
Alternative to perturbative renormalization
in (3 + 1)-dimensional field theories

Paul Romatschke
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

(Received 9 April 2024; accepted 23 May 2024; published 20 June 2024)

Perturbative renormalization provides the bedrock of understanding quantum field theories. In this work,
I point out an alternative way of renormalizing quantum field theories, which is naturally encountered and
well-known for the case of large N scalar field theories. In terms of bare parameters, this nonperturbative
alternative renormalization differs qualitatively from its perturbative cousin: in the continuum limit, the
bare coupling constant goes to zero instead of infinity, and there is no wave-function counterterm. Despite
these differences, the resulting n-point functions of the theory are finite. I provide explicit results for
alternative renormalization for the O(N) model and QCD with Nf ¼ 12 flavors in 3þ 1 dimensions.

DOI: 10.1103/PhysRevD.109.116020

I. INTRODUCTION

Renormalization of scalar field theory has been a topic of
interest in high energy physics since the dawn of quantum
field theory. Regularization and perturbative renormaliza-
tion for scalar fields is by now standard and can be found in
many variations in various textbooks [1–3].
For scalar field theory in four dimensions, the perturba-

tive renormalization program starts out the usual way,
by first regularizing formally divergent integrals, and then
introducing vacuum energy, mass, coupling constant, and
wave-function counterterms order-by-order in a weak-
coupling expansion to cancel the divergencies.
In contrast to perturbative approaches, large N expan-

sions of N-component field theories resum an infinite
number of perturbative contributions (Feynman diagrams)
at every order in 1

N. This is advantageous in cases where
nonperturbative information about the theory is needed,
and it has successful applications to different physical
systems; see, e.g., Ref. [4] for a modern review.
However, because large N is not a weak-coupling

framework, knowledge of perturbative renormalization of
the theory is of little help when aiming for a calculation
of renormalized observables at any given order in 1

N. In
practice, one needs to set up nonperturbative renormaliza-
tion conditions that do not correspond to any finite-order
perturbative truncation. At leading order in large N,

nonperturbative renormalization is relatively straightfor-
ward, and in fact has been used since the 1970s [5,6].
Curiously, Parisi pointed out in a seminal paper that large
N field theories may be nonperturbatively renormalized
order-by-order in a large N expansion even in cases that are
not perturbatively renormalizable [7], such as scalar field
theory in spacetime dimensions d < 6.
For the case of scalar field theory in d ¼ 4, the question

of nonperturbative renormalization has been encountered
in so-called Φ-derivable and two particle-irreducible effec-
tive theories [8–11], culminating in the proof of non-
perturbative renormalizability in the massless case [12–14].
Curiously, there seems to be little discussion about the

qualitative differences between nonperturbative and per-
turbative renormalization in the literature. Specifically for
scalar field theory, perturbative renormalization requires
adding the counterterms [2]

δLV ¼ χV; δLλ ¼ χλϕ
4;

δLm ¼ χmϕ
2; δLϕ ¼ χϕ∂μϕ∂μϕ; ð1Þ

to the theory Lagrangian, with the coefficients
χV; χλ; χm; χϕ all diverging in the continuum limit of the
theory. By contrast, as will be reviewed below, nonpertur-
bative renormalization of large N scalar field theory
requires adding the counterterms [15,16]

δLV ¼ cV; δLλ ¼ cλϕ4; δLm ¼ cmϕ2; ð2Þ

where in particular cλ → 0 in the continuum limit of the
theory.
One is faced with the situation that while perturbative

renormalization requires wave-function renormalization,
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apparently nonperturbative renormalization does not. In
addition, while the coupling constant counterterm in
perturbative renormalization diverges in the continuum
limit, the corresponding counterterm in nonperturbative
renormalization vanishes in the same limit. Yet both
renormalization procedures render the theory finite.
I find this difference between perturbative and non-

perturbative renormalization striking, and took it as an
opportunity to review nonperturbative renormalization in
scalar field theory and QCD in this work.

II. SCALAR FIELD THEORY

The theory is defined by the partition function

Z ¼
Z

Dϕ⃗e−SE; ð3Þ

where SE is the Euclidean action of the theory

SE ¼
Z

d4x

�
1

2
∂μϕ⃗∂μϕ⃗þ 1

2
m2

Bϕ⃗
2 þ λB

N
ðϕ⃗2Þ2

�
: ð4Þ

Here ϕ⃗ ¼ ðϕ1;ϕ2;…;ϕNÞ is a N-component scalar field,
andmB and λB are the bare mass and coupling parameter of
the theory. It is useful to rewrite the partition function in
terms of an auxiliary field ζ, which is introduced through
the mathematical identity

e−
R
x

λB
N ðϕ⃗2Þ2 ¼

Z
Dζe

−
R
x

h
iζ
2
ϕ⃗2þ ζ2N

16λB

i
: ð5Þ

It is furthermore convenient to split the auxiliary field into a
global zero mode ζ0 and fluctuations around it

ζðxÞ ¼ ζ0 þ ξðxÞ; ð6Þ

such that the partition function becomes

Z ¼
Z

dζ0Dϕ⃗Dξe−SR0−S
0
; ð7Þ

with

SR0 ¼
Z

d4x
�
1

2
ϕ⃗½−□þm2

B þ iζ0�ϕ⃗þ N
16λB

ζ20

�
;

S0 ¼
Z

d4x

�
iξϕ⃗2

2
þ Nξ2

16λB

�
: ð8Þ

(Note that the “Rn” nomenclature is in one-to-one corre-
spondence to an expansion in powers of N−1; cf. Ref. [4].)

A. Leading order large N—level R0

So far everything has been exact. Owing to the three
vertex ξϕ2 in S0, the path integral for the partition function
cannot be done in closed form. In the limit of many scalar
components N ≫ 1, the theory is amenable to closed-form
solutions in an expansion in 1

N.
To leading order in large N, the action S0 does not

contribute to the partition function, and one has

ZR0 ¼
Z

dζ0e
−N

2
Tr ln ½−□þm2

Bþiζ0�−vol×
Nζ2

0
16λB ; ð9Þ

where the Gaussian integral over ϕ was performed and
“vol” denotes the spacetime volume. The functional
trace over the logarithm of the operator is UV divergent
and needs to be regulated. For the present work, I choose to
use dimensional regularization, because it is the standard
regularization scheme used by the Particle Data Group [17],
and because it is elegant and I like elegance. In dimensional
regularization, the spacetime dimension is taken to be

d ¼ 4 − 2ε; ð10Þ

with the parameter ε > 0 sent to zero in the end.
Regularization is provided by the analytic continuation
of the Γ function, in particular for integrals of the type

Z
ddk
ð2πÞd

1

ðk2 þm2Þα ¼
1

ð4πÞd2
Γðα − d

2
Þ

ΓðαÞ ðm2Þd2−α: ð11Þ

For the R0 level partition function, one needs the integral

1

2
Tr ln ½−□þm2

B þ iζ0�

¼ vol ×
1

2

Z
ddk
ð2πÞd ln ½k

2 þm2
B þ iζ0�

¼ vol ×
1

ð4πÞd2
Γð1 − d

2
Þ

d
ðm2

B þ iζ0Þd2; ð12Þ

which follows from direct integration of (11) for α ¼ 1

with respect to m2. For ε → 0, one therefore finds for the
partition function

ZR0 ¼
Z

dζ0e−N×vol×F ðζ0Þ; ð13Þ

with

F ðζ0Þ ¼
ζ20

16λB
−
ðm2

B þ iζ0Þ2
64π2

�
1

ε
þ ln

μ̄2e
3
2

m2
B þ iζ0

�
; ð14Þ
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where μ̄ is the renormalization scale parameter in the MS
scheme. It is useful to rewrite the expression as

F ðζ0Þ ¼ −
ðm2

B þ iζ0Þ2
64π2

�
4π2

λB
þ 1

ε
þ ln

μ̄2e
3
2

m2
B þ iζ0

�

þm2
B þ iζ0
32π2

4π2m2
B

λB
−

m4
B

16λB
: ð15Þ

B. Nonperturbative renormalization

The theory is renormalized if all n-point functions of the
theory are finite. Calculating the partition function corre-
sponds to a zero-point function, which means that after
integrating over ζ0, ZR0 needs to be finite. In the large N
limit, the remaining integral over ζ0 can be performed
exactly using the saddle-point method, finding

ZR0 ¼ e−N×vol×F ðζ̄Þ; ð16Þ

with F ðζ0Þ given by (15) and ζ̄ the value of the saddle
point. (Note that I am assuming that there is only one
dominant saddle point, which will be verified below.)
The two-point function for the R0-level theory is

given by

hϕiðxÞϕjð0Þi ¼ Z−1
R0

Z
dζ0Dϕ⃗e−SR0ϕiðxÞϕjð0Þ

¼ Z−1
R0

Z
dζ0e−N×vol×F ðζ0Þ δij

−□þm2
B þ iζ0

:

ð17Þ

This expression involves the two-point function

ΔðxÞ≡ hxj 1

−□þm2
B þ iζ0

j0i; ð18Þ

which is akin to a standard bosonic propagator except
for the fact that its “mass term” m2

B þ iζ0 is still being
integrated over. In the large N limit, the integral can again
be performed exactly, and one finds

hϕiðxÞϕjð0Þi ¼
Z

ddk
ð2πÞd

eik·x

k2 þm2
B þ iζ̄

; ð19Þ

where ζ̄ is again the saddle point discussed above. As a
consequence, the two-point function of the theory is finite
in the large N limit as long as the vector pole mass squared

m2
R0 ¼ m2

B þ iζ̄ ð20Þ

is finite.
The connected four-point function for the R0-level

theory is given by

hϕaϕbϕcϕdiconn ¼ Z−1
R0

Z
dζ0Dϕ⃗Dξe−SR0−S

0
ϕaϕbϕcϕd

¼ O
�
1

N

�
; ð21Þ

to leading order in the large N limit. This is simply a
reflection of the fact that non-Gaussian terms do not
contribute to the R0-level action to leading order in large
N, and hence, the four-point function (as well as all higher-
order connected n-point functions) are 1

N suppressed.
Therefore, to leading order in large N, the theory is finite

if the zero-point and two-point functions are finite.
Let us study this explicitly now. To renormalize the

theory, one can add counterterms to the original action.
For the zero-point function, after integration over ζ0,
the requirement that F ðζ̄Þ is finite together with the
requirement from the two-point function that m2

R0 must
be finite implies that the coefficients of the terms
m4

R0; m
2
R0; m

0
R0 must be finite. This leads to three renorm-

alization conditions:

Oðm4
R0Þ ¼ finite∶ coupling renormalization; ð22Þ

Oðm2
R0Þ ¼ finite∶ mass renormalization; ð23Þ

Oðm0
R0Þ ¼ finite∶ vacuum renormalization; ð24Þ

specifying the form of the coupling-constant, mass, and
vacuum energy counterterms.
It is paramount to point out that this does not leave any

room for a wave-function renormalization counterterm.
Hence, I conclude that wave-function renormalization
must be absent when nonperturbatively renormalizing large
N theories.
In particular, the counterterm cV can be used to cancel a

potentially divergent vacuum constant in (15). In the

following I choose cV to fully cancel the term − m4
B

16λB
in (15).

For the coefficient of m4
R0, one finds that it requires adding

a counterterm to the inverse coupling constant such that

1

λB
¼ 1

λRðμ̄Þ
þ cλ: ð25Þ

Specifically, I take

1

λB
þ 1

4π2ε
¼ 1

λRðμ̄Þ
; ð26Þ

which renders the Oðm4
R0Þ coefficient in (15) finite.

Finally, the Oðm2
R0Þ coefficient is finite provided that the

combination

m2
B

λB
¼ m2

Rðμ̄Þ
λRðμ̄Þ

≡ αR0Λ2

MS

4π2
ð27Þ
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is finite, which can be accomplished by adding a suitable
counterterm cm to the mass parameter.
Here mRðμ̄Þ and λRðμ̄Þ are the (running) renormalized

mass and coupling parameter of the theory. From the above
conditions, the explicit form of the running parameters is
given by

λRðμ̄Þ¼
4π2

ln
Λ2

MS
μ̄2

; m2
Rðμ̄Þ¼

αR0Λ2

MS

4π2
λRðμ̄Þ¼

αR0Λ2

MS

lnΛ2
R0
μ̄2

: ð28Þ

The energy scale ΛMS is an emergent parameter of the
theory, corresponding to the MS parameter mentioned in
the particle data group [17]. Here it is identical to the
so-called Landau pole of the theory. Note that the running
coupling approaches zero from below for μ̄ ≫ ΛMS, con-
sistent with the discussions in Refs. [16,18].
As advertised, the counterterms cV , cm, cλ are sufficient

to render all connected n-point functions of the theory finite
in the large N limit. While this finding is trivial to this order
in the 1

N expansion, I feel compelled to point out the
following facts:

(i) The nonperturbative running coupling λRðμ̄Þ in (28)
matches the largeN part of the one-loop perturbative
running coupling (cf. Ref. [19] [Eq. (3.1.56)])

λpertR ðμ̄Þ ¼ 4π2

ð1þ 8
NÞ ln

Λ2

MS
μ̄2

: ð29Þ

(ii) Sending the regulator ε → 0, the bare coupling
constant (26) in nonperturbative renormalization
obeys

lim
ε→0

λB ¼ lim
ε→0

1
1

λRðμ̄Þ −
1

4π2ε

→ 0−; ð30Þ

meaning it approaches zero for any λRðμ̄Þ ≠ 0. By
contrast, in perturbation theory one first expands λB
for λRðμ̄Þ ∼ 0 and then lets ε → 0, leading to

lim
ε→0

λpertB ¼ lim
ε→0

λRðμ̄Þ þ
λ2Rðμ̄Þ
4π2ε

þOðλ3RÞ → ∞: ð31Þ

(iii) Since nonperturbative renormalization is not linked
to a weak-coupling expansion, physical observables
are manifestly independent from the (fictitious)
renormalization scale μ̄ order-by-order in 1

N, as will
be shown below.

Let us investigate this last point in more detail by
calculating some physical observables from the renormal-
ized large N theory. Inserting the nonperturbative renorm-
alization conditions and explicit forms for λR, mR into the
expression for F ðζ0Þ, one finds

F ðζ0Þ ¼ −
m4

R0

64π2
ln
Λ2

MS
e
3
2

m2
R0

þ αR0Λ2

MS

m2
R0

32π2
; ð32Þ

where I recall that cV has been chosen to fully cancel the
constant in (15). At large N, the partition function is then
determined through its saddle points, and one finds

lnZR0

vol
¼ −NF ðζ0 ¼ ζ̄Þ ¼ −NF̄ ; ð33Þ

where the saddle-point condition is

m2
R0 ln

Λ2

MS
e1

m2
R0

¼ αR0Λ2

MS
: ð34Þ

Depending on the numerical value of αR0, there are
different solutions to this equation in terms of

m̄2
R0 ≡m2

B þ iζ̄: ð35Þ

For αR0 ¼ 0, the solutions are

αR0 ¼ 0∶ m̄2
R0 ¼ 0; m̄2

R0 ¼ e1Λ2

MS
: ð36Þ

Plugging these values into the partition function, one finds
that the trivial solution m̄2

R0 ¼ 0 corresponds to the trivial
vacuum with F̄ ¼ 0, whereas the second solution corre-
sponds to the free energy density solution

αR0 ¼ 0∶ F̄ ¼ −
e2Λ4

MS

128π2
; ð37Þ

which indicates the thermodynamically preferred phase.
This shows that for αR0 ¼ 0, the nontrivial saddle-point
solution gives the true large N ground state of the theory.
For 0 < αR0 < αc, there continue to be two real solutions

to the saddle-point condition (34), with the larger value for
m̄2

R0 corresponding to the lower-free energy:

0 < αR0 < αc∶ m̄2
R0 ¼ −

αR0Λ2

MS

W
�
− αR0

e

� ;
F̄ ¼ −

m̄4
R0

128π2
þ
αR0m̄2

R0Λ2

MS

64π2
; ð38Þ

with WðxÞ denoting the Lambert (or product-log) function.
The solution stops to be real for αR0 > αc, which is located
at the branch point of the Lambert function:

αc ¼ 1: ð39Þ

For the critical value of αc, one has

αR0 ¼ αc∶ m̄2
R0 ¼ Λ2

MS
; F̄ ¼

Λ4

MS

128π2
: ð40Þ
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Note the different sign of the free energy for this value of
αR0 compared to (37).
For decreasing αR0 < 0, the numerical value for the

dominant saddle m̄2
R0 (the value of the free energy F )

increases (decreases) monotonically.
Depending on the numerical value of αR0, the vector pole

mass changes from

αR0¼0∶ m̄R0¼
ffiffiffi
e

p
ΛMS; αR0¼αc∶ m̄R0¼ΛMS; ð41Þ

e.g., it decreases with increasing αR0. Curiously, this
implies that irrespective of the mass renormalization, there
is a lower limit on the vector mass:

m̄R0 ≥ ΛMS: ð42Þ

C. Partial next-to-leading order large N—level R1

To include 1=N corrections in the theory one needs to
include additional resummations not covered by the R0
scheme. The simplest such refinement is provided by the
so-called R1 resummation scheme outlined and used in
Refs. [20,21]. R1 is defined by adding and subtracting a
term ν2

2

R
d4xϕ⃗2 to the action of the theory such that the

partition function becomes

Z ¼
Z

dζ0Dϕ⃗Dξe−SR1−SI1 ; ð43Þ

with

SR1 ¼
Z

d4x

�
1

2
ϕ⃗½−□þm2

B þ iζ0 þ ν2�ϕ⃗þ N
16λB

ζ20

�
;

SI1 ¼
Z

d4x

�
iξϕ⃗2

2
þ Nξ2

16λB
−
ν2

2
ϕ⃗2

�
; ð44Þ

where ν2 is determined by self-consistently calculating the
vector two-point function to one-loop level:

hϕiðxÞϕjð0Þi ¼ hϕiðxÞϕjð0ÞiR1 − hϕiðxÞSI1ϕjð0ÞiR1
þ 1

2
hϕiðxÞS2I1ϕjð0ÞiR1; ð45Þ

where h·iR1 specify expectation values for the theory with
respect to the action SR1. Performing the contractions leads
to the result [20]

ν2 ¼ 8λB
N

Δðx ¼ 0Þ; ð46Þ

in terms of the ζ0-dependent R1 vector propagator

ΔðxÞ ¼
Z

d4k
ð2πÞ4

eikμxμ

k2 þm2
B þ iζ0 þ ν2

: ð47Þ

The R1 partition function is likewise calculated as

ZR1 ¼
Z

dζ0e−N×vol×FR1ðζ0Þ; ð48Þ

with the R1-effective potential FR1ðζ0Þ given by

FR1ðζ0Þ ¼
ζ20

16λB
þ 1

2

Z
d4k
ð2πÞ4 ln ½k

2 þm2
B þ iζ0 þ ν2�

−
2λB
N

Δ2ðx ¼ 0Þ; ð49Þ

where for the last term I combined contributions from SI
and S2I using (46). Calculating the integrals as before using
dimensional regularization one finds

FR1ðζ0Þ ¼
ζ20

16λB
−

m4
R1

64π2

�
1

ε
þ ln

μ̄2e
3
2

m2
R1

�
−

Nν4

32λB
; ð50Þ

where I introduced the notation

m2
R1 ¼ m2

B þ iζ0 þ ν2: ð51Þ
The R1 scheme can be fully nonperturbatively renor-

malized at any N as follows: first note that the R1 partition
function in the large volume limit is given by

lnZR1

vol
¼ −NF̄R1; ð52Þ

with F̄R1 ¼ FR1ðζ0 ¼ ζ̄Þ and ζ0 ¼ ζ̄ the solution to the
saddle-point condition

0¼ dF
dðiζ0Þ

¼−
iζ0
8λB

þ1

2

Z
ddk
ð2πÞd

1

k2þm2
R1

�
1þ dν2

dðiζ0Þ
�
−
Nν2

16λB

dν2

dðiζ0Þ

¼−
iζ0
8λB

þ1

2

Z
ddk
ð2πÞd

1

k2þm2
R1
; ð53Þ

where the last line is a result of (46). Comparison of this
equation and (46) then immediately leads to

ν2 ¼ 2

N
iζ̄; ð54Þ

and hence,

FR1ðζ̄Þ ¼ −
m4

R1

16λBð1þ 2
NÞ

þ m2
R1m

2
B

8λBð1þ 2
NÞ

þ m4
B

16λBð1þ 2
NÞ

−
m̄4

R1

64π2

�
1

ε
þ ln

μ̄2e
3
2

m̄2
R1

�
: ð55Þ

The same steps as for R0 then lead to the renormalization
conditions for the coefficients of orderm4

R1; m
2
R1; m

0
R1 in the

effective potential, finding
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1

λB
¼ 1

λRðμ̄Þ
−
1þ 2

N

4π2ε
;
m2

B

λB
¼m2

Rðμ̄Þ
λRðμ̄Þ

¼
αR1ð1þ 2

NÞΛ2

MS

4π2
; ð56Þ

so that in particular the running coupling and mass
parameter in the R1 scheme become

λRðμ̄Þ ¼
4π2

ð1þ 2
NÞ ln

Λ2

MS
μ̄2

;

m2
Rðμ̄Þ ¼

αR1ð1þ 2
NÞΛ2

MS

4π2
λRðμ̄Þ ¼

αR1Λ2

MS

ln
Λ2

MS
μ̄2

: ð57Þ

Here ΛMS is an emergent energy scale for the theory that
can (once again) be seen to correspond to the MS parameter
of the theory.
Comparing (57) to the result from perturbation theory

(29) [1–3] for μ̄ ≪ ΛMS, one finds that R1 includes some of
the next-to-leading order corrections, but not all of them. It
is also easy to verify that the connected n-point functions
with n ≥ 4 in the R1 level resummation scheme are
subleading at large N, so that they are trivially finite. To
include all next-to-leading-order (NLO) large N correc-
tions, the next resummation level needs to be addressed.
Before doing so, let us again calculate some observables.

Choosing again cV to cancel the constant term m0
R1 in F ,

one has

F̄R1 ¼ −
m̄4

R1

64π2
ln
Λ2

MS
e
3
2

m̄2
R1

þ αR1Λ2

MS

m̄2
R1

32π2
; ð58Þ

where m̄2
R1 is given by the saddle-point condition (53)

m2
R1 ln

e1Λ2

MS

m2
R1

¼ αR1Λ2

MS
; ð59Þ

[cf. Eq. (34)]. In terms of the parameters ΛMS; αR1, the
vector pole mass and the free energy take on the same
values as for the leading order large N expansion, e.g.,

αR1 ¼ 0∶ m̄2
R1 ¼ e1Λ2

MS
; F̄R1 ¼ −

e2Λ4

MS

128π2
: ð60Þ

D. Next-to-leading order large N—level R2

Complete corrections to subleading order in large N are
effectively captured by employing the R2 level resumma-
tion of (8) (cf. [20,22,23] for details). To this end, add and
subtract self-energy terms for the vector and auxiliary field
in the action, obtaining

SR0 þ S0 ¼ vol ×
Nζ20
16λB

þ SR2 þ SI2; ð61Þ

where

SR2 ¼
Z

ddxddy
1

2
½ϕ⃗ðxÞΔ−1ðx − yÞϕ⃗ðyÞ

þ ξðxÞD−1ðx − yÞξðyÞ�; ð62Þ

SI2 ¼
Z

ddx
iξϕ⃗2

2
−
1

2

Z
ddxddy½ϕ⃗ðxÞΣðx − yÞϕ⃗ðyÞ

þ NξðxÞΠðx − yÞξðyÞ�; ð63Þ

and in Fourier space

ΔðkÞ¼ 1

k2þm2
Bþ iζ0þΣðkÞ ; DðkÞ¼ 1

N

1− δðkÞ
vol

1
8λB

þΠðkÞ ; ð64Þ

where the δ function in DðkÞ is a consequence of the
constraint

R
ddxξðxÞ ¼ 0; cf. (6) and the discussion

in Ref. [23].
The self-energies Σ and Π are found by calculating the

correlators hϕðxÞϕð0Þi and hξðxÞξð0Þi self-consistently to
the one-loop level, finding [4,20]

ΠðxÞ ¼ 1

2
Δ2ðxÞ; ΣðxÞ ¼ DðxÞΔðxÞ: ð65Þ

Because DðxÞ ∝ 1
N, at large N the self-energy obeys

ΣðxÞ ∝ 1
N, and I do not need to include the self-energy Σ

when evaluating ΠðxÞ to leading order in large N:

ΠðkÞ ¼ 1

2

Z
ddp
ð2πÞd

1

ððk− pÞ2 þm2
B þ iζ0Þðp2 þm2

B þ iζ0Þ
:

ð66Þ

Using Feynman parameters and shifting the momentum
variable, this becomes

ΠðkÞ ¼ 1

2

Z
1

0

dx
Z

ddp
ð2πÞd

1

ðp2 þm2
B þ iζ0 þ k2xð1 − xÞÞ2 ;

ð67Þ

which contains a UV divergence in the momentum integral.
Regulating the integral once again using dimensional
regularization, one finds

ΠðkÞ ¼ 1

32π2

"
1

ε
þ ln

μ̄2e2

m2
B þ iζ0

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4ðm2

B þ iζ0Þ
k2

s
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2 þ 4ðm2
B þ iζ0Þ

s #
:

ð68Þ
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The auxiliary field propagator DðkÞ is already Oð1NÞ, so 1
N

corrections to the combination m2
B þ iζ0 ¼ m2

R0 and bare
coupling constant λB can be neglected. Hence, using (26),
the auxiliary field propagator then becomes

DðkÞ ¼ 32π2

N

1 − δðkÞ
vol

ln
Λ2

MS
e2

m2
R0

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4m2

R0
k2

q
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2þ4m2
R0

q : ð69Þ

Explicitly, using (41) one has

αR0¼0∶DðkÞ¼32π2

N

1− δðkÞ
vol

1−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4m̄2

R0
k2

q
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2þ4m̄2
R0

q ð70Þ

and

αR0 ¼ αc∶ DðkÞ ¼ 32π2

N

1 − δðkÞ
vol

2 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ4m̄2

R0
k2

q
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2þ4m̄2
R0

q ;

ð71Þ

which are well-defined and finite for any real-valued
Euclidean momentum kμ. However, note that for α ¼ αc,
the zero in the denominator for k ¼ 0 only does not lead to
a pole in DðkÞ because of the vanishing numerator for
this case.
In the following, for simplicity I will limit myself to only

considering the case

αR0 ¼ 0: ð72Þ

The vector self-energy complete to next-to-leading order
in large N is then given as

ΣðkÞ ¼
Z

ddp
ð2πÞd

DðpÞ
ðk − pÞ2 þm2

R0
: ð73Þ

Formally expanding out ΣðkÞ in perturbation theory, one
finds that it contains terms such as the “setting-sun”
diagram, which are known to contain UV divergencies
proportional to k2, e.g., those that require wave-function
renormalization in perturbation theory [24].
For the case at hand, it is easy to check if ΣðkÞ contains

UV divergencies proportional to k2. To this end, consider

∂

∂kμ

∂

∂kμ
ΣðkÞ ¼ −8m2

R0

Z
ddp
ð2πÞd

DðpÞ
½ðk − pÞ2 þm2

R0�3
: ð74Þ

Since DðpÞ < p2 for large momenta, the resulting expres-
sion is UV finite. Hence, there are no momentum-
dependent divergencies in ΣðkÞ, unlike what happens in
almost all orders of a perturbative expansion of ΣðkÞ.

In fact, Eq. (74) is UV finite at every value of k, which
implies that any potential UV divergence of ΣðkÞ must be
contained in

Σð0Þ ¼
Z

ddp
ð2πÞd

DðpÞ
p2 þm2

R0
; ð75Þ

and thatΔΣðkÞ≡ ΣðkÞ − Σð0Þmust be UV finite to next-to-
leading order in the large N expansion. Note that this differs
radically from the usual perturbative renormalization.
In the R2-level resummation, the partition function is

given by

ZR2 ¼
Z

dζ0e−N×vol×FR2ðζ0Þ; ð76Þ

with the R2-level free energy densityFR2ðζ0Þ given by [20]

FR2ðζ0Þ ¼
ζ20

16λB
þ 1

2

Z
ddk
ð2πÞd ln ½k

2 þm2
R0 þ ΣðkÞ�

−
1

2

Z
ddk
ð2πÞd ΣðkÞΔðkÞ

þ 1

2N

Z
ddk
ð2πÞd ln ½D

−1ðkÞ�; ð77Þ

where a two-loop diagram has canceled. Noting that
ΣðkÞ ∝ 1

N, one can expand the first logarithm in FR2 for
large N, finding that the total contribution of Σ is OðN−2Þ,
or next-to-next-to-leading order in large N, which is
beyond the accuracy of this work. Hence, at next-to-leading
order in large N, the expression for the free energy
functional simplifies to

lim
N≫1

FR2½ζ0� ¼
ζ20

16λB
þ 1

2

Z
ddk
ð2πÞd ln ½k

2 þm2
R0�

þ 1

2N

Z
ddk
ð2πÞd ln ½D

−1ðkÞ�: ð78Þ

All but the last integral in this expression have been
evaluated in the R0 subsection above.
To extract the divergencies of the functional trace over

the auxiliary field propagator, note that in dimensional
regularization only logarithmic1 divergencies register.
As a consequence, expanding lnD−1ðkÞ for k ≫ mR0,
the divergent piece of the integral must originate from
the term proportional to k−4 in this power series expansion.
One finds

1An earlier version of this work treated this dogmatically,
extracting only divergencies that register as 1

ε in dimensional
regularization. A more careful analysis shows that besides
divergencies of this form, also terms such as ln ε can appear,
corresponding to ln lnΛUV divergencies in cutoff regularization.
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lnD−1ðkÞ¼ ���−4m4
R0

k4
þ

�
3þ6 ln

Λ2

MS
e2

m2
R0

�
m4

R0

k4 lnm2
R0
k2

þ���; ð79Þ

and hence,

1

2N

Z
ddk
ð2πÞd ln ½D

−1ðkÞ�

¼ −
m4

R0

N
1

8π2ε
þm4

R0

N

3þ 6 ln
Λ2

MS
e2

m2
R0

32π2
ln εþ finite: ð80Þ

Collecting the leading order large N result and the
divergent pieces and bare parameter contributions in FR2
one finds

lim
N≫1

FR2ðζ0Þ ¼ −
ðiζ0Þ2
16λB

−
m4

R0

64π2

2
641
ε

�
1þ 8

N

�

þ ln
μ̄2e

3
2

m2
R0

−
12 ln

Λ2

MS
e
5
2

m2
R0

N
ln ε

3
75þ finite: ð81Þ

Because of the choice (72), the bare mass parameter
vanishes to leading order in large N, so one can set
iζ0 ¼ m2

R0. According to the principles of nonperturbative
renormalization set out in Sec. II B, the coefficients of
the terms m4

R0; m
2
R0; m

0
R0 have to be finite. However,

inspecting (81), the term proportional to m4
R0 lnm

2
R0 ln ε

does not fit into this scheme: since the logarithm depends
on mR0, no single choice of λB can be used to absorb this
divergence for all mR0.
However, there is a way to render FR2 finite. In fact,

it will become clear that this is a required operation in
order to obtain a finite two-point function for the theory.
Namely, rescaling iζ0 by a (divergent) constant as

iζ0 → iζ0

�
1þ cΣ

N

�
; ð82Þ

and expanding F to NLO in large N leads to

lim
N≫1

FR2

�
ζ0

�
1þ cΣ

N

��

¼ −
ðiζ0Þ2
64π2

�
4π2

λB
þ ln

μ̄2e
3
2

iζ0
þ 1

ε

�
1þ 8

N

�

þ 2cΣ
N

�
4π2

λB
þ ln

μ̄2e1

iζ0
þ 1

ε

�
−
12 ln

Λ2

MS
e
5
2

iζ0

N
ln ε

�
þ finite:

ð83Þ

The term proportional to cΣ is already OðN−1Þ, so that the
leading order renormalization (26) can be used without
making any error to NLO in large N. One finds

lim
N≫1

FR2

�
ζ0

�
1þ cΣ

N

��

¼ −
ðiζ0Þ2
64π2

2
644π2
λB

þ ln
μ̄2e

3
2

iζ0
þ 1

ε

�
1þ 8

N

�

þ 2cΣ
N

ln
Λ̄2

MS
e1

iζ0
−
12 ln

Λ2

MS
e
5
2

iζ0

N
ln ε

3
75þ finite: ð84Þ

It is now apparent that the offending term can be canceled
by choosing

cΣ ¼ 6 ln ε; ð85Þ

so that with this choice

lim
N≫1

FR2

�
ζ0

�
1þcΣ

N

��

¼−
ðiζ0Þ2
64π2

�
4π2

λB
þ ln

μ̄2e
3
2

iζ0
þ1

ε

�
1þ 8

N

�
−
18

N
lnε

�
þ finite:

ð86Þ

In this form now, the free energy can be rendered finite
by a nonperturbative coupling constant renormalization:

1

λB
¼ 1

λRðμ̄Þ
−
1þ 8

N

4π2ε
þ 9 ln ε
2π2N

: ð87Þ

Replacing ln ε → ln ð− λB
4π2

Þ þOðN−1Þ, the above
renormalization is qualitatively similar to the form expected
from two-loop running in perturbation theory.
The nonperturbative renormalization condition (87)

renders finite FR2 in the large N limit, which in turn gives
a finite value for the saddle ζ̄ which in turn guarantees a
finite zero-point function to next-to-leading order in large
N (after subtracting a divergent vacuum energy contribu-
tion). One can check this explicitly by recalculating the
saddle-point condition directly from (77):

0 ¼ dFR2

diζ0

¼ −
iζ̄
8λB

�
1þ cΣ

N

�
þ 1

2

Z
ddk
ð2πÞd

1

k2 þ iζ̄ð1þ cΣ
N Þ þ ΣðkÞ ;

ð88Þ
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where several terms have canceled (cf. Ref. [20]). At this
point it is useful to recall that the two-point function for the
vector fields of the theory is given by

hϕiðxÞϕjðxÞi ¼
Z

ddk
ð2πÞd

eikx

k2 þ iζ̄ð1þ cΣ
N Þ þ ΣðkÞ ; ð89Þ

where ζ̄ is finite after renormalizing the coupling (87).
I have pointed out above that ΣðkÞ does not contain any
divergencies proportional to k2. It would seem that a
divergent constant Σð0Þ would lead to a divergence in
the two-point function. The only way to avoid a divergent
pole mass is therefore that the divergence in Σð0Þ is exactly
canceled by the choice of cΣ that was required to render the
free energy finite for all iζ0.
It should be stressed that the term cΣ, though divergent,

does not correspond to a wave-function counterterm.
This is because a wave-function counterterm is very
specific: it is an additional term χϕ∂μϕ⃗ · ∂μϕ⃗ in the
Euclidean action (4), which manifests itself as an additional
term 2k2χϕ in the denominator of (89). By contrast, the
term proportional to cΣ in (89) is independent of the
momentum k; hence, cΣ cannot be a wave-function
counterterm. In fact, from its origin, it is clear that cΣ is
no counterterm at all, because it does not correspond to an
additional term in the action (4). There is no additional
renormalization condition associated with cΣ: it simply has
to cancel out against the corresponding divergent part
of Σð0Þ.
After this discussion, let us calculate the divergent part

of Σð0Þ: expanding DðpÞ
p2þm2

R0
in (75) in powers of momenta

p ≫ mR0, any logarithmic divergence must originate from
the term proportional to p−4 in this power series expansion.
One finds that

DðpÞ
p2 þm2

R0
¼ 32π2

N

"
� � � − 3m2

R0

p4 ln m2
R0
p2

þ � � �
#
; ð90Þ

so that

Σð0Þ ¼ −
6m2

R0

N
ln εþ finite; ð91Þ

confirming that Σð0Þ is indeed divergent in the limit ε → 0.
From (89), the inverse propagator becomes

k2 þ iζ̄

�
1þ cΣ

N

�
þ Σð0Þ þ ΔΣðkÞ

¼ k2 þ iζ̄ þ ΔΣðkÞ þ finite; ð92Þ

because to this order in the large N expansion and using (85)

iζ̄
cΣ
N

¼ m2
R0cΣ
N

¼ 6m2
R0 ln ε
N

; ð93Þ

where I recall that ΔΣðkÞ ¼ ΣðkÞ − Σð0Þ was found to be
UV finite above.
The only divergence present in ΣðkÞ is precisely can-

celed by the shift choice (85), which was necessary to
cancel the logarithmic term in the free energy.
As a consequence, the explicit construction above shows

that both the zero-point and the two-point functions of the
theory are finite to NLO in the large N expansion.
The connected four-point function for the R2-level

theory is given by

hϕaϕbϕcϕdiconn ¼ Z−1
R2

Z
dζ0Dϕ⃗Dξe−SR2−SI2ϕaϕbϕcϕd;

ð94Þ

which allows for different kinematic channels (“s,” “t,”
and “u” channels), all of which have the same form. For
instance, in the s channel, one finds in momentum space for
the R2-level connected amputated four-point function

ΓðsÞ
4 ðpÞ ¼ 1

32π2
DðpÞ ¼ 1 − δðpÞ

vol
N
8λB

þ ΠðpÞ : ð95Þ

One can immediately see that Γ4ðpÞ ∝ 1
N, which is why one

needs to go to at least the R2 resummation level in order to
get a consistent result for the four-point function.
One can also see that Γ4ðpÞ is amenable to a perturbative

expansion

ΓðsÞ
4 ðp ≠ 0Þ ¼ 8λB

N
−
ð8λBÞ2ΠðpÞ

N2
þ � � � ; ð96Þ

where in perturbation theory every single term is divergent
because of (31); cf. the discussion in Ref. [4]. In strong
contradistinction, at the R2 level in the large N approxi-

mation ΓðsÞ
4 ðpÞ is given exactly as

ΓðsÞ
4 ðpÞ ¼ 1

N

1 − δðpÞ
vol

1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ4m̄2

R0
p2

q
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

p2þ4m̄2
R0

q ; ð97Þ

where I used again (69) for αR0 ¼ 0. This expression for the
four-point function of the theory is finite and well-behaved
for all Euclidean momenta p.
It is possible to consider the connected six-point function

for the theory, but one finds that it is proportional to 1
N2 so

that the R2-level resummation scheme is insufficient to
calculate this quantity. While it is possible to study six-
point functions using higher-order resummation schemes,
such as R4 [22], this calculation is left for future work.
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E. Summary of nonperturbative renormalization
for scalar field theory

To summarize, it is possible to set up an alternative
renormalization scheme in scalar field theories different
from perturbative renormalization that leads to finite
n-point functions order-by-order in a large N expansion.
This alternative renormalization scheme does not allow

for wave-function renormalization, which is different from
the perturbative approach.
Also, in the nonperturbative renormalization approach,

the bare coupling parameter tends to λB → 0− as the
regularization parameter is removed, which is qualitatively
different from the perturbative behavior.
Despite these unusual features, and in particular despite

employing fewer counterterms than perturbative renorm-
alization, I provided explicit calculations valid up to
and including OðN−1Þ to show that all connected n-point
functions of the theory come out finite. In particular,
I showed that the connected four-point function to order
Oð1NÞ is finite even though its perturbative reexpansion is
divergent at every single order in perturbation theory.
I find it intriguing that the theory, defined through a

controlled expansion in 1
N, is apparently “less divergent”

than its perturbative definition, by which I mean that in the
massless case a single coupling-constant renormalization
is sufficient in dimensional regularization to render all
n-point functions finite to orderOð1NÞ, whereas perturbative
renormalization requires both coupling constant and wave-
function counterterms.
In my opinion, this provides further evidence for the

claim that a nontrivial interacting scalar field theory
formulation is possible in the continuum (cf. Ref. [16]).
Also, applications of this alternative renormalization, for
instance, to recent strong coupling real-time problems such
as in Refs. [25,26], are possible.
Another possible application of the above findings is to

try to make contact with lattice scalar field theory, which
constitutes its own nonperturbative renormalization scheme.
A direct comparison requires lattice scalar field theory in
four dimensions with bare couplings that fulfill (30), which
is a study in its infancy [27,28]. However, in two dimensions,
where lattice results only require nonperturbative mass
renormalization, the nonperturbative lattice renormalization
and the nonperturbative renormalization discussed in this
work are identical (cf. Refs. [20,29]).

III. QCD

Inspired by the success of nonperturbative renormaliza-
tion in scalar field theory, let me now consider a similar
setup for QCD. Unlike in the case of scalar field theory,
there is no simplification in performing a large Nc
expansion for QCD. Instead, I will be using a “semi-
classical” expansion of the QCD effective action, which
can be formalized as a power expansion in ℏ. However,

since ℏ is not dimensionless, such an expansion is neces-
sarily uncontrolled, which means that the results presented in
the following are qualitative in nature. Nevertheless, I hope
that some readers will find the apparent similarity with the
scalar field theory case amusing.
Specifically, following the work reported in Ref. [30],

I consider an SUðNÞ gauge theory coupled to Nf flavors of
massless Dirac spinors in the fundamental representation
with an action given by

SE ¼
Z

ddx
�

1

4g2B
Ga

μνGa
μν þ ψ̄f=Dψf

�
; ð98Þ

where gB is the bare Yang-Mills coupling constant. Here

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ fabcAb

μAc
ν ð99Þ

is the Yang-Mills field strength tensor, Aa
μ is the gauge

potential, ψf ¼ ðψ1;ψ2;…;ψNf
Þ are the Nf Dirac fer-

mions, and =D ¼ γμð∂μ − iAa
μtaÞ is the Dirac operator

with the Euclidean gamma matrices γμ with commutation
relation fγμ; γνg ¼ 2δμν. The SUðNÞ generators ta and
structure constants fabc are taken to fulfill

trtatb ¼ δab

2
; ½ta; tb� ¼ ifabctc: ð100Þ

Inspecting the QCD action (98) and comparing it to the
scalar field action in the auxiliary field formulation (8), one
can observe certain similarities. For instance, the “matter
content” given by the scalars ϕi and the fermions ψf,
respectively, appears quadratically in both cases. Similarly,
the matter fields couple through a three-point vertex to the
auxiliary field ζ for scalars and through a three-point vertex
to the gauge field γμAa

μta in QCD. For the case of scalar
field theory, the leading large N partition function could be
isolated by splitting the auxiliary field into a constant plus
fluctuations, e.g., Eq. (6). This motivates performing a
similar split of the gauge field in QCD as

Aa
μðxÞ ¼ Aa

μðxÞ þ aaμðxÞ; ð101Þ

where Aa
μðxÞ is referred to as the “background field” and

can be an arbitrary (but fixed) function of coordinates. The
QCD partition function then becomes

Z ¼
Z

dADaDψ̄Dψe−SE; ð102Þ

where
R
dA is a single integral (not a path integral) over the

fixed background function Aa
μ. Expanding the QCD action

in powers of the fluctuation field aaμ as

SE ¼ S0½A� þ S1½A� þ S2½A� þ � � � ; ð103Þ
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with Sn½A� corresponding to the contribution of n powers of
aaμ in the expansion of the action. In particular, one has

S2½A� ¼ 1

4g2B

Z
ddx½ðdacμ acν − dacν acμÞ2 þ 2Fa

μνfabcabμacν�;

ð104Þ

with dacμ ¼ δac∂μ þ fabcAb
μ the background gauge-

covariant derivative and where Fa
μν is (99) evaluated for

Aa
μ ¼ Aa

μ. Because the path integral for QCD in this form
contains flat directions, it is necessary to gauge fix the
theory. FollowingWeinberg’s gauge fixing choice [31], this
implies adding a gauge fixing and ghost term of the form

Sgf ¼
1

2g2B

Z
dxðdacμ acμÞ2;

Sghost ¼
Z

dx½dacμ c̄cdabμ cb þ dacμ c̄cfadbadμcb�; ð105Þ

to the action, where c̄; c are the Faddeev-Popov ghost
fields.
The simplest solvable approximation of this theory is

similar to the R0-level approximation in scalar field theory:
just integrate out all quadratic terms in fields aaμ; ψ̄ ;ψ ; c̄; c
neglecting higher-order interactions. This corresponds to
calculating the one-loop effective action, which is similar
to the case of the scalar field theory corresponding to
resumming an infinite number of perturbative contribu-
tions. Therefore, similar to the scalar field theory, it
corresponds to a nonperturbative calculation in QCD.
It should be pointed out thatAa

μðxÞ is expected to take the
same role as ζ0 in scalar field theory, e.g., corresponding
to a saddle point of the action. This immediately simplifies
the calculation because S1½A� ¼ 0 if Aa

μ is a saddle point.
One finds

Z ¼
Z

dAe−
1
2
Tr ln ½ðp2δab−2ipαAab

α −ðA2ÞabÞδμν−2F ab
μν �þTr ln ½p2δab−2ipμAab

μ −ðA2Þab�þNf
2
Tr ln=D2

; ð106Þ

where Aab
μ ¼ facbAc

μ; F ab
μν ¼ facbFc

μν; Tr collectively de-
notes traces are over Lorentz, color, spinor, and spacetime
indices where appropriate; and some operators are repre-
sented in momentum space.
Evaluating Z for arbitrary background field Aa

μðxÞ is still
too hard, so I am using a subset of possible functions
Aa

μðxÞ, specifically those for which the background
field-strength tensor Fa

μν is constant and self-dual (equal
Euclidean chromoelectric and chromomagnetic fields);
cf. the discussion in Ref. [30]. This amounts to setting

Aa
μðxÞ ¼ −

1

2
Fa
μνxν: ð107Þ

Using then

Tr lnO ¼ −
Z

∞

0

ds
s
KðsÞ; KðsÞ ¼ Tre−sO; ð108Þ

the kernel function KðsÞ can be written as a quantum-
mechanical partition function

KðsÞ ¼ tr
Z

dxhxje−sOjxi ¼ tr
Z

Dxe−Q½x�: ð109Þ

For the case of ghosts, gluons, and fermions one can
find the “actions” Q using results from [32–34] as in [30],
specifically,

Qghost ¼
Z

s

0

dσ
�
ẋ2μ
4
δab þ ẋμAab

μ

�
; ð110Þ

Qglue ¼
Z

s

0

dσ

�
ẋ2α
4
δabδμν þ ẋαAab

α δμν − 2F ab
μν

�
;

Qfermion ¼
Z

s

0

dσ

�
ẋ2α
4
þ iẋαAa

αta −
i
2
σμνFa

μνta
�
: ð111Þ

In this form, the path integral representations for the
kernel functions KðsÞ look just like a finite-temperature
quantummechanics problem and can be solved accordingly
to give [30]

KghostðsÞ ¼
vol

ð4πsÞd2
X3
i¼0

s2λi

2sinh2
�

s
ffiffiffi
λi

p
2

� ;

KglueðsÞ ¼
vol × d

ð4πsÞd2
X3
i¼0

s2λi cosh ðs
ffiffiffiffi
λi

p Þ
2sinh2

�
s

ffiffiffi
λi

p
2

� ;

KfermionðsÞ ¼
vol × d

ð4πsÞd2
X3
i¼1

s2λF;icosh2
�

s
ffiffiffiffiffi
λF;i

p
2

�

4sinh2
�

s
ffiffiffiffiffi
λF;i

p
2

� ; ð112Þ

where λi are the eigenvalues of the matrix M ¼
−4facdfdebBcBe and λF;i are the eigenvalues of the matrix
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MF ¼ 4tatbBaBb. Here Ba is the (constant) chromomag-
netic field corresponding to the entries of the self-dual
constant field strength tensor Fa

μν.
The partition function (106) only involves a certain

combination of the kernel functions

KsumðsÞ ¼
1

2
KglueðsÞ − KghostðsÞ −

Nf

2
KfermionðsÞ; ð113Þ

which for the specific choice of Nf ¼ 4N has been found
to be free of IR divergencies [30]. Any remaining diver-
gences are UV divergencies, which can be extracted
through dimensional regularization using d ¼ 4 − 2ε.
Specifically, for the case Nf ¼ 4N one finds [30]

Ksum ¼ vol

ð4πsÞd2

2
664ðd − 2Þ

X3
i¼1

0
BB@ ðd − 2Þs2λi
4sinh2

�
s

ffiffiffi
λi

p
2

�

−
Nfd

2

s2λF;i

4sinh2
�

s
ffiffiffiffiffi
λF;i

p
2

�
1
CCA
3
775; ð114Þ

so that the traces of the operators in (108) can be evaluated
in terms of ζ functions [35] [25.5.9]. After the dust settles,
one has

Z ¼
Z

dAe−vol×F ; ð115Þ

with the one-loop QCD effective potential

F ¼ BaBa

g2B
þ −NBaBa

ð4π2Þε þ 12NBaBaζ0ð−1Þ
ð4πÞ2

þ
X3
i¼1

0
BB@
λi ln

μ̄2e−1ffiffiffi
λi

p − NfλF;i ln
μ̄2e−

1
2ffiffiffiffiffi

λF;i
p

96π2

1
CCA; ð116Þ

where the relation between A and B is provided by (107)
and the eigenvalues λi; λF;i are functions of B. At this point,
I again wanted to stress the similarity to the scalar field
theory calculation at the R0 level, notably (13) and (14). In
the large volume limit, the QCD partition function is given
exactly as the saddle point of the action

lnZ ¼ −vol × F½B̄a�; ð117Þ

with B̄a the location of the saddle (there is a Jacobian when
changing the integration from Aa

μ to Ba
μ, but the contribu-

tion from this Jacobian is suppressed in the large volume
limit). Similar to the case of scalar field theory, the zero-
point function for QCD is finite if the coefficient of BaBa in

F is finite. This gives the nonperturbative renormalization
condition for QCD with Nf ¼ 4N fermion flavors as

1

g2B
−

N
ð4πÞ2ε ¼

1

g2Rðμ̄Þ
; ð118Þ

which implies a running QCD coupling of the form

g2Rðμ̄Þ ¼
ð4πÞ2
N ln μ̄2

Λ2

MS

: ð119Þ

Note that this running coupling matches the one-loop

perturbative running for QCD with β0 ¼ 11N
3

− 2Nf

3
and

Nf ¼ 4N. The bare Yang-Mills coupling fulfills

lim
ε→0

g2B ¼ lim
ε→0

1
1

g2Rðμ̄Þ
þ N

ð4πÞ2ε
→ 0; ð120Þ

whereas first expanding g2B for small coupling g2R and then
taking the regulator to zero gives the perturbative result

lim
ε→0

g2B;pert ¼ lim
ε→0

�
g2Rðμ̄Þ −

Ng4R
ð4πÞ2εþOðg6RÞ

�
→ −∞; ð121Þ

which differs qualitatively from the nonperturbative alter-
native renormalization (120).
After nonperturbative renormalization (118), one obtains

F ¼ NBaBa

ð4πÞ2 ln
μ̄2

Λ2

MS

þ 12NBaBaζ0ð−1Þ
ð4πÞ2

þ
X3
i¼1

0
BB@
λi ln

μ̄2e−1ffiffiffi
λi

p − NfλF;i ln
μ̄2e−

1
2ffiffiffiffiffi

λF;i
p

96π2

1
CCA; ð122Þ

and it is straightforward to check that F is independent
from the fictitious renormalization scale μ̄. In full analogy
to the scalar field theory case (36), F has a trivial saddle
B̄a ¼ 0 as well as nontrivial saddles B̄a ≠ 0. The lower free
energy is found for nontrivial saddles of full rank, e.g., for

B̄a ¼ δa8e−12ζ
0ð−1Þ−5

62−
8
93

5
6Λ2

MS
≃ 4.27Λ2

MS
δa8: ð123Þ

The explicit (finite) result for the zero-point function for
this nontrivial saddle is

F ½B̄a� ¼ −
3B̄aB̄a

32π2
: ð124Þ

For the two-point functions of the gauge fields, fermions,
and ghosts, one notices that similar to the case of scalar
field theory (17) these are UV finite as long as the saddle
location B̄a is finite. Therefore, the nonperturbative
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renormalization condition (118) automatically renders all
two-point functions of the theory UV finite. However, it
should be stressed that while the two-point functions are
UV finite, they still do contain IR divergencies at this level
of resummation [30,36]. If they were automatically IR
finite, the mass gap problem for Yang Mills would be
solved. However, renormalization of quantum field theory
is concerned with UV divergencies, and these are taken
care of by (118).
Similar to the case of scalar field theory, higher-order

n-point functions require going beyond a simple R0-level
resummation scheme, which so far is not available for
QCD. However, it should be pointed out that the non-
perturbative renormalization condition (118) renders both
the zero-point and the two-point functions of Nf ¼ 4N
QCD finite, whereas in perturbation theory this requires
both coupling and wave-function counterterms.
An interesting observable for Nf ¼ 12 QCD to evaluate

is the expectation value of the trace of the Polyakov loop
in the presence of the nontrivial background saddle B̄a.
One can explicitly evaluate this observable using (107)
and finds

tr
Z

d3x⃗Pei
H

dτtaAa
0
ðτ;x⃗Þ ¼ 0; ð125Þ

where P denotes path ordering. The vanishing Polyakov
loop expectation value is typically associated with
confinement in QCD, so the above result suggests that
QCD with Nf ¼ 12 massless flavors is confining. This is
consistent with results from lattice QCD simulations from
Ref. [37], though perturbative and other more recent
lattice studies found that the theory is instead infrared
conformal [38–40].
I leave the resolution of the question of conformality in

Nf ¼ 12 QCD for future studies, only pointing out here
that nonperturbative renormalization of the theory allows
for predictive nonperturbative calculations.

IV. SUMMARY AND CONCLUSIONS

In this work, I have considered alternative renormaliza-
tion procedures for scalar field theory and QCD in dimen-
sional regularization. I provided explicit results that showed
that this alternative renormalization procedure leads to
finite n-point correlation functions even though it differs
qualitatively from the usual perturbative renormalization
approach.
In particular, there is no wave-function counterterm in

the nonperturbative approach.
Furthermore, the bare coupling constant in nonpertur-

bative renormalization differs qualitatively from the per-
turbative scheme in that it tends to zero in the limit of a
vanishing regulator.
In the case of QCD, the nonperturbative renormalization

seems much more similar to lattice QCD [41] than to

perturbative calculations [42]. Specifically, the expression
for the bare coupling constant gB in nonperturbative
renormalization is qualitatively consistent with the
dependence of the bare lattice coupling on the regulator
(see, e.g., Ref. [43]).
In the case of scalar field theory, the results further

strengthen the case for revisiting the claims of quantum
triviality in four dimensions [16,44]. However, further
advances on lattice field theory along the lines of [27,28]
or experimental advances along the lines of [45,46] would
be needed to unambiguously settle this question.
To conclude, perturbative renormalization is not the

only option for dealing with UV divergencies in quantum
field theory. Nonperturbative alternative schemes exist,
which seem to work just as well as their perturbative
counterparts, yet with fewer free parameters.
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APPENDIX: SEMIANALYTIC EVALUATION OF
DIVERGENT INTEGRALS IN DIMENSIONAL

REGULARIZATION

Some integrals encountered in the main text are not
routinely encountered in perturbative quantum field
theory, so their evaluation in dimensional regularization
may not be standard. For this reason, I provide a quick
guide on how to evaluate such integrals semianalytically
in this appendix.
To get started, let me consider a simple divergent integral

I1 in dimensional regularization, and pretend that I do not
know that it corresponds to a representation of the Γ
function:

I1 ¼ μ2ε
Z

ddk
ð2πÞd

1

ðk2 þm2Þ2 ¼
�
4πμ2

m2

�
ε ΓðεÞ
16π2

: ðA1Þ

The integrand does not depend on the angular variables,
so that using the volume of a hypersphere in d ¼ 4 − 2ε
dimensions one finds

I1 ¼
ð4πμ2Þε

8π2Γð2 − εÞ
Z

∞

0

dk
k3−2ε

ðk2 þm2Þ2 : ðA2Þ

Introducing the new variable x ¼ k2, and scaling x → xm2,
this becomes

I1 ¼
�
4πμ2

m2

�
ε 1

16π2Γð2 − εÞ
Z

∞

0

dx
x1−ε

ðxþ 1Þ2 : ðA3Þ
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Pretending not to know the exact form of the integral,
one nevertheless knows that it is logarithmically divergent,
so I split it into two parts:

Z
∞

0

dx
x1−ε

ðxþ1Þ2¼
Z

R

0

dx
x1−ε

ðxþ1Þ2þ
Z

∞

R
dx

x1−ε

ðxþ1Þ2 ; ðA4Þ

with regulator R, so that the integration x∈ ½0; R� is always
convergent for any finite R. For the integration x > R, one
can extract the divergent contribution by performing a
Taylor expansion in 1

x, so that

Z
∞

R
dx

x1−ε

ðxþ 1Þ2

¼
Z

∞

R
dx

�
x1−ε

ðxþ 1Þ2 − x−1−ε
�
þ
Z

∞

R
dx x−1−ε

¼
Z

∞

R
dx

�
x1−ε

ðxþ 1Þ2 − x−1−ε
�
−
x−ε

ε

				∞
x¼R

: ðA5Þ

In dimensional regularization, the integral is evaluated first
at x ¼ ∞ for sufficiently high ϵ > 0 such that the result is
finite. Then the limit ϵ → 0 is performed. The remaining
contributions for I1 are all finite for ϵ → 0, so that they can
be evaluated numerically. One finds

I1 ¼ lim
ε→0

�
4πμ2

m2

�
ε 1

16π2Γð2 − εÞ
�Z

R

0

dx
x1

ðxþ 1Þ2 þ
Z

∞

R
dx

�
x1

ðxþ 1Þ2 − x−1
�
þ R−ε

ε

�
: ðA6Þ

The remaining integrals are evaluated numerically for different choices of R, verifying that the result is independent of R.
Specifically, one finds, e.g., for various values of R to within floating point precision

R ¼ 3∶
Z

R

0

dx
x1

ðxþ 1Þ2 þ
Z

∞

R
dx

�
x1

ðxþ 1Þ2 − x−1
�
− lnR ¼ −1.000;

R ¼ 4∶
Z

R

0

dx
x1

ðxþ 1Þ2 þ
Z

∞

R
dx

�
x1

ðxþ 1Þ2 − x−1
�
− lnR ¼ −1.000;

R ¼ 5∶
Z

R

0

dx
x1

ðxþ 1Þ2 þ
Z

∞

R
dx

�
x1

ðxþ 1Þ2 − x−1
�
− lnR ¼ −1.000: ðA7Þ

Therefore, the semianalytical result for I1 in dimensional regularization becomes

I1 ¼ lim
ε→0

�
4πμ2

m2

�
ε 1

16π2Γð2 − εÞ
�
1

ε
− 1.

�
≃

1

16π2

�
1

ε
þ ln

μ̄2

m2

�
; ðA8Þ

where μ̄2 ¼ 4πμ2e−γE , matching the expected result (A1).
The same technique can be applied to more complicated integrals, e.g.,

I2 ¼ μ2ε
Z

ddk
ð2πÞd ln

2
4cþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4m2

k2

s
atanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

k2 þ 4m2

s 3
5; ðA9Þ

with c > −2 an arbitrary constant. Using the same steps as for I1, one finds

I2 ¼
�
4πμ2

m2

�
ε m4

16π2Γð2 − εÞ
Z

∞

0

dxx1−ε ln

"
cþ 2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 4

x

r
atanh

ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r #
; ðA10Þ

where the remaining integral is again split using an arbitrary regulator R. One finds

I2 ¼
�
4πμ2

m2

�
ε m4

16π2Γð2 − εÞ ðI2L þ I2H þ ID1 þ ID2 þ ID3Þ; ðA11Þ
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where

I2L ¼
Z

R

0

dxx1 ln

"
cþ 2

ffiffiffiffiffiffiffiffiffiffiffi
xþ 4

x

r
atanh

ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r #
; ðA12Þ

I2H ¼
Z

∞

R
dxx1

8<
:ln

2
4cþ 2

ffiffiffiffiffiffi
xþ4
x

q
atanh

ffiffiffiffiffiffix
xþ4

p
cþ lnx

3
5

−
2

x

�
1þ 1− c

cþ lnx

�
−
c− 2− ð3þ 2cÞ lnx− 4ln2x

x2ðcþ lnxÞ2

9=
;;

ðA13Þ

ID1 ¼
Z

∞

R
dxx1−ε ln ðcþ ln xÞ; ðA14Þ

ID2 ¼ 2

Z
∞

R
dxx−ε

�
1þ 1 − c

cþ ln x

�
; ðA15Þ

ID3 ¼
Z

∞

R
dxx−1−ε

c − 2 − ð3þ 2cÞ ln x − 4ln2x
ðcþ ln xÞ2 : ðA16Þ

The divergent pieces ID1; ID2; ID3 are again calculated
analytically, and then evaluated for x → ∞ using suffi-
ciently large ε > 0 to render them convergent. Taking
ε → 0 as a second step, they explicitly become

ID1 ¼
1

2
½−R2 ln ln ðRecÞ þ e−2cEiðlnR2e2cÞ�; ðA17Þ

ID2 ¼ −2½Rþ ð1 − cÞe−cEiðlnRecÞ�; ðA18Þ

ID3 ¼ −
4

ε
þ 4 lnRþ ð3 − 6cÞðγE þ ln εþ ln lnðRecÞÞ

−
2ðc − 1Þ2
lnRec

; ðA19Þ

with Ei denoting the exponential integral function.
Evaluating the remaining integrals numerically for given

c, R, one finds, for instance, for c ¼ −1,

I2¼
�
4πμ2

m2

�
ε m4

16π2

�
−
4

ε
−4þ13γEþ9 lnε−0.278387…

�
:

ðA20Þ
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