant, and M 3 and M ; are the octet and decuplet
baryon masses, respectively. In the numerical calculations,
we use the values f, = 93 MeV, D = 0.86, and F = 0.41,
leading to g4 =D+ F=1.27 and C=(6/5)g,. Additionally,
we have used the definitions y** =3 [y*,y"] = —ic"” and
=3yt = e Pygys.

We also include the next-to-leading-order (NLO) terms,
corresponding to the Lagrangian [75]

L3 = bTr[y,|Tx[BB] + bpTr[B{x,. B}]
8
+bpTe[Bly, B + 36,00+ (3)
i=1

where b; are the NLO LECs of yPT. We refer the readers to
Appendix A for explicit expressions of the fields and the
covariant derivatives of the Lagrangian.

Relevant to the later sections, we also present the NLO
Lagrangian in the SU(2) limit [76-78]:

553\)/ = o\ Tr[y JPY

CH - "
— MTT[MMMU] (lPD”D ¥ -+ HC)

C3 =
+ 3Tr[u”uﬂ]‘P‘P +ee (4)

Here, ¢; are the SU(2) dimension-two LECs, ¥ is the
nucleon doublet, and u (equivalently U) becomes the 2 x 2
unimodular unitary matrix with only pions.

B. Chiral expansion using FRR

Our focus here is on the analysis of lattice QCD data over
a wide range of m2. As the naive series expansion is badly
divergent for m, beyond 0.2 to 0.3 GeV, we explore the
application of FRR, which aims to resum the series in a
physically motivated way [4,5].

Historically, the FRR approach has had a number of
successes, such as the accurate prediction of the strange
quark contribution to the magnetic moment [24] and charge
radius [25] of the proton, some years before experimental
measurements confirmed the predictions [79-81]. It also
led to the prediction of the excess of d over & quarks in the
proton a decade before experimental confirmation [82].
Here, we are particularly interested in examining the
historical criticism of the use of the heavy baryon approxi-
mation in early analyses of lattice QCD results.

In the analysis of the mass of the baryon as a function
of meson mass using FRR, the mass of a baryon, B, is
written as

Mg =ay+ Zaz,(/)mﬁs + 04.(/)”12 +Zgpy + Zpraa:  (5)
&8

where B’ denotes the intermediate octet and decuplet
baryons, and a;q are the unrenormalized RSCs, which
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after renormalization relate to the LECs of the yPT
expansion. Details of the renormalization procedure are
presented later in this section.

The self-energy contributions, X, are defined to be the
on-shell matrix elements of the transition operator : that
is,

1

£ =33 i(p.s)Su(p.s), (©

N

where u is the Dirac spinor, normalized as #(p, s)u(p, s') =
Oy, and the sum is taken over the spin of the external
baryon state.

lustrated in Fig. 1, we consider all possible octet-octet-
meson, octet-decuplet-meson, and tadpole transitions. Note
that the first two diagrams are generated by the leading-
order Lagrangian, while the tadpole diagram is solely
generated by the NLO Lagrangian. All meson loops are
included, and the strange quark mass is fixed at its physical
value. In this way, we do not expand about the SU(3) chiral
limit, but rather the broken SU(3) limit, with m, = my,
(where m,, and m, represent the light quark masses) and the
strange quark mass fixed at its physical value. We refer to
this as the light flavor chiral limit.

In principle, the computation of Eq. (5) is circular within
the model, as My itself appears in the Lagrangian. This
means that we require prior knowledge of My in the
recursive calculation. At leading-order approximation, one
typically sets M to its physical value with no meson mass
dependence. For a more sophisticated treatment, one could
take some parametrization of Mp in terms of the pion mass
from lattice QCD studies. In a preliminary analysis, we
computed the renormalized RSCs for the nucleon and the

————

————

B A4 B

FIG. 1. Contributions to the octet baryon self-energies at O( p*)
from the yEFT Lagrangian. These include the octet-meson,
decuplet-meson, and tadpole terms. Note that there are additional
diagrams that contribute to the tree-level correction at O(p*) in
xPT; they are implicitly incorporated in our model through the
series expansion of the baryon mass.

pion-nucleon sigma commutator, and we found that there is
no significant difference between the results fixing M and
using some parametrization of M. In light of this, we fix
Mg in the Lagrangian density to their physical values for
computational convenience.

The self-energy contributions from the relevant one-loop
diagrams, for internal meson momentum k and external
baryon momentum p, are

N (Capy 2/ d*k (p—k+ Mp) 1
Zpps = k kys—,
BB'¢ l( f¢ ) (27[)4 75 Dy & D¢

(7)

o (Cerg\? [ d'k (P—k+Mp)A,,(p—k)

S Dy
1
X Ok, —, (8)
D(/)
N .Chptad / d'k 1
> tad — ! - ~ (9)
Bt 2 J (n)*D,

where Cpp, and Cpy g are the octet-octet/decuplet-
meson and octet-tadpole coupling constants, respectively
(given in Appendix B); O = ¢ — y#y¥; the spin-3/2
projector is A, (q) = Gup = 37u¥p = y”q:%p/;l:,pq# - 1(1]12—2%;

o
Dy = ¢*> — m% + ie, with g and my being the momentum
and mass of the hadron, respectively.

We commence with a consideration of a fully relativistic
and Lorentz covariant formalism. In this case, we introduce
a four-dimensional dipole form factor to regulate the
divergent integrals:

and

)= () (10

where A is a cutoff scale. Correspondingly, in an alternate
relativistic formalism (discussed in further detail in the next
section) we use a three-dimensional dipole regulator,

wnl®) = (2" ()

24 A2

This three-dimensional regulator is also used in the heavy
baryon case. Closed expressions for the self-energies with
these regulators are presented in Appendix C.

The essential feature of the FRR approach is that it
guarantees the correct, model-independent LNA and
NLNA behavior of the nucleon mass as a function of
m2. Of course, it also generates a nonanalytic term of order
m>, which does depend on the regulator mass, A. However,
the choice A €0.8-1.0 GeV, motivated by considerations
of the size of the nucleon [3,83—-85] and analyses examin-
ing the renormalization flow of the LECs of the chiral
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expansion [13,29,86], is in reasonable agreement with the
higher-order two-loop calculation of McGovern and Birse
[87], which included an estimate of the effect of nucleon
size on the nucleon self-energy within chiral perturbation
theory.

The presence of multiple contact interactions in the
formal expansion of the chiral Lagrangian density, in
Eq. (3), with coefficients typically adjusted to describe
pion-nucleon scattering [88] up to 70 MeV above threshold,
leads to tadpole diagrams which generate NLNA terms
involving m% In m,. In the limit where the pion mass
is much less than A,y (the A — N mass difference),
m, <K Ay, the self-energy term Xy,, generates exactly
this nonanalytic behavior. The coefficient of the NLNA
term arising from Xy,, in this limit is approximately
—3.1 GeV~!, which lies within the range for the NLNA
coefficient of the tadpole quoted by Frink and Meissner
[89]: namely, —8.4:%;% GeV~!. However, in the physically
more relevant case, where m, is comparable to, or larger
than, A, the nonanalytic behavior involves a square root
branch point at m, = A.

As the tadpole terms generated by the contact inter-
actions will have overlap with a small-m, expansion of the
Ar self-energy term, we examine the effect of including the
explicit tadpole contribution of Eq. (9), with a coefficient in
the range suggested in Ref. [89], but corrected for the Az
contribution.

In any regularization scheme, the expressions of observ-
ables should preserve the symmetries of the underlying
theory. Building from Ref. [90], it can be shown that the
regulators presented above can be generated by an alternate
chirally invariant Lagrangian. The alternate Lagrangian
includes additional terms compared to the chiral effective
theory (yEFT) Lagrangian, which modifies the hadron
propagators to incorporate the regulator. Renormalization
can be carried out using the extended on-mass-shell (EOMS)
scheme [78], for which one systematically removes the chiral-
symmetry- and power-counting-violating terms. While we do
not strictly follow the EOMS renormalization, our renorm-
alization scheme is tantamount to that of the EOMS scheme
up to the desired order in the chiral expansion.

In this investigation, we make use of lattice QCD data to
determine the renormalized RSCs of the chiral expansion.
For the lattice data that we consider, the simulations are
carried out in Ny =2 + 1 flavors. Given that the strange
quark mass is fixed (typically at the physical point), this
serves as a good justification to consider the baryon mass
expansion only in terms of the light-quark mass expressed
by m2. That is, using the Gell-Mann-Oakes-Renner relation
with the strange quark mass fixed, at leading order, the
squared kaon and eta masses can be written as a function of
varying pion mass as

1 1
2 "2 2 2 12
Mk 2 Ma + <mK‘phys 2 m”’phys) ’ ( )

1 4 1
2 202 _ 2 2 13
i 3m”+3(m’<‘phys 2’"”‘phys>’ (13)

where “phys” denotes the physical (experimental) value.
As a result, the RSCs associated with each meson a; 4 in
Eq. (5) are absorbed into one a; at each order of m2.
Given this background, we can now explicitly write the
renormalized chiral expansion of the baryon mass as

Mg = CB + CBm2 + aBmi

+ > (Zomg(md) + Eppa(md)),  (14)
.8

where C? are the renormalized RSCs unique to each
baryon. Here, C§ is identified as the mass of the baryon
in the light flavor chiral limit. The subtracted self-energies
in Eq. (14) are defined by

~ aZBB’ h
S = Zawp ~ Zousp (0) = mi—"2(0).
2

iB(/).tad = ZB(,b.tad - ZB(/),tad(O)v (15)

where, for brevity, X(0) = X(m2 =0). The above is
adequate in our renormalization scheme because the
lowest-order nonanalytic term starts at O(m}), and the
tadpole terms enter at O(m3). For computational conven-
ience, we did not renormalize the coefficients of the terms
analytic inm, beyond O(m2) (i.., a, is left unrenormalized).

Evaluation of the NLNA contributions in our FRR
scheme reveals that the kaon contributions are small and
vary slowly with changes in the pion mass. As a result, we
focus on the pion-loop contributions and consider the three
SU(2) dimension-two LECs: ¢, ¢,, and c¢3. These will be
constrained by the requirement that our model respect the
same nonanalytic behavior as SU(2) yPT, up to and
including O(m} In m,) for the nucleon.

In order to estimate the tadpole contribution to the mass
of the nucleon, we first consider the values of ¢y, ¢;, and c3,
summarized in Refs. [9,91], where these LECs were
determined based on phenomenological considerations.
Although they are determined from different schemes
(where the associated higher-order terms differ), the physi-
cal pion mass is well within the PCR, such that higher-order
terms do not contribute in a significant manner. The role of
these LECs is to set a plausible central value for the
nucleon-pion tadpole coefficient. Despite the rather expan-
sive uncertainty range on the LECs from the aforemen-
tioned references, we extend this range by considering
LECs more recently determined from Ref. [92]. We
consider results with explicit A degrees of freedom,
because the LECs undergo significant changes with the
explicit inclusion of A. Thus, with significant error bounds,
we evaluate the effects of the tadpole term in the final result.
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Matching subtleties between SU(2) and SU(3) yPT are not
considered.

In yPT, the nucleon-pion tadpole self-energy is written
as [78]

d*k 1
b =2 —. (1
Nrztad — f¢ < & + 4 + C?) / (2”)4 D” ( 6)

In the relativistic theory, the NNz self-energy contributes
both a LNA contribution proportional to 7} and a NLNA
contribution proportional to m? In m,, such that the coef-
ficient of the NLNA term, k3, in the yPT nucleon mass
expansion [discussed later in Sec. VA, Eq. (28)] is

3 g4
k3:—m<—86’1+02+46‘3 +M—N) (17)

It is precisely the combination of ¢y, ¢,, and ¢3 in Eq. (16)
minus the contribution from the NAz loop, discussed
earlier, that we take as a single parameter yC as

c A
C==2¢c,+24c3+> =~

1 1 13539 Gev™!l  (18)

from Refs. [9,91] with an upper bound appropriately
extended to encapsulate values (with explicit A) from
Ref. [92]. A is proportional to the NAz NLNA contribution
and is given by

M2
25 AAN<MN + Aan)?

~3.1 GeV~!, (19)

as quoted earlier. The A — N mass difference, Ay, is taken
at the physical point. In this manner, k3 in our model is
congruent to that of yPT, once we separately include the
NAr self-energy contribution

(4;(C A+ i) (20)

ky = —
3 MN

3
242
3271y

C. Finite-volume corrections

In order to fit the chiral expansion to lattice results, one
needs either to compute the expansions in finite volume, or
to correct the lattice results to infinite volume. For the latter
case, it is necessary to calculate the finite-volume correc-
tions (FVCs). Following common practice, we choose to
treat the spatial and temporal dimensions differently, such
that the temporal integral is performed over infinite volume.
Then, for some FRR integrand, I(k,m2, A), the FVC is
defined as follows:

8™VC(mz, L, A) E/WI(E mz, A)

1
Al

Bk
)
I(k.m2, A), (21)

3

where L is the length of the box. The lattice QCD results
are corrected to infinite volume through the addition of
S™VE€(m2, L, A) to each finite-volume lattice value.

It has been demonstrated that in an earlier study of
Ref. [13], FVCs of self-energy integrals, using the same
regulator presented in Eq. (11), have negligible dependence
on A beyond 0.8 GeV. At a box size of L =2.9 fm,
the FVCs vary by about 1 MeV in the domain
08 <A <24 GeV.

III. HEAVY BARYON VERSUS
RELATIVISTIC FORMALISMS

A. The correspondence of the schemes

In order to compare the application of the HB approxi-
mation with relativistic approaches for analyzing lattice
QCD data for M y(m2), we consider three schemes:

(1) Covariant (Cov): a fully relativistic and Lorentz
covariant scheme which uses the four-dimensional
dipole regulator of Eq. (10),

(2) Relativistic (Rel): a fully relativistic scheme, sim-
ilar to the covariant scheme, but uses the three-
dimensional dipole regulator of Eq. (11).

(3) Heavy baryon (HB): a semirelativistic scheme cor-
responding to the limit of infinitely heavy baryons,
but including relativistic meson energies and using
the three-dimensional dipole regulator.

One may obtain the self-energy expressions in the HB
scheme by performing the k integral of Egs. (7)—(9) and
taking the limits Mz and My to infinity in the relativistic
scheme. We obtain

=B 1 Cory / Ik K (22)
B¢ — " (27)* oy (@ +6)
1 (Cprs\? Pk k?
sHB) (2Bl / . (23)
BI'¢ 3 f(/, (271')3 a)k(a)k + A)

we) 1 Copua [ Pk 1
) — 24
Bjud = 5 f2 /(271)3 o (24)

where 6 (A) is the mass difference between the external
octet and the internal octet (decuplet) baryon. The meson

energy is @ = |/k* + mj.

As the regulator cutoff parameters, A, are a priori not
the same in different schemes, we can determine a corre-
spondence between the three cutoff scales A coy)s A(rer)> and

Amp)- This correspondence allows for a reasonable
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comparison between the schemes, since it may compensate
for the differences in the suppression of large momenta.

The correspondence between the cutoff scales is deter-
mined by computing the self-energy contributions in one
scheme and fitting the others to it. Given the abundance of
literature pointing toward the optimal range 0.8 < Ayp) <
1.0 GeV for the HB scheme in SU(2), we fix Ayg) =
0.8 GeV and perform a fit of the form

&(HB
ZZZB/;W%, Amg))
$.B
Cov/Rel &(Cov/Rel
~ dEl ov/Re >m;‘z + ZZE;BO,(/ e>(m72[’ A(Cov/Rel)) (25)
o.B

over the domain 0.0 <m2 <0.6 GeV? by adjusting d, and A.

We note that the subtracted self-energies are void of the
leading constant and m2 terms. Since we left a, unrenor-
malized in Eq. (14), we have introduced the d, term to
compensate for the differences at O(m3). Such a difference
will simply be absorbed by a, when performing the fits to
lattice data.

In Fig. 2, we show the sum of all FRR renormalized
nucleon-baryon-meson self-energy contributions for each
scheme. As we see in the top panel, the relativistic schemes

0.0
9 —0.2 [ ~
() RN
©) RN
< —04} SN
@ N
Y .
é:},\ —0.6 I R ~N
N@ Covariant -~ 2
— — Relativistic N
—0.8F B . ]
0.0
S -02
(]
©)
s -04
Q
Z
U
Q -0.6
s Covariant
N — — Relativistic
-0.8F ... HB

00 01 02 03 04 05 06
my* (GeV?)

FIG. 2. Sum of all FRR renormalized nucleon-baryon-meson
self-energy contributions in different schemes. The top panel
compares the schemes at the same cutoff scale, A(cov) = Arel) =
Amp) = 0.8 GeV. The bottom panel shows the fit of the
relativistic schemes to the HB scheme at Ay = 0.8 GeV.
The fit parameters are shown in Table I.

do differ at the 10%—20% level when the same cutoff mass,
0.8 GeV, is used in all of them. However, as shown in the
bottom panel of Fig. 2, if we allow the values of the cutoff
mass to vary with scheme, one finds excellent agreement
between all three. The variation in A is indeed somewhat
subtle. While not presented here, qualitatively, the plots for
Y opB ZAB g 2pB ZxBgs and D, p Yapy as a function of
m2 are virtually the same as those in Fig. 2.

While we have considered one value of A for the sum
over intermediate baryons in this comparison, one may
conduct a comparison on a diagram-by-diagram basis. In
such a case, one could theoretically have different regulator
cutoffs for each baryon-baryon-meson contribution. This is
because the regulator is associated with the induced
pseudoscalar form factor of the baryon in phenomenologi-
cal models. Lattice QCD calculations have demonstrated
that strange quarks are more localized, which suggests that
regulators, and thus the cutoff, might be expected to vary
for each baryon, depending on the number of strange
quarks present. However, with the level of agreement seen
in Table I between the octet baryons and the schemes, it
seems sufficient to adopt the standard approach and only
have one regulator parameter. Therefore, we set Acoy) =

A(rey = 1.0 GeV in the subsequent fits.

B. Fit strategy

The fitting procedure is as follows. First, we apply the
FVCs of Sec. II C to the lattice results, taking them from
finite to infinite volume.

Then, we fit the infinite-volume results available at
several quark masses and lattice spacings to a function
containing both the physics of chiral nonanalytic behavior
and a term linear in the square of the lattice spacing to
address finite lattice spacing corrections at O(a?). For the
nucleon, we have

My = Co+ Com2 + aymy + Eyng + Enax + Znsk

+ iNNr, + Eyar + Evzok + Evpwa + Doa®, (26)

TABLE 1. Regulator mass and difference in the unrenormalized
coefficient of m* determined by fitting the corresponding
self-energies calculated in the HB scheme [Eq. (25)], using
Awg) = 0.8 GeV.

Scheme Baryon A (GeV) dy (1072 GeV~3)
Covariant Nucleon 1.05 0.69
Lambda 1.15 8.82
Sigma 0.93 —-0.01
Xi 1.04 2.74
Relativistic Nucleon 1.01 6.78
Lambda 1.06 9.79
Sigma 0.91 2.38
Xi 0.98 3.20
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where, specifically for the nucleon, we have dropped the
superscript N on the RSCs. We note that the PACS-CS
results are obtained with a nonperturbatively improved
Wilson-Clover fermion action such that the leading lattice
artifact is the same as for the CLS results [2], and it is
addressed at O(a?) by the final term in Eq. (26).

The fit parameters include C,, C,, a4, and D,. With the
parameters constrained by lattice QCD results, one can then
use Eq. (26) to interpolate/extrapolate to any value of m2 or
lattice spacing approaching the continuum limit. For
example, one can expose the lattice spacing dependence
of the lattice results by using Eq. (26) without the final term
to access the physical quark masses and then plot the results
as a function of a>.

As a final step, we also explore the addition of the
physical baryon mass to the dataset and refit to obtain our
best estimates of the renormalized RSCs.

In order to check the degree of model dependence
associated with the three schemes under consideration,
we compare our renormalized RSCs, C, and C,, to the
linear combinations of SU(2) LECs reported using yPT.

Finally, given the large uncertainty in the tadpole
coefficient of Eq. (18), we consider the upper and lower
bounds of this coefficient as a source of systematic
uncertainty.

C. Fit to PACS-CS lattice QCD data

Recent advances in computational capabilities and tech-
niques have led to lattice QCD calculations near physical
values of the light-quark masses. Our aim in this section is
compare analyses of the historical PACS-CS lattice QCD
results [1], which extend over a wide range of pion mass,
using the three schemes described. Note that we choose to
exclude two data points from the PACS-CS dataset—one
near the physical point with m,L =~ 2, and one simulated
with a different strange quark mass.

In the case of the PACS-CS dataset [ 1], we cannot readily
calculate the O(a?) leading lattice artifact correction,
because the lattice spacing is kept constant in the PACS-
CS scheme. As an initial fit, we set D, = 0 in Eq. (26). The
results of this initial fit are shown in Fig. 3 and Table IL

We note that the uncertainty associated with the physical
point is several orders of magnitude smaller than that of the
lattice data, which means that the goodness of fit is
primarily determined by the physical point. Therefore, to
have some reasonable gauge of the goodness of fit, we
exclude the physical point in the y3 ; calculation.

As seen in Fig. 3, the fits to the PACS-CS data are
virtually indistinguishable. The )(ﬁof is approximately 0.26
for all three schemes. Not only are the fits to the data over
values of m2€0.02-0.50 GeV? using the three schemes
extremely close, but—as we see in Table II—the renor-
malized RSCs C;, and C, are also completely consistent. It
is also necessary to examine if the value of C, is consistent
with the input used in the coefficient of the tadpole

1.6
~ 14}
>
[0
O
E Covariant
— — Relativistic
1.0¢0 ~ s HB
e PACS-CS data

0.0 0.1 0.2 0.3 0.4 0.5 0.6
my> (GeV?)

FIG. 3. Fits to the PACS-CS nucleon mass data in the three
schemes under consideration: covariant and relativistic formal-
isms at Aoy = 1.0 GeV, and the heavy baryon scheme at
Ay = 0.8 GeV. The physical nucleon mass (black point) is
combined with the lattice results in constraining the fit param-
eters. The data points are finite-volume corrected, but there has
been no correction applied for the finite lattice spacing as
described in the text. The uncertainties on individual data points
are statistical, while the narrow extrapolation band incorporates
both statistical and systematic uncertainties.

contribution of Eq. (18). This is due to the fact that, in
the nucleon mass expansion, the renormalized RSC of m2 is
related to one of the tadpole coefficients, specifically
C, = —4c;. In obtaining the combination of Eq. (18),
Refs. [9,91] quote ¢; = —O.9J_“8"§ GeVl. Taking the aver-
age value of C, in Table II, we find ¢; = —0.89(1) GeV~!
(negligible difference when added in quadrature), which is
completely consistent with the input.

In summary, contrary to claims in the literature, the use
of HB theory with FRR does allow one to determine model-
independent LECs using lattice data over a wide range
of m2.

The PACS-CS dataset further provides the masses for
the other octet baryon (hyperon) masses. Since we
restricted the study of the nucleon to dimension-two
LECs in SU(2), for the hyperons, we use a form analogous
to Eq. (26),

TABLE II.  Fits to the nucleon RSCs obtained from the PACS-
CS nucleon mass lattice QCD results of Ref. [1], combined with
the physical mass. The errors associated with the fit parameters
are statistical followed by systematic, as described in the text. The
regulator cutoffs for relativistic and HB formalisms are A coy) =
Areny = 1.0 GeV and Ayg) = 0.8 GeV, respectively.

Scheme Cy (GeV) C, (GeV™h) as (GeV™)
Covariant 0.885(1)(7) 3.59(5)(52) —0.17(10)(68)
Relativistic 0.882(1)(8) 3.69(7)(62) 0.25(13)(112)
HB 0.885(1)(5) 3.44(5)(42) —0.29(9)(64)
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1.8

— Nucleon
— Lambda
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— Xi

0.3 0.4 0.5

my> (GeV?)

0.2 0.6

FIG. 4. Fits to the PACS-CS octet baryon mass results in the
covariant formalism at Aoy = 1.0 GeV, with the inclusion of
the physical points (green dots). The data points are finite-volume
corrected. The extrapolation bands and errors on individual data
points are purely statistical.

My = Cy + Chm?2 + apm? + Eps, + Epnk + Zazk
+ Eany + Easr + Eazks
My = C5 + Cym} + afmj + Zsg, + Zpne + Ssng
+ Eyex + izzn + Zyvir + Ssak + Zxmk + iZE*n’
Mz = C5 + C5m2 + a§mi + Zzz, + Zepx + Zazk
+ Zeg, + Zamp 4 Zepk + Zzak + Zamys (27)

again omitting the O(a?) lattice artifact correction. We
reiterate that C# and a? are coefficients of the light flavor
chiral expansion of the baryon mass and are unique to each
member of the octet.

In Fig. 4, we see that the baryon mass expansion for
the other octet baryons describes the data fairly well.
While we only show the covariant fit, the other fits are

TABLE III.

indistinguishable, similar to those shown in Fig. 3. While
not significant for the nucleon, the fact that the strange
quark mass used in the PACS-CS simulations is a little large
[93] is manifest in Fig. 4. There, the extrapolation curves
dip down to pass through the experimental values in a
manner that leaves the lattice QCD results at the smallest
pion mass positioned above the curves.

In Table III, we see a similar trend to that found for the
nucleon. With a cutoff mass chosen to give a good fit over the
large range of m2 provided by PACS-CS, there is very little
difference in the renormalized RSCs C,, and C,. Since a4 is
not renormalized, a, in itself does not represent a physical
quantity. However, it is worth noting that the variation in a,
between different schemes in Table III is less than the
variation found in Table II. This is largely attributed to the
presence of the tadpole term in Eq. (26), which was not
included in the fitting form of Eq. (25).

Looking at the differences between the light flavor chiral
limit masses, C5 and C, (recall that we have dropped the
superscript N for the nucleon), a simple relationship akin to
the constituent quark model emerges. C, subtracted from
the average of C) and C3 is approximately 200 MeV, and
C, subtracted from C§ is approximately 400 MeV. One can
reasonably interpret the differences in these masses arising
from the different numbers of strange quarks.

IV. ANALYSIS OF THE LATEST CLS LATTICE
QCD RESULTS FOR THE NUCLEON

Here, we focus on the most recent nucleon mass lattice
QCD results from the CLS Collaboration [2]. This dataset
is chosen because it presents a range of accurate lattice
QCD results up to m2 = 0.14 GeV?, with the physical
mass scale set using the modern gradient flow method [94].

By employing the fit strategy described in Sec. III B on
the CLS dataset, we find D, ~ —6 GeV fm™2 in all the
schemes. The results for the fits are shown in Fig. 5, and the
renormalized RSCs are provided in Table IV. In performing

Fits to the RSCs (where B = A, X, and E) obtained from the PACS-CS octet baryon mass lattice

QCD results of [1], combined with the physical masses. The errors associated with the fit parameters are statistical.
The regulator cutoff masses for the relativistic and HB formalisms are A(coy) = Agey = 1.0 GeV  and

Amp) = 0.8 GeV, respectively.

Baryon Scheme CB (GeV) C% (Gev™) al (Gev=?)
Lambda Covariant 1.077(3) 2.21(11) —-0.78(22)
Relativistic 1.076(3) 2.24(11) —0.71(21)
HB 1.076(3) 2.26(10) —0.76(21)
Sigma Covariant 1.157(3) 2.11(10) —0.70(21)
Relativistic 1.157(3) 2.11(10) —0.65 (20)
HB 1.157(3) 2.08(10) ~0.74(21
Xi Covariant 1.289(6) 1.64(22) -0.97 (45)
Relativistic 1.288(6) 1.65(22) —0.95(45)
HB 1.289(6) 1.62(20) —0.94(42)
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FIG. 5. Fits to the CLS dataset in the covariant formalism at
Acov) = 1.0 GeV. “Corrected data” refers to the data where
finite-volume and O(a?) corrections are made. The top panel
shows the uncorrected data at various pion masses along with
a fit to the corrected data evaluated at mz = mgz|,., Where
D, ~ —6 GeVfm™2. The bottom panel shows our fit to the
corrected CLS results with the inclusion of the physical point
(green dot). The uncertainties on individual data points are
statistical, while the extrapolation band incorporates both stat-
istical and systematic uncertainties associated with the tadpole
contribution.

the fits, we have omitted all data with L < 2.5 fm in order
to avoid large FVCs.

In the same way as in the previous section, we perform a
consistency check on C,. We find, from Table IV, ¢; =
—0.98(6) GeV~!, which again is consistent with the input.

The x5, values in all schemes are comparable at
approximately 0.62. Again, all the fits are within 1 standard
deviation of one another, and the differences are small.

In relation to the previous section, we also performed an
analysis for the combined set of PACS-CS and CLS nucleon
lattice data. For this particular case, we allow the coefficient
of the tadpole, yC, to also be a fit parameter, constrained by
Eq. (18). This is reasonable, as the wide range of m2 covered
by the PACS-CS data acts to restrict yC in a meaningful
manner. We use the CLS data to correct for the PACS-CS
leading lattice artifact (noting that D, was set to zero for the
PACS-CS data in the previous section). Since the variation in

TABLE IV. Fits to the nucleon RSCs obtained from the cor-
rected CLS nucleon mass lattice QCD results [2], combined
with the physical mass. The errors associated with the fit parameters
are statistical followed by systematic, as described in the
text. The regulator cutoff for the covariant, relativistic, and HB
formalisms are A(coy) = Arery = 1.0 GeV and Ay = 0.8 GeV,
respectively.

Scheme C, (GeV) C, (GeV™) ay (GeV™?)
Covariant 0.8794)(2)  3.9204)24) —3.2(20)(22)
Relativistic ~ 0.878(4)2)  3.9724)27)  —2.7(20)(29)
HB 0.8794)2)  3.8524)20)  —4.0(20)(17)

the lattice spacing for the PACS-CS data is small, the O(a?)
correction simply shifts the data points by a constant amount.
We find, for the renormalized RSCs and the coefficient of the
tadpole, Cy = 0.884(4) GeV and C, = 3.68(28) GeV~!,
and yC = —1.8(10) GeV~!, respectively. The x5 in this
case is approximately 0.56. These values are consistent with
the those found in the fits presented earlier.

V. COMPARISON OF THE LECS
AND THE ¢ TERM

A. Comparison of the LECs

Here, we wish to make a comparison between the yEFT
renormalized RSCs of the nucleon extracted using our three
FRR schemes and those LECs obtained in earlier yPT
work. In yPT, the chiral expansion of the nucleon mass in
SU(2) is written as [78,95-97]

MN:m+k1m,%+k2mj3t+k3mft1n%+...’ (28)
u

where m is the renormalized nucleon mass in the chiral
limit, u is the renormalization parameter, and the coeffi-
cients k; are linear combinations of the renormalized LECs.
Explicitly, the k;’s are

_ 3q;
327f3

k] = —4C1, k2 = (29)

and k; is provided in Eq. (17). g4 and f, are the chiral limit
values of the axial-vector coupling constant and pion decay
constant, respectively.

We note that the values of k3 found in the relativistic
schemes are different from that found in the HB scheme.
Clearly, in the limit My — oo, the term proportional to
gi/My vanishes, and

24 1

lim A="2@ ——.
im A 259AAAN

My—o00

(30)

The total discrepancy in the coefficient of the NLNA term
from the NNz and the NAr self-energies amounts to 10%
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TABLE V. Comparison of the renormalized RSCs obtained
using FRR in the covariant scheme to analyze the CLS data with
those yPT LECs reported in Refs. [6,7]. Note that in yPT
notation, Cy = m and C, = k;.

TABLE VI. Pion-nucleon sigma term at the physical point
computed from the CLS dataset using the fits for each scheme as
summarized in Table IV. The first set of uncertainties are
statistical, and the second set are systematic.

Scheme Cy (GeV) C, (GeV™h) Scheme o.n (MeV)

FRR result (This work) 0.879(4)(2) 3.92(24)(24) Covariant 51.7+£3.1+14
Procura IR [6] 0.883(3) 3.72(16) Relativistic 522+32+14
Bernard CR [7] 0.88 3.6 (fixed) HB 51.7+£32+14

between the relativistic and HB formalisms. This differ-
ence, in comparison with the uncertainty associated with
the tadpole coefficient, yC, is very small.

A comparison is shown in Table V, where we present our
(covariant) FRR result from the CLS dataset in Table IV
with earlier yPT works from Refs. [6,7]. These two works
include the physical point constraint, but they use a
different regularization scheme—namely, infrared regulari-
zation (IR) and cutoff regularization (CR). The values for
k5 vary greatly with yC. With yC in the range of Eq. (18),
ky = —=7.4t0 11.9 GeV~3, while the values of Procura et al.
[6] and Bernard et al. [7] yield k3 = 1.36 &+ 3.29 GeV3
and k; = 3.82 GeV~3, respectively.

By way of comparison, we also show the results obtained
from the CLS Collaboration by fitting a yPT-inspired
form [2]

My(mg, a,L) = My + Bm2 + Cm2 + Da>

m

E
+ m,L

el (31)

M y 1s the nucleon mass in the chiral limit, and the letters
B-FE represent fit parameters including the LNA term. The
lattice artifact correction and FVC are accounted for by
the terms proportional to D and E, respectively. Note that
in our yEFT, the LNA term is model- and scheme-
independent, and the coefficient is not a fit parameter.
Nevertheless, with the above form, we obtain (including the
physical point) My =0.880(6) GeV, B = 3.75(46) GeV~!,
C = —4.8(13) GeV™2, D = —6.0(14) GeV fm™2, and E =
82(99) GeV~2. We remark that C in this fit is roughly 14%
smaller than the correct, model-independent value, result-
ing in a shallow slope of the extrapolation curve near the
physical point. Without the physical point constraint in the
fit, one would find C to be approximately 2 to 3 times
smaller than the yEFT value. Any extrapolation relying
on such a value is unphysical, and extracting any physically
meaningful observable is difficult. Alternatively, one may
fix C to k, of yEFT [see Eq. (29)], and in that case
we find My = 0.875(1) GeV and B = 4.07(5) GeV~!,
producing reasonable agreement with the values quoted
in Table IV.

B. The ¢ term

The pion-nucleon sigma term o,y is defined as
o.n = m(N|iu + dd|N), (32)

where m = (m, + my)/2. From the quark mass depend-
ence of the baryon and using the Feynman-Hellmann
theorem, one can compute o,y by

L, 0My
OzN = My 2
om;

(33)

at the physical pion mass, where, in our calculation, we use
the charged pion mass. The results for the application of
Eq. (33) to each of the schemes summarized in Table IV are
presented in Table VI. The first set of uncertainties are
statistical, while the second set are systematic.

We also show in Fig. 6 a plot of the m2 dependence of
o.n- Again, we show only the result in the covariant
scheme, but the curves essentially overlap for the other two
schemes, as in Fig. 3. Here, the gradient of the curve starts
to flatten at around m2 = 0.1 GeV?, where the data points
become sparse. With points available at larger m2, as in the

40¢ — Covariant

0.00 0.02 0.04 0.06 0.08 0.10
m,2 (GeV?)

FIG. 6. o,y as a function of m2 from the CLS dataset fits of
Table IV in the covariant formalism at A(coy) = 1.0 GeV. The
vertical line represents the physical value of charged m2. The
extrapolation band incorporates both statistical and systematic
uncertainties.
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PACS-CS dataset, we tend to see the curve flattening
further out.

In view of the interest in the sigma commutator, it is
worthwhile to explore the sources of systematic error in
some detail.

In Ref. [98], it was suggested that using the neutral pion
mass, rather than that of the charged pion, could decrease
the value of o,y by up to 3 MeV. In our analysis, the
changes in o,y across all schemes used in Table IV are
consistent, with a maximum reduction of 2 MeV.

The explicit tadpole makes a relatively small contribu-
tion to o,y on the order of a few MeV. However, the
systematic error associated with it is potentially significant
because of the large uncertainty in the corresponding
coefficient. This error is determined by refitting to the
CLS data using fixed values of yC at the upper and lower
bounds given in Eq. (18) and recalculating o,y from the
respective fits. In this process, we observe a strong
correlation between the coefficients k; and k; which acts
to reduce the effect of the systematic uncertainty.
Ultimately, the fitted renormalized RSCs are constrained
by lattice QCD data, such that a variation in one parameter
is mitigated by the other parameters. The net result is a
systematic error in o,y of approximately 0.7 MeV in all
schemes.

Further systematic uncertainties in o,y may derive from
the choice of regulator and the corresponding cutoff
parameter. References [4,5] demonstrated that when lattice
data were fit using different regulator functions, the
renormalized RSCs showed little variation. To test that
here, we repeated the fits to the CLS data with three choices
of form factor: a monopole, a dipole, and a sharp cutoff.
The first two showed no model dependence, while the more
extreme sharp cutoff gave rise to a 2% variation in the
renormalized RSCs. However, even in the latter case, the
change in o,y was just 0.2 MeV. Because the fit is
constrained by accurate lattice data, the 2% change in
our C, was compensated by a change in ay.

One may also explore the light quark mass (or m2)
dependence of the regulator mass parameter, A. We note
that the pion cloud has no direct effect on the axial form
factor of the nucleon, which is closely related to the pion-
nucleon form factor. Thus, the variation with pion mass is
expected to be slow. Within the MIT bag model, the bag
radius, which is inversely proportional to the mass param-
eter A in the axial form factor, decreases by just 2% when
m2 varies between 0.02 and 0.50 GeV?. As a conservative
estimate of the effect of the value of A varying with pion
mass, we have reanalyzed the CLS data, allowing for a 5%
increase over this mass range. This variation gives rise to a
difference of just 0.3 MeV in the value of o,y.

The remaining input in the fits explored in this work are
the coefficients of the pion coupling to the octet and
decuplet baryons. A change of £10% in the coefficient
C resulted in a variation of 0.1 MeV in o,y. A 5% change in

f ¢ gave a variation of 0.3 MeV, and finally the more drastic
variation of F' and D by £10% yielded a change in o,y of
just 0.3 MeV.

To obtain the final systematic error based on all the
sources detailed above, we evaluate the sigma commutator
at the average of the values obtained with the charged and
neutral pion mass, with an uncertainty of =1 MeV. The
systematic errors arising from all sources are then com-
bined in quadrature, leading to the values shown in
Table VI. In Table VII, we compare the value of o,y
calculated here with the values extracted by other methods.
Deducing the value from pion-nucleon scattering data [99]
may involve a number of complications [100]. As indi-
cated, the preferred value seems to be around 58 MeV with
an uncertainty on the order of 5 MeV [101]. This differs by
a surprising amount from direct lattice calculations but is
within the uncertainties of most applications of the
Feynman-Hellmann theorem. The value found in our
analysis, namely 51.7 £3.2 4+ 1.4 MeV, is compatible
with the value extracted from pion-nucleon scattering.

VI. CONCLUSION

We have presented a detailed study of the mass of the
nucleon as a function of pion mass using finite range
regularization to evaluate the self-energy integrals. The
heavy baryon approximation is compared with a covariant
scheme and a relativistic scheme. All three methods
produce essentially identical fits to the lattice QCD results
from the PACS-CS Collaboration [1] over a wide range of
pion mass, well beyond the power counting regime. The
renormalized residual series coefficients extracted from
those fits are independent of the schemes used and agree
well with low-energy constants found in earlier studies
using yPT. A similar degree of scheme independence is
found when the schemes are applied to the other members
of the nucleon octet. This is contrary to the claims of
literature where the heavy baryon approximation is deemed
unsuitable.

TABLE VII. Comparison with other determinations of the
pion-nucleon sigma commutator.

Method o,y MeV) Ref.
Data (zN scattering) 59.1(3.5) [98]
58(5) [101]
59(7) [99]
Direct lattice calculation 45.9(7.4)(2.8) [102]
41.6(3.8) [103]
Feynman — Hellmann + lattice data 45(6) [16]
52(3)(8) [17]
55(1)4) [18]
44(3)(3) [22]

This work from CLS lattice data [2] 51.7+32+14
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These schemes were then applied to an analysis of the
most recent data on the nucleon mass from the CLS
Collaboration [2]. Of particular interest is the result that
the values of the pion-nucleon sigma commutator, oy,
extracted using all three methods including the uncertainty
in the coefficient of the (NLNA) m? In m, term in the
chiral expansion, are completely consistent. The result is
o,y =51.7+£3.2+1.4 MeV. As illustrated in Table VII,
this is in reasonable agreement with the value deduced from
pion-nucleon scattering data, as well as most applications
of the Feynman-Hellmann theorem to lattice data.
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APPENDIX A: EFFECTIVE SU(3), x
CHIRAL LAGRANGIAN

Beginning in the mesonic sector, U is the 3 x 3 unim-
odular unitary matrix which contains the meson fields ¢. In

particular,
U = exp (z}%) = u?, (A1)
where
b=2 n —%ﬂo-f—%ﬂ K° |, (A2)
- 70 2

with u being the unitary square root of U. The inves-
tigations of the paper assume the absence of an external
field, so that the covariant derivative D,U — d,U. The
explicit chiral symmetry breaking is accounted for in the
matrix y = 2ByM, where M = diag(m,, my, m;) and
the parameter By, is related to the singlet quark condensate
3F3By = —(0]gq|0),, with F, being the pseudoscalar
decay constant in the chiral limit.

In the octet baryon sector, each baryon field is a four-
component Dirac field, and the matrix B follows a similar
structure to the meson matrix:

1 50 1 +
—\/52 -I——\/g/\ z p
- 1 0 1
= =0 _ 2
= = 2 A

The covariant derivative of the octet baryon is (again, in the
absence of external fields) D,B = 9, + [I',, B], where
I, =3(u'0,u+uo,u’). With a similar structure to the
', the baryon fields couple to the meson fields by the so-
called chiral vielbein:

u, = i(u'0,u —uo,u’), (A4)
which transforms as an axial vector under parity trans-
formation. In the NLO Lagrangian, additional chirally
invariant structures are possible, and in particular we have
xe = ulyu" +uyu.

In the decuplet baryon sector, the spin-3/2 decuplet
fields are defined by the symmetric flavor tensor 7%/% with

1

THL _ A++ TH2 — A+
9 ﬁ 9
1
T122 — —AO T222 = A"
V3 ’
T113 _ Lz*ﬁ—’ T123 _ Lz*o’ T223 — LZ*—’
V3 V6 V3
1 1
T133 — _E*O T233 e T333 Q. (AS)
ﬁ b \/§ b

The covariant derivative is defined by D”(T,,)i/k =
0,(T,) + (T, )I(T) + ()T, ™ + (T)4(T,)

The propagators of the meson and octet baryon
Lagrangian are the usual spin-O and spin-1/2 Feynman
propagators, respectively, while the spin-3/2 propagator
is a little bit more involved. Here, we simply quote the
result [104]

b+ My 1 (P'r" =r'p")
SHY _ _ Vo UV
AT ey vl At U STV
ool L L LA A
PP a1 24 [\ 24T
1+4
- 09 ANy N M A,V
2(A+2A)’5>” P 1+2Ap7}
(A6)

In addition, for the leading-order meson-octet-decuplet
Lagnragian, the tensor ®" is defined as

3A+1

O = g
gv + >

"y, (A7)
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TABLE VIII. Squared coupling constants CéB, 4) from two insertions of the octet-octet-meson transition.

N A 2 =)

Nm 2(D+F)? NK H(D+3F)? NK 1(D=F)? AK (D =3F)?
Ny 5(D=3F)? An 1D? Ar iD? K 2(D+F)?
AK L(D+3F)? > D? > 2F? Er 3(D-F)?
K 3(D-F)? EK L(D-3F)? 2K (D +F)? Zn 5 (D +3F)?

TABLE IX. Squared coupling constants CéT, ¢ from two

insertions of the octet-decuplet-meson transition.

N A z =

Az ¢ Tm 32 AK I TK i

»K il Bk e ¥yl B i
z*,l %CZ E*” 41_162
E'K ¢t QK 1c?

where the choice of the off-shell parameter A = —1

simplifies both the propagator and the above tensor, as
was done in Eq. (8).

APPENDIX B: COUPLING CONSTANTS
OF THE LAGRANGIAN

Here, we present the coupling constants of the one-
loop transitions given in the self-energy expressions in
Eqgs. (7)—(9) determined from the effective Lagrangians in
Egs. (2) and (4). These are presented in Tables VIII and IX.
For the tadpole couplings, we primarily focus on the SU(2)
limit, such that we only have

C2

N (2M g +6)

z:(Cov. 1)

APPENDIX C: EXPLICIT SELF-ENERGY
CONTRIBUTIONS

In this section, we explicitly show the closed-form self-
energy contributions in all schemes. We write the internal
octet baryon mass as My = Mp + &, where 6 is the mass
difference between the internal and external octet baryons,
and we divide the baryon-baryon-meson self-energy into
two different parts: terms that produce analytic terms in mé

and terms that produce nonanalytic terms in mﬁ) Thus, we

_ v (2)
have Xpp, = ZBB,¢ + ZBB,¢. "

In FRR renormalization, the first part, X, # containing
only the analytic terms, is not generally of interest, since
they will be subtracted off—see, for example, Eq. (15). In
fact, if one were to renormalize the chiral expansion of the
baryon mass to all orders, everything in 21(31[1’/ o would be

subtracted. Here, we write down all the parts explicitly in
all formalisms.

BB ¢

T 9672 M (AT = &) (A = m3)} (2Mg + 0)* = A7)’

x {A*[383(2Mp + 8)* — SA*(2M g + 6)*(76M g + IM% + 657)

+ A (1182 Mg + 136M% — 2M3, + 38%) + 2A°M ]

— mg N2 [5(2M g + 8)*(T6M g + 6M} + 36%) + 20> (—46° Mg + M, + AMy, — 38°) + A (Mg + 39)]
+ myMg[5(2M g + 6)*(3M g + 26) + A*(136M 5 + 10M}, + 55°) — A*]}

(82 =A%)(A2—(2M+6)?)
CZBB,¢A8(2MB +6)? arctan<\/ S 15 A )

_|_
32 fEMy(A? = 872 (A2 — m3)*(2M g + 6)* — A%)/?
x {8°(2M g +6)6 — 26* N> (2M g + 6)*(36M 5 + 3M% + 25%)
+ 662 A*(2Mp + 6)*(38° My + 46° M3 + 26M3, + M}, + 5*)
+ 2A8(=955M p — 156*M3 — 105> M3, + 65M3, + 2M§ — 25%) + A3(28° M — 46M3, — 2M %, + %)

116022-13



OWA, LEINWEBER, THOMAS, and WANG PHYS. REV. D 109, 116022 (2024)

—2my[8*(2M g + 6)*(36M g + 3MG, + &) — 268°N*(2M g + 6)*(36M g + 3M} + 6°)(36M 5 + 3M}, + 257)

+ 6A*(36M g + 3M3 + 6%)(35°M g + 48> M3 + 26M3, + M, + 5*) — 2A% (Mg + M3 + 5°)(56M g + 5M7% + 25°)

+ AS(6M g + My + )] + my[6*(2M 5 + 6)* (65’ M g + 126° M, + 126M3 + 6M 3, + &)

—2A*(36Mp + 3M3 + 26°)(65°M g + 125°M7% + 126M3, + 6M}, + &%)

+ 6A*(58°Mp + 106°M% + 10M3, + 5M3, + 5*)

— 2A9(56M g + SM + 26%) + A¥| + 4mGMy (M + 6)°}, (C1)

C2. A3(2Mp + ) 2(m3 — &%)(8 + 2Mp)
(Cov2) _ “BBY B 21, (M9 ¢ B 2 mgy
DI G My (A — ) 45m¢ln<A> + " (6(2MB+5)—m¢)1n<A>

\/(mg5 — ) ((2Mp +6)? — m;m o)

_ \/(mi —8)((2Mp + 8)* — mj) arctan( 5@y 1 0)

In a similar fashion, we write M+ = Mg + A for the internal decuplet mass, with A being the mass difference between the
external octet and internal decuplet baryon. Again, we divide the self-energies into two different terms.

2
21<9CT?Z51):3847er1\4 M +CAB)T/ 2N =AY (A=)’
¢V M B ¢
x {A22A% —2A0 + AAM p(—3A% + A2A? + A*) + M3 (=24 A% + 13A%A% 4+ 3A*) — 4M3,(4A% = 3AA?)]
+ AP m[6(A% = A) +4Mp(5A° —3AA%) + M3 (2547 —=9A?) +8AM3)]
—2m4[3APA? = 3A* +2AN* M 5 +4N* M3+ 2AM3)}

V(82N (N~ (2M 5 +b)%)
C; arctan ( AQMp+A)+A? )

BT { n <MB + A)

192ﬂ'2f¢M3 (MB+A> A (AZ—A2)3/2(A2—mé)4\/(2MB+A)2—A2
X [=AS(2M 5+ A)® +2A%A2(2M g+ A)*(BAM g +3M% + A?) —4ASM3 (Mg + A)3
+AS QMM —4AMG, —2M} + A*) = 2N (AM p + M5 + A?) + A"
—2mg (=AY (2M s + M) (BAM g+ 3M% 4 2A%) + 2A7A*(2M 5 + A)?(3AM 5 + 3M% + A%) (3AM 5 + 3M 7 +2A%)
—A*(BAM 5 +3M% +2A2)(6A3M g+ 12A2M% + 12AM3 + 6M% + A*) +2A%(2A3M 3 —4AM3, — 2M % + A*)
— 4N (AM g+ M+ A%) +-2A10) +-6mj (=A% (2M 5+ A)* (BA Mg +-4A> MG, +2AM3, + M + A*)
+2A2(3AMp+3M% + A?)(BAMp +4A°M% + 2AM3 + M3 + A*) = A*Mp(Mp + A)(TAM g +TM% +3A?)
—2A°(AM g+ M+ A%) + A%) = 2m (=9A M 5 — 15A* MG — 10A° M +-6AMY +2M G —2A°

+6A2(3A3Mp +4AM2 M3+ 2AM3 + Mj + A*) —=3A*(3AM g +3M% + 2A%) 4+ 2A%)] } (C3)

2 8
2(C?v,z) _ CBT’¢A
BT'¢ 192727 f3Mp(Mp + A

)2(A2—m§)) {2m¢ln<A>[A(2M + AP+ 55(_6AMB_7M%3—2A2)+m;]

+A;B( 3 — A% ((2M 5 + A)? —m{/)) [ln(n;>(A<2MB+A) (/))
\/<mg5 — A%)((2Mp + A — m3)
- \/ (2Mp + A)* — m¢) arctan( AQRM, - A) + qub )] } (C4)
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The explicit nucleon-tadpole self-energy contribution in the covariant formalism is

(Cov) CA4 2
Nrtad — 32752f2 (AZ )

2A® + 3A%m2 — 6A2m? + mb + 12A%m2 In (%)] . (C5)

Here, we present the self-energies in the relativistic scheme:

(Rel,l):
192723 (N2 = m3) 3 (Mg + )2 — N2 ((nn3 = 32) (i3 — (2M 5 + 6)2) + 4ACME)?

BB'¢

CZ

25N (0+2M5)

x{—i—M};l(MB+5)(m(2/)—A2)3(—1OA2(MB+5)2+3(MB+6)4—8A4)
+Mp(Mp+8)(my— A*) (M +8)* —m3 ) [14Am3 — 8A*mj = 2(10AS =9A*m3 +5A%my ) (5+ M p)?

+ (5A*=2A%m3 +3m ) (54 Mp)* ]+ My (Mg +8) (m3 — A?)2A* (=56 A° + 128 A*m] — 95 A2 m(j +20mS)
+2(=12A% +61A%mg — 65 my +-25A*m§ ) (5+Mp)* + (68A° — 175A%m 2+104A2 5= 15m%)(6+Mp)*

+ (=TA* +220%m3 —9my ) (6+ M p)°] +2M (M g +6) (mg — A?)

X [—4A* (88A® —204A%m + 170A my — 61A>m§ + 10my)

+2A%(232A% = 346A°m3 + 81 A*m +-82A2m§ —25mS) (5+ M p)?

+3(=68A° +40A%mg + 3T A my — 38N> m§ +5mf ) (5+Mp)* +2(9A° +35A%mj — 23N> m +3m§ ) (6 +Mp)°
— (A*+ 1482 mg —3my ) (64 Mg )¥] + A (m — (M g +6)*)° [8A® + my (6 -+ M p)* +- 10A® (3 + (6 -+ Mp)?)

F VTN m (64 Mp)* (mj 4 (5+Mp)*) =3A* (mg + 19m5 (5 +Mp)* 4 (5+Mp)*)]

+ MR [=16A"2 —6m§(6+Mp)° +48A' (mj + (6+Mp)*) + 137 my (64 M)* (m + (5 +Mp)?)

— 4N (T +36m3 (5+Mp)> +7(5+Mp)*) =3 m3 (5 +Mp)*(11my +8mg (5-+Mp)* + 11(5+Mp)*)

+ A (m+ (64 Mp)*) (1my +T3my (5+Mp)* + 11(5+Mp)*)| = Mz((Mp +6)* —mj)*

X [=96A'2 +6m§ (64 Mp)® =T2N'"0(m + (64 Mp)*) = IN*miy(5+Mp)* (mg + (6 +Mp)?)

— A% (mj 4 (5+Mp)*) (23my 4 55Tm3 (6 +Mp)* +23(5+Mp)*) +-4A%(29my + 194mg (5+Mp)* +29(5+Mp)*)
+ Atm3 (64 Mp)* (101m +248my (5 -+ Mp)* +101(5+ Mp)*)]

— M (Mp+8)(my—A*)((Mp +8)* —m3 ) [15mS (5 + Mg )* +9m(5+ Mp)° +24A%(=Tm3 +10(5+ Mp)?)
—20°m (5+Mp)*(25m +46m3 (5 +Mp)* + (5+Mp)*) —2A8(=92my + 121m3 (5 + M)* +91(5+ Mp)*)
+ AH(—40mG +124my (64 Mg )* + 187mg (5 +Mp)* +17(5+Mp)°)]

+2M3 (M +8)(m— A?) (Mg +6)* —m3 ) [-192A12 +-24A10 (27m] + (5 + Mp)?)

+ 20 (6+Mp)* (Smj +3(6+Mp)?) (=5my —8my (5+Mp)* + (5+Mp)*)

+3my (§+Mp)* (Smij 4 2m3 (54 Mp)* + (5+Mp)*) +4A (=160my —T9m3 (54 M)* +53(6+Mp)*)
+2A(121mG + 54m3 (5+Mp)* —63m3 (64 Mp)* —64(5+Mp)°)

+ A (=40m§ +162mG (5 + M)+ 117my (5 + My )* +88m3 (5+Mp)° +9(5+Mp)*)]

+2ME(Mg+6)> —mg)*[192A" +-48 A" (m3 + (5 + M p)*) + 12m§ (5 + M p)® (mg, + (6 +Mp)?)

— NP my(8+Mp)* (23my +98m3 (5+Mp)> +23(5+Mp)*) = 12A"0(31mij 4 134m3 (5 + Mp)* +31(5+Mp)*)
+3AYm3 (54 Mp)* (ml + (5+Mp)*) (39my +122m3 (5+ M)* +39(5+ Mp)*)

+2A8(md + (5+Mp)?) (119mg +920m3 (54 Mp)* +119(5+Mp)*)

—AS(31mi +935m (6+Mp)> +1716my(5+Mp)* +935m3(5+Mp)° +31(5+Mp)®)]

+M[=320A" - 1024A" (my, + (54 Mg)*) +24mG (5 +Mp)® (m + (6+Mp)?)
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— NPm (§+Mp)* (51mj +202m3 (5+Mp)* +51(5+Mp)*)

+6A8 (mj + (6+Mp)?) (55my +422m3(64+Mp)* +55(6+Mp)*) = 16A"0(5Tmy +205m3 (6+M)* +57(6+Mp)*)
— AO(47mf +1055m (6+ M p)* +-2052m (5 + M p)* +1055m3 (5 +Mp)° +47(5+Mp)®)]

+2MG[256 A0 =256 AM (m], + (5-+Mp)*) —6mG (5 +Mp)° (3my +2m3 (5 + Mp)* +3(5+Mp)*)

— 24N (11mg +38mg (6+Mp)* + 11(5+Mp)*)

+ A2 (64 Mp)* (mg + (8+Mp)?) (3Tmy + 126m3 (5+Mp)* +37(5+Mp)*)

+AN (mg + (54 M)?) (159miy +428m3 (5+Mp)* +159(5+Mp)*)

+3A(m +(5+Mp)*)(13ml +365mG (5 + M p)* 4 188my (5-+ M p)* +365m5 (5 +Mp)°+13(5+Mp)®)
—4A¥(84mf +639mG (5+Mp)* +614my (5+Mp)* +639m3 (54 Mp)° +84(5+Mp)®)

— A*m3 (5+Mp)* (133m§ 4 574mG (5 + M p)* +634my (5+ M )* +574m3 (5+ Mp)® +133(5+ Mp)*)]}

Chp N (2Mp +5)2arctan(w>

642 5 ((Mp+06)* = A2))7/2((md,—8%) (md — (2M 5 +6)*) +4A> M)
F20H (M +6)°(8° —m3)* (2M g +6)* —my)* [-3M3(8* = 3m3) —96M (5 — my ) + 126My +-6Mp —2(5 —mj )]
— 4N (M +6)* (% —m3)*((2M g+ 8)> —m3 ) [MB (138> = 11m3 ) + 116M p (8% — m3, ) +-45M3 4+ 2M 3y +2(8* — m3, )?]
X 2M3(8* +2m3) —45M 5(8% — m3 ) + 126M 3+ 6M 3 — (6% —m3)?]
+ 320 M (Mg +6)* (8 — m)[4(6% —m)* +386M (6% — m)* + 2M3(636% — 19m ) (8> — m3 )
+ M3 (6% —my) (1856% — 176my) + M (1416 —2036%my, + 88my) + M3 (1318° = 276m3) +3M$(556% —3my)
+1046M +-26M | + 64N My (M 5 +-6)° [12(6% — m3)* +-316M (6% — m3;)> — M3 (6° — m3) (196> +-31m)
+2M3(508my, —498%) + My (50my, — 446%) +65M 3 +2M 3]
—256A"°M3 (M p+6)*[M3(22m3 —205%) —226M (6% — m3) +45M3, +2M s = 7(8% — m3)?]

A (Mp+0)7(8 —m) (2Mp +6)* —my)*

+SI12A 2 M3 [2m3 (5M g+ My +6) — 28 My + 46M3y +2M§ — 5* —m} ]}, (C6)
2 2
Re12) _ C2 N (2M 5+ 9) o V3= ) (M +6)* = m3)
Zppy TS 5 3 57 | —512A° M3y arctan
647 £5((m3, = 6%) (m3, — (2M g + 8)7) + 4N’ M) 8(2Mpy + ) +m3

X (2M g + 8)(m3, - 52)3/2\/(2MB +6)2 —m3

mZ _A2
1 ¢ 8 2 2\4 2 23\3
+ﬁarctan T {—m¢(m¢ —5 ) ((ZMB +5> - m¢)
+2A’m ( 5= 6 ((2Mp + 6)* = m})*[6M3(28” — 3m3) + 96Mp(6* — m3) + 46My + 2(m3 — 6°)7]

+ AN (mg — 8)* (my, — (2M g + 6)*)[ME (48> — 10m) + 45M (6% — m) + (mg, — 5%)]

X [M3(208% — 18mj) + 116M(6° — m3) + 126M3 + 2(m3 — §%)?]

= 32AMymy (m3, — 8 )[4(m3 — 6%)* 4 386M (6% — m3)* — 8Mp(my — 8°)*(Tmy, — 185°)

+ 8M(my, — ) (263my, — 2728%) 4 2M3(1285* — 1908*m + T5my) + M3(965° — 605my))]

+ 64ASMymy [M3,(706m) — 686%) + 316Mg(m3, — 6%)* + 10Mp(m3 — 6%)(28% + 3m3) — 12(mj — 6%)°]
— 256A'OMym3[M%(306m} — 285°) + M s(=285* 4 3467 mj — 6my) — 75(mj — 6°)?

+ S12AP MM (66m) — 46%) — 2M (26" = 38> my, + my) — 6(my — 6°)] }) , (C7)
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s(Rel.1)

2 672
.y NOMG,

10 288 g 3 = N2 (M + AV (M A7 = N (5 = A2) (3 = (2My + A7) 4203

x {128A" MG (2A +3M ) + A my (Mg + A)* (A% —mj) (2M 5 + A)* —mg)?

x [=16(mg — A?)3 (A2 +m3) + TAM g(m3 — A?)*(16A2 + mj )M, + (mj — A?)*(304A% + Tm3)

+ (400A° —830A%m3 + 334 Amiy ) M 4-2(128A* — 287 A%my + 63my ) My +32A(2A% = 5mj ) M3]
+16A2M3[=6(mj — A?)? + 60AM g (m — A%)? + 69M 3 (3A* —4A%mj + my) + 6AM(59A” —43m])
+M3(3224% =70my) 4 136 AM3 + 10MG] —4A'OM3[—12A(m35 — A%)* = 3M p(m3 — A%)* (27Tmj — 17A?)
+O0AME (my — A?)*(3A% +73m) +2M3(229A° = 75A%m3 —291A%my +137m§)

+8Mp(15147 = 101A%m3 +46Amy) + 8M3(243A% + 50A%m + 64my) +4M%(559A% +385Am3)
+4Mp(391A% +155m)) +480AMY 4 16M3] — A (Mg + A) (M + A)* —m3 )|

— (mj— A’ (A4A" + 61A%mj + 4m) + AM g(mg — A%)*(52A% +-616A%m] — 125my)

—2M3(m3 — A%)3(148A° + 1133A%m] — 991 A%m(} + 34m§)

+4AM3, (3, — A?)? (24248 +705A%m? — 2040A%m;) + 547m§)

+ M+ (mg — A%)(=2004A° + 4283 Am7 + 9439 A% mj, — 10391 A%m + 833m)

+4AM(681A°% —4943A%m 4 414TA m + 1651A%mG —1524m)

—4M§(—608A8 +6829A%m% — 7877 A*m) + 1211A%mG +397m)

+8AM(172A° = 2557 A%my +3074A%my, — 653m§ ) — 16M (=28 A° + 504 A% my — 5T3A%my, + 85m)
+16M3(4A° —82A%mj + 81Amy)]

+2A82A(m3 — A?)° 4+ 3M p(m3 — 9A%) (m3, — A?)° + 6AM, (3, — A?)* (4147 4 5m3 )

+2M3 (my — A?)? (=801A* —257A%mj + 16my) + 12AMy (mj — A?)?(559A% +2A%m3 — 115my)
—3M3(m3 — A%)(5933A° —4579A%m3 — 11450 m ), +263mS)

+8M3 (379247 — 6858 A% m, + 2691 A3 my +395Am§)

+24M}(1395A° —2626A*m3 4 1227A%m} 4 52m§ ) +24M5,(1000A° — 1719A%m?, + 867 Am)

+ 8M(1440A% — 1447 A%mj +707my) +384AM P (11A% +mj) +96M ' (14A% + 5m3) + 256 AM 7]

+ AO[I5A(mg — A%)9(A% 4+ mj) + M p(mj — A%)*(=227A% — 158 A% m7, + 28my)

+2AM3(m3, — A% (727 A% — 179A%m], — 260m} ) — 2M 3, (m3, — A?)? (2485A° — 5262A%m? — 336 A%m;) + 173m§)
+ AM(mj — A?)* (874TA° — 55897 A%my +25673A%miy 4 1317m)

+ M3 (m3 — A%)(—2159A8 4 142822A°m] — 1632324%m} + 32010A%mS, + 687m)

+8M(—3335A7 —22665A7m} + 52053 A% my) — 28459 A% m§, + 2550 Amf)

+4Mp(—17087A% —28744Am7, + 88446 A% my — 42408 A% mG +- 1257m)

—32M$(2809A7 —423A%m3 — 512407 my, + 2346 AmG) — 16M3(4535A° — 5148 A%mg — 1242A%mij +-939m)
—32M} (1132A° = 1867A%m3 +423Am}) — 32M  (322A% — 570A%m], + 129m}) + 640M i (3Am3, —2A%)]
+3my (Mg +A)° (mg — A*)*(2M g+ A)* —my)* (A(Mp+A) —myg)}

€2, Aarctan (w)
9677 f3,(Mp+ AP (Mg + A =A%) ((m3, = A%) (3, — (2M g+ A)?) +4A2M3)*

< {(Mg+A) (mf - A% ((2Mp + A)* —m3)*
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—2N3 (M + A)>(m3 — A2 (2M s + A)? — m3 )3 [=3(md, — A)? + TAMg(m3, — A?) + M3 (114% + Tm3)

+ 36AM3, + 18M3] + 24N MB(Mp + A) (A% — m3) (Mg + A)* — m3 )2 [BME(9A% — Tmj) + 21AM g(A* — m3)
+4(m3 — A)? + 12AM3, + 6M] + 16A°M3 (Mg + A)*(2M g + A)? — m3)[35(m), — A?)?

— 174AM g(m3 — A%)? — 6ME(50A* — T9A*m3 + 29my) + 4M3(63Am] — 62A%) + 6M%(21m) — 19A%)

+ 12AM3 + AMS] + 64ANSMR(M g + A)?[=7(m3, — A%)* + TOAM g(mg, — A?) 4 TOMp(mg — 4A%) (mg — A%)?

— 4M3(146A° — 251 A% m3 4 105Amy) + M(—688A% + 912A%m3 — 210my)) + M3 (492Am3 — 436A3)

+ 4MG(41m5 — 20A%) + S6AMY, + 14M3] + 128AOM3[—(mj — A%)* + 10AM 5(mj, — A?)?

+ 10M3(m3, — 40%) (m], — A?)? = 20M3,(40° = TA3m3, + 3Am¢) — 10M}%(8A* — 12A%m} + 3m)

+ 20M3(3Am} — A) + 20M$(2A% + mj) + 40AM}, + 10M3]}, (C8)

2 5a42
s(Re12) CoryN My

BTG 96 f3(M g+ A)2 ((m3 — A%) (m}, — (2M 5+ A)?) + 47 M5 )

(my—A*)((2Mp+A)> —my)
x —128A3M?§(m§)—A2)3/2((2MB+A)2—mé)5/2arctan<\/ ’ ’

A2Mp+A)+m},

4
_7(m2 _A2)7/2arctan —m(/))

+20%my (mg — A?)(2M g+ A)* —m3 ) [BA(m] — A%)> + Mp(12A% = 1TA%mj +5my) —6ME(5Amg —2A%)]

— 24N Mymi (m3 — A%)((2M g+ A)? —m3 )2 [4A (m3, — A?)? = M p(—16A% + 11A%m3 + 5mi ) —2M3(5Am3 —8A3)]
+ 16ACMym[~35(m3 — A?)* +314AM p(m3 — A?)? +-2M3 (m3 — A%)? (145m3 — 556 A%)
—4M},(484A° —843 A% m3 4359 Amy) —8M (206 —283A%m3 +75my) + 16M3 (35Am3 —34A%)]

— 64N Mym [=7(m3 — A?)* +TOAM p(m3 — A%)? +T0Mp (mj —4A%) (mj — A?)?

—4M3,(140A° —239A%m3 +99Amy ) —2M (2804 = 372A%m3, +85m ) + 16M3 (15Am3 — 14A%)]

+128A1M [ (m3 — A?)* + 10AM g (m3 — A?)3 +10M% (m? —4A%) (m — A?)? = 20M3 (4A° = TA m3 4+ 3Am )

m2 — A2
! <7V¢A> (A, (= A2)3(2M s+ A

— 10M % (8A* = 12A%m3 +3m) + 16M3(3am3 —2A%)]} | | (C9)

(Rel) 2O A* —my
ZN”“ad:2567r2f2(1\2—m2)7/2 A/ A2 = m2(—8A* = 10A’m2 + 3m}) + 3m2(8A* — 4A%*m? + m3)artanh — )|
(C10)

Finally, in the HB scheme,

(HB.1) C%?B’
T — _ TR £ Ao {377:(/\6 + A2 — m3) — 92 (3, — 6°) + (m} — &°)?)
485A(52 )2(52 + A2 —m3)
A2
) 25A (3% + A2 — m3)? (=288 A% + 8AS — (218 + 6TA%)m, + (648 A% + 38A*)m3, + 21mS) c1y)
(m3 = AZ)? ’
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2 8
(HB2) CBB’¢A

g = 647 f2 (8 + A% —m3)? {S(mi —&)? [2 arctan (

)

2 2
S A—m
——— % artanh <7VA¢> [~166>A10 + 8A8(78% + 3A%)m3, + (669> + 245* A* — 348> A® — 60A® )i,

A3<A2 _ mé)7/2

—(8°+276'A* +398°A* = 35A%)m§ + 3(5* + 126 A* + 5A%)mi — 3(8” + 5A%)my +mj] }

(C12)

Then, observing Egs. (22) and (23), we note that the expression for the octet-decuplet-meson self-energy will be the same

besides the factor of 2/3, and replacing 6§ — A and Cgpy — Cppy. We further remark that Zg\,ﬂ’

Rel) Z(HB)
tad = “Nr.tad*
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