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Vacuum instability in QED with an asymmetric x step:
New example of an exactly solvable case
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We present a new exactly solvable case in strong-field QFED with a one-dimensional step potential
(x-step). The corresponding x-step is given by an analytic asymmetric with respect to the axis x reflection
function. The step can be considered as a certain analytic “deformation” of the symmetric Sauter field.
Moreover, it can be treated as a new regularization of the Klein step field. We study the vacuum instability
caused by this x-step in the framework of a nonperturbative approach to strong-field QED. Exact solutions
of the Dirac equation used in the corresponding nonperturbative calculations are represented in the form of
stationary plane waves with special left and right asymptotics and identified as components of initial and
final wave packets of particles. We show that in spite of the fact that the symmetry with respect to positive
and negative bands of energies is broken, the distribution of created pairs and other physical quantities can
be expressed via elementary functions. We consider the processes of transmission and reflection in the
ranges of the stable vacuum and study physical quantities specifying the vacuum instability. We find the
differential mean numbers of electron-positron pairs created from the vacuum, the components of current
density and energy-momentum tensor of the created electrons and positrons leaving the area of the strong
field under consideration. Besides, we study the particular case of the particle creation due to a weakly
inhomogeneous electric field and obtain explicitly the total number, the current density and energy-
momentum tensor of created particles. Unlike the symmetric case of the Sauter field the asymmetric form
of the field under consideration causes the energy density and longitudinal pressure of created electrons to

be not equal to the energy density and longitudinal pressure of created positrons.

DOI: 10.1103/PhysRevD.109.116015

I. INTRODUCTION

The Schwinger effect, that is, creation of charged
particles from the vacuum by strong external electriclike
and gravitational fields (the vacuum instability) has been
attracting attention already for a long time; see, e.g.,
monographs [1-4]. This is a nonperturbative effect of
quantum field theory (QFT), which has not yet received
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a convincing experimental confirmation. However, recent
progress in laser physics allows one to hope that the
vacuum instability will be experimentally observed in
the near future even in laboratory conditions. Recently,
this, as well as the real possibility of observing an analogue
of the Schwinger effect in condensed matter physics (in the
graphene, topological insulators, 3D Dirac and Weyl
semimetals, antiferromagnets, etc.) has increased theoreti-
cal interest in the problem and led to the development of
various analytical and numeric approaches, see recent
reviews [5-8]. From general quantum theory point of view,
the most clear formulation of the problem of particle
production from the vacuum by external fields is formu-
lated for time-dependent external electric fields that are
switched on and off at infinitely remote times ¢ — Foo,
respectively. The idealized problem statement described
above was considered for uniform time-dependent external
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electric fields. Such kind of external fields are called the
t-electric potential steps (#-steps). A complete nonpertur-
bative with respect to the external background formulation
of strong-field QED with such external fields was devel-
oped in Refs. [4,9]; it is based on the existence of exact
solutions of the Dirac equation with time dependent
external field (more exactly, complete sets of exact sol-
utions). However, there exist many physically interesting
situations in high-energy physics, astrophysics, and con-
densed matter where external backgrounds formally are
time-independent. In our works; see Refs. [10-12], a
nonperturbative approach in QED with the so-called
x-potential steps, or simply x-steps, was developed.
The x-steps represent time-independent inhomogeneous
electriclike external fields of a constant direction. The
latter approach is based on the existence of special exact
solutions of the Dirac or Klein-Gordon equations with
corresponding x-steps. In cases when such solutions can be
found and all the calculations can be done analytically, we
refer to these cases as to exactly solvable ones. Sauter
potential and the Klein step, considered in the pioneer
works [13-15], belong to the class of exactly solvable
cases. Initially they were considered in the framework of
the relativistic quantum mechanics, which gave rise to a
rather long-lasting discussion about the Klein paradox (a
detailed historical review can be found in Refs. [16,17]). In
the work [10] it was pointed out that this paradox and other
misunderstandings in considering quantum effects in fields
of strong x-steps can be consistently solved as many
particle effects of the QFT (QED) with unstable vacuum.
Recently, a number of new exactly solvable cases were
presented and studied in detail in the framework of general
approach [10,11]. Particularly, interesting are the cases
of a constant electric field between two capacitor plates
(L-constant electric field) [18], a field of a piecewise form
of continuous exponential functions [19], and a piecewise
and a continuous configuration of an inverse-square
step [20]. Exactly solvable cases are interesting not only
in themselves, but also due to the fact that they allow you to
develop and test new approximate and numerical methods
for calculating quantum effects in strong-field QFT. One
can find a number of application of these exactly solvable
cases in high-energy physics and condensed matter phys-
ics; see, e.g., [21-24].

In this article, we present a new exactly solvable case for
strong-field QED with x-step. For the generality, the field
is considered in d = D 4+ 1—dimensional Minkowski
space-time, parametrized by the coordinates X = (¢,r),
r=x'=xr)), r, =x% ..., xP. The electric field is
constant and has only one component along the x-axis,
E(X) = (E'(x) = E(x),0, ...,0). The field is given by a
step potential Ay(x), so that E(x) = —Aj(x).

We note that among the above exactly solvable cases
only the Sauter electric field is given by an analytic
function,

A (v, L, Eg) = —LEg tanh (x/L),
E(Sauter) (X;L’ ES) - ESCOSh_z(x/L)’
Eg>0, L>0. (1)

This field reaches its maximum value at x =0 and is
symmetric with respect to the origin. Unlike the above
mentioned cases given by piecewise smooth x-steps,
physical quantities calculated for the analytic Sauter field
are presented by elementary functions, which makes this
case especially convenient for physical interpretations.
Here we present a new example of exactly solvable case
in which the external field is given by the following analytic
function:

O'EO

+/1 +exp(§)’

E(x) :% I +exp (g) cosh™2 (2%) 2)

The potential energy of an electron (with the charge
qg=—e,e>0)is U(x) = —eAy(x). It tends to be different
in the general case constants values U(—o0) and U(4o0) as
x — —oo and x — 400, respectively,

Ap(x) = Ey>0, o6>0,

U(—o0)=Up =—¢Eyo, U(4+o00)=Ur=0. (3)
The magnitude 6U of the potential step is given by the
difference

5U:UR—UL:€E00 (4)

Note oU is equal to the increment of kinetic energy, if the
particle retains the direction of motion and moves in the
direction of acceleration, and if toward the opposite, then
this increment changes sign. Depending on the magnitude
oU, the step is called noncritical or critical one, see
Ref. [10],

oU < 6U,. =2m, noncritical step

5
sU > 8U,, ®)

critical step

If the magnitude oU is large enough, the particle production
from the vacuum could be essential.

The electric field (2) differs from the Sauter field (1) at
L = 20 by the presence of an additional term in Eq. (2),

/ X E
E(x) =4/l +exp <;> E(Sauter) <X; 20, §0> . (6)

There is no symmetry of the field E(x) with respect to the
point xy; = o1ln2, in which the field has the maximum

value E,,, = Ey/(3v/3) (see Fig. 1). While the Sauter field
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Emax [

FIG. 1. The solid line labeled with “A” represents the asym-
metric field E(x) given by Eq. (2). The dashed line labeled with
“S” represent the Sauter field. The maximum values of the fields
labeled with E,,, are combined in the figure and the coordinate
of this maximum is labeled as xy.

exhibits this symmetry with respect to the point of its
maximum. Moreover, they generally increase in a similar
way, but the Sauter field decreases faster. One can say that
field (2) for a given value of the parameter o is a certain
“deformation” of the Sauter field, which turns on at x > 0
and turns off at x — +o0. Finally, we note that distributions
of created pairs by the Sauter field are symmetric with
respect to the energy p,. The latter symmetry is not inherent
in realistic asymmetric fields. We demonstrate that in the
case of the asymmetric analytic field (2), with broken
symmetry with respect to p, the distributions of created
pairs and other physical quantities can be still expressed in
terms of elementary functions.

The article is organized as follows: In Sec. II, we
construct exact solutions of the Dirac equation with a
new example of x-step given by a analytic asymmetric
function. These solutions are presented in the form of
stationary plane waves with special left and right asymp-
totics and identified as components of initial and final wave
packets of particles and antiparticles. We find coefficients
of mutual decompositions of the initial and final solutions.
In Sec. III, we consider the processes of transmission and
reflection in ranges of the stable vacuum. In Sec. IV, we
calculate physical quantities specifying the vacuum insta-
bility. We find differential mean numbers of electron-
positron pairs created from the vacuum, as well as
components of current density and energy-momentum
tensor of the created electrons and positrons leaving the
area of the strong external field. In Sec. V, we consider a
particular case of the particle creation due to a weakly
inhomogeneous electric field and obtain explicitly the total
number, current density and energy-momentum tensor of
the created particles. A new regularization of the Klein step
is considered in Sec. VI, which is used then in calculating
the corresponding vacuum instability. Section VII contains
some concluding remarks. In Appendix IX A, we describe

briefly basic elements of a nonperturbative approach to
QED with x-steps. In Appendix IX B, we show that the
density of created pairs and the probability of the vacuum to
remain a vacuum obtained from exact formulas for the
slowly varying field in the leading-term approximation
are in agreement with results following in the framework
of a locally constant field approximation (LCFA). In
Appendix IX C, we list some useful properties of hyper-
geometric functions. We use the system of units,
where c = = 1.

II. SOLUTIONS OF DIRAC EQUATION
WITH ASYMMETRIC POTENTIAL x-STEP

A. General solution

Let us consider the Dirac equation with a x-step in the
Hamiltonian form:

idoy (X) = Hy (X),

The Dirac spinor w(X) has 2[%/2 components, [d/2]
denotes the integer part of d/2, and y* are 214/2 x 2[4/2
Dirac matrices in d dimensions, [y*,y*], =2n*, and
U(x) = —eAy(x), where Ag(x) is given by Eq. (2).

There exist solutions of Eq. (7) in the form of stationary
plane waves propagating along the space-time directions ¢
and r . In this case the Dirac spinors labeled by quantum
numbers 7 have the form:

w,(X) = exp (=ipot +ipir )y, (x),  n=(po,PL,0),
l//n(x) = {yo[pO - U<x>] + i}/lax —71P1L + m}q)n(x)

‘v (®)

where the spinors y,(x) and the scalar functions ¢, (x)
depend exclusively on x while v, , is a set of constant
orthonormalized spinors, satisfying the following conditions:

0,1 — T _
V'V Vo =XVy06 UyolUys = 5){,)(’56,6’7

y==%1, o=(c,=%1,5=12,....[d/2]-1). (9)

Quantum numbers s and y describe the spin polarization
(if d <3 there are no spin degrees of freedom that are
described by the quantum numbers s). Solutions l//,(f{ ) (X)
and z//,(f/) (X) given by Egs. (8) that differ only by values of
y are linearly dependent if d > 3. Therefore, it suffices to
work with solutions corresponding to one of possible
values of y, and sometimes we omit the subscript y,
supposing that the spin quantum number y is fixed in a
certain way. Due to the same reason, there exists, in fact,
only J (4 = 24/2-1 different spin states (labeled by quan-
tum numbers o) for a given set of py,p . Substituting
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Eq. (8) into Eq. (7), one finds that scalar functions ¢,,(x)
obey the following second-order ordinary differential
equation:

d2
L+ o= UWR = 7+ 50,009 0 =0,

ﬂL:\/pi+m2. (10)

Solutions of a similar type of equation

{% P = U + 7% - i;zasz(r)}@n(r) =0, (1)

where U(t) = —A,(t), were recently found in Ref. [25] for
the case of a nonperturbative treatment of the vacuum
instability due to a time-dependent electric field E(¢), given
by the potential:

E
A =220
1 +exp (/o)
It is quite obvious that Eq. (10) can be obtained from
Eq. (11) by a substitution

=X, Px = Do ﬂzl_)_ﬂzl’ )?_)_)(

Therefore, solutions of Eq. (10) can be obtained from
solutions of Eq. (11) using the same substitution. As the
result, the general solution of Eq. (10) can be represented as
a linear combination of the functions ¢,, ;(x),

z=z(x) ’

. o 1
Pni(x) = (1 +2) (1 = 2)" M, w,, <Z ; )

i - bz — (a; — ay + 2yeEy6?) d
" (ia—1)b dz

2(x) = 4|1 +exp (g)

a=a +a,— \/Z(a% + a3) — (2eEy6?)?,

+17

b=ay+a+ \/Z(a% +a3) — (2eEy6?)?,
a; = O'\/]Ti -
ay = G\/ﬂ'i -

In the above combination, we use two pairs of linearly
independent solutions w,;(§) with additional indices
i =1,...,4. The first pair reads:

(po — eEyo)?,

(po + eEyo)>. (12)

a1 (8) = 5_(ia_l>F(i“ —Li(a=2a;);2ia; 1 — 5_1),
Wy (&) = gila—2a)=1(] — g)1-2im
X F( (2a —a) —ia;2(1 - iaz); 1 _5—1), (13)

where F(a,f;y;&) are Gaussian hypergeometric func-
tions [26]. Solutions (13) are well-defined in a vicinity
of the singular point £ = 1, which corresponds to x — —oo.
The second pair reads:

wy3(&) = (&)l
xF(la—l i(a=2a;)—1;i(a—b);& )
wy4(€) = (=)

x F(ib,i(b=2a)) + L;i(b—a) +2;&71).  (14)

Solutions (14) are well-defined in a vicinity of the singular
point & = oo, which corresponds to x — +oco0. Using
functions (13) and (14) one can construct four complete
sets ¢, :(x), i = 1,2,3,4, of solutions of Eq. (10).

B. Solutions with special left
and right asymptotics

Unlike the explicitly time-dependent solutions of
Eq. (11) the solutions given by Eqgs. (8) and (12) are
stationary plane waves. In the treatment of the vacuum
instability in the x-case under consideration, they describe
qualitatively different cases depending on the ranges of
quantum numbers. By this reason their role in calculations
and interpretation of physics of the vacuum instability in
the x-case is quite different compared to similar in
appearance the above cited time-dependent solutions.
Further, we carry out a nonperturbative study of the vacuum
instability using solutions (12) within the framework of the
approach formulated in Refs. [10,11].

Due to local properties of equation (10) at x =F oo
(where the electric field is zero), the scalar functions ¢,,(x)
have definite left “L” and right “R” asymptotics:

ngn(x) =] gNeiﬂPL‘x
pn(x) = N eilPtIx

as x > —oo,
as x — +oo. (15)
Here CN and A\ are some normalization constants, and

R—¢|pYR|, ¢ =+ =sgn(p") =sgn(pR), denotes
real asymptotic momenta along the x-axis,

[PHR| = \/o(L/R)* — 77,

mo(L/R) = po — Up g, (16)

where Uy g is given by Eq. (3). Then for the corresponding
Dirac spinors the following relations hold:
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Preew,(X) = E|pH ey, (X) as x — —oo,
P (X) = ¢IpR o, (X) as x = 400 (17)

Note that the electric field under consideration can be
neglected at sufficiently big |x|, let say, in the macroscopic
regions Sy on the left of x = x; < 0 and Sy on the right of
x = xg > 0. To this end one can choose finite x; /g such that

U(xg) = U(x)
oU

1- < 1. (18)

We assume that the asymptotic behavior (17) is sufficiently
good approximation for all the functions .y (X) and S, (X)
if x < x; and x > xg, which means that particles are free in
the regions S; and Si.

Nontrivial sets of Dirac spinors {y (X)} and {4, (X)},
that are key elements of the above-mentioned approach, do
exist for the quantum numbers n satisfying the conditions:

7o(L/R) > 7,

mo(L/R) < -z, (19)

m(L/R)? > 12 & {

Note that 7y(L) > 75(R). As a result of these inequalities,
the complete set of the quantum numbers n can be divided in
some ranges €2;, where the index k labels the ranges and the
corresponding quantum numbers, 1, € €. For critical steps,
oU > 6U,., there are five ranges of the quantum numbers,
Q. k=1,....5, where the solutions . (X) and “,(X)
have similar forms and properties for given perpendicular
momenta p; and any spin polarizations ¢. The ranges Q,
and Qs are characterized by energies bounded from the
below, Q; = {n:py > Ug + =, }, and by energies bounded
from the above Qs = {n:py < Uy — z, }. The ranges Q,
and Q, are characterized by bounded energies, namely Q, =
{l’l:UR—ﬂ'J_ < po < UR-f—ﬂ'J_} andQ4: {I’l:UL—ﬂ'J_ <
Po < UL—‘FJZJ_} lf 5U227U_ or QZZ{I’IZUL—F]I'J_ <
po<Ur+m} and Qu={n:U.—-7, <py<Ug-—
7, } if U < 2z, . In the ranges Q, and Q, we deal with
standing waves y,, (X)) completed by linear superpositions of
solutions .y (X) and 4, (X) with corresponding longi-
tudinal fluxes that are equal in magnitude for a given n.
The range €3 is nontrivial only for critical steps and
perpendicular momenta p,; restricted by the inequality
2z, < 6U. Thisrange is characterized by bounded energies,
Q ={n:U.+n, <py<Ugr—-m,}. For noncritical
steps oU < 68U, the range Q5 is absent.

Stationary plane waves, . (X) and p,(X), are sub-
jected to the following orthonormality conditions on the
x = const hyperplane:

((W,ﬂ g/l//n/)x = C’]Léé,(’&n.n’v
((:l//n’ é‘/l//n’)x = CnRéf.C’én,n’;

(W), = / Xy (X)ddr,. (20)

where 77 ;g = sgnzy(L/R) is sign of z(L/R). We consider
our theory in a large space-time box that has a spatial
volume V| = H?:z K j and the time dimension 7', where
all K; and T are macroscopically large. It is supposed that
all the solutions w(X) are periodic under transitions from
one box to another. The integration over the transverse
coordinates is fulfilled from —K;/2 to +K;/2, and over the
time ¢ from —7'/2 to +7/2. Under these suppositions, one
can verify, integrating by parts, that the inner product (20)
does not depend on x. We assume that the macroscopic time
T is the system surveillance time.

Solutions (12) with the asymptotic conditions (15) have
the following form:

N 1
Xann,4(Z—'2_ )v (21)

where the constants U, ;, i = 1,2,3,4, and the normali-
zation constants gj\/' and S\ are

22—i(a1 —a,) o
Ul’l 1 = 2 e”az’
Y a— (o —ay —2eEyc”)

21—i(a1+3a2)b(ia _ 1)

U, = |
"2~ Qiay — V)b — (@) — ay + 2yeEqd?)]
21-iap(p — q)
Uns = 2 2
alay —ay + 2yeEyc”) + b(a) — ay — 2yeEyc”)
X en(az—a)’
27"(1 — ia)
U, = ﬂ((lz—b); 22
nd l—i-i(b—a)e (22)
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N=.CY, N=<Cy, Y=(V.T)"?2
(C= [2|p"||mo(L) —xp"|] 72,
“C=[2]p®||mo(R) —xpR|] 2. (23)

Stationary plane waves in the ranges Q;, k =1,2,4,5
are usually used in the potential scattering theory. In each of
these ranges signy and signg coincide (g r =1 for
particles and 7, g = —1 for antiparticles). We stress that
definitions of particle and antiparticle in the framework of
one-particle quantum theory and QFT are in agreement. In
the ranges Q; and €, there exist only states of particles
whereas in the ranges Q, and Qs there exist only states of
antiparticles. In these ranges particles and antiparticles are
subjected to the scattering and the reflection only. In fact,
w,(X) for meQ, are wave functions that describe an
unbounded motion of particles (electrons) in x — —oo
direction while y,(X) for n € Q, are wave functions that
describe an unbounded motion of antiparticles (positrons)
toward x = 4oc0. Such one-particle interpretation does not
exist in the range 23, where signy;, is opposite to signyg,
here one must take a many-particle QFT consideration into
account, in particular, the vacuum instability, see
Appendix IX A for details. Note that the range Q5 is often
referred to as the Klein zone and the pair creation from the
vacuum occurs in this range, whereas the vacuum is stable
in the ranges Q;, k =1,2,4,5.

It was demonstrated in Ref. [10] (see Secs. V and VII and
Appendices C1 and C2) by using one-particle mean
currents and the energy fluxes that the plane waves
v, (X) and %, (X) are unambiguously identified as
components of initial and final wave packets of particles
and antiparticles,

in — solutions:

W Vs Vg Wags Wi Was
out — solutions:
_Wnl 7+ll/ll1 ; +l//n5’_l;”n5; +l//n3a+l//n3y (24)

where n; € Q. In the ranges €, and Q, we deal with a total
reflection. The complete sets of in- and out-solutions must
include solutions y,, (X) and v, (X).

Since each pair of solutions . (X) and “,(X) with

quantum numbers n € Q; U Q3 U Qs are complete, there
exist mutual decompositions:

nLgl/’n (X) =
ey, (X) =

W (X)g(410) = —wa(X)g(L ),
Y (X)9(le) = wa(X)g(l), (25)
where the decomposition coefficients g are

9l =9 ) = (v, wa),, n€QUQLAs.  (26)

These coefficients satisfy the following unitary relations:

9P = lg(.P)IP ’

gD =1g(-I7)

’ )

9 17) _ 9Cl)
g(-I7) g(y)’
9P =9GP = —nung. (27)

One can see that all the coefficients g can be expressed
via only one of them, e.g., via g(7|, ). Using the Kummer
relations (C9) for the hypergeometric equation; see
Ref. [26], this coefficient can be found to be

N
g(7ly) = iﬂRtW

ilb=arta) H i (g — b)|T(1 + 2ia,)

“la—ay + a5 + 25eEo® )T (i) [=i(b — 2a3)]
(28)
where I'(x) is the gamma function. Then
WL = sinh (27| p"|o) sinh (47| pR|o)
' 85| ’
- sinh{fm [\/25U2 +2|pR)? = |pHP
£ 21pR) - 4] |, 9

where 6U and |p“/R| are given by Egs. (4) and (16).

Relation (29) holds true for the quantum numbers
neQ; U Q3 U Qs. However, interpretations of this relation
in the range Q3 and in the ranges Q; and Qs are quite
different. Note that there exists a useful relation between
absolute values of the momenta pR and p",

1P~ = \/|PR|2 + 2nR8UN/ | pR[? + 73 + U2,
PR = \/IPLI2 — 298U/ |pM1* + 77 + 6U2, (30)

As follows from Egs. (29) and (30), if either |p®| or |pY|
tends to zero, one of the following limits takes place:

g7 ~p%[ = 0,

()2 ~[pH =0, ¥ a1 #0. (31)
These properties are essential for the justification of in- and

out-particle interpretation in the general construction given
in Ref. [10].
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III. PROCESSES IN STABLE
VACUUM RANGES

In the ranges Q, and Q, we deal with a total reflection. In
the adjacent ranges, ; and Qs, a particle can be reflected
and transmitted. For example, in the range €, the total R
and the relative R amplitudes of an electron reflection, and
the total 7 and the relative T amplitudes of an electron
transmission can be presented via the following matrix
elements:

P -1
R+,n - R+.ncv ’

R, , = (0,0ut|_a,(out),al(in)|0,in),

~u
|

_» = (0, out|_a, (out)~a}(in)|0, in), (32)
where initial creation a'(in) and final annihilation a(out)
operators, initial |0,in) and final |0, out) vacua, and the
vacuum-to-vacuum transition amplitude ¢, = (0, out|0, in)
are defined in Appendix IX A. Note that the partial vacua
are stable in €, k = 1,2,4,5, and the vacuum instability
with |c,| #1 is due to the partial vacuum-to-vacuum
transition amplitude formed in ;. Using a linear canonical
transformation between in and out-operators in Eq. (32)
(see Eq. (4.33) in Ref. [10]) one find that the relative
reflection |R;,|* and transmission |7 ,|* probabilities are

|TC,n|2 =1- |RC,n|2’

Re,P=[1+lg D ¢=+ (33)
where |g(.|7)|7? is given by Eq. (29). Similar expressions
can be derived for positron amplitudes in the range Qs. In
particular, relation (33) holds true literally for the positrons
in the range Qs.

In the ranges Q; and Q5 we meet a realization of rules of
the potential scattering theory in the framework of QFT and
can see that relative probabilities of the reflection and the
transmission coincide with mean currents of reflected
particles J; = |R,,|* and transmitted particles J = |T,,|*.
The correct result J + Jr = 1 follows from the unitary
relation (27).

Limits (31) imply the following properties of the
coefficients |g(;|7)|: [g(..|7)|™ — O in the range Q, if n
tends to the boundary with the range Q, (|pR|— 0);
l9(1.|7)|7 = 0 in the range Qs if n tends to the boundary
with the range Q, (|p*| — 0). Thus, in the latter cases the
relative reflection probabilities |R; ,|* tend to the unity; i.e.,

they are continuous functions of the quantum numbers 7 on
the boundaries. In addition, it follows from Eq. (28) that
l9(47)|7* = 0 and, therefore, |R; ,[* = 0 as py — £o0, as
it is expected.

IV. PHYSICAL QUANTITIES SPECIFYING
THE VACUUM INSTABILITY

The vacuum instability is due to contributions formed in
the range €25. In this range the important characteristic of all
the processes are differential mean numbers N¢ of elec-
tron-positron pairs created from the vacuum. The differ-
ential mean numbers of electrons and positrons created
from the vacuum are equal and related to the mean numbers
N¢ of created pairs,

Nii(out) = (0, in| N5 (out)[0, in) = [g(_[ )|,
Ny (out) = (0,in|N7 (out)[0, in) = [g(,[7)[ %,
NS = N(out) = N¢(out), neQs. (34)

Here N¢(out) and N’ (out) are operators of the number of
the final electrons and positrons, given by Eq. (A10) (see
Appendix IX A for details), and the quantity [g(.|7)|™
is given by Eq. (28). The probabilities of a particle
reflection (transmission is impossible) and a pair creation
and annihilation in the Klein zone can be expressed via
differential mean numbers of created pairs N{'; see
Eq. (7.22) in Ref. [10]).

Unlike the case of uniform time-dependent electric
fields, in the constant inhomogeneous electric fields, there
is a critical surface in space of particle momenta, which
separates the Klein zone Q; from the adjacent ranges €2,
and Q4. In the ranges €, and Q,, the work of the electric
field is sufficient to ensure the total reflection for electrons
and positrons, respectively, but is not sufficient to produce
pairs from the vacuum. Accordingly, it is expected that for
any nonpathological field configuration, the pair creation
vanishes close to this critical surface. Limits (31) imply that
N¢ — 0if n tends to the boundary with either the range Q,
(|pR| — 0) or the range Q, (|p"| = 0),

N ~[pR| =0, Ni~|p* =0, ¥z, #0. (35)

Standard integral characteristics of the vacuum insta-
bility are sums over the range 3 (see Appendix IX A
for details), are the total number N of pairs created from
the vacuum, and the vacuum-to-vacuum transition prob-
ability P,,

N =3NS NE=[g(, 7)™ (36)
ne;
P, =|c,|* =exp (Z In (1 —Nf,r)>. (37)
neQ;
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The summations over 3 can be converted into integrals
in the standard way,

(vt Y

< (2m)' / dpodp .,
Po-PLE

in which V |, T are macroscopically large. It follows from
Eq. (37) that In P, ~ —N*" if all N§ < 1.

Under approximation (18) the electric field under con-
sideration can be neglected in the macroscopic regions Sy,
(at x < x1) and Sy (at x > xR), that is, particles are free
in these regions. We note that near all the work oU is
performed by the electric field situated in a region S,
between two planes x = x;, and x = xy. Assuming that the
areas S and Sy are much wider than the area S, this part
of the field affects only coefficients g entering into the
mutual decompositions of the solutions given by Eq. (25).
Created electrons and positrons leaving the area Sj,, enter
the areas Sy and Sg, respectively, and continue to move
with constant velocities. The positron of a pair created with
quantum number 7 moves in the x direction with a velocity
R = |pR/z(R)| while the electron belonging to the same
pair moves in the opposite direction with a velocity —o',
vt = |pY/zo(L)]. It is shown that the microscopical
parameter 7 can be interpreted as the time of the obser-
vation of the created particles leaving the area Sj,;
see Ref. [11].

Following the way used in Ref. [11], we can calculate the
current densities and the energy flux densities of electrons
and positrons, after the instant when these fluxes become
completely separated and already have left the region S;.
The motion of the positrons forms the flux density

(Jo)n = Ni(TV )™ (38)

in the area Sg, while the electron motion forms the flux
density —(j,), in the area Sy . Here it is taken into account
that differential mean numbers of created electrons and
positrons with a given n are equal. The total flux densities
of the positrons and electrons are

() = 2 (b = N(TV )™ (39)

nef;

and —(j ), respectively. The current density of both created
electrons and positrons is J§* = e(j,). It is conserved in the
x-direction.

During the time 7', the created positrons carry the charge
e(j,),T over the unit area V| of the surface x = xi. This
charge is evenly distributed over the cylindrical volume of
the length vRT. Thus, the charge density of the positrons
created with a given n is ¢j9(R), where jO(R) = (j,),/o}
is the number density of the positrons. During the time 7,
the created electrons carry the charge e(j,),T over the unit
area V | of the surface x = x; . Taking into account that this

charge is evenly distributed over the cylindrical volume of
the length v~T, we can see that the charge density of the
electrons created with a given n is —e (L), where jO(L) =
(j.),/v" is the number density of the electrons. The total
charge density of the created particles reads:

- > L), xes,

neQ,

> /n(R),

ned

Jg(x) =e (40)

XESR'

Due to a relation between the velocities »" and 2R, the total
number densities of the created electrons and positrons are
the same,

d oAM= AR

nefd nefd

The created electrons and positrons are spatially separated
and carry a charge that tends to weaken the external
electric field.

In the same manner, one can derive some representation
for the nonzero components of energy-momentum tensor of
the created particles:

> Ja(L)mo(L),

nefd;

> JMR)|m(R)]. x€ Sk

nefd

> (edalP"l.

nefd;

S GoalpRl xESR’

nefd;

Z <jx>n(pk)2/|pL

s XESL
nef

T (x) = . . k#1
@ > Uaa(pi)?/IPR]. xe Sk

nef;

- Z <jx>nﬂ0(L)7

XESL
neQ
TV =¢ 257 , il
) > (Jdalm@®R)], x€Sg (41)

nefd;

xe SL
TR (x) =

xe SL
Te (x) =

Here T%(x) and T*(x), k =1, ..., D, (there is no sum-
mation over k) are energy density and components of the
pressure of the particles created in the areas Sy and Sy
respectively, whereas T!0(x)v,, for x € Sy or x € Sg, is the
energy flux density of the created particles through the
surfaces x = xp or x = xy respectively. In a strong field, or
in a field with the sufficiently large potential step 6U, the
energy density and the pressure along the direction of the
axis x are near equal, 7% (x) ~ T!! (x), in the areas S; and
Sy respectively.
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V. PARTICLE CREATION DUE TO A WEAKLY
INHOMOGENEOUS ELECTRIC FIELD

A. Intensity of the particle creation
over the Klein zone

The above study of the vacuum instability caused by the
asymmetric x-step can be useful for a consideration of the
particle creation by a weakly inhomogeneous electric field
between two capacitor plates separated by a sufficiently
large length. Indeed, if the parameter o is taken to be
sufficiently large,

o> (eEy)~"?max {1, m?/eE,}, (42)

the step can be considered as a regularization (like the Sauter
potential with appropriate parameters) of a weakly inho-
mogeneous constant electric field between the plates. For
example, for such big ¢ we can consider the behavior of
mean numbers of electron-positron pairs created over the
Klein zone €;. For this purpose, consider arguments of the
functions B, in the denominator of expression (29).
Absolute values of |pR| and |p"| are related by Eq. (30).
One can see from Eq. (30) that d|p"|/d|pR| < 0, and at any
given p | these quantities are restricted inside the range Q5 as

pr =\/6U(6U =2x,).  (43)

These relations for big ¢ are

no(\/6U(BU-m,) — p™™) > 1,
7o (\/8U(SU+2m, ) — p™>) > 1, (44)

and imply that

OS |PR/L| Spmax’

ro V20U 2P P IR - ) 1. 69

We get from (29) that

N = g7
4sinh (27| p*|o) sinh (47| pR|o)
exp [276\/2607 + 2| pR|* — | PV 7]

It follows from Eq. (46) that the quantities N are exponen-
tially small,

N¢ ~ 2(470)2| p~pR| exp (—2V2z6Us),  (47)
if the range Qj is small enough
eEc —21, - 0= nop™ < 1 = |p¥| <« 1. (48)

Then we can consider the opposite case of big ranges
Q3 when

nop™* > 1 (49)
and the quantities Ny are not small. Such ranges do exist if
eEc>m (50)

and
om), <K, (51)

where K, is a given arbitrary number, restricted as
moe < K| < eEc”.

Let us study the behavior of N on the boundaries of
the Klein domain Qj, when |pR| = 0 or |p"| — 0. Let
7o|p®/t| < K, where K, > 1 is some arbitrary number
satisfying the inequality

Kl < €E062. (52)

In close proximity to these boundaries, zo|p™/R| < K,
K, < 1, we obtain that the value N¢ is exponentially small,

N(r:lr ~ 26—4717"6’

N(r:lr ~ 26—27”116’

no|pR| < Ky;

no|pt| < K,. (53)

For boundary regions located closer to the center of the
Klein zone Q;, 1 < z6|p™/R| < K, K| > 1 the following
approximation is valid

N ~ exp {—47[6 (PR + % - |pR|] }

1 < 7olpR| S K,

NS =~ exp {—27:0

(P 4 — |pL|] }
1 < zo|p"| S K. (54)

The numbers N increase as n moves away from
the boundaries of the Klein region Q5 and for any fixed
value of =z, they reach their maximum value when
7o|p“/R| = K,. In turn, this maximum value increases
as 7, — m. In this range we can estimate N as

rom  [mom\3
i <o {520 (510) ]
7olp¥| = K. (55)
Similarly, in the domain zo|p"| — k we have the estimate

N < ex S mom nom zom )3
—2rom|— — | —— ,
n < CXP 2K, \ 2K,

no|pt| = K. (56)
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The right sides of inequalities (55) and (56) are exponen-
tially small if

K, < nmo/2 (57)

for any Kj.

Consequently, the main contribution to the pairs creation
is formed in the subrange of the Klein zone D C Q5, where
the energy x| is restricted by inequality (51) and the energy
Do 1s restricted as:

—eEyo’? + K <opy<—K, K=\/K}+(on )®.  (58)

Inequalities (51) and (52) imply that K < eEs?. In such a
case, we can approximate numbers (46) as follows

Cr ~ NJas __ ,—aT
N NPO P ’

Tzza<\/25U2+2|pR|2—|pL|2—|pL|—2|pR|). (59)

In the point xp; = oIln2 the electric field (2) has the

maximum value E,,, = E,/(3v/3) and the corresponding
kinetic energy reads:

eEyo
7y = po— Ulxym) = po+ .
o= Po (xm) = Po NG

The function 7 takes its minimum value at the point z;, = 0,

2
L

. 60
eEmax ( )

mint =7zly_o=41=

Further, 7 monotonically increases with |z{,| approaching
the boundary of the subrange D. On the one side of the
center of the Klein zone €5, the function 7 takes the
maximum value

Tmax — T|rf\p0|—>eE(,n’2—K ~2 (K - Kl/d +

9
4/3)’
while on the other side, the maximum value is

Tmax - T|{7|p0\—>K = 4(K K /0)
In the wide range D, where
K/o — eEyos(1 —1/\3) < 7l < eEyo//3 — Ko, (61)
the numbers N¢' practically do not depend on the parameter
o and have the form of the differential number of created

particles in an uniform electric field [27,28],

NS m e, (62)

B. Integral quantities

The total number of created pairs is given by integral (36).
The main contribution to the integral is due to the subrange
D C Q3, defined by Egs. (51) and (58). In this subrange
the functions N¢ can be approximated by Eq. (59), and
integral (36) can be represented as:

V,.1J
N~ L4Y(a) / (1?71 + IpL)dplv
ar <K |

(Zﬂ)d_l
¢Eyo/\3-K /o
I = / ’ e~ dn),
0
I / ’ dr! (63)
- — e " dn ,
P8 eByo(1-1/v3) K o] ’

where 7 is given by Eq. (59). To calculate /;; and I, , itis
convenient to use the representation 7 = A(g + 1) and to
pass from the integration over 7;, to the integration over the
parameter g (the transition to such a variable provides
exponential decrease of the integrand with increasing g,
and the expansion of the preexponential factor in powers of ¢
has a form of an asymptotic series).

Finding 77.'6 as a function of g, one has to take into
account that in the region D the following expansions are
valid up to linear terms in reciprocal powers of large
parameters:

1 en?
Ll ~ ez
|p|~€1 >

€ = [71'6 + ean(l - 1/\/5)]_1
1
€

+ O(ey),

627[%_

R )]
[ean/\/g ﬂo] ,
1 671'2
V20U +20pRP = pH P — = L 0fey),

60 = [EE()G(I + 1/\/5) - 77,'6]_1.
Then we obtain the following approximation for z:

2v/31 T
TR , =—.
2v/34+9(r—/3)r ¢Eyo

(64)

Besides, we have to find 7{, as a function of ¢ using
Eq. (64). Such a function can be found from the cubic
equation

2g
r—\/_r+3\/_(Q+ 5 =0. (65)

Note that when 7z, — e¢Eys/v3—K/o and 7 —
—[eEyo(1 —1//3) — K/c], the parameter 7 reaches the
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limiting values 75, = (g + 1), respectively. However,

since contributions of the factor exp (—z7) to integrals (63)
outside of range D are exponentially small, one can extend
limits of the integration over g to +oco. Equation (65) has
three real roots:

= %COS@JF 1/v3,  alg) =arccos[(q+1)7"],
ry= —%cos {@Jrg] +1/V3,
w—_éﬁmﬁg_ﬂ+uwi (66)
see, e.g.. [29].

Since 0 < ¢ < 400, the inequality 0<a(q)<x/2
holds true, which implies:

0Dt T e T T
5[4 -
Then
1<r <V3, 0<r2SL, (L—1>Sr3§0 (68)
V3 V3

such that roots r, and r; represent the quantity s
in the subranges 7, € (—eEyo(l —1/4/3),0) and
7, € (0, eEyc/+/3), respectively.

Thus, the integrals /,; and I, take the forms:

(¢+1)7?
1—(qg+1)2

I, =+——
P 3\/§0

X sin {@ + ﬂ exp [~zA(q + 1)] }dq, (69)

N 25U [+ {

and their sum can be represented as:

_ 28U [+e
II’L+IPL: 3
0

X cos@exp [—7A(q + 1)] }dq. (70)

(1+4¢)?
1—(1+qg)2

Substituting Eq. (70) into Eq. (63) and integrating over

dpf_z), we obtain:

oU
N =V, TpP, pP =p w,
eEmaX
J i [€E ] ? 2
p= Tt o[- 2],
(27) eE .
2 [+
w@) =3 [ @+ 202+ 1
0
a(q) am?
— — dq. 71
R

The corresponding probability P, of the vacuum to remain
a vacuum reads:

Py

p=>y (I+1)"exp (—l
=0

exp [—uN“],

’;’”2 ) (72)

max

In general, the current density J$ of created particles is
given by Eq. (39), while the charge polarization due to the
separation of created positrons and electrons is presented
by the charge density p®(x) given by Eq. (40). The
nonzero components of energy-momentum tensor of the
created particles are given by Eq. (41). In the subrange
D C Q; the velocities v" and #R tend to the speed of the
light ¢ =1 such that [p"/®|~ |z{(L/R)| % |U] I, with

! = —eEyo(1 —1//3) and Uy = eEy6/+/3 according
to inequality (61). Using representation (71), we find:

J x epP J&(x) ~ —JE xeS
* ’ 0 JT, x€SR’
Dy
P |UL ’ XGSL
TR~ Ty ()~ ,
P°|UR|. x€ S

PIU -, xes
TH (x) = f)D| ,L|_1 Fook#L
PPIURIT, x€SR

-pPlU!|, xe€S
Té?(x)%’ P | L X L’
PPIURl,  xeSk
oU
5P = B2 w(d + 2). (73)
2w

It can be seen that the transversal components of the
pressure of the created particles are much less than
the longitudinal pressure in the areas S; and Sg, respec-
tively, T*(x) < T!!(x). It is in accordance with the
relation T (x) ~ TL! (x).

Unlike the case with the Sauter field, the energy density
and the longitudinal component of the pressure in the
areas S; and Sy, given by Eq. (73), are not equal,
T®(x) = 2T (xg) and T (x.) = 2TL! (xg), that is, the
energy density and longitudinal pressure of created
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electrons is two times more than the energy density and
longitudinal pressure of created positrons due to the
asymmetric form of the field (2). Furthermore, the magni-
tudes of energy flux density of the created particles through
the surfaces x = x; or x = xg are not equal, |T!0(x,)| =
2|T¥(xg)|, even though the current density of both created
electrons and positrons are the same, J$'. This is due to the
fact the main contribution to the components of energy-
momentum tensor of the created particles comes from
particles with different kinetic energies |z((L/R)| in the
areas S; and Si. In the framework of semiclassical
interpretation (appropriate in the case of a weakly inho-
mogeneous electric field) one can explain that pair of
particle and antiparticle are created with small kinetic
energies in the region of the strongest field, which is
located asymmetrically with respect to the point of the field
maximum xy;. Then the electron and positron move under
the influence of the electric field in opposite directions,
passing through different potential differences before leav-
ing the region of the strong field. As a result, electrons and
positrons acquire different kinetic energies by the time they
exit into the areas Sy and Sy, respectively. In the case under
consideration, created electrons acquire higher kinetic
energies than created positrons due to the choice of
direction of the field. Note that the direction of this field
is chosen along the x-axis. Choosing the opposite direction
of the field (choosing the opposite sign of the potential),
one finds that electrons and positrons switch places. Then
the energy density, longitudinal pressure, and energy flux
density of created positrons is more than the corresponding
characteristics of created electrons.

One can show that representations (71)—(73) can be
obtained in the framework of a new kind of a locally
constant field approximation (LCFA) constructed in
Ref. [30]; see Appendix IX B. This can be considered as
an additional argument in favor of the validity of such an
approximation.

Besides, it turns out that LCFA allows one to see relation
to the Heisenberg-Euler effective action method. Note
that in the framework of the LCFA the probability P,,
given by Eq. (72), can be represented via the imaginary part
of a one-loop effective action S by the seminal Schwinger
formula [31],

P, = exp (—2ImS). (74)

Thus, all the vacuum mean values, obtained in the frame-
work of the LCFA, can be associated with the effective
action approach. If the total number of created particles is
small, N <« 1, then 1 — P, = N°. Therefore, knowledge
of the probability P, allows one to estimate the total
number of created particles N¢. It is, in this case, the
effective action approach to calculating P, turns out to be
useful. We note that this approach is a base of a number of
approximation methods; see, e.g., Ref. [7] for a review. In

this relation, it should be noted that the probability P, by
itself is not very useful in the case of strong fields when
P, < 1. In the latter case it is necessary to directly calculate
the vacuum mean values of physical quantities, using either
exact solutions, as it is done above, or the new kind of the
LCFA [30].

VI. THE KLEIN STEP

The Klein paradox is known from the work by Klein [13]
who considered, in the framework of the one-particle
relativistic theory, reflection and transmission probabilities
of charged relativistic particles incident on a sufficiently
high rectangular potential step (the Klein step) of the form

UL, x<0

, 75
UR’ x>0 ( )

ahols) = {

where Ui and Up are some constants. The field (75)
represents a kind of x-step. According to calculations of
Klein and other authors, for certain energies and sufficient
high magnitude U = Ui — U}, of the Klein step, it seems
that there are more reflected fermions than incident. This
fact many articles and books where treated as a paradox
(the Klein paradox); see Refs. [16,17]) for historical
review. This paradox and other misunderstandings in
considering quantum effects in fields of strong x-steps
can be consistently solved as many particle effects in the
QED with an unstable vacuum; see Ref. [10]. Obviously
that the Klein step is a limiting case of a very sharp peak
field. It is important to have in hands examples of
potentials representing very sharp peak field that can be
considered as their regularizations. Such an example given
by Sauter potential (1) was presented in Ref. [10]; see
Refs. [19,20] for regularizations by piecewise forms of
analytic functions. The x-step (2) under consideration
represents a new example of such regularizations given
by an analytic function.

Let us study characteristics of the vacuum instability
caused by the field (2) with ¢ sufficiently small, ¢ — 0. If
Ur =0 and U = —0U = —eEyo are given constant and

SUoc < 1 (76)

the field imitates sufficiently well the asymmetric Klein
step (75) and coincides with the latter as ¢ — O.

In the ranges Q; and Qs the energy |py| is not restricted
from the above, that is why, in what follows, we consider
only the subranges, where max {c|p"|, 6|pR|} < 1. In the
leading-term approximation in ¢ it follows from Egs. (28)
that

4k :‘p—R|ﬂ'o(L)+ﬂ'L
p"[mo(R) + 7,

. (77)

where k is called the kinematic factor.
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Note that k are positive and do not achieve the unit
values, k # 1 in the ranges Q, and Q5. In these ranges, the
coefficients g satisfy the same relations,

gD =19 )P+ 1. (78)

Therefore, reflection and transmission probabilities derived
from Eqs. (77) have the same forms

T
el =l 1) = oo
Y
Real = o PPl = (e (9)

To compare our exact results with results of the non-
relativistic consideration obtained in any textbook for one
dimensional quantum motion, we set p; =0, then
n, =m, my(L)=m+E, and ny(R) =m+ E—6U. In
the nonrelativistic limit, when 6U, E < m, we obtain

E—-0oU

k=KkNR =
E 9

which can be identified with the nonrelativistic results, e.g.,
see Ref. [32].

Let us consider the range Q5. Here the quantum numbers
p. are restricted by the inequality 2z, < 6U and for any
of such 7, the quantum numbers p, obey the strong
inequality Uy +7, < pg < Ur — 7. In this range the
quantity |g(, |7)| > represents the differential mean numbers
of electron-positron pairs created from the vacuum,
NS = |g(|7)|7%. In this range for any given ; the absolute
values of | pR| and | p"| are restricted from the above, see (43).
Therefore, condition (76) implies max{c|p“/R|} < 1. It
follows from Eq. (28) that in the leading approximation
the following equation holds true

apHlpt 4l
502 — (oM = [pRI7 ~ (1 + k)2

917~ (30)

Note that expression (80) differs from expression (77)
only by the sign of the kinematic factor k. This factor is
positive in the ranges ©; and Qs, and it is negative in
the range ;. In the range Qs, the difference |pt| — [p¥|
may be zero at py= Up/2, which corresponds to
k=—(6U+2r,)/(8U — 2z ). Namely in this case the
quantity |g(,.|7)|? has a maximum at a given 7,

max|g(,[)|2 = 1 - @n,/6UP.  (81)

Note that expressions (77), (79) and (80) coincide up to
the redesigning of the constants Uy with expressions,
corresponding to other regularizations of the Klein step; see
Ref. [10,19,20]. We see that the Klein step is (in a sense) a

limiting case of various sharp peak fields under condition
that the magnitude SU is a given finite constant and the
peak of the fields are sufficiently sharp.

VII. CONCLUDING REMARKS

A new exactly solvable case in strong-field QED with
x-step is presented. This step can be seen as a certain
analytic “deformation” of the Sauter field. In contrast to the
Sauter field the potential field under consideration is
asymmetric with respect of the axis x reflection. Bearing
in mind numerous examples of using the results of the
exactly solvable problem with the Sauter field in physical
applications related to the problem of vacuum instability,
we believe that the new exact solvable case will also be
useful in such applications. It can be treated as a new
regularization of the Klein step. Exact solutions of the
Dirac equation used in the above nonperturbative calcu-
lations, are presented in the form of stationary plane waves
with special left and right asymptotics and identified as
components of initial and final wave packets of particles
and antiparticles in the framework of the strong-field
QED [10]. We show that in spite of the fact that the
symmetry with respect to positive and negative bands of
energies is broken, distribution of created pairs and other
physical quantities can be presented by elementary func-
tions. We consider the processes of transmission and
reflection in the ranges of the stable vacuum and study
physical quantities specifying the vacuum instability as
well. We find the differential mean numbers of electron-
positron pairs created from the vacuum, the components of
current density and energy-momentum tensor of the created
electrons and positrons leaving the area of the strong field
under consideration. We study the particular case of the
particle creation due to a weakly inhomogeneous electric
field and obtain explicitly the total number, the current
density and energy-momentum tensor of created particles.
Unlike the symmetric case of the Sauter field the asym-
metric form of the field under consideration causes the
energy density and longitudinal pressure of created elec-
trons to be not equal to the energy density and longitudinal
pressure of created positrons.
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APPENDIX A: BASIC ELEMENTS
OF A NONPERTURBATIVE APPROACH
TO QED WITH x-STEPS

In this appendix, we briefly present some basic con-
structions of quantization in terms of particles for QED
with x-steps; see Secs. IV=VII in Ref. [10] for details.

The time-independent inner product for any pair of
solutions of the Dirac equation, y,(X) and v/, (X), is
defined on the ¢ = const hyperplane as follows:
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(X)dx, (A1)

l//n ’ / er / l//i’l
Vi

where the integral over the spatial volume V| is completed
by an integral over the interval [KM K®)] in the x
direction. The parameters K(“/®) are assumed sufficiently
large in final expressions. Assuming that the principal value
of integral (A1) is determined by integrals over the areas
where the field E(x) is negligibly small it is possible to
evaluate this value using only the asymptotic behavior (15)
of functions in the regions where particles are free. The
field E(x) in the area where it is strong enough affects only
coefficients g entering into the mutual decompositions of
the solutions given by Eq. (25). One can see that the norms
of the plane waves .y (X) and fw,(X) with respect to the
inner product (A1) are proponional to the macroscopically
large parameters (L L/t and ® = K®) /4R
where ot = |pt/zo(L )| > O and R = |pR/7y(R)| > 0
are absolute values of the longitudinal velocities of particles
in the regions where particles are free; see Sec. III C.2 and
Appendix B in Ref. [10] for details.

It was shown (see Appendix B in Ref. [10]) that the
following couples of plane waves are orthogonal with
respect to the inner product (A1)

(gl//,_é n) =0, n€e U s
(v, w.) =0, neQ, (A2)
if the parameters of the volume regularization z(™/®) satisfy
the condition
7 — R = 0(1), (A3)

where O(1) denotes terms that are negligibly small in
comparison with the macroscopic quantities 7(“/R). One can
see that 7® and (M are macroscopic times of motion of
particles and antiparticles in the areas Sz and S, respec-
tively and they are equal,

R) — 1. (A4)

It allows one to introduce an unique time of motion 7 for all
the particles in the system under consideration. This time
can be interpreted as a system monitoring time during its
evolution and as such is fixed as z = T in the framework of
the renormalization procedure; see Ref. [11] for details.
The renormalization and volume regularization proce-
dures are associated with the introduction of a modified
inner product and a parameter 7 of the regularization. Based
on physical considerations, we fix this parameter. It turns
out that in the Klein range this parameter can be interpreted

as the time of the observation of the pair production
process.

Under condition (A3) the following orthonormality
relations on the ¢ = const hyperplane are

(W, c,) = (W W) = 6w M,

neQuQ;UQs;
W) = 0w M, ,nEQ UQy,

Mn=2%|g(+|+)|2, neQ,UQs,

M, =27l )P, nes,

anz%, neQ,, anz%, neQ,. (AS)

All the wave functions having different quantum numbers n
are orthogonal, and

(é’wn’_CWIJ = 07 nte U QS?

v, and ~“y,independent;

((l//nvgl//n) :0’ HEQ3,

cw, and 4y, independent. (A6)

We denote the corresponding quantum numbers by 7y, so
that n; €. Then we identify components of the initial
and final wave packets of particles and antiparticles
in Eq. (24).

We decompose the Heisenberg operator ‘i’(X ) in two sets
of solutions {,y (X)} and {%,(X)} of the Dirac equa-
tion (7) complete on the = const hyperplane. Operator-
valued coefficients in such decompositions do not depend
on coordinates. Our division of the quantum numbers 7 in
five ranges Q, implies the representation for ¥(X) as a
sum of five operators ‘i’k(X), k=1,2,3,4,5,

(A7)

For each of three operators ‘i’k(X),k =1,3,5, there
exist two possible decompositions (24) according to
the existence of two different complete sets of solutions
with the same quantum numbers 7 in the ranges Q,, Q3,
and Qs,
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¥ (x) = M4, (in),y, (X)

+ ~a,, (in) 7y, (X)]
= ZM;II/Z [Jran] (Out)Jrl//”l (X)

ny

+ _a,,(out)_y,, (X)),
By(X) = > M. [a,, (in) 7w, (X)

n

+ b, (in)_y, (X)]
= > M [Fa,, (ou) y,, (X)

.}, <out>+wn (xX)].
)= M i 00

+ b, (in)_y,, (X)]
—ZM 2, bf (out) y,, (X)

+ _b’ls (OUt> _Wn5 (X)} . (A8)

There may exist only one complete set of solutions with
the same quantum numbers 7, and n,. Therefore, we have
only one possible decomposition for each of the two

operators ¥;(X), i = 2.4,
lAP - ZM;,I/Z nzl//nz (X)’

Zwﬂbm (x). (A9)

We interpret all a and b as annihilation and all a" and b*
as creation operators. All a and o' are interpreted as
describing electrons and all » and b' as describing
positrons. All the operators labeled by the argument in
are interpreted as in-operators, whereas all the operators
labeled by the argument out as out-operators. This iden-
tification is confirmed by a detailed mathematical and
physical analysis of solutions of the Dirac equation with
subsequent QFT analysis of correctness of such an iden-
tification in Ref. [10].

Taking into account the orthogonality and orthonorm-
alization relations, we find that the standard anticommu-
tation relations for the Heisenberg operator (A7) yield the
standard anticommutation rules for the introduced creation
and annihilation in- or out-operators.

We define two vacuum vectors |0, in) ), one of
which is the zero-vector for all in-annihilation operators
and the other is zero-vector for all out-annihilation oper-
ators. Besides, both vacua are zero-vectors for the annihi-
lation operators a,, and b,,. One can verify that the

introduced vacua have minimum (zero by definition)
kinetic energy and zero electric charge and all the
excitations above the vacuum have positive energies.
Then we postulate that the state space of the system
under consideration is the Fock space constructed, say,
with the help of the vacuum |0, in) and the corresponding
creation operators. This Fock space is unitarily equivalent
to the other Fock space constructed with the help of the
vacuum ) and the corresponding creation operators
if the total number of particles created by the external field
is finite.

Because any annihilation operators with quantum
numbers n; corresponding to different k anticommute
between themselves, we can represent the introduced
vacua |0,in) and |0,out) as tensor products of the
corresponding partial vacua in the five ranges €,
k=1,...,5. The partial vacua are stable in €,
k=1,2,4,5, and the vacuum instability with |c,| # 1
is due to the partial vacuum-to-vacuum transition ampli-
tude formed in Q. In the range €3 operators of the
number of final electrons and positrons are

N¢(out) = *aj(out)*a,(out),

Nb(out) = b} (out), b, (out). (A10)
Using the linear canonical transformation between in and
out-operators of creation and annihilation (see Eq. (7.4) in
Ref. [10]) one sees that the differential mean numbers of
electrons and positrons created from vacuum are pre-
sented by Eq. (34). The vacuum-to-vacuum transition
amplitude, given by Eq. (7.21) in Ref. [10]), is

¢, = (0, = [ 91

neQ,

(A1)

Then the probability for a vacuum to remain a vacuum
can be presented by Eq. (37).

APPENDIX B: LOCALLY
CONSTANT FIELD APPROXIMATION

A new kind of a locally constant field approximation
(LCFA) was formulated in Ref. [30]. Here we pretend to
show that the density of created pairs (71) and the probability
of the vacuum to remain a vacuum (72), obtained from exact
equations for the slowly varying field in the leading-term
approximation, are in agreement with results following in
the framework of LCFA.

We call the electric field E(x) a weakly inhomogeneous
electric field on a spatial interval Al if the following
condition holds true:

L E(x)Al

(x)

<1, AlJAIM>1, (B1)
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where E(x) and 0,E(x) are the mean values of E(x) and
0,E(x) on the spatial interval Al, respectively, and Al is
significantly larger than the length scale A/, which is

AT = Algmax {1,m?/eE(x)},

Aly = [eE(x)]™. (B2)

Note that the length scale Al appears in Eq. (B1) as
the length scale when the perturbation theory with respect
to the electric field breaks down and the Schwinger
(nonperturbative) mechanism is primarily responsible
for the pair creation. In what follows, we show that this
condition is sufficient. We are primarily interested in

strong electric fields, m?/eE(x) < 1. In this case, the
second inequality in Eq. (B1) is simplified to the form
Al/Al, > 1, in which the mass m is absent. In such
cases, the potential of the corresponding electric step
hardly differs from the potential of a uniform electric
field,

U(x) = _eAO(x) ~ Uconst(x) = eE(x)x + Uy, (B3)
on the interval A/, where U, is a given constant.
For an arbitrary weakly inhomogeneous strong

electric field, in the leading-term approximation, were
derived universal formulas for the total density of created
pairs

J d AR .
pg%(2ﬂ<)‘3_l/ der(x)/dplNgm,

Nuni ex ”3_
= —T N
" P eE(x)

(B4)

and an expression for the probability P, given by Eq. (37)
of the vacuum to remain a vacuum,

X i [:R dx [eEl(;)z]d/z exp {—ﬂ elEn(i)} }; (BS)

see Ref. [30]. In Egs. (B4) and (BS) integration limits
are specified over the region S, = (x,xg), in which
the electrical the field is not zero. In our case
X[, = —00, Xg = +00.

Let us compare Eqs. (B4) and (B5) with the results
obtained above in (71). To do this, let us represent (B4) in
the form

J () -
P (27)! /dPL(J;L +75.):
5i = [ asteptom
M
— e / ” dAg(x) N,

I = / ™ dx[eE(x)| N

[Se]

— e / ” dAg(x) N, (B6)
M

Note that the functions Ay(x) and E(x) can be related to
each other using the cubic equation

2
P 3"
E(x)

-1
y=-aol)/(Eae). = (3V35T) 1 ()

We can express Ag(x) as a function of the field E(x) or as a
function of the variable ¢ using solutions of equation (B7).
This equation has three real solutions,

V3o 3
2 a T
i
2

= ——=CO0S |——
SRYE [3
1

a(q) = arccos[(q + 1)7"], (B8)

see, e.2., [29]. Since Ay(x) is negative, only the solutions
¥23 are relevant. One can see that for solutions y, 5 the
differential dAy(x) takes the form:

M) = (s8]

(q+1)7

X ————=dgq,
V1=(g+1)72

dA(x) = —2(Epyo) sin {%q) - ﬂ

x>0,

(g+ 1)
1—(qg+1)72
Emax

E(x) = —dA(x) = g

(B9)

Passing from the integration over x to the integration over
the parameter ¢ in Eq. (B6), we find:
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+ __ g+
JPL _IPL’

(B10)

where the quantities /5 are given by Eq. (69).

It follows from Eq. (B10) that the density of the created
pairs (B4) and the probability of the vacuum to remain a
vacuum (B5) obtained with the help of the approximation
for weakly inhomogeneous strong electric field coincide
with expressions (71) and (72), respectively.

APPENDIX C: SOME PROPERTIES
OF HYPERGEOMETRIC FUNCTIONS

The hypergeometric function F(a,b,c;z) =,F(a,b,c;z)
(here and in what follows it is supposed that parameters a and
b are not equal to 0, —1, -2, ...) is defined by series

F(a,b,c;z) = o). nl
n=0 n
 I(c) +°°F(a+n)F(b+n)Z”
7F(a)l“(b); [(c+n) n! (1)

for |z| < 1. Note that in the solutions (13) and (14) the
arguments 1 — &' and &' in the corresponding hyper-
geometric functions are less than unity and the series (C1)
converges.

At |z| =1 the series (C1) converges absolutely when
Re(c —a — b) > 0. The integral representation

[(e)
['(b)T(c—b)

1
X / P71 (1 = 1)e=b71(1 = ze)edt,
0
x (Rec > Reb > 0)

F(a,b,c;z) =

(C2)

gives an analytical continuation for the function F(a, b, ¢; 7)
to the complex z-plane with a cut along the real axis from 1
to oo (since the right-hand side is an unambiguous
analytic function in the domain |arg (1 — z)| < ). From
the integral representation (C2) it is easy to see that
lim,_o F(a,b,c;z) = 1. The formula for differentiating
the hypergeometric function has the form:

d b
—F(a,b,c;2) :a—F(cH— LLb+1,c+1;z). (C3)
dz c
It is follows from (C2) that
F(a,b,c;z) = (1=2)* F(c—a,c—b,c;7),
lz] < 1. (C4)

Hypergeometric function can be transformed as
I'(c)l'(c—a—>b)
I'(c—a)'(c-Db)
x F(a,b,a+b—-c+1;1-2)
[(e)(a+b-c)

[(a)T'(b)
xF(c—a,c—b,c—a—-b+1;1-72),
(C5)

F(a,b,c;z) =

+ (1 _ )c—a—b

x (Jarg (1 -2)| <),
The hypergeometric equation in its general form,
z(1=2)w"(z)+[c—(a+b+1)z]w (z) —abw(z) =0,
(Co)

has three regular singular points z = 0, 1, co. When none of
the numbers ¢, ¢ —a— b, a— b is integer, the general
solution w(z) of the hypergeometric equation (C6) can be
obtained as

w(z) = cywi(z) + cowy(2), z =0,
w(z) = c1w3(z) + cawy(2), z -1,
w(z) = cyws(z) + cawglz),  z— 00 (CT7)

where ¢; and ¢, are some constants, and the functions
w;j(z), j=1,...,6, have the form:

wi(z) =F(a,b,c;z2),

wy(z) =7 Fla—c+1,b—c+1,2—c;z),
ws(z)=F(a,b,a+b+1-c;1-2),
wy(z)=(1=-2)*PF(c—b,c—a,c—a—b+1,1-72),
ws(z) =z"%F(a,a—c+1l,a=b+1,z7"),
we(z)=zPF(b,b—c+1,b—a+1,77"). (C8)

The Kummer relations and for the hypergeometric
equation [26] allow us to represent the functions w,(z)
and w,(z) via the functions ws(z) and wy(z),

F2(a + 1) —a-b)(b—a+ 1)
r2-al'a; —a+1)
% W4(Z) _ eiﬂ(Z(ll—a)

Ir'2(a;+1)—a-b)I'a-b-1)

2a,-b)

wi(z) = el

T(1 = b (2a; — b) w3(2),
it T@+b=20)C(b—a+1)
wa(2) = e F(b—2a11 o) e
N ei”bF(a +b—2a)(a—b- 1)w3(z). (C9)

I'a—2a;)l'(a—1)
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