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We compute the one-loop QCD correction to the photon-quark-antiquark vertex in an extremely strong

magnetic background, i.e., one in which
ffiffiffiffiffiffi
eB

p
is much larger than all other mass scales. We resort to the

lowest-Landau level approximation, and consider on-shell fermions. We find that the total magnetic
moment is such that the anomalous magnetic moment contributes to the electric part ∼iE3σ3, the other
contributions to B · σ and iE · σ⊥ being completely suppressed. We show results for the anomalous
magnetic moment of quarks up and down, scaled by their values in the vacuum, as a function of the external

magnetic field, considering dressed gluons and a renormalization scale μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
.

DOI: 10.1103/PhysRevD.109.116018

I. INTRODUCTION

The original one-loop calculation of the anomalous
magnetic moment [1], together with the spectacular agree-
ment with experimental data that followed refined higher-
order perturbative calculations (see Ref. [2] for a review),
represents a major landmark of theoretical physics.
The one-loop correction to the anomalous magnetic

moment (AMM) of a fermion that moves in the presence
of an external magnetic background will, however, deviate
from the original prediction by Schwinger of α=2π [1,3],
where α ≈ 1=137 is the QED fine-structure constant. This
was already known by Schwinger, since what is currently
known as the Schwinger phase appears in each fermion
propagator [4]. The functional dependence of this correc-
tion on the magnitude of the external magnetic field has
first been addressed almost half a century ago [5,6].
Motivated by the ultrastrong magnetic fields that can be

achieved in current experiments at the Large Hadron
Collider (LHC), we compute the one-loop perturbative
QCD correction to the photon-quark-antiquark vertex in an

extremely strong magnetic background, i.e., one in whichffiffiffiffiffiffi
eB

p
is much larger than all other mass scales. Here e is the

fundamental electric charge and B is the magnetic field
strength. For such high fields, we can resort to the lowest-
Landau level (LLL) approximation, and consider on-shell
fermions.
The AMM of quarks in the presence of an external

magnetic field can be related to the phenomenon ofmagnetic
catalysis [7–9] and, in the presence of a hot plasma, might
play a role in the so-called chiral magnetic effect [10]. The
ultrahighmagnetic fields that can beproduced in high-energy
heavy ion collisions [11–13] bring the question of whether
the AMM might prove to be experimentally relevant in this
physical setting. Therefore, effects from theAMMhave been
under investigation in quark and hadronicmatter for over two
decades [14–32].
Usually, estimates of magnetic corrections to the fermion

AMM are based on the Schwinger ansatz [4], which relates
the AMM with the tensor spinor structure of the self-
energy. On the other hand, not much has been done in
obtaining the AMM from radiative corrections to the
fermion-photon coupling. The AMM has been calculated
from the fermion-photon vertex, including magnetic field
corrections, using the Schwinger proper-time method for
low magnetic fields [33].
In the paper at hand, conversely, we explore the magnetic

effects on the quark AMM in the presence of a very intense
magnetic background. We find that the total magnetic
moment is such that the AMM in the presence of a very
strong magnetic background contributes to the electric part
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∼iE3σ3, which should not be confused with an anomalous
electric dipole moment [34]. The other AMM contributions
to B · σ and iE · σ⊥ are completely suppressed.
We also show results for the anomalous magnetic

moment of quarks up and down, scaled by their values
in the vacuum, as a function of the external magnetic field,
considering dressed gluons and a renormalization scale
μMS ¼

ffiffiffiffiffiffiffiffiffijeBjp
. We consider two scenarios: one with a

constant gluon mass, mg ¼ 0.3 GeV, and one with the
gluon mass extracted from the one-loop correction to its
polarization tensor in the presence of a large external
magnetic field.
The paper is organized as follows. In Sec. II we present

the general formalism. First, we outline the computation of
the anomalous correction in QED. Then, we compute the
AMM of QCD in a strong magnetic background, with
special emphasis on the QCD correction to the vertex
triangular diagram that contributes to the structure function
F2. In Sec. III we present and discuss our results for the
QCD correction to the AMM as a function of the magnetic
field in a few phenomenological scenarios. Finally, Sec. IV
contains our summary and outlook.

II. ANOMALOUS MAGNETIC MOMENT:
FORMALISM

A. Outline of AMM in one-loop QED

In order to set the notation and define the main physical
quantities, we start with a brief discussion of well-known
textbook results for the anomalous magnetic moment in
QED (see, e.g., Ref. [34]).
The Dirac equation

½i=D −m�ψ ¼ 0 ð1Þ

provides, at tree level, the fermion-antifermion-photon
vertex eqūðp0ÞγμuðpÞ, where m is the spinor mass, eq its
electric charge (eq ¼ −e for the electron), and Dμ ¼ ∂μ þ
ieqAμ the covariant derivative. Here, we use the Weyl
representation for the Dirac gamma matrices in Minkowski
space. The equation of motion naturally exhibits the AMM
when written in quadratic form, so that charged spinors in
an electromagnetic field Fμν satisfy

�
D2 þm2 −

eq
2
Fμνσ

μν

�
ψ ¼ 0; ð2Þ

where ½Dμ; Dν� ¼ −ieqFμν, and σμν ¼ i
2
½γμ; γν�. One-loop

corrections bring about other structures, with terms propor-
tional to ðp0 þ pÞ and ðp0 − pÞ. In this case, one can resort
to the Gordon identity

ūðp0Þðp0μ þ pμÞuðpÞ ¼ ūðp0Þ½2mγμ − iσμνðp0
ν − pνÞ�uðpÞ;

ð3Þ

where the fermions are on shell. The photon momentum
q ¼ p0 − p can be recognized in the previous equation, so
the contribution to the fermion-photon vertex γμ is inter-
preted as a correction to the fermion charge, while the term
σμνqν is identified with the AMM.
At any loop order, the vertex is constrained by Lorentz

symmetry, the Dirac equation for spinors, kiuðkiÞ ¼
muðkiÞ, the Ward identity, and the Gordon identity. So,
one can write it in the following standard form:

Mμ ¼ eqūðp0Þ
�
F1

�
q2

m2

�
γμþF2

�
q2

m2

�
iσμν

2m
qν

�
uðpÞ: ð4Þ

On one hand, one can see that the function F1 encodes
charge renormalization, which brings a scale dependence to
eq. On the other hand, F2 has the structure of a magnetic
moment, and indeed

g ¼ 2

�
1þ F2

�
q2

m2

��
: ð5Þ

To one loop, only the triangular diagram of Fig. 1
contributes to F2 and, consequently, to (g − 2). Other
diagrams correspond to particle-reducible corrections to
the external legs and contribute only to F1. The one-loop
contribution to F2 is thus given by

iδMμ ¼ ðieqÞ3
Z
k
DμνðkÞūðp0ÞγνSðkþ p0Þ

γμSðkþ pÞγρuðpÞ; ð6Þ

where the free fermion propagator in momentum space is
SðkÞ ¼ i=ðk −mþ iϵÞ and the gluon free propagator in
momentum space in the Feynman gauge is DμνðkÞ ¼
−igμνDðkÞ, with DðkÞ ¼ i=ðk2 þ iϵÞ. Here, we use the

notation
R
k ≡
R

d4k
ð2πÞ4.

Using the standard Feynman trick of writing

1

ABC
¼
Z
xyz

2

½xAþ yBþ zC�3 ; ð7Þ

FIG. 1. Vertex triangular diagram from QED that contributes
to F2.
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where we use the following notation for the integrals in
Feynman parameters,Z

xyz
¼
Z

1

0

dx dy dz δðxþ yþ z − 1Þ; ð8Þ

and performing usual quantum field theory manipulations,
yields

F2ðq2Þ ¼
α

π
m2

Z
xyz

zð1 − zÞ
ð1 − zÞ2m2 − xyq2

: ð9Þ

For an on-shell photon (q2 ¼ 0), this leads to the well-
known result F2ð0Þ ¼ α=2π, so that g ¼ 2þ α=2π.

B. One-loop QCD correction to the photon-quark-
antiquark vertex in a strong magnetic background

Let us now consider the triangle diagram depicted in
Fig. 2, encoding the first QCD correction to the quark-
photon vertex. In the vacuum, its result is analogous to the
one discussed in the last section, except for the inclusion of
the color structure of the SUðNcÞ group and the swapping
of the electromagnetic coupling for the strong coupling
αs ¼ g2s=4π. This gives rise to a AMM correction of the
following form:

avacq ≡ Fvac
2 ð0Þ ¼ αs

2π

N2
c − 1

2Nc
: ð10Þ

This kind of triangle diagrams describing corrections to
some fermion-antifermion-boson interaction has been cal-
culated in the presence of external magnetic field with
different methods [33,35–41].
In the presence of a strong magnetic field B ¼ Bẑ,

the quark fields are quantized in Landau levels. Here
we adopt the Landau gauge representation [42,43], with
Aμ ¼ ð0; 0; Bx; 0Þ. So, the matrix elements for the quark
field operator have the form

h0jψðξÞjpk; p y; ni ¼ fnðpy; ξ⊥ÞunðpkÞe−ip·ξk ; ð11Þ

where ξ is a spacetime coordinate four-vector and pμ ¼
ðp0; p1; p2; p3Þ is the four-momentum. The parallel and

perpendicular vectors are defined with respect to the
magnetic field direction, B ¼ Bẑ: vk ¼ ðv0; 0; 0; v3Þ and
v⊥ ¼ ð0; v1; v2; 0Þ. Also, n denotes the index of Landau
levels, u is the spinor, and fn is a diagonal matrix in
spinorial space related to the solution of the Dirac equation
in the presence of a magnetic background [43]. For the
external photon leg, the associated photon field matrix
element reads

h0jAμðζÞjqi ¼ εμðqÞe−iq·ζ; ð12Þ

where ζμ is a spacetime coordinate, qμ is the four-
momentum, and εμ is the polarization vector.
We use the Minkowski metric with an explicit separa-

tion of parallel and perpendicular components defined

as gμν ¼ gkμν þ g⊥μν, where gkμν ≡ diagð1; 0; 0;−1Þ and
g⊥μν ≡ diagð0;−1;−1; 0Þ. This means that for any vector
v2⊥ ¼ −v2⊥. Also, we use a general notation for four-vector
coordinates ðv0; v1; v2; v3Þ ¼ ðvt; vx; vy; vzÞ. The temporal
components of the relevant external momenta are given by

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ 2nl−2

q þm2

q
; ð13Þ

p0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02
z þ 2n0l−2

q þm2

q
; ð14Þ

q0 ¼ jqj; ð15Þ

where lq ¼ jeqBj−1=2 is the magnetic length and m is the
quark mass.
The one-loop vertex transfer matrix associated with the

QCD correction to the quark-photon vertex is then

T ¼ −eqg2s
X
l;l0

Z
ξξ0ζ

eiðp
0·ξ0k−p·ξk−q·ζÞD̄νρðξ − ξ0Þ

× ūn0 ðp0
kÞf†n0 ðp0

y; ξ0⊥ÞγνtaḠlðζ; ξ0Þ
× =εḠl0 ðξ; ζÞγρtafnðpy; ξ⊥ÞunðpkÞ; ð16Þ

where gs is the gauge coupling constant, ta are Gell-mann
matrices, and Ḡn is the fermion Green’s function in
coordinate space in the presence of the external magnetic
field for a given Landau level n [8]. Here, we adopt the
Feynman gauge for the gluon and its propagator D̄νρðxÞ in
coordinate space can be expressed in terms of the Fourier
transformation as

D̄νρðξ − ξ0Þ ¼ gνρ

Z
k
e−ik·ðξ−ξ0ÞDðkÞ: ð17Þ

The quark propagator can be expressed in terms of the
Fourier transformation of the parallel coordinates

Ḡnðξ; ζÞ ¼
Z
kk
e−ik·ðξ−ζÞkGnðkk; ξ⊥; ζ⊥Þ; ð18ÞFIG. 2. One-loop QCD correction to the vertex triangular

diagram that contributes to F2.
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so that, after integrating over parallel variables, we obtain
parallel momentum conservation only. Therefore, we define
the resulting one-loopQCD correction to thevertexmatrix as

T ¼ ð2πÞ2δð2Þðqk − p0
k þ pkÞεμ δMμ; ð19Þ

with

δMμ ¼ −eqg2s
N2

c − 1

2Nc

Z
ξ⊥ξ0⊥ζ⊥k

e−ik·ðξ−ξ0Þ⊥DðkÞ

× ū0nðp0
kÞf†nðp0

y; ξ0ÞγνGn0 ðkk þ p0
k; ζ⊥; ξ0⊥Þ

× γμGnðkk þ pk; ξ⊥; ζ⊥Þγνfnðpy; ξÞunðpkÞ: ð20Þ
If we restrict our analysis to extreme magnetic fields,

we can keep only the lowest-Landau level (LLL) and set
n ¼ n0 ¼ l ¼ l0 ¼ 0. Then, our expressions simplify to

f0ðpy; ξ⊥Þu0ðpkÞ ¼ u0ðpkÞ
eipyξy−1

2
ðξx=lqþspylqÞ2

ðπl2
qÞ1=4

; ð21Þ

G0ðkk; ζ⊥; ξ⊥Þ ¼
i

2πl2
q
SðkkÞPþ

× e
is
2l2q

ðξxþζxÞðξy−ζyÞ
e

1

4l2q
ðζ⊥−ξ⊥Þ2

; ð22Þ

where s ¼ sgnðeqBÞ, and we have defined the projectors
P� ¼ 1

2
½1� siγ1γ2� or, equivalently, P� ¼ 1

2
½1� Σ3�, with

Σ3 ¼ diagð1;−1; 1;−1Þ being the third component of the
spin projection (cf. also Ref. [8]). The Schwinger phase
corresponds to the first exponential in the second line
of Eq. (22).
The LLL matrix can be separated in parallel and

perpendicular integrals in the following form:

δMμ
LLL ¼

Z
k⊥
F ðpy; p0

y; k⊥ÞGμðpk; p0
k; k

2⊥Þ; ð23Þ

with

F ¼ eqg2s
3l5

qπ
5=2

Z
ξ⊥ξ0⊥ζ⊥

exp

�
−ik · ðξ − ξ0Þ⊥ þ ipyξy − ip0

yξ
0
y þ

ðζ − ξÞ2⊥
4l2

q
þ ðξ0 − ζÞ2⊥

4l2
q

−
1

2
ðξx=lq þ spylqÞ2 −

1

2
ðξ0x=lq þ sp0

ylqÞ2 −
is
2l2

q
ðξx þ ζxÞðξy − ζyÞ −

is
2l2

q
ðζx þ ξ0xÞðζy − ξ0yÞ

�
; ð24Þ

Gμ ¼ −
Z
kk
DðkÞū0ðp0

kÞγνSðkk þ p0
kÞPþγμSðkk þ pkÞPþγνu0ðpkÞ: ð25Þ

The integrals in F are Gaussian and can be evaluated
analytically. After a long but straightforward calculation,
Eq. (23) is reduced to

δMμ
LLL ¼ 4

3
eqg2s

Z
k⊥
e
1
2
k2⊥l2qGμðpk; p0

k; k⊥Þ: ð26Þ

Notice that the dependence in py and p0
y disappears.

Because of the projectors P� in Eq. (25), the perpendicular
components of Gμ vanish and the form factors are restricted
only to the parallel directions, i.e., μ ¼ 0 and μ ¼ 3.
Moreover, there is only dependence on parallel momenta,
so that all vectors and tensors will be reduced to their
parallel components.
The detailed calculation of Gμ is long, but straightfor-

ward, and the full result is not particularly illuminating. In
the end, there are two terms related to F2 that are propor-
tional to σμνk qν and γ1γ2σ

μν
k qν.

C. Implications to the AMM

TheAMMisbetterdescribedbythepolarizationprojections
Pþσ

μν
k qν and P−σ

μν
k qν. Defining δMμ

LLL¼ δMμ
þþδMμ

−

and using ū0ðp0
kÞð=p0

k −mÞ ¼ 0, ð=pk −mÞ × u0ðpkÞ ¼ 0

and the Gordon identity, we obtain the following
structure:

δMμ
� ¼ eqū0ðp0

kÞ
h
δF�

1 γ
μ
k þF�

2 σ
μν
k
iqν
2m

þF�
3 q

μ
k
i
P�u0ðpkÞ;

ð27Þ

so that the AMM splits in the two polarization
projections.
Here, δF1 represents a correction to the tree level charge

vertex. All the form factors Fi are functions of q2k=m
2. F2

can be recognized as the AMM contribution, but projected
onto parallel components only. The third term F3 should be
interpreted as a correction to the term ∂ · Ak, related to the
gauge fixing.
In summary, if we consider the full magnetic moment,

we have the following modification in the presence of a
very large magnetic background:

ð1þ aÞσμνFμν →
X
s¼�

ðσμνFμν þ asσkμνFμν
k ÞPs; ð28Þ
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where the parallel-project AMM contributes as ∼iE3σ3.
This term, however, should not be confused with an
anomalous electric dipole moment [34]. The other AMM
contributions to B · σ and iE · σ⊥ are completely sup-
pressed. Indeed, this becomes clear when the corrections
are written in matrix form:X
s¼�

asσkμνFμν
k Ps ¼ −2iEzdiagðaþ;−a−;−aþ; a−Þ; ð29Þ

when compared to the standard anomalous term in vacuum:

a σμνFμν ¼ −2a
�
B · σ þ iE · σ⊥ 0

0 B · σ − iE · σ⊥

�

− 2iEzdiagða;−a;−a; aÞ: ð30Þ
Furthermore, since in general aþ ≠ a−, an asymmetry
between the spin up and spin down corrections develops
in the presence of a very large magnetic background.
Integrating over inner parallel momenta with the use of

Feynman parameters, the AMM component of Eq. (27)
reads

F�
2 ðq2kÞ ¼

Z
xyz

Z
k⊥

4
3
g2se−

1
2
k2⊥l2qm2f�ðzÞ=4π

½m2ð1 − zÞ2 − q2kxyþ ðk2⊥ þm2
gÞz�2

;

ð31Þ
where

fþðzÞ ¼ 2

3
ð1þ 6zÞ ð32Þ

f−ðzÞ ¼ zð4 − zÞ − 2

3
: ð33Þ

To avoid anticipated infrared divergences, we simply add
a mass term mg to the gluon propagator, leaving the
discussion of possible physical choices and their conse-
quences to the next subsection.
Since the form factors Fi depend on q2k, we can choose a

frame where q2k ¼ 0 if pz ¼ p0
z or, in the ultrarelativistic

case, for aligned pz ≫ m and p0
z ≫ m. In this frame, it is

easy to integrate over two of the three Feynman parameters.
On the other hand, the perpendicular momentum integral
can be evaluated in polar coordinates. Changing variables
as jk⊥j2 ¼ 2m2η, we obtain

a�q ≡ F�
2 ð0Þ

¼ avacq

Z
1

0

dz
Z

∞

0

dη
e−ðmlqÞ2η f�ðzÞð1 − zÞ

½ð1 − zÞ2 þ ðmg=mÞ2zþ 2ηz�2 :

ð34Þ
One should recall [cf. Eq. (10)] that avacq contains the strong
coupling αs which, in principle, runs with the relevant
energy scale.

D. Effective mass for the gluons

We have introduced a mass term mg for the gluon in
the calculation of the one-loop quark-antiquark-photon
vertex in the presence of an extremely large magnetic
background. This scale is necessary to regulate infrared
divergences that appear in this extreme limit.1 We shall
analyze the results in two different scenarios that we
motivate in what follows: (i) a fixed scale and (ii) a
magnetically-dressed gluon self-energy as shown diagra-
matically in Fig. 3.
First, we consider a fixed infrared scale mg ∼ 0.3 GeV

inspired by results for correlation functions in the non-
perturbative region of QCD (and in associated pure gauge
theories). For Landau and linear covariant gauges, different
lattice simulations [44–47], Schwinger-Dyson equations
[48–50], and infrared models [51–53] seem to indicate the
emergence of an infrared mass scale of this order.
Second, we analyze the consequences of the intense

magnetic background on the gluon polarization tensor to
introduce a magnetically dressed gluon in our triangle
diagram computation. Following [54–57], the gluon polari-
zation tensor in the presence of an intense magnetic field,
i.e. within the LLL approximation, is transverse in the
parallel components. Hence,

Πμν
g ðkÞ ¼

 
gμνk −

kμkk
ν
k

k2k

!
Πgðk2k; k2⊥Þ; ð35Þ

where

Πgðk2k; k2⊥Þ ¼
αs
π
Nc

X
q

e−
1
2
l2qk2⊥

π2l2
q

gðm2
q=k2kÞ: ð36Þ

We shall adopt the chiral-limit approximation gðm2=k2kÞ≈
gð0Þ ¼ 1, so that the remaining dependence is on the
perpendicular component of the momentum. Notice
that the polarization factor is exponentially suppressed

FIG. 3. One-loop QCD correction to the vertex triangular
diagram with a dressed gluon propagator.

1It is important to note that, in this regime, the QED triangle
diagram also displays the same infrared divergences and the full
AMM calculation at one loop would also require an IR regu-
larization for the photon that we do not discuss here.
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for k2⊥ > jeBj. We will consider then Πg as a magnetically
dressed gluon squared mass.

III. QCD CORRECTION TO THE AMM AS A
FUNCTION OF THE MAGNETIC FIELD

Now we proceed to the numerical analysis of the
behavior of the one-loop QCD correction to the AMM
in the presence of a very strong magnetic background,
a�q , compared with its vacuum counterpart, avacq , as
defined in Eqs. (34) and (10), respectively. In this
analysis, we consider the two scenarios for the effective
gluon mass discussed in the previous section: a constant
gluon mass, which we take as mg ¼ 0.3 GeV, and one
given by the LLL polarization tensor, m2

g ¼ Πg, as
defined in Eq. (36). In both cases we investigate
what happens if we set the renormalization scale to run
with the magnetic field, μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp

, or to a fixed
value, μMS ¼ 1 GeV.
Figure 4 shows the case with a fixed gluon mass,

mg ¼ 0.3 GeV, and μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
. The first thing to be

noticed is the change of sign of the polarization compo-
nents of the AMM, being aþq positive and a−q negative.
Moreover, we find that a−q ≈ −aþq , within ∼1%. One can
also see that ja�u j > ja�d j. This happens because the quark
charge, through lq, dominates in the exponential term in
Eq. (34). The plots present an increase in ja�q j as a function
of eB. In fact, ja�u j is greater than its corresponding vacuum
value for eB≳ 2 GeV2, and ja�d j is greater than its vacuum
value for eB≳ 4 GeV2. This growth in the ratio a�q =avac is,
however, somewhat misleading. It basically represents the
running of αs with the magnetic field in the denominator of
the ratio. a�q is, indeed, almost constant, as can be seen
in Fig. 5.

The behavior of the ratio a�q =avac for a fixed scale
μMS ¼ 1 GeV is basically the same, since the main changes
are contained in the global factor ∼αs. The modifications
in the running quark mass have no significant impact,
producing differences of ∼0.1%.
Since we consider an effective nonperturbative gluon

mass of 0.3 GeV, we also show the analogous results for a
constituent quark mass ofmq ¼ 0.35 GeV in Figs. 6 and 7.
The larger quark mass brings no remarkable qualitative
modification, yielding approximately a shift in the positive
direction.
A totally different outcome occurs when we consider

the dressed gluon mass as given by the LLL polarization
tensor, m2

g ¼ Πg, and a renormalization scale μMS ¼ffiffiffiffiffiffiffiffiffijeBjp
. Contrary to what happens for a constant gluon

mass, the absolute value of the AMM now diminishes
as the magnetic field increases, as illustrated in Fig. 8.

FIG. 4. Anomalous magnetic moments aþu (black solid), a−u
(gray solid), aþd (black dashed), and a−d (gray dashed), scaled by
their values in the vacuum, as functions of the external magnetic
field. Here, we consider dressed gluons withmg ¼ 0.3 GeV and a

renormalization scale μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
.

FIG. 6. Anomalous magnetic moments aþu (black solid), a−u
(gray solid), aþd (black dashed), and a−d (gray dashed), scaled by
their values in the vacuum, as functions of the external magnetic
field. Here we consider dressed gluons and quarks with mg ¼ 0.3
and mq ¼ 0.35 GeV.

FIG. 5. Anomalousmagneticmomentsaþu (black solid),a−u (gray
solid), aþd (black dashed), and a−d (gray dashed), as functions of the
external magnetic field. Here we consider dressed gluons with
mg ¼ 0.3 GeV and a renormalization scale μMS ¼

ffiffiffiffiffiffiffiffiffijeBjp
.
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This behavior is expected sinceΠg grows with the magnetic
field. If we consider a fixed renormalization scale,
μMS ¼ 1 GeV, the plot looks very similar. However, the
difference is larger than in the case of a fixed gluon mass.
The difference between the two cases increases ∼10% for
eB ∼ 5 GeV2 but stabilizes at higher values.
The strong magnetic background effects on the electron

AMM are, of course, analogous. One has only to substitute
the running strong coupling by the electromagnetic

coupling and set the global factor ðN2
c − 1Þ=2Nc → 1 in

Eq. (10), besides considering one flavor with charge e and
with Nc → 1 in Eq. (36).
The total anomalous magnetic moments, au ¼ aþu þ a−u

and ad ¼ aþd þ a−d , as functions of the external magnetic
field are shown in Figs. 9–11 for the three cases con-
sidered above. As previously, remarkable qualitative mod-
ifications occur only when we consider the dressed gluon
mass as given by m2

g ¼ Πg and a renormalization scale

μMS ¼
ffiffiffiffiffiffiffiffiffijeBjp

, where the absolute value of the total AMM
diminishes as the magnetic field increases.

FIG. 8. Anomalous magnetic moments aþu (black solid), a−u
(gray solid), aþd (black dashed), and a−d (gray dashed), scaled by
their values in the vacuum, as functions of the external magnetic
field. Here we consider dressed gluons with m2

g ¼ Πg and a

renormalization scale μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
.

FIG. 9. Total anomalous magnetic moments au ¼ aþu þ a−u
(solid), and ad ¼ aþd þ a−d (dashed), as functions of the external
magnetic field. Here we consider dressed gluons with
mg ¼ 0.3 GeV, current quark masses, and the renormalization

scales μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
(gray) and μMS ¼ 1 GeV (black).

FIG. 10. Total anomalous magnetic moments au ¼ aþu þ a−u
(solid), and ad ¼ aþd þ a−d (dashed), as functions of the external
magnetic field. Here we consider dressed gluons with
mg ¼ 0.3 GeV, mq ¼ 0.35 GeV, and the renormalization scales

μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
(gray) and μMS ¼ 1 GeV (black).

FIG. 7. Anomalous magnetic moments aþu (black solid), a−u
(gray solid), aþd (black dashed), and a−d (gray dashed), scaled
by their values in the vacuum, as functions of the external
magnetic field. Here we consider dressed gluons and quarks with
mg ¼ 0.3 and mq ¼ 0.35 GeV, and with the renormalization

scale μMS ¼ ffiffiffiffiffiffiffiffiffijeBjp
.
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IV. SUMMARY AND OUTLOOK

In this paper we computed the part relevant to the quark
AMM of the one-loop QCD correction to the photon-
quark-antiquark vertex in an extremely strong magnetic
background, i.e., one in which

ffiffiffiffiffiffi
eB

p
is much larger than all

other mass scales. This justified the use of the lowest-
Landau level approximation. The solution exhibits infrared
divergences. These can be tamed by attributing an effective
mass to gluons that acts as an infrared regulator, inspired by
what is expected to happen in the infrared sector of strong
interactions [58]. In this vein, we considered two standard
scenarios: one with a constant gluon mass, mg ¼ 0.3 GeV,
which sits in the ballpark of ΛQCD, and one in which the
gluon mass comes from the one-loop correction to its
polarization tensor in the presence of an external magnetic
field in the LLL approximation,m2

g ¼ Πg. In both cases we
investigated what happens if we set the renormalization
scale to run with the magnetic field, μMS ¼

ffiffiffiffiffiffiffiffiffijeBjp
, or to a

fixed value, μMS ¼ 1 GeV.
It has been previously shown that the AMM is induced

by chiral symmetry breaking, being related to a non-
perturbative contribution [59,60]. In our calculation, the
AMM also vanishes in the chiral limit. However, in our
case we consider only perturbative vertex corrections.
So, when spontaneous symmetry breaking occurs, the
generation of an AMM is indeed expected. The previous
references consider Schwinger-Dyson equations which in
fact incorporate nonperturbative effects. This could be
introduced here through operator product expansion as a
nonperturbative effect, which is out of the scope of the
present analysis.

Considering the total magnetic moment, we found that
it is such that the anomalous magnetic moment contri-
butes to the electric part ∼iE3σ3, the other contributions
to B · σ and iE · σ⊥ being completely suppressed. We
found that the anomalous contribution can be naturally
separated into two polarization projections obtained from
P� ¼ 1

2
ð1� isγ1γ2Þ, or equivalently 1

2
ð1þ Σ3Þ.

We presented results for the behavior of the anomalous
magnetic moment of quarks up and down, scaled by their
values in the vacuum, as a function of the external magnetic
field, for the choices of gluon mass and renormalization
scale discussed above. We found that the case with a fixed
gluon mass exhibits an increase of the ratio a�=avac,
while this observable in the case with gluon mass given
by m2

g ¼ Πg decreases as the magnetic field increases. The
latter setup, which seems to be closer to a more physical
description of the gluon mass, shows a strong suppression,
i.e., the quark AMM apparently vanishes for extremely
large magnetic fields.
We also found asymmetry between spin up and spin

down components of the anomalous correction, which
might be more promising in searching possible experimen-
tal observables.
A natural extension of the treatment presented here

would be considering the case with other Landau levels
in the external lines of the triangular diagram. This would
bring information on the interplay between different levels
in the computation of the quark anomalous magnetic
moment.
One could also incorporate effects from a thermal or

dense medium to the framework discussed here. To do that,
one would need to consider hot and dense magnetic QCD
[37,41,61–64] in the computation of the photon-quark-
antiquark vertex. The thermal case could be relevant for
high-energy heavy-ion collisions, and even play a role in
the chiral magnetic effect scenario, since the quark AMM
could destroy the fermion zero mode in the presence of a
magnetic field. The case at high densities is of interest in
magnetars, where ultrahigh magnetic fields can also be
achieved. Although in this case the effect on the equation of
state seems to be minor [18], it contributes to increase the
level of pressure anisotropy [16]. Finally, a calculation of the
quark AMM within lattice QCD in the presence of a strong
magnetic background would provide a clean benchmark.
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FIG. 11. Total anomalous magnetic moments au ¼ aþu þ a−u
(solid), and ad ¼ aþd þ a−d (dashed), as functions of the external
magnetic field. Here we consider dressed gluons with m2

g ¼ Πg,

current quark masses, and the renormalization scales μMS ¼ffiffiffiffiffiffiffiffiffijeBjp
(gray) and μMS ¼ 1 GeV (black).
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