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Low-energy Compton scattering is an important background for sub-GeV dark matter direct-detection
and other experiments. Current Compton scattering calculations typically rely on assumptions that are not
valid in the low-energy region of interest, beneath ∼50 eV. Here we relate the low-energy Compton
scattering differential cross section to the dielectric response of the material. Our new approach can be used
for a wide range of materials and includes all-electron, band-structure, and collective effects, which can be
particularly relevant at low energies. We demonstrate the strength of our approach in several solid-state
systems, in particular, Si, Ge, GaAs, and SiC, which are relevant for current and proposed experiments
searching for dark matter, neutrinos, and millicharged particles.
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I. INTRODUCTION

Tremendous progress has been made in dark matter
(DM) direct-detection experiments in the last decade.
Although several direct-detection experiments are now
searching for DM with sub-GeV masses through their
interactions with electrons (see, e.g., Ref. [1] and references
therein), this mass region remains to be fully explored. A
crucial ingredient of direct-detection searches for DM is a
detailed understanding of backgrounds. It is especially
important to understand backgrounds that lie in the
∼1–50 eV energy range since the relevant energy transfer
in a collision between a sub-GeV DM particle and electrons
in, e.g., semiconductors is typically a few eV, decaying
rapidly for higher energies [2].
Environmental photons that Compton scatter off detector

electrons can produce low-energy ionization events and
thus constitute an important background in experiments
searching for sub-GeV DM. It is therefore imperative to
have reliable calculations of the Compton scattering cross
section and spectrum down to the lowest energies probed
by an experiment. The differential Compton scattering
cross section at low energies is most commonly calculated
using the relativistic impulse approximation (RIA). The RIA
is implemented in many computational software programs,
including Geant4 [3–5]. The FEFF program [6–9] improves on
the RIA and was found in Ref. [10] to agree better than RIA

with data at energies ≳100 eV. However, RIA does not
incorporate band-structure effects, while FEFF includes these
effects only through the Korringa-Kohn-Rostoker Green
function method [11,12] and a “muffin-tin” potential.
Moreover, both RIA and FEFF assume the photon interacts
with a single electron and neglect collective effects of the
electron density. These assumptions are typically not valid at
energies belowOð50 eVÞ (depending on the material) where
only valence electrons can be excited.
In this work, we develop a new approach for calculating

the Compton scattering cross section in the low-energy
regime. In particular, we relate the differential Compton
cross section to the response of the material via the
dielectric function of the target. This allows us to relate
the Compton rate to directly measurable properties of a
detector. The dielectric function formalism contains the full
material response, including the band-structure and many-
body effects, and can be calculated using existing codes and
analytical models, or, in principle, obtained from data. As
we will see, the full response of the material is indeed
important for low-energy Compton scattering and is crucial
in at least some of the materials we consider.
Our results will enable a better understanding of the

expected Compton-scattering backgrounds in direct-detec-
tion experiments targeted at sub-GeV DM masses [1] and
experiments searching for neutrino scattering at low energies
[13], and they will help us distinguish them from potential
beyond-the-Standard-Model signals. Our work can addi-
tionally be used to calibrate detectors for low-energy
scattering events [10,14] and to probe our understanding
of scattering with electrons bound in semiconductors.
This paper is organized as follows. Section II reviews

the RIA method that is most commonly used for computing
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low-energy Compton scattering. In Sec. III, we present our
new approach for calculating the Compton scattering differ-
ential cross section in terms of the dielectric function,
enhancing accuracy at low energies. Section IV presents
our results for Compton scattering rates in various materials,
with particular emphasis on silicon.We summarize in Sec. V.
The Appendixes elaborate on single-electron excitations,
give details of the density functional theory we use, and
explainwhy theLindhardmodelworkswell for our purposes.

II. RELATIVISTIC IMPULSE APPROXIMATION

The spin-averaged differential cross section for free-
electron Compton scattering in the laboratory frame is well
known [15],

dσ
d cos θ

¼ πα2

m2

�
ω0

ω

�
2
�
ω0

ω
þ ω

ω0 − sin2θ
�
; ð1Þ

where ω is the initial photon energy, ω0 is the final photon
energy, m is the mass of the electron, α is the electromag-
netic fine-structure constant, and θ is the angle between the
initial and final photon directions. For electrons that are not
free, the above Compton scattering cross section must be
modified. The most common method of calculation is
known as the relativistic impulse approximation, which
assumes the photon scatters off of a single electron with a
momentum distribution.
In the RIA formulation, the differential cross section can

be factored into two pieces, one pertaining to the free-
electron-photon interaction and the other, known as the
Compton profile, capturing the many-electron effects
(typically only for an isolated atom) via the momentum
distribution of the electron [16–18]. It is convenient to

define the momentum transfer vector, q⃗ ¼ k⃗0 − k⃗ ¼ p⃗ − p⃗0,
where k⃗ (p⃗) and k⃗0 (p⃗0) are the initial and final momenta of

FIG. 1. Compton scattering rates for incoming photons with Eγ ¼ 1.461 MeV and nγ ¼ 1.25 × 10−14 cm−3. The top-left panel shows
the rates for Si, the top-right panel for Ge, the bottom-left panel for GaAs, and the bottom-right panel for SiC (3C) crystals. RIA is
described in Sec. II and the Lindhard model in Eq. (20). For DarkELF, we use the GPAW results with local field effects from Refs. [21,22].
For QEDark [23] and QCDark [24], we use Eq. (23) to calculate the imaginary part of the dielectric function, and we use the real part of the
Lindhard dielectric function when constructing the full material response. We use the available valence-to-conduction-only results from
EXCEED-DM [25].
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the electron (photon) in the laboratory frame. The energy of
the electron is EðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. Then, the differential

cross section per unit cell is given by

�
d2σ

dω0dΩ0

�
RIA

¼ Natoms
α2

2qEðkzÞ
ω0

ω
XðkzÞJðkzÞ: ð2Þ

Here, we have assumed the crystal is composed of a single
element, and Natoms is the number of atoms per cell. If there
are multiple elements, the cross section is given by the sum
of the contributions of each.
The Compton profile, JðkzÞ, is defined as

JðkzÞ ¼
Z

ρðk⃗Þdkxdky; ð3Þ

where ρðk⃗Þ is the ground-state electron-momentum density.
The kernel function X̄ is proportional to the squared-
averaged amplitude for free-electron Compton scattering,

X̄ðkzÞ ¼
KfðkzÞ
KiðkzÞ

þ KiðkzÞ
KfðkzÞ

þ 2m2

�
1

KiðkzÞ
−

1
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�

þm4
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−

1

KfðkzÞ
�

2

; ð4Þ

evaluated at

kz ¼ −
k⃗ · q⃗
q

¼ ωω0ð1 − cos θÞ − EðkzÞðω − ω0Þ
q

; ð5Þ

where

KiðkzÞ ¼ EðkzÞωþ ωðω − ω0 cos θÞkz
q

ð6Þ

and

KfðkzÞ ¼ KiðkzÞ − ωω0ð1 − cos θÞ: ð7Þ

To include the effect of the binding energy, we consider
only the energetically allowed electrons in the Compton
profile,

J̄ðpz;ΔEÞ ¼
X
i

ΘðΔE − EiÞ
Z

ρiðk⃗Þdkxdky; ð8Þ

where Ei and ρiðk⃗Þ are the ionization energy and the
electron density of the ith electron. As the energy transfer
exceeds the binding energy of the shells, more electrons
become kinematically available to scatter, resulting in a
sharp enhancement in the cross section and scattering rate.

This appears in RIA scattering rate plots as steps located at
the binding energies of the shells (see, e.g., Fig. 1). In our
numerical analysis, we use the Compton profiles listed in
Ref. [19] together with the atomic binding energies
computed by cFAC [20], which we list in Table I.
The approach described in this section is widely used for

Compton scattering calculations for electron recoil energies
ofOðkeVÞ, but it becomes inaccurate for lower energies, as
it fails to incorporate band-structure effects and the full
response of the material. We discuss how to include these
effects in the next section.

III. DIELECTRIC RESPONSE

We now present our new approach to computing the
differential Compton scattering cross section, utilizing the
material response of any target material.
The interaction Hamiltonian describing the nonrelativ-

istic electron-photon interaction is given by

VI ¼
e
m

X
a

p⃗a · A⃗ðx⃗a; tÞ þ
e2

2m

X
a

jA⃗ðx⃗a; tÞj2: ð9Þ

For the systems we consider, the bound electrons are
nonrelativistic, and the terms proportional to A2 dominate
the interaction since pa=m ≪ 1. Therefore, we adopt the
so-called A2 approximation,

VI ¼
e2

2m

X
a

jA⃗ðx⃗a; tÞj2: ð10Þ

Using Fermi’s golden rule, the differential cross section for
Compton scattering in the material is

dσi→f

dΩ0dω0 ¼
ω02

ð2πÞ3 jhp⃗f; λf; SfjVIjp⃗i; λi; Siij2

× ð2πÞδðEf þ ω0 − Ei − ωÞ: ð11Þ

Here, Si and Sf represent the initial and final states of the
target material, and λi and λf represent the initial and final
polarization states of the photon. The interaction matrix can
be factored such that

TABLE I. Binding energies of valence electrons for isolated
atoms computed with cFAC [20] (ΔE < 100 eV). The corre-
sponding orbitals are indicated together.

Atom Binding energy (eV)

C 9.76½2p2� 17.6½2s2� � � �
Si 6.39½3p2� 13.2½3s2� � � �
Ga 5.32½4p1� 12.1½4s2� 24.8½3d10�
Ge 6.54½4p2� 14.8½4s2� 35.3½3d10�
As 7.83½4p3� 17.6½4s2� 26.9½3d10�
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hp⃗f; λf; SfjVIjp⃗i; λi; Sii ¼
e2

2m
ffiffiffiffiffiffiffiffi
ω0ω

p ðϵ⃗λi;p⃗i
· ϵ⃗�λf;p⃗f

Þ

×
X
a

hSfjeiðp⃗i−p⃗fÞ·x⃗jSii: ð12Þ

Averaging (summing) over the initial (final) photon
polarizations, we can make the replacement jϵ⃗λi;p⃗i

·
ϵ⃗�λf;p⃗f

j2 → ð1þ cos2θÞ=2. Summing over all final states

of the material and averaging over the direction of the
momentum transfers, we can write the differential cross
section in the form

dσω
dΩ0dω0dðΔEÞ ¼

Ncellα
2ω0

2m2ω
ð1þ cos2θÞ

× δðΔEþ ω0 − ωÞ df
dðΔEÞ ; ð13Þ

where

df
dðΔEÞ ¼

1

Ncell

X
f

δðEf − Ei − ΔEÞ
Z

dΩq̂

4π
jhSfjeiq⃗·x⃗jSiij2:

ð14Þ

Here, q⃗ ¼ q̂q ¼ p⃗i − p⃗f is the momentum transferred from
the incoming photon to the detector target material, Ωq̂ is
the solid angle in the direction of q⃗, and Ncell is the number
of unit cells in the crystal.
The above can be directly related to the dynamic

structure factor at zero temperature SðΔE; q⃗Þ, defined
as [26]

SðΔE; q⃗Þ ¼ 2π

V

X
f

δðEf − Ei − ΔEÞjhSfjeiq⃗·x⃗jSiij2; ð15Þ

so

df
dðΔEÞ ¼

Vcell

2π

Z
dΩq̂

4π
SðΔE; q⃗Þ: ð16Þ

Here, V is the volume of the target material, and Vcell ≡
V=Ncell is the volume of the unit cell. The structure factor is
equivalently written in terms of the dielectric function
ϵðΔE; q⃗Þ as [26]

SðΔE; q⃗Þ ¼ q2

2πα
Im

�
−1

ϵðΔE; q⃗Þ
�
; ð17Þ

so Eq. (14) becomes

df
dðΔEÞ ¼

q2Vcell

4π2α
Im

�
−1

ϵðΔE; qÞ
�
: ð18Þ

Here, ϵðΔE; qÞ is defined as the directional average
of ϵðΔE; q⃗Þ.1
Rewriting the solid angle Ω0 in terms of the momentum

transfer q and integrating over the final photon energy ω0 in
Eq. (13), we arrive at the differential Compton cross section
per unit cell in terms of the dielectric function of the
material,

dσω
dðdΔEÞdq ¼ αVcell

4πm2

q3

ω2
ð1þ cos2 θÞIm

�
−1

ϵðΔE; qÞ
�
: ð19Þ

The above equation is the main result of this paper, which
we will use to compute the Compton scattering rates in
various target materials relevant for sub-GeV DM searches.
Below, we will present our results using an analytical
approximation for the dielectric function, as well as using
numerical tools.
The analytical approximation to the dielectric func-

tion that we use in this work is the Lindhard dielectric
function [21,28], given by

ϵLind ¼ 1þ 3ω2
p

q2v2F

�
1

2
þ Fþ þ F−

�
; ð20Þ

where

F� ¼ kF
4q

ð1 −Q2
�ÞlogPV

Q� þ 1

Q� − 1
; ð21Þ

Q� ¼ q
2kF

� me

qkF
ðωþ iΓpÞ: ð22Þ

Here, ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4παneÞ=me

p
is the plasma frequency, and

kF ¼ ð3π2neÞ1=3 is the Fermi momentum. For the width of
the plasmon peak, Γp, we adopt 10% of the plasmon peak
frequency.
We also employ several numerical methods to compute

the dielectric function. We use the GPAW calculation with
the local field effects (LFEs) dielectric function from
DarkELF [21,22], and the valence-to-conduction-only dielec-
tric function from EXCEED-DM [25,29].
Alternatively, we can employ a single-electron excitation

approximation, where the photon excites an electron from
the occupied to unoccupied bands (see Appendix A for
more details). However, in reality, the low-energy excited

1The directional average of Imf−1=ϵðΔE; q⃗Þg is well-approxi-
mated by taking the directional average over ϵðΔE; q⃗Þ for large
q ≫ kF where kF is the Fermi momentum of the crystal, as the
electron loss function Imf−1=ϵðΔE; q⃗Þg ≈ ImfϵðΔE; q⃗Þg be-
cause RefϵðΔE; q⃗Þg ≈ 1 and ImfϵðΔE; q⃗Þg ≪ 1. Further, Sec-
tion III of Ref. [27] shows that the directional average of ϵðΔE; q⃗Þ
produces results that are consistent with electron energy loss
spectra, which also employs the energy loss function
Imf1=ϵðΔE; q⃗Þg and is dominated by low momentum transfer
q≲ kF.
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states have very short lifetimes and deexcite by emitting
low-energy photons, which are then immediately absorbed
by the material. The correct out-states are thus dressed by
the sum of such self-energy diagrams, which results in the
factor of 1=jϵðΔE; qÞj2. Thus, the single-electron excitation
approximation generally misses this factor in the target
material response, including for Compton scattering and
DM-electron scattering. We show the effects of omission of
these collective effects in the context of Compton scattering
in Fig. 2.
The single-electron excitation response is generally

computed in terms of the crystal form factor [21,23,24],

jfcrystalðq;ΔEÞj2 ¼
q5Vcell

8π2m2α2
ImðϵRPAðq;ΔEÞÞ; ð23Þ

where ϵRPAðΔE; qÞ is the dielectric function calculated
using the random phase approximation (RPA) [30–33]. We
use QEDark [23] and QCDark [24] to compute the crystal form
factor as additional numerical methods to obtain the
material response. In order to accommodate the full
response of the material, which also requires the real part
of the dielectric function, we supplement our QEDark and
QCDark calculations of the crystal form factor with the real
part of the Lindhard dielectric function, Eq. (20). We use
the Perdew-Burke-Ernzerhof (PBE) functional [34] with an
8 × 8 × 8 k grid for all calculations for QEDark. To obtain
the QCDark derived form factor, we use a PBE functional
[34] for Si and a PBE0 [35] functional for Ge, both with a
6 × 6 × 6 k grid.

IV. RESULTS

We are now in a position to compute Compton rates and
compare our new approach that includes the dielectric
material response to computations using RIA, FEFF, and
single-electron excitations. In what follows, we present
results for Si, Ge, GaAs, and SiC (3C), but our calculations
can easily be extended to other materials.
Figure 1 shows the Compton scattering rates for a 1 kg ·

yr exposure in various crystals: Si (top-left panel), Ge (top-
right panel), GaAs (bottom-left panel), and SiC (3C)
(bottom-right panel), calculated using

dR
dΔE

¼ nγ
MTarget

Mcell

dσω
dΔE

; ð24Þ

where MTarget and Mcell are the mass of the target material
and the unit cell, respectively. We assume monochromic
photons with energy Eγ ¼ 1.461 MeV and a density of
nγ ¼ 1.25 × 10−14 cm−3, which corresponds to an ioniza-
tion background of 1 event=kg=day=keV (commonly
called “DRU”) at energies of 1 keV in Si. Our calculation
predicts a factor of roughly 0.33 fewer events=kg=yr in Si
for Q ≤ 5e− compared to the prediction using RIA, where
Q is the ionized charge defined in [36]. Our calculation also
predicts a much smoother spectrum.
For Si and SiC, we find that all methods including the

analytical Lindhard model (see Appendix C) produce
consistent results, except RIA. The consistency between
methods that do not include all-electron effects (such as
DarkELF, QEDark, and the Lindhard model) with methods that
include all-electron effects (such as EXCEED-DM and
QCDark) implies that all-electron effects are not important
for Compton scattering.2

On the other hand, because the Lindhard approximation
and DarkELF (GPAW) [21,22] do not include information
about the 3d shell in Ga, Ge, and As, they underestimate the
Compton scattering cross section at higher recoil energies
in Ge and GaAs target materials. Further, the usage of the
hybrid PBE0 functional in the QCDark calculation for Ge
affects the energy of the 3d shell compared to the PBE
functional used in QEDark (for more details, see Ref. [24]).
The energy obtained for the 3d shell using PBE0 lies
between 28.6 eV and 29.0 eV, which is in close agreement
with the experimental values of ∼29.5 eV [37].
As previously discussed, the QEDark and QCDark curves in

all panels of Fig. 1 use the dielectric formalism, Eq. (19),
where we use Eq. (23) to calculate the imaginary part of the
dielectric function and the real part of the Lindhard
dielectric function, Eq. (20). This enables one to more
accurately encompass the many-body effects of the material
response. We show these effects in Fig. 2 for a Si crystal,

FIG. 2. Material response. We show the effect of the collec-
tive behavior of electrons in the context of Compton scattering
rates in Si for incoming photons with Eγ ¼ 1.461 MeV and
nγ ¼ 1.25 × 10−14 cm−3. The dashed lines only include the
single-electron excitations that are captured by the imaginary
part of the dielectric function, while the solid lines include the full
material response, which differs from the former by a factor of
1=jϵðΔE; qÞj2. In constructing the full material response, we
include the real part of ϵðΔE; qÞ from the Lindhard dielectric
function, Eq. (20).

2All-electron effects are important for DM-electron scattering
for electron recoil energies ≳20 eV. We discuss the difference
with Compton scattering further in Appendix C.
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where the dashed lines include only the single-electron
excitations that are captured by the imaginary part of the
dielectric function, while the solid lines also include the
real part of the Lindhard dielectric function to better capture
the collective effects via the 1=jϵðΔE; qÞj2 factor. As we
can see, collective effects in crystals reduce the Compton
scattering cross sections at low energies≲25 eV by about a
factor of ∼3.
Figure 3 shows the expected Compton scattering rates

for Si in terms of ionized charge following the secondary
ionization modeling of Ref. [36]. The gray regions show
the Compton scattering rates normalized to 1 DRU atΔE ¼
1 keV using RIA. The regions encompass the highest and
lowest Compton scattering rates calculated using the
Lindhard model, Eq. (20), and using DarkELF [21,22],
EXCEED-DM [25,29], QEDark [23], and QCDark [24].
The various colored lines show, for comparison, the
DM-electron scattering rates for different DM masses mχ

computed using QCDark. We normalize the DM-electron
scattering cross sections to be equal to the Compton
scattering cross section in the Q ¼ 3e− bin. Table II lists

the derived cross sections. We note that the Compton
spectrum decreases towards lower electron recoil energies,
unlike the DM recoil spectra, which increase.
Figure 4 shows the expected Compton rates in Si for

energies up to 100 eV, which indicates how our results
match with those obtained using the FEFF code [6–9].
The results from the FEFF code were recently compared
to experimental data by the DAMIC-M Collaboration and
found to be roughly consistent at energies ΔE≳
Oð100 eVÞ [10].

V. SUMMARY

In this paper, we have proposed a rigorous way to
compute Compton scattering rates utilizing the material
response of the target. This is particularly useful in the low-
energy regime. We show how the dielectric function of any
material can be used to precisely evaluate the Compton
scattering cross section near the energy thresholds. The
dielectric function approach is convenient as it incorporates
the many-body effects of the system, including all-electron
and band-structure effects. The Compton scattering rate can
then be calculated using existing codes, analytical forms, or
experimental data. Importantly, we find that the simple
analytical Lindhard function often captures well the behav-
ior of the Compton scattering rate over a broad range of
materials, allowing one to swiftly and accurately obtain the
Compton rate.
As a concrete example, we calculated the event rate for

Si, Ge, GaAs, and SiC with various methods. Compared
with the conventional RIA method, our new approach,
which includes band-structure effects, leads to smoother
Compton scattering cross sections for energies below
several 10’s of eV. It is necessary to include collective
effects of the electron density, which lowers the Compton

FIG. 3. Rates as a function of charge for Si. We show a
comparison of the Compton scattering rates (gray bands) as a
function of the charge ionizedQ in a Si crystal with a background
rate of 1 DRU at ΔE ¼ 1 keV using RIA. The lines show the
DM-electron scattering rates computed with QCDark [24] for DM-
electron cross sections listed in Table II. We use the secondary
ionization model at 100 K from Ref. [36].

TABLE II. DM mass and DM-electron scattering cross section
benchmarks for DM at reference momentum transfer q ¼ αme
used in the DM-electron scattering rates shown in Fig. 3.

σ̄e [cm2]

mχ Light mediator Heavy mediator

10 MeV 2.20 × 10−41 1.71 × 10−42

100 MeV 8.41 × 10−41 4.82 × 10−42

1 GeV 7.75 × 10−40 4.42 × 10−41

FIG. 4. Spotlight on Si. We give a reproduction of the top-left
panel of Fig. 1 for Si with the energy axis extended to 100 eV. We
see that our results match onto those computed with RIA and FEFF

at high energies.
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scattering rates for energies below ∼25 eV. The all-electron
corrections are found to be small for Compton scattering.
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APPENDIX A: SINGLE-ELECTRON
EXCITATIONS IN CRYSTALS

In general, the cross section for a 2 → 2 process is

σp⃗;k⃗ ¼
1

16EpEkvrel

Z
d3q
ð2πÞ3

d3k0

ð2πÞ3
jMj2

Ejp⃗−q⃗jEk0

× ð2πÞ4δðEi − EfÞδ3ðk⃗þ q⃗ − k⃗0Þ; ðA1Þ
where the integration is over the final momenta of the two
particles, vrel is the initial relative speed of the particles, and
M is the amplitude that describes the interaction. For

Compton scattering, k⃗ and k⃗0 are the initial and final

momenta of the electron, and p⃗ and p⃗0 ¼ p⃗ − q⃗ are the
initial and final momenta of the photon. Here, Ei and Ef are
the total initial and final energies of the system. A bound
electron in the detector will have a nonrelativistic momen-
tum, so vrel ≈ 1.
We now follow a similar approach to Ref. [23]. The

nonrelativistic amplitude in free-electron Compton scatter-
ing is defined by

hγp⃗−q⃗; ek⃗0 jHintjγp⃗; ek⃗i ¼ CMfreeð2πÞ3δ3ðk⃗þ q⃗− k⃗0Þ; ðA2Þ

whereC is an unimportant constant. For a bound electron in
a detector, its state can be represented by a superposition of
plane waves, jei ¼ ffiffiffiffi

V
p R

d3k
ð2πÞ3 ψ̃ðk⃗Þjek⃗i, so the overlap

integral can be written as

hγp⃗−q⃗; efjHintjγp⃗; eii ¼ V
Z

d3k
ð2πÞ3 ψ̃ iðk⃗Þψ̃�

fðk⃗þ q⃗ÞCMfree:

ðA3Þ
In general, Mfree depends on the initial momentum of the
electron and, therefore, cannot be pulled out of the integral.
However, assuming the electron is nonrelativistic before
and after the collision, which is consistent with energy
transfers in the range ≲50 eV, our amplitude reduces to
that of Thomson scattering [15],

jMfreej2 ¼ 2e4
�
k · p0

k · p
þ k · p
k · p0 þ 2m2

�
1

k · p
−

1

k · p0

�

þm4

�
1

k · p
−

1

k · p0

�
2
�

ðA4Þ

≈2e4ð1þ cos2 θÞ: ðA5Þ

The Thomson scattering amplitude does not depend on the
initial momenta of the electron, so it can be factored out of
the integral in Eq. (A3). By squaring Eqs. (A2) and (A3)
and comparing them, we see that going from a free electron
to a bound electron amounts to the following substitution,

ð2πÞ3jMfreej2Vδ3ðk⃗þ q⃗ − k⃗0Þ → V2jMfreej2jfi→fðq⃗Þj2;
ðA6Þ

where fi→fðq⃗Þ is the atomic form factor defined as

fi→fðq⃗Þ ¼
Z

d3xψ iðx⃗Þψ�
fðx⃗Þeiq⃗·x⃗: ðA7Þ

The factor of V on the left of Eq. (A6) is due to the
redundant delta function after squaring, which contributes a
factor of V

ð2πÞ3. Applying this substitution in Eq. (A1),

considering only a single final electron state, and letting E
and E0 (ω and ω0) be the initial and final energies of the
electron (photon), we find

σp⃗;ei→ef ¼
1

4Eω

Z
d3q
ð2πÞ3

1

4E0ω0 ð2πÞδðEi − EfÞ

× jMfreej2jfi→fðq⃗Þj2: ðA8Þ

The initial and final energies of the system are

Ei ¼ ωþmþ Ee;i ðA9Þ
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and

Ef ¼ ω0 þmþ Ee;f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ q2 − 2ωq cos θpq

q
þmþ Ee;f; ðA10Þ

where Ee;i and Ee;f are the initial and final energies of the
electron excluding the rest mass of the electron, i.e., Ee;i ¼
E −m and Ee;f ¼ E0 −m. We can eliminate the delta
function by averaging over initial photon momenta direc-
tions. We assume a spherically symmetric distribution of
incident photons, and we take E;E0 ≈m since the electron
is nonrelativistic before and after scattering, which gives

σω;ei→ef ¼
1

128π2m2ω2

Z
d3q

1

q
jMfreej2jfi→fðq⃗Þj2: ðA11Þ

We obtain the kinematic constraints ΔE ≤ q ≤ 2ω − ΔE
and ΔE ≤ ω, where ΔE ¼ Ee;f − Ee;i.
For electrons in a periodic lattice, by Bloch’s theorem,

the electronic wave functions are described by a plane wave
modulated by a periodic function,

ψ i;k⃗ðx⃗Þ ¼
1ffiffiffiffi
V

p
X
G⃗

uiðk⃗þ G⃗Þeiðk⃗þG⃗Þ·x⃗; ðA12Þ

where k⃗ is a wave vector in the first Brillouin zone, G⃗ is
the reciprocal lattice vector, and the subscript i is the
band index. The wave functions are normalized such
that

P
G⃗ juiðk⃗þ G⃗Þj2 ¼ 1.

Substituting Eq. (A12) into Eq. (A7) and squaring yields

jf
i;k⃗→i0;k⃗0 j2 ¼

X
G⃗0

ð2πÞ3δð3Þðq⃗− ðk⃗0 þ G⃗0 − k⃗ÞÞ 1
V
jf½ik⃗;i0k⃗0;G⃗0�j2;

ðA13Þ

where

f½ik⃗;i0k⃗0;G⃗0� ¼
X
G⃗

u�i0 ðk⃗0 þ G⃗þ G⃗0Þuiðk⃗þ G⃗Þ: ðA14Þ

We have replaced the subscripts i → f with the more
explicit i; k⃗ → i0; k⃗0. Then, our cross section becomes

σ
ω;fi;k⃗g→fi0;k⃗0g ¼

π

16m2ω2

1

q
jMfreej2

×
X
G⃗0

1

V
jf½ik⃗;i0k⃗0;G⃗0�j2jq¼jk⃗0þG⃗0−k⃗j: ðA15Þ

Summing over all initial and final electron states and
multiplying by 2 to account for the two degenerate spin
states gives the total scattering cross section from the crystal,

σω ¼ π

8m2ω2
VcellNcell

X
ii0

Z
BZ

d3kd3k0

ð2πÞ6
1

q
jMfreej2

×
X
G⃗0

jf½ik⃗;i0k⃗0;G⃗0�j2jq¼jk⃗0þG⃗0−k⃗j: ðA16Þ

Here,Ncell andVcell are the number of atoms in the primitive
cell and the volume of the primitive cell, and the integral is
over the first Brillouin zone in the crystal’s reciprocal space.
To obtain the differential cross section, we integrate over
delta functions, leaving

dσω
dðΔEÞdq ¼ αNcell

16πω2

1

q2
jMfreej2jfcrystalðq;ΔEÞj2; ðA17Þ

where fcrystalðq;ΔEÞ is the crystal form factor [23],

jfcrystalðq;ΔEÞj2 ¼
2π2

αm2Vcell

X
ii0

Z
BZ

V2
cell

d3kd3k0

ð2πÞ6

× δðΔE − E
i0;k⃗0 þ Ei;k⃗Þ

×
X
G⃗0

qδðq − jk⃗0 − k⃗þ G⃗0jÞ

× jf½ik⃗;i0k⃗0;G⃗0�j2: ðA18Þ

Lastly, we substitute in the Thomson scattering amplitude
and divide by the number of cells to get the differential cross
section per unit cell,

dσω
dðΔEÞdq ¼ 2πα3

ω2

ð1þ cos2 θÞ
q2

jfcrystalðq;ΔEÞj2: ðA19Þ

Using Eq. (23), we find that Eq. (A19) can be written as

σω
dðdΔEÞdq ¼ αVcell

4πm2

q3

ω2
ð1þ cos2θÞImfϵðΔE; qÞg: ðA20Þ

Comparing to Eq. (19), we see that the single-electron
excitation approach misses a factor of 1=jϵðΔE; qÞj2 and
hence fails to capture the complete density response of the
system as discussed in the main text. In effect, this
approach misses the self-energy corrections to the photon
in the target material.

APPENDIX B: DENSITY FUNCTIONAL THEORY

The dielectric function and the crystal form factor, as
shown in Eqs. (19) and (23), depend on the electronic
structure of the target material. Here, we provide a short
review of density functional theory (DFT), which is the
typical method used to approximate the orbital wave
functions and energy levels [21–23,25,29]. DFT rests on
two major theorems, known as the Hohenberg-Kohn
theorems [38],
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(1) The energy of the ground state is a unique functional
of the electron density.

(2) The electron density that minimizes the energy is the
correct solution to the ground state (variational
theorem).

The energy functional, in terms of the electron density
nðr⃗Þ, is given by [39]

E½n� ¼ TS½n� þ
Z

d3rvextðr⃗Þnðr⃗Þ

þ 1

2

Z
d3r

Z
d3r0

nðr⃗Þnðr⃗0Þ
jr⃗ − r⃗0j þ Exc½n�; ðB1Þ

where TS is the kinetic energy of noninteracting orbitals,
vextðr⃗Þ is the external potential from the nuclei, and Exc,
known as the exchange and correlation functional, models
the quantum interactions missing in TS and the Hartree
electron-electron interaction (third term).
The minimization of the energy functional with the

constraint that the total number of electrons remains
constant leads to the Kohn-Sham equations [39],

�
−
1

2
∇⃗2 þ vextðr⃗Þ þ

Z
nðr⃗0Þ
jr⃗ − r⃗0j

d3r0 þ vxcðr⃗Þ
�
ϕiðr⃗Þ

¼ ϵiϕiðr⃗Þ; ðB2Þ
where ϵi and ϕiðr⃗Þ are the energy levels and wave functions
of the ith orbital, respectively, and

vxcðr⃗Þ ¼
δExc½n�
δnðr⃗Þ : ðB3Þ

Because the Hamiltonian depends on nðr⃗Þ, which depends
on the occupied orbitals fϕiðr⃗Þg, this equation must be
solved self-consistently.

The exact form of the exchange and correlation func-
tional is not known, though there are multiple models
available. In this paper, we use the PBE functional [34] for
both QEDark and QCDark in Si. For Ge, we use PBE
and PBE0 [35] functionals in QEDark and QCDark, respec-
tively. We use the standard available results for DarkELF [22]
and the valence-to-conduction-band-only results for
EXCEED-DM [25].

APPENDIX C: EFFECTIVENESS OF THE
LINDHARD MODEL

The Lindhard model produces reliable results for the
Compton scattering cross section for valence electrons
and hence produces reliable results until the effects of
core electrons become important. For example, for Si,
the Lindhard model produces reliable results for ΔE≲
99 eV, while for Ge it produces reliable results for
ΔE≲ 29.2 eV.
The left panel of Fig. 5 shows the f-sum rule [40] for the

loss function calculated for Si using various methods. We
see that the Mermin model overestimates the electron loss
function, Imf−1=ϵðΔE; qÞg, for q ≳ 12 keV, and we
further note that the Lindhard model underestimates the
loss function at high q ≳ 12 keV.
The differential cross section for any general process,

where an incoming particle with speed β relative to the
target material transfers energy ΔE and momentum q to an
electron, is

dσ
dΔE

¼
Z

∞

qmin

dq
∂
2σ

∂ΔE∂q
; ðC1Þ

where qmin ¼ ΔE=β is the minimum momentum transfer
required to transfer energy ΔE. In the case of Compton

FIG. 5. Left panel: f-sum rule [40] for the loss function calculated for Si using various methods. Right panel: electron loss function
Imf−ϵðΔE; qÞ−1g for Si, weighted by momenta factors relevant for Compton scattering, calculated at ΔE ¼ 45 eV. For this plot, we
average the electron loss function over a 2 eV bin centered at 45 eV and apply a 1D Gaussian filter in k with σk ¼ 1 keV. Note the
presence of high-q modes due to all-electron modeling in QCDark and EXCEED-DM compared to DarkELF and QEDark.
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scattering, the incoming particles are photons (β ¼ 1),
hence upon integrating Eq. (19) in q, one obtains

dσω
dΔE

¼ αVcell

4πm2

Z
∞

ΔE
dq

q3

ω2
ð1þ cos2θÞIm

�
−1

ϵðΔE;qÞ
�
: ðC2Þ

Hence, the peak in the electron loss function
Imf−ϵðΔE; qÞ−1g dominates. This is demonstrated in the
right panel of Fig. 5. The low-q region is captured well by
the Lindhard model for valence electrons, and hence the

Lindhard model provides reliable Compton scattering rates
in the low-energy regime.
This is in contrast to DM-electron scattering where the

incoming DM particles have a speed β ∼Oð10−3Þ; thus,
for ΔE ∼Oð10 eVÞ, the lowest possible momentum
transfer is qmin ∼Oð10 keVÞ. Further, capturing the elec-
tron loss function at high momentum transfer makes
inclusion of all-electron effects necessary [24,25,29].
The Lindhard response function of the material thus
captures the Compton scattering rates well but does not
capture the DM-electron scattering rates well [21,28].
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