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The quantum fluctuations of fields can exhibit subtle correlations in space and time. As the interval
between a pair of measurements varies, the correlation function can change sign, signaling a shift between
correlation and anticorrelation. A numerical simulation of the fluctuations requires a knowledge of both the
probability distribution and the correlation function. Although there are widely used methods to generate a
sequence of random numbers which obey a given probability distribution, the imposition of a given
correlation function can be more difficult. Here we propose a simple method in which the outcome of a
given measurement determines a shift in the peak of the probability distribution, to be used for the next
measurement. We illustrate this method for three examples of quantum field correlation functions, and
show that the resulting simulated function agrees well with the original, analytically derived function. We
then discuss the application of this method to numerical studies of the effects of correlations on the random
walks of test particles coupled to the fluctuating field.
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I. INTRODUCTION

Although vacuum fluctuations of a quantized field, such
as the electromagnetic field, are formally infinite, careful
treatments of the contributions of high frequency modes
lead to finite observable effects. Two examples are the
Casimir effect and the Lamb shift. Welton [1] has given a
simple argument which illustrates that the dominant con-
tribution to the Lamb shift is due to the effects of Brownian
motion of an electron responding to vacuum electric field
fluctuations. In recent years, there has been interest in
various physical effects which might be produced by the
quantum fluctuations of linear operators, such as the
electric field, or of quadratic operators, such as the energy
density. For a recent review, see Ref. [2].
Although quantum field fluctuations are usually treated

with analytic methods, such as the calculation of variances,
numerical simulations can also play a role. This was done,
for example, by Carlip et al. [3,4] to study the effects of
quantum stress tensor fluctuations upon the focusing of
light rays. Here a model in two-dimensional spacetime was
used, with the fluctuations satisfying a non-Gaussian
probability distribution given in Ref. [5]. However, as
Carlip et al. note, their simulation ignores the possible
correlations between fluctuations in different spacetime

regions. More generally, it is desirable to find methods to
include correlations in simulations, as quantum fields can
exhibit subtle correlations and anticorrelations. These are
discussed, for example, in Refs. [6,7].
There are statistical methods for introducing correlations

into autoregression analyses. An example is theMonteCarlo
method discussed in Ref. [8]. However, we are not aware of
any use of these methods in the literature to study quantum
field fluctuations. The purpose of this paper is to discuss the
correlation functions for linear field operators and to propose
a method for introducing these correlations into a numerical
simulation. The outline of this paper is as follows: Sec. IIwill
introduce and discuss three examples of quantum field
correlation functions. Our proposed method for implement-
ing correlations in a simulationwill be introduced in Sec. III.
The possible application of the method to the study of the
effects of correlations on Brownian motion will be consid-
ered in Sec. IV. Our results will be summarized and
discussed in Sec. V.

II. CORRELATION FUNCTIONS

In this section, we will discuss correlation functions for
quantum fields, and give three explicit examples of
physical interest. In general, a correlation function may
be defined as

Cðt;x; t0;x0Þ ¼ hψðt;xÞψðt0;x0Þi − hψðt;xÞihψðt0;x0Þi:
ð2:1Þ
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where ψðt;xÞ is a field operator at spacetime point ðt;xÞ,
and hi denotes an expectation value in a selected quantum
state. This function describes the correlations in the
fluctuations of ψ between different spacetime regions.
In this paper, we restrict our attention to field operators at

a fixed point x in space, and drop explicit mention of this
point. We also assume that the mean field value vanishes, so

hψðt;xÞi ¼ hψðtÞi ¼ 0: ð2:2Þ

We also consider cases where the correlation function
depends only upon the time difference, t − t0, and write

C ¼ Cðt − t0Þ ¼ hψðtÞψðt0Þi: ð2:3Þ

A. Massless scalar field

In this subsection, we treat the vacuum fluctuations of a
massless scalar field in four-dimensional Minkowski space-
time, where

C0ðt − t0Þ ¼ −
1

4π2ðt − t0Þ2 : ð2:4Þ

The t ¼ t0 limit, C0ð0Þ, is singular due to the short distance
divergences of a quantum field. Here we adopt the view-
point that measurements of vacuum fluctuations at a single
spacetime point are unphysical, and all measurements
require an average over a finite spacetime region, or at
least a finite time or space interval. For this purpose, define
a time averaged field operator by

ψ̄ðt0Þ ¼
Z

∞

−∞
dtψðtÞgðt − t0Þ; ð2:5Þ

where gðtÞ is a sampling function peaked at t ¼ t0 which is
normalized by

R
∞
−∞ dtgðtÞ ¼ 1. As a convenient example,

we use a Lorentzian form

gðtÞ ¼ τ

πðt2 þ τ2Þ ; ð2:6Þ

where τ is the characteristic duration of the time averaging.
The effect of the averaging will be to suppress the
contributions of high frequency modes, those whose
periods are short compared to τ.
Let

Cðt0Þ ¼ hψ̄ð0Þψ̄ðt0Þi ¼
Z

∞

−∞
dtdt0gðt0Þgðt − t0ÞC0ðt − t0Þ

ð2:7Þ

be the correlation between two measurements separated in
time by t0. Here the peaks of the sampling functions of
these measurements are displaced by t0. This integral

contains a second order pole at t ¼ t0, which may be
treated by an integration by parts procedure. Use

C0ðt − t0Þ ¼ −
1

8π2
∂
2

∂t∂t0
log ½ðt − t0Þ2α2� ð2:8Þ

to find

Cðt0Þ¼−
1

8π2

Z
dtdt0ġðt0Þġðt− t0Þ log½ðt− t0Þ2α2�; ð2:9Þ

which is independent of the value of the arbitrary constant
α. This expression is finite, and may be explicitly evaluated
for the case of the Lorentzian sampling function, Eq. (2.6),
to find

Cðt0Þ ¼
ð4 − t20Þ

4π2ðt20 þ 4Þ2 : ð2:10Þ

This function is plotted in Fig. 2. Here units in which τ ¼ 1
are used, so the time separation t0 is given as a multiple of
τ. Note that Cðt0Þ > 0 if t0 < 2, so a pair of measurements
with a small temporal separation are positively correlated,
but larger separations t0 > 2, lead to anticorrelations,
Cðt0Þ < 0. The latter result is expected from the minus
sign in Eq. (2.4). The mathematical origin of the former
result is more subtle, but it incorporates the physically
reasonable result that two measurements made in rapid
succession are positively correlated.
The probability distribution for operators linear in a free

quantum field is a Gaussian

Pðψ̄Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp

�
−

ψ̄2

2σ2

�
ð2:11Þ

with variance σ2 ¼ Cð0Þ ¼ 1
4π2

. This means that if we
consider a pair of measurements with separation t0, the
outcome of the first measurement is equally likely to be
either positive or negative. However, the outcome of the
second measurement is more likely to have the same sign as
the first if t0 < 2, and more likely to have the opposite sign
if t0 > 2. A method for implementing this bias in a
numerical simulation will be a key topic to be treated in
Sec. III.

B. The electromagnetic and similar fields

The massless scalar field has dimensions of inverse
length in units where ℏ ¼ c ¼ 1. Some other massless
fields of physical interest have dimensions of inverse length
squared, including the electromagnetic field, and first
derivatives of the massless scalar field. In all of these
cases, Eq. (2.4) is replaced by a vacuum correlation
function of the form
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C0ðt − t0Þ ¼ κ

4π2ðt − t0Þ4 ; ð2:12Þ

where κ > 0 is a constant which depends upon the specific
case. Linear field operators will still have a probability
distribution of the form of Eq. (2.11). Note that if we
rescale an averaged field by ψ̄ → σψ̄ then the rescaled field
has variance one. Here it is convenient to suppose that this
has been done, so that we can discuss several cases with
different actual variances at once.
Again we assume time averaging of the field operators

with the Lorenztian function, Eq. (2.6) with τ ¼ 1. Now the
correlation function with unit variance becomes

Kðt0Þ ¼ hψ̄ð0Þψ̄ðt0Þi ¼
1 − 6t20 þ t40
ð1þ t20Þ4

; ð2:13Þ

which satisfies Kð0Þ ¼ 1, as required.
The functionKðt0Þ is plotted in Fig. 3, and in more detail

in Fig. 3 of Ref. [9]. It is qualitatively similar in form to
Cðt0Þ in that it is positive for t0 ≲ 0.25 and negative for
0.25≲ t0 ≲ 0.8, representing regions of correlation and
anticorrelation, respectively.

C. Baths of photons or gravitons in a squeezed state

Sections II A and II B have dealt with the vacuum
fluctuations of a quantized field, where averaging is
essential to define finite fluctuations. There is another
source of quantum fluctuations arising from particles in a
nonclassical state, such as a squeezed vacuum. Photons or
gravitons in such a state can give rise to Brownian motion
of test particles. The operator whose fluctuations cause this
motion will be the electric field for photons and the
linearized Riemann tensor for gravitons. In either case,
the field fluctuations are described by a correlation function
of the form of Eq. (2.3). However, now we are interested in
an excited state with a large occupation number and wish to
ignore the vacuum contribution, so we replace the expect-
ation value by the difference between an expectation value
in the squeezed state and that in the vacuum. If only a finite
number of modes are excited, this difference is finite when
t ¼ t0, and time averaging is not needed. In the case that a
single mode of wave number k is occupied, the correlation
function with unit variance may be written as

C1ðt − t0Þ ¼ cos½kðt − t0Þ�; ð2:14Þ

an oscillatory function exhibiting alternating correlations
and anticorrelations. The Brownian motion of test particles
in squeezed states of photons or gravitons will be discussed
further in Ref. [10].

III. NUMERICAL SIMULATIONS WITH
CORRELATIONS

There are well-known numerical methods to generate a
sequence of otherwise random numbers which obey a
specified probability distribution, such as the Gaussian of
Eq. (2.11). An example is the command RandomVariate in
the programMathematica. However, generating a sequence
which satisfies a given correlation function is more diffi-
cult, but can be done by Monte Carlo methods [8], for
example. These methods are used in autoregression analy-
ses in many applications.

A. Basic method

Here we propose an alternative method for use in
simulating quantum fluctuations that will involve shifting
the origin of the probability distribution from which a given
outcome will be drawn, in a way depending upon a
previous outcome. Suppose that we make a measurement
of a field value for which the probability distribution PðxÞ
is of the form of Eq. (2.11). The first outcome, x1, is equally
likely to have either sign. However, if the correlation
function is non-zero, the value of x1 will bias the outcome
x2, of a subsequent measurement, and the magnitude of x1
will influence the degree of bias. If the correlation is
positive, C > 0, then x2 is more likely than not to have the
same sign as x1. Similarly, if C < 0, then x1 and x2 are
more likely to have opposite signs.
Our specific proposal is to shift the probability distri-

bution for x2 by an amount proportional to x1:

PðxÞ → Pðx − fx1Þ; ð3:1Þ

where f is a constant with jfj ≤ 1. Thus, f > 0 leads to
positive correlation, and f < 0 to anticorrelation. We next
create a correlation function CfðfÞ by the following
procedure: Let PðxÞ be a Gaussian with unit variance, that
is, Eq. (2.11) with σ ¼ 1, then draw an outcome x1. Next,
use the distribution Pðx − fx1Þ to draw the next outcome,
x2. Repeat this procedure many times, so the nth outcome is
drawn from the distribution Pðx − fxn−1Þ. Now we define
CfðfÞ as the numerical average of the sequence of products
of successive outcomes:

CfðfÞ ¼ hx1x2; x2x3;…; xn−1xni: ð3:2Þ

Finally, we fit the result to the following trial form for
Cf:

CfðfÞ ¼ a tanðbfÞ; ð3:3Þ

where a and b are constants, which have the fitted values

a ¼ 0.067� 0.003 b ¼ 1.58� 0.02: ð3:4Þ
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Both the analytic form, Eq. (3.3), (orange curve) and the
numerical results (blue dots) are plotted in Fig. 1. For each
value of f, of the order of 104 products were averaged. That
is, n ≈ 104 in Eq. (3.2). This functional form has the
following properties: (1) Cfð0Þ ¼ 0, so f ¼ 0 describes
lack of correlation; (2) The range of C is infinite, while that
of f is finite; −∞ < C < ∞ and −1 < 2bf=π < 1; (3) It is
an odd function of f, which allows the possibility to treat
negative correlations as well as positive ones. At this time,
the functional form of Cf given in Eq. (3.3) is strictly
empirical. However, we hope to find deeper reasons for it in
future research.
To obtain numerical simulations of Cðt0Þ, a correlation

function of a time separation, such as those discussed in
Sec. II, we define a function fðt0Þ such that

Cfðfðt0ÞÞ ¼ Cðt0Þ; ð3:5Þ

where Cðt0Þ has a given functional form. If its variance,
Cð0Þ ≠ 1, then we rescale the constant a by

a → Cð0Þa: ð3:6Þ

For each value of t0, and hence of f, we repeat the
procedure described just before Eq. (3.2), again
with n ≈ 104.
For each of the three cases given in Sec. II, we have

carried numerical calculations of the correlation function
with the results below:

1. Massless scalar field

Here the correlation function, Cðt0Þ, is given by
Eq. (2.10), and we use

fðt0Þ ¼
1

b
arctan

�
4 − t20

4πað4þ t20Þ2
�
: ð3:7Þ

In this case Cð0Þ ¼ 1=ð16π2Þ, so we use a ≈ 4.3 × 10−4,
but b as given in Eq. (3.4). The analytic and simulated
forms of this correlation function are plotted together
in Fig. 2.

2. The electromagnetic and similar fields

Here the correlation function, Kðt0Þ is given by
Eq. (2.13), and we use

fðt0Þ ¼
1

b
arctan

�
1 − 6t20 þ t40
að1þ t20Þ4

�
: ð3:8Þ

The analytic and simulated forms of this correlation
function are plotted together in Fig. 3.

3. Baths of photons or gravitons in a squeezed state

Here the correlation function, C1ðt0Þ is given by
Eq. (2.14), and we use

FIG. 2. The correlation function Cðt0Þ given by Eq. (2.10) (red)
is plotted against a simulated function (blue).

FIG. 1. The fitted form of CðfÞ. The blue dots represent the
average of pairs of outcomes with a given value of the parameter
f. The orange curve is the functional form given in Eq. (3.3).

FIG. 3. The correlation function Kðt0Þ (red) and its simulated
form (blue) are plotted.
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fðt0Þ ¼
1

b
arctan

�
cosðkt0Þ

a

�
: ð3:9Þ

The analytic and simulated forms of this correlation
function are plotted together in Fig. 4.
In all three cases, we see that the simulations and analytic

forms of the correlation functions agree well. We have also
used a modified version of our procedure in which we start
with the derivative C0ðt0Þ of the analytically derived
correlation function, obtain a numerical simulation of this
derivative, and then numerically integrate the result to find
simulated functions which agree reasonably well with the
simulations plotted in Figs. 2–4.

IV. APPLICATION TO THE BROWNIAN MOTION
OF TEST PARTICLES

One possible application of the method developed in
Sec. II could be to the study of the effects of field
fluctuations on Brownian motion, the fluctuations in test
particle trajectories. This topic was discussed using analytic
correlation functions in many papers, including Refs. [6,7].
Quantum electric field fluctuations create a fluctuating
force on a test charge and hence cause the linear momentum
of the charge to fluctuate. In the absence of an external
source of energy, the mean squared momentum cannot on
average grow in time. In this case, energy conservation is
enforced by the anticorrelations of the electric field
fluctuations. The particle may temporarily acquire energy
from a fluctuation, but soon an anticorrelated fluctuation
will tend to take this energy away. This feature is encoded
in the correlation function by the vanishing of its integral
over all time. For the case of the quantized electric field,

Z
∞

0

Kðt0Þdt0 ¼ 0: ð4:1Þ

Numerical simulations may give insight into the behav-
ior of test particles in baths of squeezed photons or

squeezed gravitons, and will be a topic of future research.
For the purpose of this paper, we consider a simple example
of a test particle coupled to the fluctuating massless scalar
field. At each step the value of the field ψ̄ found determines
the sign and magnitude of the particle’s displacement for
that step. If the field fluctuations were uncorrelated, this
would constitute a random walk in which the mean squared
displacement grows proportionally with the square root of
the number of steps. Correlations are expected to either
enhance or retard this rate of growth, depending upon the
sign of the correlation. We have performed simulations for
the cases f ¼ −0.5, f ¼ 0, and f ¼ 0.5, and found square
root growth in all cases for step number N in the range
0 < N < 100. Specifically

y ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.68N þ 0.039

p
f ¼ −0.5; ð4:2Þ

y ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.32N þ 0.092

p
f ¼ 0; ð4:3Þ

and

y ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5.35N þ 8.13

p
f ¼ 0.5: ð4:4Þ

We see that the uncorrelated case, f ¼ 0, grows faster
than that of anticorrelation, f ¼ −0.5, but slower than the
case of positive correlation, f ¼ 0.5. The fact that
we still find some growth in the case of anticorrelation
is probably due to the limited nature of this simulation.
Here we are assuming that each step is correlated only
with the preceding step, and not with earlier steps. A
more realistic multistep simulation is a topic for future
research.

V. SUMMARY

In this paper we have proposed a method to numerically
simulate quantum field fluctuations with a given temporal
correlation. This potentially allows simulations of the
subtle effects of correlation and anticorrelation which
quantum fields exhibit. Here our attention was restricted
to linear fields with a Gaussian probability distribution,
and our method involves a displacement of the Gaussian
which depends upon the outcome of a previous measure-
ment. We were able to use this method to numerically
implement correlations in several explicit cases. We also
used this method for a simplified treatment of the effects
of correlations on a random walk. That treatment involved
only one-step correlations between an event and the
immediately prior event. We hope to generalize our
treatment to include multistep correlations with several
prior events.
We also plan to extend our method to cases of non-

Gaussian probability distribution. This will be of interest
in simulating quantum stress tensor fluctuations, which
can have a non-Gaussian probability distribution which
falls more slowly than exponentially, and depends upon

FIG. 4. The correlation function C1ðt0Þ (red) and its simulated
form (blue) are plotted.
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the details of the measurement sampling function fðtÞ
[5,11]. Stress tensor fluctuations pose the complication
that the probability distribution need not be symmetric,
although it can be for flux components [12]. For
components that are non-negative in classical physics,
such as the energy density, the distribution has a lower
bound but no upper bound. In these cases, the symmetric
procedure used in Sec. III A seems likely to
require modification. Even for symmetric non-Gaussian

probability distributions, it is not clear whether the
empirical ansatz used in Eq. (3.3) will still hold. This
is a topic for future work.
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