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We present a new exactly solvable case in strong-field QED with a one-dimensional step potential
(x-step). The corresponding x-step is given by an analytic asymmetric with respect to the axis x reflection
function. The step can be considered as a certain analytic “deformation” of the symmetric Sauter field.
Moreover, it can be treated as a new regularization of the Klein step field. We study the vacuum instability
caused by this x-step in the framework of a nonperturbative approach to strong-fieldQED. Exact solutions
of the Dirac equation used in the corresponding nonperturbative calculations are represented in the form of
stationary plane waves with special left and right asymptotics and identified as components of initial and
final wave packets of particles. We show that in spite of the fact that the symmetry with respect to positive
and negative bands of energies is broken, the distribution of created pairs and other physical quantities can
be expressed via elementary functions. We consider the processes of transmission and reflection in the
ranges of the stable vacuum and study physical quantities specifying the vacuum instability. We find the
differential mean numbers of electron-positron pairs created from the vacuum, the components of current
density and energy-momentum tensor of the created electrons and positrons leaving the area of the strong
field under consideration. Besides, we study the particular case of the particle creation due to a weakly
inhomogeneous electric field and obtain explicitly the total number, the current density and energy-
momentum tensor of created particles. Unlike the symmetric case of the Sauter field the asymmetric form
of the field under consideration causes the energy density and longitudinal pressure of created electrons to
be not equal to the energy density and longitudinal pressure of created positrons.

DOI: 10.1103/PhysRevD.109.116015

I. INTRODUCTION

The Schwinger effect, that is, creation of charged
particles from the vacuum by strong external electriclike
and gravitational fields (the vacuum instability) has been
attracting attention already for a long time; see, e.g.,
monographs [1–4]. This is a nonperturbative effect of
quantum field theory (QFT), which has not yet received

a convincing experimental confirmation. However, recent
progress in laser physics allows one to hope that the
vacuum instability will be experimentally observed in
the near future even in laboratory conditions. Recently,
this, as well as the real possibility of observing an analogue
of the Schwinger effect in condensed matter physics (in the
graphene, topological insulators, 3D Dirac and Weyl
semimetals, antiferromagnets, etc.) has increased theoreti-
cal interest in the problem and led to the development of
various analytical and numeric approaches, see recent
reviews [5–8]. From general quantum theory point of view,
the most clear formulation of the problem of particle
production from the vacuum by external fields is formu-
lated for time-dependent external electric fields that are
switched on and off at infinitely remote times t → �∞,
respectively. The idealized problem statement described
above was considered for uniform time-dependent external
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electric fields. Such kind of external fields are called the
t-electric potential steps (t-steps). A complete nonpertur-
bative with respect to the external background formulation
of strong-field QED with such external fields was devel-
oped in Refs. [4,9]; it is based on the existence of exact
solutions of the Dirac equation with time dependent
external field (more exactly, complete sets of exact sol-
utions). However, there exist many physically interesting
situations in high-energy physics, astrophysics, and con-
densed matter where external backgrounds formally are
time-independent. In our works; see Refs. [10–12], a
nonperturbative approach in QED with the so-called
x-potential steps, or simply x-steps, was developed.
The x-steps represent time-independent inhomogeneous
electriclike external fields of a constant direction. The
latter approach is based on the existence of special exact
solutions of the Dirac or Klein-Gordon equations with
corresponding x-steps. In cases when such solutions can be
found and all the calculations can be done analytically, we
refer to these cases as to exactly solvable ones. Sauter
potential and the Klein step, considered in the pioneer
works [13–15], belong to the class of exactly solvable
cases. Initially they were considered in the framework of
the relativistic quantum mechanics, which gave rise to a
rather long-lasting discussion about the Klein paradox (a
detailed historical review can be found in Refs. [16,17]). In
the work [10] it was pointed out that this paradox and other
misunderstandings in considering quantum effects in fields
of strong x-steps can be consistently solved as many
particle effects of the QFT (QED) with unstable vacuum.
Recently, a number of new exactly solvable cases were
presented and studied in detail in the framework of general
approach [10,11]. Particularly, interesting are the cases
of a constant electric field between two capacitor plates
(L-constant electric field) [18], a field of a piecewise form
of continuous exponential functions [19], and a piecewise
and a continuous configuration of an inverse-square
step [20]. Exactly solvable cases are interesting not only
in themselves, but also due to the fact that they allow you to
develop and test new approximate and numerical methods
for calculating quantum effects in strong-field QFT. One
can find a number of application of these exactly solvable
cases in high-energy physics and condensed matter phys-
ics; see, e.g., [21–24].
In this article, we present a new exactly solvable case for

strong-field QED with x-step. For the generality, the field
is considered in d ¼ Dþ 1—dimensional Minkowski
space-time, parametrized by the coordinates X ¼ ðt; rÞ,
r ¼ ðx1 ¼ x; r⊥Þ, r⊥ ¼ x2;…; xD. The electric field is
constant and has only one component along the x-axis,
EðXÞ ¼ ðE1ðxÞ ¼ EðxÞ; 0;…; 0Þ. The field is given by a
step potential A0ðxÞ, so that EðxÞ ¼ −A0

0ðxÞ.
We note that among the above exactly solvable cases

only the Sauter electric field is given by an analytic
function,

AðSauterÞ
0 ðx;L;ESÞ ¼ −LES tanh ðx=LÞ;

EðSauterÞðx;L;ESÞ ¼ EScosh−2ðx=LÞ;
ES > 0; L > 0: ð1Þ

This field reaches its maximum value at x ¼ 0 and is
symmetric with respect to the origin. Unlike the above
mentioned cases given by piecewise smooth x-steps,
physical quantities calculated for the analytic Sauter field
are presented by elementary functions, which makes this
case especially convenient for physical interpretations.
Here we present a new example of exactly solvable case
in which the external field is given by the following analytic
function:

A0ðxÞ¼
σE0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ expðxσÞ
p ; E0 > 0; σ> 0;

EðxÞ¼E0

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp

�
x
σ

�s
cosh−2

�
x
2σ

�
: ð2Þ

The potential energy of an electron (with the charge
q ¼ −e, e > 0) is UðxÞ ¼ −eA0ðxÞ. It tends to be different
in the general case constants valuesUð−∞Þ andUðþ∞Þ as
x → −∞ and x → þ∞, respectively,

Uð−∞Þ≡UL ¼−eE0σ; Uðþ∞Þ≡UR ¼ 0: ð3Þ

The magnitude δU of the potential step is given by the
difference

δU ¼ UR −UL ¼ eE0σ ð4Þ

Note δU is equal to the increment of kinetic energy, if the
particle retains the direction of motion and moves in the
direction of acceleration, and if toward the opposite, then
this increment changes sign. Depending on the magnitude
δU, the step is called noncritical or critical one, see
Ref. [10],

δU < δUc ¼ 2m; noncritical step

δU> δUc; critical step
: ð5Þ

If the magnitude δU is large enough, the particle production
from the vacuum could be essential.
The electric field (2) differs from the Sauter field (1) at

L ¼ 2σ by the presence of an additional term in Eq. (2),

EðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp

�
x
σ

�s
EðSauterÞ

�
x; 2σ;

E0

8

�
: ð6Þ

There is no symmetry of the field EðxÞ with respect to the
point xM ¼ σ ln 2, in which the field has the maximum
value Emax ¼ E0=ð3

ffiffiffi
3

p Þ (see Fig. 1). While the Sauter field
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exhibits this symmetry with respect to the point of its
maximum. Moreover, they generally increase in a similar
way, but the Sauter field decreases faster. One can say that
field (2) for a given value of the parameter σ is a certain
“deformation” of the Sauter field, which turns on at x > 0
and turns off at x → þ∞. Finally, we note that distributions
of created pairs by the Sauter field are symmetric with
respect to the energy p0. The latter symmetry is not inherent
in realistic asymmetric fields. We demonstrate that in the
case of the asymmetric analytic field (2), with broken
symmetry with respect to p0, the distributions of created
pairs and other physical quantities can be still expressed in
terms of elementary functions.
The article is organized as follows: In Sec. II, we

construct exact solutions of the Dirac equation with a
new example of x-step given by a analytic asymmetric
function. These solutions are presented in the form of
stationary plane waves with special left and right asymp-
totics and identified as components of initial and final wave
packets of particles and antiparticles. We find coefficients
of mutual decompositions of the initial and final solutions.
In Sec. III, we consider the processes of transmission and
reflection in ranges of the stable vacuum. In Sec. IV, we
calculate physical quantities specifying the vacuum insta-
bility. We find differential mean numbers of electron-
positron pairs created from the vacuum, as well as
components of current density and energy-momentum
tensor of the created electrons and positrons leaving the
area of the strong external field. In Sec. V, we consider a
particular case of the particle creation due to a weakly
inhomogeneous electric field and obtain explicitly the total
number, current density and energy-momentum tensor of
the created particles. A new regularization of the Klein step
is considered in Sec. VI, which is used then in calculating
the corresponding vacuum instability. Section VII contains
some concluding remarks. In Appendix IX A, we describe

briefly basic elements of a nonperturbative approach to
QED with x-steps. In Appendix IX B, we show that the
density of created pairs and the probability of the vacuum to
remain a vacuum obtained from exact formulas for the
slowly varying field in the leading-term approximation
are in agreement with results following in the framework
of a locally constant field approximation (LCFA). In
Appendix IX C, we list some useful properties of hyper-
geometric functions. We use the system of units,
where c ¼ ℏ ¼ 1.

II. SOLUTIONS OF DIRAC EQUATION
WITH ASYMMETRIC POTENTIAL x-STEP

A. General solution

Let us consider the Dirac equation with a x-step in the
Hamiltonian form:

i∂0ψðXÞ¼ ĤψðXÞ;
Ĥ¼ γ0ð−iγj∂jþmÞþUðxÞ; j¼ 1;…;D: ð7Þ

The Dirac spinor ψðXÞ has 2½d=2� components, ½d=2�
denotes the integer part of d=2, and γμ are 2½d=2� × 2½d=2�
Dirac matrices in d dimensions, ½γμ; γν�þ ¼ 2ημν, and
UðxÞ ¼ −eA0ðxÞ, where A0ðxÞ is given by Eq. (2).
There exist solutions of Eq. (7) in the form of stationary

plane waves propagating along the space-time directions t
and r⊥. In this case the Dirac spinors labeled by quantum
numbers n have the form:

ψnðXÞ ¼ exp ð−ip0tþ ip⊥r⊥ÞψnðxÞ; n ¼ ðp0;p⊥; σÞ;
ψnðxÞ ¼ fγ0½p0 −UðxÞ� þ iγ1∂x − γ⊥p⊥ þmgφnðxÞ

× vχ;σ; ð8Þ

where the spinors ψnðxÞ and the scalar functions φnðxÞ
depend exclusively on x while vχ;σ is a set of constant
orthonormalized spinors, satisfying the following conditions:

γ0γ1vχ;σ ¼ χvχ;σ; v†χ;σvχ0;σ0 ¼ δχ;χ0δσ;σ0 ;

χ¼�1; σ¼ðσs¼�1; s¼1;2;…; ½d=2�−1Þ: ð9Þ

Quantum numbers s and χ describe the spin polarization
(if d ≤ 3 there are no spin degrees of freedom that are

described by the quantum numbers s). Solutions ψ ðχÞ
n ðXÞ

and ψ ðχ0Þ
n ðXÞ given by Eqs. (8) that differ only by values of

χ are linearly dependent if d > 3. Therefore, it suffices to
work with solutions corresponding to one of possible
values of χ, and sometimes we omit the subscript χ,
supposing that the spin quantum number χ is fixed in a
certain way. Due to the same reason, there exists, in fact,
only JðdÞ ¼ 2½d=2�−1 different spin states (labeled by quan-
tum numbers σ) for a given set of p0;p⊥. Substituting

FIG. 1. The solid line labeled with “A” represents the asym-
metric field E(x) given by Eq. (2). The dashed line labeled with
“S” represent the Sauter field. The maximum values of the fields
labeled with Emax are combined in the figure and the coordinate
of this maximum is labeled as xM.
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Eq. (8) into Eq. (7), one finds that scalar functions φnðxÞ
obey the following second-order ordinary differential
equation:

�
d2

dx2
þ ½p0 − UðxÞ�2 − π2⊥ þ iχ∂xUðxÞ

�
φnðxÞ ¼ 0;

π⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þm2

q
: ð10Þ

Solutions of a similar type of equation

�
d2

dt2
þ ½px − ŨðtÞ�2 þ π2⊥ − iχ̃∂tŨðtÞ

�
φ̃nðtÞ ¼ 0; ð11Þ

where ŨðtÞ ¼ −AxðtÞ, were recently found in Ref. [25] for
the case of a nonperturbative treatment of the vacuum
instability due to a time-dependent electric field EðtÞ, given
by the potential:

AxðtÞ ¼
σE0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ exp ðt=σÞp :

It is quite obvious that Eq. (10) can be obtained from
Eq. (11) by a substitution

t → x; px → p0; π2⊥ → −π2⊥; χ̃ → −χ:

Therefore, solutions of Eq. (10) can be obtained from
solutions of Eq. (11) using the same substitution. As the
result, the general solution of Eq. (10) can be represented as
a linear combination of the functions φn;iðxÞ,

φn;iðxÞ ¼ ð1þ zÞiα1ð1 − zÞiα2M̂nwn;i

�
zþ 1

2

�����
z¼zðxÞ

;

M̂n ¼
bz − ðα1 − α2 þ 2χeE0σ

2Þ
ðia − 1Þb

d
dz

þ 1;

zðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ exp

�
x
σ

�s
;

a ¼ α1 þ α2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα21 þ α22Þ − ð2eE0σ

2Þ2
q

;

b ¼ α1 þ α2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðα21 þ α22Þ − ð2eE0σ

2Þ2
q

;

α1 ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2⊥ − ðp0 − eE0σÞ2

q
;

α2 ¼ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2⊥ − ðp0 þ eE0σÞ2

q
: ð12Þ

In the above combination, we use two pairs of linearly
independent solutions wn;iðξÞ with additional indices
i ¼ 1;…; 4. The first pair reads:

wn;1ðξÞ ¼ ξ−ðia−1ÞF
�
ia− 1; iða− 2α1Þ; 2iα2; 1− ξ−1

	
;

wn;2ðξÞ ¼ ξiða−2α1Þ−1ð1− ξÞ1−2iα2
×F
�
ið2α1 − aÞ;−ia; 2ð1− iα2Þ; 1− ξ−1

	
; ð13Þ

where Fðα; β; γ; ξÞ are Gaussian hypergeometric func-
tions [26]. Solutions (13) are well-defined in a vicinity
of the singular point ξ ¼ 1, which corresponds to x → −∞.
The second pair reads:

wn;3ðξÞ ¼ ð−ξÞ−ðia−1Þ
×F
�
ia− 1; iða− 2α1Þ− 1; iða−bÞ;ξ−1	;

wn;4ðξÞ ¼ ð−ξÞ−ib
×F
�
ib; iðb− 2α1Þþ 1; iðb−aÞþ 2;ξ−1

	
: ð14Þ

Solutions (14) are well-defined in a vicinity of the singular
point ξ ¼ ∞, which corresponds to x → þ∞. Using
functions (13) and (14) one can construct four complete
sets φn;iðxÞ, i ¼ 1; 2; 3; 4, of solutions of Eq. (10).

B. Solutions with special left
and right asymptotics

Unlike the explicitly time-dependent solutions of
Eq. (11) the solutions given by Eqs. (8) and (12) are
stationary plane waves. In the treatment of the vacuum
instability in the x-case under consideration, they describe
qualitatively different cases depending on the ranges of
quantum numbers. By this reason their role in calculations
and interpretation of physics of the vacuum instability in
the x-case is quite different compared to similar in
appearance the above cited time-dependent solutions.
Further, we carry out a nonperturbative study of the vacuum
instability using solutions (12) within the framework of the
approach formulated in Refs. [10,11].
Due to local properties of equation (10) at x →∓ ∞

(where the electric field is zero), the scalar functions φnðxÞ
have definite left “L” and right “R” asymptotics:

ζφn
ðxÞ ¼ ζN eiζjpLjx as x → −∞;

ζφnðxÞ ¼ ζN eiζjpRjx as x → þ∞: ð15Þ

Here ζN and ζN are some normalization constants, and

pL=R ¼ ζjpL=Rj, ζ ¼ � ¼ sgnðpLÞ ¼ sgnðpRÞ, denotes
real asymptotic momenta along the x-axis,

jpL=Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π0ðL=RÞ2 − π2⊥

q
;

π0ðL=RÞ ¼ p0 −UL=R; ð16Þ

whereUL=R is given by Eq. (3). Then for the corresponding
Dirac spinors the following relations hold:
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p̂xζψn
ðXÞ ¼ ζjpLjζψn

ðXÞ as x → −∞;

p̂x
ζψnðXÞ ¼ ζjpRjζψnðXÞ as x → þ∞: ð17Þ

Note that the electric field under consideration can be
neglected at sufficiently big jxj, let say, in the macroscopic
regions SL on the left of x ¼ xL < 0 and SR on the right of
x ¼ xR > 0. To this end one can choose finite xL=R such that

1 −
UðxRÞ −UðxLÞ

δU
≪ 1: ð18Þ

We assume that the asymptotic behavior (17) is sufficiently
good approximation for all the functions ζψn

ðXÞ and ζψnðXÞ
if x < xL and x > xR, which means that particles are free in
the regions SL and SR.
Nontrivial sets of Dirac spinors fζψn

ðXÞg and fζψnðXÞg,
that are key elements of the above-mentioned approach, do
exist for the quantum numbers n satisfying the conditions:

π0ðL=RÞ2 > π2⊥ ⇔

�
π0ðL=RÞ > π⊥
π0ðL=RÞ < −π⊥

: ð19Þ

Note that π0ðLÞ > π0ðRÞ. As a result of these inequalities,
the complete set of the quantum numbers n can be divided in
some rangesΩk, where the index k labels the ranges and the
corresponding quantumnumbers,nk ∈Ωk. For critical steps,
δU > δUc, there are five ranges of the quantum numbers,
Ωk, k ¼ 1;…; 5, where the solutions ζψn

ðXÞ and ζψnðXÞ
have similar forms and properties for given perpendicular
momenta p⊥ and any spin polarizations σ. The ranges Ω1

and Ω5 are characterized by energies bounded from the
below,Ω1 ¼ fn∶p0 ≥ UR þ π⊥g, and by energies bounded
from the above Ω5 ¼ fn∶p0 ≤ UL − π⊥g. The ranges Ω2

andΩ4 are characterized by bounded energies, namelyΩ2 ¼
fn∶UR − π⊥ < p0 < UR þ π⊥g and Ω4 ¼ fn∶UL − π⊥ <
p0 < UL þ π⊥g if δU ≥ 2π⊥ or Ω2 ¼ fn∶UL þ π⊥ <
p0 < UR þ π⊥g and Ω4 ¼ fn∶UL − π⊥ < p0 < UR −
π⊥g if δU < 2π⊥. In the ranges Ω2 and Ω4 we deal with
standingwavesψnðXÞ completed by linear superpositions of
solutions ζψn

ðXÞ and ζψnðXÞ with corresponding longi-
tudinal fluxes that are equal in magnitude for a given n.
The range Ω3 is nontrivial only for critical steps and
perpendicular momenta p⊥ restricted by the inequality
2π⊥ ≤ δU. This range is characterized by bounded energies,
Ω3 ¼ fn∶UL þ π⊥ ≤ p0 ≤ UR − π⊥g. For noncritical
steps δU < δUc, the range Ω3 is absent.
Stationary plane waves, ζψn

ðXÞ and ζψnðXÞ, are sub-
jected to the following orthonormality conditions on the
x ¼ const hyperplane:

ðζψn
; ζ0ψn0

Þ
x
¼ ζηLδζ;ζ0δn;n0 ;

ðζψn; ζ
0
ψn0 Þx ¼ ζηRδζ;ζ0δn;n0 ;

ðψ ;ψ 0Þx ¼
Z

ψ†ðXÞγ0γ1ψ 0ðXÞdtdr⊥; ð20Þ

where ηL=R ¼ sgnπ0ðL=RÞ is sign of π0ðL=RÞ. We consider
our theory in a large space-time box that has a spatial
volume V⊥ ¼QD

j¼2 Kj and the time dimension T, where
all Kj and T are macroscopically large. It is supposed that
all the solutions ψðXÞ are periodic under transitions from
one box to another. The integration over the transverse
coordinates is fulfilled from −Kj=2 toþKj=2, and over the
time t from −T=2 to þT=2. Under these suppositions, one
can verify, integrating by parts, that the inner product (20)
does not depend on x. We assume that the macroscopic time
T is the system surveillance time.
Solutions (12) with the asymptotic conditions (15) have

the following form:

þφnðxÞ ¼ þNUn;1ð1þ zÞiα1ð1 − zÞiα2

× M̂nwn;1

�
zþ 1

2

�
;

−φnðxÞ ¼ −NUn;2ð1þ zÞiα1ð1 − zÞiα2

× M̂nwn;2

�
zþ 1

2

�
;

þφnðxÞ ¼ þNUn;3ð1þ zÞiα1ð1 − zÞiα2

× M̂nwn;3

�
zþ 1

2

�
;

−φnðxÞ ¼ −NUn;4ð1þ zÞiα1ð1 − zÞiα2

× M̂nwn;4

�
zþ 1

2

�
; ð21Þ

where the constants Un;i, i ¼ 1; 2; 3; 4, and the normali-
zation constants ζN and ζN are

Un;1 ¼
22−iðα1−α2Þα2

a − ðα1 − α2 − 2χeE0σ
2Þ e

πα2 ;

Un;2 ¼
21−iðα1þ3α2Þbðia − 1Þ

ð2iα2 − 1Þ½b − ðα1 − α2 þ 2χeE0σ
2Þ� e

−πα2 ;

Un;3 ¼
21−iabðb − aÞ

aðα1 − α2 þ 2χeE0σ
2Þ þ bðα1 − α2 − 2χeE0σ

2Þ
× eπðα2−aÞ;

Un;4 ¼
2−ibð1 − iaÞ
1þ iðb − aÞ e

πðα2−bÞ; ð22Þ
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ζN ¼ ζCY;
ζN ¼ ζCY; Y¼ðV⊥TÞ−1=2;

ζC¼ 
2��pL
����π0ðLÞ−χpL

���−1=2;
ζC¼ 
2��pR

����π0ðRÞ−χpR
���−1=2: ð23Þ

Stationary plane waves in the ranges Ωk, k ¼ 1; 2; 4; 5
are usually used in the potential scattering theory. In each of
these ranges signηL and signηR coincide (ηL=R ¼ 1 for
particles and ηL=R ¼ −1 for antiparticles). We stress that
definitions of particle and antiparticle in the framework of
one-particle quantum theory and QFT are in agreement. In
the ranges Ω1 and Ω2 there exist only states of particles
whereas in the ranges Ω4 and Ω5 there exist only states of
antiparticles. In these ranges particles and antiparticles are
subjected to the scattering and the reflection only. In fact,
ψnðXÞ for m∈Ω2 are wave functions that describe an
unbounded motion of particles (electrons) in x → −∞
direction while ψnðXÞ for n∈Ω4 are wave functions that
describe an unbounded motion of antiparticles (positrons)
toward x ¼ þ∞. Such one-particle interpretation does not
exist in the range Ω3, where signηL is opposite to signηR,
here one must take a many-particle QFT consideration into
account, in particular, the vacuum instability, see
Appendix IX A for details. Note that the range Ω3 is often
referred to as the Klein zone and the pair creation from the
vacuum occurs in this range, whereas the vacuum is stable
in the ranges Ωk, k ¼ 1; 2; 4; 5.
It was demonstrated in Ref. [10] (see Secs. Vand VII and

Appendices C1 and C2) by using one-particle mean
currents and the energy fluxes that the plane waves

ζψn
ðXÞ and ζψnðXÞ are unambiguously identified as

components of initial and final wave packets of particles
and antiparticles,

in− solutions∶

þψn1
;−ψn1 ; −ψn5 ;

þψn5 ; −ψn3 ;
−ψn3 ;

out− solutions∶

−ψn1 ;
þψn1 ; þψn5

;−ψn5 ; þψn3
;þψn3 ; ð24Þ

where nk ∈Ωk. In the rangesΩ2 andΩ4 we deal with a total
reflection. The complete sets of in- and out-solutions must
include solutions ψn2ðXÞ and ψn4ðXÞ.
Since each pair of solutions ζψn

ðXÞ and ζψnðXÞ with
quantum numbers n∈Ω1 ∪ Ω3 ∪ Ω5 are complete, there
exist mutual decompositions:

ηL
ζψnðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ;

ηRζψn
ðXÞ ¼ þψnðXÞgðþjζÞ − −ψnðXÞgð−jζÞ; ð25Þ

where the decomposition coefficients g are

gðζ0jζÞ� ¼ gðζjζ
0 Þ ¼ ðζψn

; ζ
0
ψnÞx; n∈Ω1 ∪Ω3 ∪Ω5: ð26Þ

These coefficients satisfy the following unitary relations:

jgð−jþÞj2 ¼ jgðþj−Þj2; jgðþjþÞj2 ¼ jgð−j−Þj2;
gðþj−Þ
gð−j−Þ

¼ gðþj−Þ
gðþjþÞ

;

jgðþj−Þj2 − jgðþjþÞj2 ¼ −ηLηR: ð27Þ

One can see that all the coefficients g can be expressed
via only one of them, e.g., via gð−jþÞ. Using the Kummer
relations (C9) for the hypergeometric equation; see
Ref. [26], this coefficient can be found to be

gð−jþÞ ¼ iηR
þN
−N

×
2iðb−α1þα2Þþ1Γ½iða− bÞ�Γð1þ 2iα2Þ

ða− α1 þ α2 þ 2χeE0σ
2ÞΓðiaÞΓ½−iðb− 2α2Þ�

;

ð28Þ

where ΓðxÞ is the gamma function. Then

jgðþj−Þj−2 ¼
sinh ð2πjpLjσÞ sinh ð4πjpRjσÞ

jβþβ−j
;

β� ¼ sinh

�
πσ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δU2 þ 2jpRj2 − jpLj2

q

� ð2jpRj − jpLjÞ
�

; ð29Þ

where δU and jpL=Rj are given by Eqs. (4) and (16).
Relation (29) holds true for the quantum numbers

n∈Ω1 ∪ Ω3 ∪ Ω5. However, interpretations of this relation
in the range Ω3 and in the ranges Ω1 and Ω5 are quite
different. Note that there exists a useful relation between
absolute values of the momenta pR and pL,

jpLj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpRj2 þ 2ηRδU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpRj2 þ π2⊥

q
þ δU2

r
;

jpRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpLj2 − 2ηLδU

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpLj2 þ π2⊥

q
þ δU2

r
; ð30Þ

As follows from Eqs. (29) and (30), if either jpRj or jpLj
tends to zero, one of the following limits takes place:

jgð−jþÞj−2 ∼ jpRj → 0;

jgð−jþÞj−2 ∼ jpLj → 0; ∀ π2⊥ ≠ 0: ð31Þ

These properties are essential for the justification of in- and
out-particle interpretation in the general construction given
in Ref. [10].
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III. PROCESSES IN STABLE
VACUUM RANGES

In the rangesΩ2 andΩ4 we deal with a total reflection. In
the adjacent ranges, Ω1 and Ω5, a particle can be reflected
and transmitted. For example, in the range Ω1, the total R̃
and the relative R amplitudes of an electron reflection, and
the total T̃ and the relative T amplitudes of an electron
transmission can be presented via the following matrix
elements:

Rþ;n ¼ R̃þ;nc−1v ;

R̃þ;n ¼ h0; outj−anðoutÞþa†nðinÞj0; ini;
Tþ;n ¼ T̃þ;nc−1v ;

T̃þ;n ¼ h0; outjþanðoutÞþa†nðinÞj0; ini;
R−;n ¼ R̃−;nc−1v ;

R̃−;n ¼ h0; outjþanðoutÞ−a†nðinÞj0; ini;
T−;n ¼ T̃−;nc−1v ;

T̃−;n ¼ h0; outj−anðoutÞ−a†nðinÞj0; ini; ð32Þ

where initial creation a†ðinÞ and final annihilation aðoutÞ
operators, initial j0; ini and final j0; outi vacua, and the
vacuum-to-vacuum transition amplitude cv ¼ h0; outj0; ini
are defined in Appendix IX A. Note that the partial vacua
are stable in Ωk, k ¼ 1; 2; 4; 5, and the vacuum instability
with jcvj ≠ 1 is due to the partial vacuum-to-vacuum
transition amplitude formed in Ω3. Using a linear canonical
transformation between in and out-operators in Eq. (32)
(see Eq. (4.33) in Ref. [10]) one find that the relative
reflection jRζ;nj2 and transmission jTζ;nj2 probabilities are

jTζ;nj2 ¼ 1 − jRζ;nj2;
jRζ;nj2 ¼ ½1þ jgðþj−Þj−2�−1; ζ ¼ �; ð33Þ

where jgðþj−Þj−2 is given by Eq. (29). Similar expressions
can be derived for positron amplitudes in the range Ω5. In
particular, relation (33) holds true literally for the positrons
in the range Ω5.
In the ranges Ω1 and Ω5 we meet a realization of rules of

the potential scattering theory in the framework of QFTand
can see that relative probabilities of the reflection and the
transmission coincide with mean currents of reflected
particles JR¼ jRmj2 and transmitted particles JT ¼ jTmj2.
The correct result JR þ JT ¼ 1 follows from the unitary
relation (27).
Limits (31) imply the following properties of the

coefficients jgðþj−Þj: jgðþj−Þj−2 → 0 in the range Ω1 if n
tends to the boundary with the range Ω2 (jpRj → 0);
jgðþj−Þj−2 → 0 in the range Ω5 if n tends to the boundary
with the range Ω4 (jpLj → 0). Thus, in the latter cases the
relative reflection probabilities jRζ;nj2 tend to the unity; i.e.,

they are continuous functions of the quantum numbers n on
the boundaries. In addition, it follows from Eq. (28) that
jgðþj−Þj−2 → 0 and, therefore, jRζ;nj2 → 0 as p0 → �∞, as
it is expected.

IV. PHYSICAL QUANTITIES SPECIFYING
THE VACUUM INSTABILITY

The vacuum instability is due to contributions formed in
the rangeΩ3. In this range the important characteristic of all
the processes are differential mean numbers Ncr

n of elec-
tron-positron pairs created from the vacuum. The differ-
ential mean numbers of electrons and positrons created
from the vacuum are equal and related to the mean numbers
Ncr

n of created pairs,

Na
nðoutÞ ¼ h0; injN̂a

nðoutÞj0; ini ¼ jgð−jþÞj−2;
Nb

nðoutÞ ¼ h0; injN̂b
nðoutÞj0; ini ¼ jgðþj−Þj−2;

Ncr
n ¼ Nb

nðoutÞ ¼ Na
nðoutÞ; n∈Ω3: ð34Þ

Here N̂a
nðoutÞ and Nb

nðoutÞ are operators of the number of
the final electrons and positrons, given by Eq. (A10) (see
Appendix IX A for details), and the quantity jgðþj−Þj−2
is given by Eq. (28). The probabilities of a particle
reflection (transmission is impossible) and a pair creation
and annihilation in the Klein zone can be expressed via
differential mean numbers of created pairs Ncr

n ; see
Eq. (7.22) in Ref. [10]).
Unlike the case of uniform time-dependent electric

fields, in the constant inhomogeneous electric fields, there
is a critical surface in space of particle momenta, which
separates the Klein zone Ω3 from the adjacent ranges Ω2

and Ω4. In the ranges Ω2 and Ω4, the work of the electric
field is sufficient to ensure the total reflection for electrons
and positrons, respectively, but is not sufficient to produce
pairs from the vacuum. Accordingly, it is expected that for
any nonpathological field configuration, the pair creation
vanishes close to this critical surface. Limits (31) imply that
Ncr

n → 0 if n tends to the boundary with either the range Ω2

(jpRj → 0) or the range Ω4 (jpLj → 0),

Ncr
n ∼ jpRj→ 0; Ncr

n ∼ jpLj→ 0; ∀ π⊥ ≠ 0: ð35Þ

Standard integral characteristics of the vacuum insta-
bility are sums over the range Ω3 (see Appendix IX A
for details), are the total number Ncr of pairs created from
the vacuum, and the vacuum-to-vacuum transition prob-
ability Pv,

Ncr ¼
X
n∈Ω3

Ncr
n ; Ncr

n ¼ jgðþj−Þj−2; ð36Þ

Pv ¼ jcvj2 ¼ exp

 X
n∈Ω3

ln ð1 − Ncr
n Þ
!
: ð37Þ
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The summations over Ω3 can be converted into integrals
in the standard way,

ðV⊥TÞ−1
X

p0;p⊥ ∈Ω3

↔ ð2πÞ1−d
Z

dp0dp⊥;

in which V⊥, T are macroscopically large. It follows from
Eq. (37) that lnPv ≈ −Ncr if all Ncr

n ≪ 1.
Under approximation (18) the electric field under con-

sideration can be neglected in the macroscopic regions SL
(at x < xL) and SR (at x > xR), that is, particles are free
in these regions. We note that near all the work δU is
performed by the electric field situated in a region Sint
between two planes x ¼ xL and x ¼ xR. Assuming that the
areas SL and SR are much wider than the area Sint, this part
of the field affects only coefficients g entering into the
mutual decompositions of the solutions given by Eq. (25).
Created electrons and positrons leaving the area Sint enter
the areas SL and SR, respectively, and continue to move
with constant velocities. The positron of a pair created with
quantum number n moves in the x direction with a velocity
vR ¼ jpR=π0ðRÞj while the electron belonging to the same
pair moves in the opposite direction with a velocity −vL,
vL ¼ jpL=π0ðLÞj. It is shown that the microscopical
parameter T can be interpreted as the time of the obser-
vation of the created particles leaving the area Sint;
see Ref. [11].
Following the way used in Ref. [11], we can calculate the

current densities and the energy flux densities of electrons
and positrons, after the instant when these fluxes become
completely separated and already have left the region Sint.
The motion of the positrons forms the flux density

hjxin ¼ Ncr
n ðTV⊥Þ−1 ð38Þ

in the area SR, while the electron motion forms the flux
density −ðjxÞn in the area SL. Here it is taken into account
that differential mean numbers of created electrons and
positrons with a given n are equal. The total flux densities
of the positrons and electrons are

hjxi ¼
X
n∈Ω3

hjxin ¼ NcrðTV⊥Þ−1 ð39Þ

and −hjxi, respectively. The current density of both created
electrons and positrons is Jcrx ¼ ehjxi. It is conserved in the
x-direction.
During the time T, the created positrons carry the charge

ehjxinT over the unit area V⊥ of the surface x ¼ xR. This
charge is evenly distributed over the cylindrical volume of
the length vRT. Thus, the charge density of the positrons
created with a given n is ej0nðRÞ, where j0nðRÞ ¼ hjxin=vR
is the number density of the positrons. During the time T,
the created electrons carry the charge ehjxinT over the unit
area V⊥ of the surface x ¼ xL. Taking into account that this

charge is evenly distributed over the cylindrical volume of
the length vLT, we can see that the charge density of the
electrons created with a given n is −ej0nðLÞ, where j0nðLÞ ¼
hjxin=vL is the number density of the electrons. The total
charge density of the created particles reads:

Jcr0 ðxÞ ¼ e

8><
>:

−
P

n∈Ω3

j0nðLÞ; x∈ SLP
n∈Ω3

j0nðRÞ; x∈ SR
: ð40Þ

Due to a relation between the velocities vL and vR, the total
number densities of the created electrons and positrons are
the same,

X
n∈Ω3

j0nðLÞ ¼
X
n∈Ω3

j0nðRÞ:

The created electrons and positrons are spatially separated
and carry a charge that tends to weaken the external
electric field.
In the same manner, one can derive some representation

for the nonzero components of energy-momentum tensor of
the created particles:

T00
cr ðxÞ ¼

8>><
>>:
P

n∈Ω3

j0nðLÞπ0ðLÞ; x∈ SLP
n∈Ω3

j0nðRÞjπ0ðRÞj; x∈ SR
;

T11
cr ðxÞ ¼

8>><
>>:
P

n∈Ω3

hjxinjpLj; x∈ SLP
n∈Ω3

hjxinjpRj; x∈ SR
;

Tkk
cr ðxÞ ¼

8>><
>>:
P

n∈Ω3

hjxinðpkÞ2=jpLj; x∈ SLP
n∈Ω3

hjxinðpkÞ2=jpRj; x∈ SR
; k ≠ 1;

T10
cr ðxÞ ¼

8>><
>>:

− P
n∈Ω3

hjxinπ0ðLÞ; x∈ SLP
n∈Ω3

hjxinjπ0ðRÞj; x∈ SR
: ð41Þ

Here T00
cr ðxÞ and Tkk

cr ðxÞ, k ¼ 1;…; D, (there is no sum-
mation over k) are energy density and components of the
pressure of the particles created in the areas SL and SR
respectively, whereas T10

cr ðxÞvs, for x∈ SL or x∈ SR, is the
energy flux density of the created particles through the
surfaces x ¼ xL or x ¼ xR respectively. In a strong field, or
in a field with the sufficiently large potential step δU, the
energy density and the pressure along the direction of the
axis x are near equal, T00

cr ðxÞ ≈ T11
cr ðxÞ, in the areas SL and

SR respectively.
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V. PARTICLE CREATION DUE TO A WEAKLY
INHOMOGENEOUS ELECTRIC FIELD

A. Intensity of the particle creation
over the Klein zone

The above study of the vacuum instability caused by the
asymmetric x-step can be useful for a consideration of the
particle creation by a weakly inhomogeneous electric field
between two capacitor plates separated by a sufficiently
large length. Indeed, if the parameter σ is taken to be
sufficiently large,

σ ≫ ðeE0Þ−1=2max f1; m2=eE0g; ð42Þ

the step can be considered as a regularization (like the Sauter
potential with appropriate parameters) of a weakly inho-
mogeneous constant electric field between the plates. For
example, for such big σ we can consider the behavior of
mean numbers of electron-positron pairs created over the
Klein zone Ω3. For this purpose, consider arguments of the
functions β� in the denominator of expression (29).
Absolute values of jpRj and jpLj are related by Eq. (30).
One can see from Eq. (30) that djpLj=djpRj < 0, and at any
givenp⊥ these quantities are restricted inside the rangeΩ3 as

0≤ jpR=Lj≤pmax; pmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δUðδU−2π⊥Þ

p
: ð43Þ

These relations for big σ are

πσ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δUðδU−π⊥Þ
p

− pmax
	
≫ 1;

πσ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δUðδUþ2π⊥Þ
p

− pmax
	
≫ 1; ð44Þ

and imply that

πσ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δU2þ2jpRj2− jpLj2

q
�ð2jpRj− jpLjÞ


≫ 1: ð45Þ

We get from (29) that

Ncr
n ¼ jgðþj−Þj−2

≈
4 sinh ð2πjpLjσÞ sinh ð4πjpRjσÞ

exp ½2πσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δU2 þ 2jpRj2 − jpLj2

p
� : ð46Þ

It follows from Eq. (46) that the quantitiesNcr
n are exponen-

tially small,

Ncr
n ≈ 2ð4πσÞ2jpLpRj exp ð−2

ffiffiffi
2

p
πδUσÞ; ð47Þ

if the range Ω3 is small enough

eEσ − 2π⊥ → 0 ⇒ πσpmax ≪ 1 ⇒ jpR=Lj ≪ 1: ð48Þ

Then we can consider the opposite case of big ranges
Ω3 when

πσpmax ≫ 1 ð49Þ

and the quantities Ncr
n are not small. Such ranges do exist if

eEσ ≫ m ð50Þ

and

σπ⊥ < K⊥; ð51Þ

where K⊥ is a given arbitrary number, restricted as
mσ ≪ K⊥ ≪ eEσ2.
Let us study the behavior of Ncr

n on the boundaries of
the Klein domain Ω3, when jpRj → 0 or jpLj → 0. Let
πσjpR=Lj < K1, where K1 ≥ 1 is some arbitrary number
satisfying the inequality

K1 ≪ eE0σ
2: ð52Þ

In close proximity to these boundaries, πσjpL=Rj < K0,
K0 < 1, we obtain that the value Ncr

n is exponentially small,

Ncr
n ≈ 2e−4πmσ; πσjpRj < K0;

Ncr
n ≈ 2e−2πmσ; πσjpLj < K0: ð53Þ

For boundary regions located closer to the center of the
Klein zone Ω3, 1≲ πσjpL=Rj < K1, K1 > 1 the following
approximation is valid

Ncr
n ≈ exp

�
−4πσ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpRÞ2 þ π2⊥

q
− jpRj

�
;

1≲ πσjpRj≲ K1;

Ncr
n ≈ exp

�
−2πσ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpLÞ2 þ π2⊥

q
− jpLj

�
;

1≲ πσjpLj≲ K1: ð54Þ

The numbers Ncr
n increase as n moves away from

the boundaries of the Klein region Ω3 and for any fixed
value of π⊥, they reach their maximum value when
πσjpL=Rj → K1. In turn, this maximum value increases
as π⊥ → m. In this range we can estimate Ncr

n as

Ncr
n < exp

�
−4πσm

�
πσm
2K1

−
�
πσm
2K1

�
3
�

;

πσjpRj → K1; ð55Þ

Similarly, in the domain πσjpLj → k we have the estimate

Ncr
n < exp

�
−2πσm

�
πσm
2K1

−
�
πσm
2K1

�
3
�

;

πσjpLj → K1: ð56Þ
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The right sides of inequalities (55) and (56) are exponen-
tially small if

K1 ≪ πmσ=2 ð57Þ

for any K1.
Consequently, the main contribution to the pairs creation

is formed in the subrange of the Klein zone D ⊂ Ω3, where
the energy π⊥ is restricted by inequality (51) and the energy
p0 is restricted as:

−eE0σ
2þK< σp0 <−K; K¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1þðσπ⊥Þ2
q

: ð58Þ

Inequalities (51) and (52) imply that K ≪ eEσ2. In such a
case, we can approximate numbers (46) as follows

Ncr
n ≈Nas

p0;p⊥ ¼ e−πτ;

τ¼ 2σ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2δU2þ2jpRj2− jpLj2
q

− jpLj−2jpRj
�
: ð59Þ

In the point xM ¼ σ ln 2 the electric field (2) has the
maximum value Emax ¼ E0=ð3

ffiffiffi
3

p Þ and the corresponding
kinetic energy reads:

π00 ¼ p0 −UðxMÞ ¼ p0 þ
eE0σffiffiffi

3
p :

The function τ takes its minimum value at the point π00 ¼ 0,

min τ ¼ τjπ0
0
¼0 ¼ λ ¼ π2⊥

eEmax
: ð60Þ

Further, τ monotonically increases with jπ00j approaching
the boundary of the subrange D. On the one side of the
center of the Klein zone Ω3, the function τ takes the
maximum value

τ−max ¼ τjσjp0j→eE0σ
2−K ≃ 2

�
K − K1=σ þ λ

4
ffiffiffi
3

p
�
;

while on the other side, the maximum value is

τþmax ¼ τjσjp0j→K ≃ 4ðK − K1=σÞ:

In the wide range D, where

K=σ − eE0σð1 − 1=
ffiffiffi
3

p
Þ < π00 < eE0σ=

ffiffiffi
3

p
− K=σ; ð61Þ

the numbers Ncr
n practically do not depend on the parameter

σ and have the form of the differential number of created
particles in an uniform electric field [27,28],

Ncr
n ≈ e−πλ: ð62Þ

B. Integral quantities

The total number of created pairs is given by integral (36).
The main contribution to the integral is due to the subrange
D ⊂ Ω3, defined by Eqs. (51) and (58). In this subrange
the functions Ncr

n can be approximated by Eq. (59), and
integral (36) can be represented as:

Ncr ≈
V⊥TJðdÞ
ð2πÞd−1

Z
απ⊥<K⊥

ðIþp⊥ þ I−p⊥Þdp⊥;

Iþp⊥ ¼
Z

eE0σ=
ffiffi
3

p
−K=σ

0

e−πτdπ00;

I−p⊥ ¼
Z

0

−½eE0σð1−1=
ffiffi
3

p Þ−K=σ�
e−πτdπ00; ð63Þ

where τ is given by Eq. (59). To calculate Iþp⊥ and I−p⊥ , it is
convenient to use the representation τ ¼ λðqþ 1Þ and to
pass from the integration over π00 to the integration over the
parameter q (the transition to such a variable provides
exponential decrease of the integrand with increasing q,
and the expansion of the preexponential factor in powers ofq
has a form of an asymptotic series).
Finding π00 as a function of q, one has to take into

account that in the region D the following expansions are
valid up to linear terms in reciprocal powers of large
parameters:

jpLj ≈ 1

ϵ1
−
ϵ1π

2⊥
2

þOðϵ1Þ;

ϵ1 ¼


π00 þ eE0σ

�
1 − 1=

ffiffiffi
3

p 	�−1;
jpRj ≈ 1

ϵ2
−
ϵ2π

2⊥
2

þOðϵ2Þ;

ϵ2 ¼


eE0σ=

ffiffiffi
3

p
− π00

�−1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δU2 þ 2jpRj2 − jpLj2

q
≈

1

ϵ3
−
ϵ3π

2⊥
2

þOðϵ3Þ;

ϵ0 ¼


eE0σ

�
1þ 1=

ffiffiffi
3

p 	
− π00�−1:

Then we obtain the following approximation for τ:

τ≈
2
ffiffiffi
3

p
λ

2
ffiffiffi
3

p þ9ðr− ffiffiffi
3

p Þr2 ; r¼ π00
eE0σ

: ð64Þ

Besides, we have to find π00 as a function of q using
Eq. (64). Such a function can be found from the cubic
equation

r3 −
ffiffiffi
3

p
r2 þ 2q

3
ffiffiffi
3

p ðqþ 1Þ ¼ 0: ð65Þ

Note that when π00 → eE0σ=
ffiffiffi
3

p
− K=σ and π00 →

−½eE0σð1 − 1=
ffiffiffi
3

p Þ − K=σ�, the parameter τ reaches the
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limiting values τ�max ¼ λðq�max þ 1Þ, respectively. However,
since contributions of the factor exp ð−πτÞ to integrals (63)
outside of range D are exponentially small, one can extend
limits of the integration over q to �∞. Equation (65) has
three real roots:

r1 ¼
2ffiffiffi
3

p cos
αðqÞ
3

þ 1=
ffiffiffi
3

p
; αðqÞ ¼ arccos


ðqþ 1Þ−1�;
r2 ¼ −

2ffiffiffi
3

p cos

�
αðqÞ
3

þ π

3


þ 1=

ffiffiffi
3

p
;

r3 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

−
π

3


þ 1=

ffiffiffi
3

p
; ð66Þ

see, e.g., [29].
Since 0 < q < þ∞, the inequality 0 ≤ αðqÞ ≤ π=2

holds true, which implies:

0 ≤
αðqÞ
3

≤
π

6
;

π

3
≤
�
αðqÞ
3

þ π

3


≤
π

2
;

−
π

3
≤
�
αðqÞ
3

−
π

3


≤ −

π

6
: ð67Þ

Then

1≤ r1 ≤
ffiffiffi
3

p
; 0≤ r2 ≤

1ffiffiffi
3

p ;

�
1ffiffiffi
3

p −1

�
≤ r3 ≤ 0 ð68Þ

such that roots r2 and r3 represent the quantity π00
in the subranges π00 ∈ ð−eE0σð1 − 1=

ffiffiffi
3

p Þ; 0Þ and
π00 ∈ ð0; eE0σ=

ffiffiffi
3

p Þ, respectively.
Thus, the integrals Iþp⊥ and I−p⊥ take the forms:

I�p⊥ ¼ � 2δU

3
ffiffiffi
3

p
Z þ∞

0

� ðqþ 1Þ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðqþ 1Þ−2

p
× sin

�
αðqÞ
3

� π

3


exp ½−πλðqþ 1Þ�

�
dq; ð69Þ

and their sum can be represented as:

I−p⊥ þ Iþp⊥ ¼ 2δU
3

Z þ∞

0

� ð1þ qÞ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ qÞ−2

p
× cos

αðqÞ
3

exp ½−πλðqþ 1Þ�
�
dq: ð70Þ

Substituting Eq. (70) into Eq. (63) and integrating over

dpðd−2Þ
⊥ , we obtain:

Ncr ≈ V⊥TρD; ρD ¼ β
δU

eEmax
w;

β ¼ JðdÞ½eEmax�d=2
ð2πÞd−1 exp

�
−

πm2

eEmax


;

wðdÞ ¼ 2

3

Z þ∞

0

�
ðq2 þ 2qÞ−1=2ðqþ 1Þ−d=2

× cos
αðqÞ
3

exp

�
−

πm2

eEmax
q

�
dq: ð71Þ

The corresponding probability Pv of the vacuum to remain
a vacuum reads:

Pv ¼ exp ½−μNcr�;

μ ¼
X∞
l¼0

ðlþ 1Þ−d=2 exp
�
−l

πm2

eEmax

�
: ð72Þ

In general, the current density Jcrx of created particles is
given by Eq. (39), while the charge polarization due to the
separation of created positrons and electrons is presented
by the charge density ρcrðxÞ given by Eq. (40). The
nonzero components of energy-momentum tensor of the
created particles are given by Eq. (41). In the subrange
D ⊂ Ω3 the velocities vL and vR tend to the speed of the
light c ¼ 1 such that jpL=Rj ≈ jπ00ðL=RÞj ≈ jU0

L=Rj, with

U0
L ¼ −eE0σð1 − 1=

ffiffiffi
3

p Þ and U0
R ¼ eE0σ=

ffiffiffi
3

p
according

to inequality (61). Using representation (71), we find:

Jcrx ≈ eρD; Jcr0 ðxÞ ≈
(
−Jcrx ; x∈ SL
Jcrx ; x∈ SR

;

T00
cr ðxÞ ≈ T11

cr ðxÞ ≈
(
ρDjU0

Lj; x∈ SL
ρDjU0

Rj; x∈ SR
;

Tkk
cr ðxÞ ≈

(
ρ̃DjU0

Lj−1; x∈ SL
ρ̃DjU0

Rj−1; x∈ SR
; k ≠ 1;

T10
cr ðxÞ ≈

(
−ρDjU0

Lj; x∈ SL
ρDjU0

Rj; x∈ SR
;

ρ̃D ¼ β
δUσ

2π
wðdþ 2Þ: ð73Þ

It can be seen that the transversal components of the
pressure of the created particles are much less than
the longitudinal pressure in the areas SL and SR, respec-
tively, Tkk

cr ðxÞ ≪ T11
cr ðxÞ. It is in accordance with the

relation T00
cr ðxÞ ≈ T11

cr ðxÞ.
Unlike the case with the Sauter field, the energy density

and the longitudinal component of the pressure in the
areas SL and SR, given by Eq. (73), are not equal,
T00
cr ðxLÞ ¼ 2T00

cr ðxRÞ and T11
cr ðxLÞ ¼ 2T11

cr ðxRÞ, that is, the
energy density and longitudinal pressure of created
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electrons is two times more than the energy density and
longitudinal pressure of created positrons due to the
asymmetric form of the field (2). Furthermore, the magni-
tudes of energy flux density of the created particles through
the surfaces x ¼ xL or x ¼ xR are not equal, jT10

cr ðxLÞj ¼
2jT10

cr ðxRÞj, even though the current density of both created
electrons and positrons are the same, Jcrx . This is due to the
fact the main contribution to the components of energy-
momentum tensor of the created particles comes from
particles with different kinetic energies jπ00ðL=RÞj in the
areas SL and SR. In the framework of semiclassical
interpretation (appropriate in the case of a weakly inho-
mogeneous electric field) one can explain that pair of
particle and antiparticle are created with small kinetic
energies in the region of the strongest field, which is
located asymmetrically with respect to the point of the field
maximum xM. Then the electron and positron move under
the influence of the electric field in opposite directions,
passing through different potential differences before leav-
ing the region of the strong field. As a result, electrons and
positrons acquire different kinetic energies by the time they
exit into the areas SL and SR, respectively. In the case under
consideration, created electrons acquire higher kinetic
energies than created positrons due to the choice of
direction of the field. Note that the direction of this field
is chosen along the x-axis. Choosing the opposite direction
of the field (choosing the opposite sign of the potential),
one finds that electrons and positrons switch places. Then
the energy density, longitudinal pressure, and energy flux
density of created positrons is more than the corresponding
characteristics of created electrons.
One can show that representations (71)–(73) can be

obtained in the framework of a new kind of a locally
constant field approximation (LCFA) constructed in
Ref. [30]; see Appendix IX B. This can be considered as
an additional argument in favor of the validity of such an
approximation.
Besides, it turns out that LCFA allows one to see relation

to the Heisenberg-Euler effective action method. Note
that in the framework of the LCFA the probability Pv,
given by Eq. (72), can be represented via the imaginary part
of a one-loop effective action S by the seminal Schwinger
formula [31],

Pv ¼ exp ð−2ImSÞ: ð74Þ

Thus, all the vacuum mean values, obtained in the frame-
work of the LCFA, can be associated with the effective
action approach. If the total number of created particles is
small, Ncr ≪ 1, then 1 − Pv ≈ Ncr. Therefore, knowledge
of the probability Pv allows one to estimate the total
number of created particles Ncr. It is, in this case, the
effective action approach to calculating Pv turns out to be
useful. We note that this approach is a base of a number of
approximation methods; see, e.g., Ref. [7] for a review. In

this relation, it should be noted that the probability Pv by
itself is not very useful in the case of strong fields when
Pv ≪ 1. In the latter case it is necessary to directly calculate
the vacuum mean values of physical quantities, using either
exact solutions, as it is done above, or the new kind of the
LCFA [30].

VI. THE KLEIN STEP

The Klein paradox is known from the work by Klein [13]
who considered, in the framework of the one-particle
relativistic theory, reflection and transmission probabilities
of charged relativistic particles incident on a sufficiently
high rectangular potential step (the Klein step) of the form

qA0ðxÞ ¼
�
UL; x < 0

UR; x > 0
; ð75Þ

where UR and UL are some constants. The field (75)
represents a kind of x-step. According to calculations of
Klein and other authors, for certain energies and sufficient
high magnitude U ¼ UR −UL of the Klein step, it seems
that there are more reflected fermions than incident. This
fact many articles and books where treated as a paradox
(the Klein paradox); see Refs. [16,17]) for historical
review. This paradox and other misunderstandings in
considering quantum effects in fields of strong x-steps
can be consistently solved as many particle effects in the
QED with an unstable vacuum; see Ref. [10]. Obviously
that the Klein step is a limiting case of a very sharp peak
field. It is important to have in hands examples of
potentials representing very sharp peak field that can be
considered as their regularizations. Such an example given
by Sauter potential (1) was presented in Ref. [10]; see
Refs. [19,20] for regularizations by piecewise forms of
analytic functions. The x-step (2) under consideration
represents a new example of such regularizations given
by an analytic function.
Let us study characteristics of the vacuum instability

caused by the field (2) with σ sufficiently small, σ → 0. If
UR ¼ 0 and UL ¼ −δU ¼ −eE0σ are given constant and

δUσ ≪ 1 ð76Þ

the field imitates sufficiently well the asymmetric Klein
step (75) and coincides with the latter as σ → 0.
In the ranges Ω1 and Ω5 the energy jp0j is not restricted

from the above, that is why, in what follows, we consider
only the subranges, where max fσjpLj; σjpRjg ≪ 1. In the
leading-term approximation in σ it follows from Eqs. (28)
that

jgðþj−Þj−2≈
4k

ð1−kÞ2 ; k¼ jpRj
jpLj

π0ðLÞþπ⊥
π0ðRÞþπ⊥

; ð77Þ

where k is called the kinematic factor.
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Note that k are positive and do not achieve the unit
values, k ≠ 1 in the ranges Ω1 and Ω5. In these ranges, the
coefficients g satisfy the same relations,

jgðþjþÞj2 ¼ jgðþj−Þj2 þ 1: ð78Þ

Therefore, reflection and transmission probabilities derived
from Eqs. (77) have the same forms

jTζ;nj2 ¼ jgðþjþÞj−2 ¼
4k

ð1þ kÞ2 ;

jRζ;nj2 ¼ jgðþj−Þj2jgðþjþÞj−2 ¼
ð1 − kÞ2
ð1þ kÞ2 : ð79Þ

To compare our exact results with results of the non-
relativistic consideration obtained in any textbook for one
dimensional quantum motion, we set p⊥ ¼ 0, then
π⊥ ¼ m, π0ðLÞ ¼ mþ E, and π0ðRÞ ¼ mþ E − δU. In
the nonrelativistic limit, when δU;E ≪ m, we obtain

k ¼ kNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − δU

E

r
;

which can be identified with the nonrelativistic results, e.g.,
see Ref. [32].
Let us consider the range Ω3. Here the quantum numbers

p⊥ are restricted by the inequality 2π⊥ ≤ δU and for any
of such π⊥ the quantum numbers p0 obey the strong
inequality UL þ π⊥ ≤ p0 ≤ UR − π⊥. In this range the
quantity jgðþj−Þj−2 represents the differential mean numbers
of electron-positron pairs created from the vacuum,
Ncr

n ¼ jgðþj−Þj−2. In this range for any given π⊥ the absolute
values of jpRj and jpLj are restricted from the above, see (43).
Therefore, condition (76) implies maxfσjpL=Rjg ≪ 1. It
follows from Eq. (28) that in the leading approximation
the following equation holds true

jgðþj−Þj−2 ≈
4jpLjjpRj

δU2 − ðjpLj − jpRjÞ2 ¼
4jkj

ð1þ jkjÞ2 : ð80Þ

Note that expression (80) differs from expression (77)
only by the sign of the kinematic factor k. This factor is
positive in the ranges Ω1 and Ω5, and it is negative in
the range Ω3. In the range Ω3, the difference jpLj − jpRj
may be zero at p0 ¼ UL=2, which corresponds to
k ¼ −ðδU þ 2π⊥Þ=ðδU − 2π⊥Þ. Namely in this case the
quantity jgðþj−Þj−2 has a maximum at a given π⊥,

max jgðþj−Þj−2 ¼ 1 − ð2π⊥=δUÞ2: ð81Þ

Note that expressions (77), (79) and (80) coincide up to
the redesigning of the constants UL=R with expressions,
corresponding to other regularizations of the Klein step; see
Ref. [10,19,20]. We see that the Klein step is (in a sense) a

limiting case of various sharp peak fields under condition
that the magnitude δU is a given finite constant and the
peak of the fields are sufficiently sharp.

VII. CONCLUDING REMARKS

A new exactly solvable case in strong-field QED with
x-step is presented. This step can be seen as a certain
analytic “deformation” of the Sauter field. In contrast to the
Sauter field the potential field under consideration is
asymmetric with respect of the axis x reflection. Bearing
in mind numerous examples of using the results of the
exactly solvable problem with the Sauter field in physical
applications related to the problem of vacuum instability,
we believe that the new exact solvable case will also be
useful in such applications. It can be treated as a new
regularization of the Klein step. Exact solutions of the
Dirac equation used in the above nonperturbative calcu-
lations, are presented in the form of stationary plane waves
with special left and right asymptotics and identified as
components of initial and final wave packets of particles
and antiparticles in the framework of the strong-field
QED [10]. We show that in spite of the fact that the
symmetry with respect to positive and negative bands of
energies is broken, distribution of created pairs and other
physical quantities can be presented by elementary func-
tions. We consider the processes of transmission and
reflection in the ranges of the stable vacuum and study
physical quantities specifying the vacuum instability as
well. We find the differential mean numbers of electron-
positron pairs created from the vacuum, the components of
current density and energy-momentum tensor of the created
electrons and positrons leaving the area of the strong field
under consideration. We study the particular case of the
particle creation due to a weakly inhomogeneous electric
field and obtain explicitly the total number, the current
density and energy-momentum tensor of created particles.
Unlike the symmetric case of the Sauter field the asym-
metric form of the field under consideration causes the
energy density and longitudinal pressure of created elec-
trons to be not equal to the energy density and longitudinal
pressure of created positrons.
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APPENDIX A: BASIC ELEMENTS
OF A NONPERTURBATIVE APPROACH

TO QED WITH x-STEPS

In this appendix, we briefly present some basic con-
structions of quantization in terms of particles for QED
with x-steps; see Secs. IV–VII in Ref. [10] for details.
The time-independent inner product for any pair of

solutions of the Dirac equation, ψnðXÞ and ψ 0
n0 ðXÞ, is

defined on the t ¼ const hyperplane as follows:
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ðψn;ψ 0
n0 Þ ¼

Z
V⊥

dr⊥
Z

KðRÞ

−KðLÞ
ψ†
nðXÞψ 0

n0 ðXÞdx; ðA1Þ

where the integral over the spatial volume V⊥ is completed
by an integral over the interval ½KðLÞ; KðRÞ� in the x
direction. The parameters KðL=RÞ are assumed sufficiently
large in final expressions. Assuming that the principal value
of integral (A1) is determined by integrals over the areas
where the field EðxÞ is negligibly small it is possible to
evaluate this value using only the asymptotic behavior (15)
of functions in the regions where particles are free. The
field EðxÞ in the area where it is strong enough affects only
coefficients g entering into the mutual decompositions of
the solutions given by Eq. (25). One can see that the norms
of the plane waves ζψn

ðXÞ and ζψnðXÞ with respect to the
inner product (A1) are proportional to the macroscopically
large parameters τðLÞ ¼ KðLÞ=vL and τðRÞ ¼ KðRÞ=vR,
where vL ¼ jpL=π0ðLÞj > 0 and vR ¼ jpR=π0ðRÞj > 0
are absolute values of the longitudinal velocities of particles
in the regions where particles are free; see Sec. III C.2 and
Appendix B in Ref. [10] for details.
It was shown (see Appendix B in Ref. [10]) that the

following couples of plane waves are orthogonal with
respect to the inner product (A1)

ðζψn
; −ζψnÞ ¼ 0; n∈Ω1 ∪ Ω5;

ðζψn
; ζψnÞ ¼ 0; n∈Ω3; ðA2Þ

if the parameters of the volume regularization τðL=RÞ satisfy
the condition

τðLÞ − τðRÞ ¼ Oð1Þ; ðA3Þ

where Oð1Þ denotes terms that are negligibly small in
comparison with the macroscopic quantities τðL=RÞ. One can
see that τðRÞ and τðLÞ are macroscopic times of motion of
particles and antiparticles in the areas SR and SL, respec-
tively and they are equal,

τðLÞ ¼ τðRÞ ¼ τ: ðA4Þ

It allows one to introduce an unique time of motion τ for all
the particles in the system under consideration. This time
can be interpreted as a system monitoring time during its
evolution and as such is fixed as τ ¼ T in the framework of
the renormalization procedure; see Ref. [11] for details.
The renormalization and volume regularization proce-

dures are associated with the introduction of a modified
inner product and a parameter τ of the regularization. Based
on physical considerations, we fix this parameter. It turns
out that in the Klein range this parameter can be interpreted

as the time of the observation of the pair production
process.
Under condition (A3) the following orthonormality

relations on the t ¼ const hyperplane are

ðζψn
;ζψn0 Þ¼ ðζψn;ζψn0 Þ¼δn;n0Mn;

n∈Ω1 ∪Ω3 ∪Ω5;

ðψn;ψn0 Þ¼δn;n0Mn;n∈Ω2 ∪Ω4;

Mn¼2
τ

T
jgðþjþÞj2; n∈Ω1 ∪Ω5;

Mn¼2
τ

T
jgðþj−Þj2; n∈Ω3;

Mn¼2
τ

T
; n∈Ω2; Mn¼2

τ

T
; n∈Ω4: ðA5Þ

All the wave functions having different quantum numbers n
are orthogonal, and

ðζψn
; −ζψnÞ ¼ 0; n∈Ω1 ∪ Ω5;

ζψn
and −ζψn independent;

ðζψn
; ζψnÞ ¼ 0; n∈Ω3;

ζψn
and ζψn independent: ðA6Þ

We denote the corresponding quantum numbers by nk, so
that nk ∈Ωk. Then we identify components of the initial
and final wave packets of particles and antiparticles
in Eq. (24).
We decompose the Heisenberg operator Ψ̂ðXÞ in two sets

of solutions fζψn
ðXÞg and fζψnðXÞg of the Dirac equa-

tion (7) complete on the t ¼ const hyperplane. Operator-
valued coefficients in such decompositions do not depend
on coordinates. Our division of the quantum numbers n in
five ranges Ωk, implies the representation for Ψ̂ðXÞ as a
sum of five operators Ψ̂kðXÞ, k ¼ 1; 2; 3; 4; 5,

Ψ̂ðXÞ ¼
X5
k¼1

Ψ̂kðXÞ: ðA7Þ

For each of three operators Ψ̂kðXÞ,k ¼ 1; 3; 5, there
exist two possible decompositions (24) according to
the existence of two different complete sets of solutions
with the same quantum numbers n in the ranges Ω1, Ω3,
and Ω5,
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Ψ̂1ðXÞ ¼
X
n1

M−1=2
n1 ½þan1ðinÞþψn1

ðXÞ

þ −an1ðinÞ−ψn1ðXÞ�
¼
X
n1

M−1=2
n1 ½þan1ðoutÞþψn1ðXÞ

þ −an1ðoutÞ−ψn1ðXÞ�;
Ψ̂3ðXÞ ¼

X
n3

M−1=2
n3 ½−an3ðinÞ−ψn3ðXÞ

þ −b†n3ðinÞ−ψn3ðXÞ�
¼
X
n3

M−1=2
n3 ½þan3ðoutÞþψn3ðXÞ

þ þb†n3ðoutÞþψn3
ðXÞ�;

Ψ̂5ðXÞ ¼
X
n5

M−1=2
n5 ½þb†n5ðinÞþψn5ðXÞ

þ −b†n5ðinÞ−ψn5ðXÞ�
¼
X
n5

M−1=2
n5 ½þb†n5ðoutÞþψn5

ðXÞ

þ −b†n5ðoutÞ−ψn5ðXÞ�: ðA8Þ

There may exist only one complete set of solutions with
the same quantum numbers n2 and n4. Therefore, we have
only one possible decomposition for each of the two
operators Ψ̂iðXÞ, i ¼ 2; 4,

Ψ̂2ðXÞ ¼
X
n2

M−1=2
n2 an2ψn2ðXÞ;

Ψ̂4ðXÞ ¼
X
n4

M−1=2
n4 b†n4ψn4ðXÞ: ðA9Þ

We interpret all a and b as annihilation and all a† and b†

as creation operators. All a and a† are interpreted as
describing electrons and all b and b† as describing
positrons. All the operators labeled by the argument in
are interpreted as in-operators, whereas all the operators
labeled by the argument out as out-operators. This iden-
tification is confirmed by a detailed mathematical and
physical analysis of solutions of the Dirac equation with
subsequent QFT analysis of correctness of such an iden-
tification in Ref. [10].
Taking into account the orthogonality and orthonorm-

alization relations, we find that the standard anticommu-
tation relations for the Heisenberg operator (A7) yield the
standard anticommutation rules for the introduced creation
and annihilation in- or out-operators.
We define two vacuum vectors j0; ini and j0; outi, one of

which is the zero-vector for all in-annihilation operators
and the other is zero-vector for all out-annihilation oper-
ators. Besides, both vacua are zero-vectors for the annihi-
lation operators an2 and bn4 . One can verify that the

introduced vacua have minimum (zero by definition)
kinetic energy and zero electric charge and all the
excitations above the vacuum have positive energies.
Then we postulate that the state space of the system
under consideration is the Fock space constructed, say,
with the help of the vacuum j0; ini and the corresponding
creation operators. This Fock space is unitarily equivalent
to the other Fock space constructed with the help of the
vacuum j0; outi and the corresponding creation operators
if the total number of particles created by the external field
is finite.
Because any annihilation operators with quantum

numbers nk corresponding to different k anticommute
between themselves, we can represent the introduced
vacua j0; ini and j0; outi as tensor products of the
corresponding partial vacua in the five ranges Ωk,
k ¼ 1;…; 5. The partial vacua are stable in Ωk,
k ¼ 1; 2; 4; 5, and the vacuum instability with jcvj ≠ 1
is due to the partial vacuum-to-vacuum transition ampli-
tude formed in Ω3. In the range Ω3 operators of the
number of final electrons and positrons are

N̂a
nðoutÞ ¼ þa†nðoutÞþanðoutÞ;

Nb
nðoutÞ ¼ þb†nðoutÞþbnðoutÞ: ðA10Þ

Using the linear canonical transformation between in and
out-operators of creation and annihilation (see Eq. (7.4) in
Ref. [10]) one sees that the differential mean numbers of
electrons and positrons created from vacuum are pre-
sented by Eq. (34). The vacuum-to-vacuum transition
amplitude, given by Eq. (7.21) in Ref. [10]), is

cv ¼ h0; outj0; ini ¼
Y
n∈Ω3

gð−j−Þgð−jþÞ−1: ðA11Þ

Then the probability for a vacuum to remain a vacuum
can be presented by Eq. (37).

APPENDIX B: LOCALLY
CONSTANT FIELD APPROXIMATION

A new kind of a locally constant field approximation
(LCFA) was formulated in Ref. [30]. Here we pretend to
show that the density of created pairs (71) and the probability
of the vacuum to remain a vacuum (72), obtained from exact
equations for the slowly varying field in the leading-term
approximation, are in agreement with results following in
the framework of LCFA.
We call the electric field EðxÞ a weakly inhomogeneous

electric field on a spatial interval Δl if the following
condition holds true:

���� ∂xEðxÞΔlEðxÞ

����≪ 1; Δl=Δlmst ≫ 1; ðB1Þ
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where EðxÞ and ∂xEðxÞ are the mean values of EðxÞ and
∂xEðxÞ on the spatial interval Δl, respectively, and Δl is
significantly larger than the length scale Δlmst , which is

Δlmst ¼ Δlst max f1; m2=eEðxÞg;
Δlst ¼ ½eEðxÞ�−1=2: ðB2Þ

Note that the length scale Δlmst appears in Eq. (B1) as
the length scale when the perturbation theory with respect
to the electric field breaks down and the Schwinger
(nonperturbative) mechanism is primarily responsible
for the pair creation. In what follows, we show that this
condition is sufficient. We are primarily interested in
strong electric fields, m2=eEðxÞ≲ 1. In this case, the
second inequality in Eq. (B1) is simplified to the form
Δl=Δlst ≫ 1, in which the mass m is absent. In such
cases, the potential of the corresponding electric step
hardly differs from the potential of a uniform electric
field,

UðxÞ ¼ −eA0ðxÞ ≈UconstðxÞ ¼ eEðxÞxþ U0; ðB3Þ

on the interval Δl, where U0 is a given constant.
For an arbitrary weakly inhomogeneous strong

electric field, in the leading-term approximation, were
derived universal formulas for the total density of created
pairs

ρΩ ≈
JðdÞ

ð2πÞd−1
Z

xR

xL

dxeEðxÞ
Z

dp⊥Nuni
n ;

Nuni
n ¼ exp

�
−π

π2⊥
eEðxÞ


; ðB4Þ

and an expression for the probability Pv given by Eq. (37)
of the vacuum to remain a vacuum,

Pv ≈ exp

�
−
V⊥TJðdÞ
ð2πÞd−1

×
X∞
l¼1

Z
xR

xL

dx
½eEðxÞ�d=2

ld=2
exp

�
−π

lm2

eEðxÞ
�

; ðB5Þ

see Ref. [30]. In Eqs. (B4) and (B5) integration limits
are specified over the region Sint ¼ ðxL; xRÞ, in which
the electrical the field is not zero. In our case
xL ¼ −∞, xR ¼ þ∞.
Let us compare Eqs. (B4) and (B5) with the results

obtained above in (71). To do this, let us represent (B4) in
the form

ρΩ ≈
JðdÞ

ð2πÞd−1
Z

dp⊥ðJþp⊥ þ J−p⊥Þ;

Jþp⊥ ¼
Z

∞

xM

dx½eEðxÞ�Nuniv
n

¼ −e
Z

∞

xM

dA0ðxÞNuniv
n ;

J−p⊥ ¼
Z

xM

−∞
dx½eEðxÞ�Nuniv

n

¼ −e
Z

∞

xM

dA0ðxÞNuniv
n : ðB6Þ

Note that the functions A0ðxÞ and EðxÞ can be related to
each other using the cubic equation

y3−y−
2

3
ffiffiffi
3

p ðqþ1Þ¼ 0;

y¼−A0ðxÞ=ðE0σÞ; q¼
�
3
ffiffiffi
3

p EðxÞ
E0

�
−1

−1: ðB7Þ

We can express A0ðxÞ as a function of the field EðxÞ or as a
function of the variable q using solutions of equation (B7).
This equation has three real solutions,

y1 ¼
2ffiffiffi
3

p cos
αðqÞ
3

;

y2 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

þ π

3


;

y3 ¼ −
2ffiffiffi
3

p cos

�
αðqÞ
3

−
π

3


;

αðqÞ ¼ arccos½ðqþ 1Þ−1�; ðB8Þ

see, e.g., [29]. Since A0ðxÞ is negative, only the solutions
y2;3 are relevant. One can see that for solutions y2;3 the
differential dA0ðxÞ takes the form:

dAðxÞ ¼ −2ðEmaxσÞ sin
�
αðqÞ
3

þ π

3



×
ðqþ 1Þ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðqþ 1Þ−2

p dq; x > 0;

dAðxÞ ¼ −2ðEmaxσÞ sin
�
αðqÞ
3

−
π

3



×
ðqþ 1Þ−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðqþ 1Þ−2

p dq x ≤ 0;

EðxÞ ¼ −dAðxÞ ¼ Emax

qþ 1
: ðB9Þ

Passing from the integration over x to the integration over
the parameter q in Eq. (B6), we find:
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J�p⊥ ¼ I�p⊥ ; ðB10Þ

where the quantities I�p⊥ are given by Eq. (69).
It follows from Eq. (B10) that the density of the created

pairs (B4) and the probability of the vacuum to remain a
vacuum (B5) obtained with the help of the approximation
for weakly inhomogeneous strong electric field coincide
with expressions (71) and (72), respectively.

APPENDIX C: SOME PROPERTIES
OF HYPERGEOMETRIC FUNCTIONS

The hypergeometric function Fða;b;c;zÞ¼ 2F1ða;b;c;zÞ
(here and inwhat follows it is supposed that parameters a and
b are not equal to 0;−1;−2;…) is defined by series

Fða;b;c;zÞ¼
Xþ∞

n¼0

ðaÞnðbÞn
ðcÞn

zn

n!

¼ ΓðcÞ
ΓðaÞΓðbÞ

Xþ∞

n¼0

ΓðaþnÞΓðbþnÞ
ΓðcþnÞ

zn

n!
: ðC1Þ

for jzj < 1. Note that in the solutions (13) and (14) the
arguments 1 − ξ−1 and ξ−1 in the corresponding hyper-
geometric functions are less than unity and the series (C1)
converges.
At jzj ¼ 1 the series (C1) converges absolutely when

Reðc − a − bÞ > 0. The integral representation

Fða; b; c; zÞ ¼ ΓðcÞ
ΓðbÞΓðc − bÞ
×
Z

1

0

tb−1ð1 − tÞc−b−1ð1 − ztÞ−adt;

× ðRec > Reb > 0Þ ðC2Þ

gives an analytical continuation for the functionFða; b; c; zÞ
to the complex z-plane with a cut along the real axis from 1
to ∞ (since the right-hand side is an unambiguous
analytic function in the domain j arg ð1 − zÞj ≤ π). From
the integral representation (C2) it is easy to see that
limz→0 Fða; b; c; zÞ ¼ 1. The formula for differentiating
the hypergeometric function has the form:

d
dz

Fða; b; c; zÞ ¼ ab
c
Fðaþ 1; bþ 1; cþ 1; zÞ: ðC3Þ

It is follows from (C2) that

Fða; b; c; zÞ ¼ ð1 − zÞc−a−bFðc − a; c − b; c; zÞ;
jzj < 1: ðC4Þ

Hypergeometric function can be transformed as

Fða; b; c; zÞ ¼ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ
× Fða; b; aþ b − cþ 1; 1 − zÞ

þ ð1 − zÞc−a−b ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ

× Fðc − a; c − b; c − a − bþ 1; 1 − zÞ;
× ðj arg ð1 − zÞj < πÞ; ðC5Þ

The hypergeometric equation in its general form,

zð1− zÞw00ðzÞþ ½c− ðaþbþ1Þz�w0ðzÞ−abwðzÞ¼ 0;

ðC6Þ
has three regular singular points z ¼ 0; 1;∞. When none of
the numbers c, c − a − b, a − b is integer, the general
solution wðzÞ of the hypergeometric equation (C6) can be
obtained as

wðzÞ ¼ c1w1ðzÞ þ c2w2ðzÞ; z → 0;

wðzÞ ¼ c1w3ðzÞ þ c2w4ðzÞ; z → 1;

wðzÞ ¼ c1w5ðzÞ þ c2w6ðzÞ; z → ∞: ðC7Þ

where c1 and c2 are some constants, and the functions
wjðzÞ, j ¼ 1;…; 6, have the form:

w1ðzÞ¼Fða;b;c;zÞ;
w2ðzÞ¼ z1−cFða−cþ1;b−cþ1;2−c;zÞ;
w3ðzÞ¼Fða;b;aþbþ1−c;1−zÞ;
w4ðzÞ¼ ð1− zÞc−a−bFðc−b;c−a;c−a−bþ1;1− zÞ;
w5ðzÞ¼ z−aFða;a−cþ1;a−bþ1;z−1Þ;
w6ðzÞ¼ z−bFðb;b−cþ1;b−aþ1;z−1Þ: ðC8Þ

The Kummer relations and for the hypergeometric
equation [26] allow us to represent the functions w1ðzÞ
and w2ðzÞ via the functions w3ðzÞ and w4ðzÞ,

w1ðzÞ ¼ eiπð2α1−bÞ
Γð2ðα1 þ 1Þ − a − bÞΓðb − aþ 1Þ

Γð2 − aÞΓð2α1 − aþ 1Þ
× w4ðzÞ − eiπð2α1−aÞ

×
Γð2ðα1 þ 1Þ − a − bÞΓða − b − 1Þ

Γð1 − bÞΓð2α1 − bÞ w3ðzÞ;

w2ðzÞ ¼ eiπða−1Þ
Γðaþ b − 2α1ÞΓðb − aþ 1Þ

Γðb − 2α1 þ 1ÞΓðbÞ w4ðzÞ

þ eiπb
Γðaþ b − 2α1ÞΓða − b − 1Þ

Γða − 2α1ÞΓða − 1Þ w3ðzÞ: ðC9Þ
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