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We obtain the spatial and momentum-diffusion coefficients (Ds and κ) and the collisional energy loss
(dE=dx) of a heavy quark (HQ) traversing through a thermal medium of quarks and gluons in a weak
magnetic field (B), for the two cases of the HQ moving either parallel or perpendicular to B. For that
purpose, we consider Coulomb scatterings (t-channel) of the HQ with the light quarks, obtained from the
imaginary part of the HQ self-energy via the cutting rules. Both the normalized (by T3) κ, and dE=dx, for
charm quarks are larger than that for bottom quarks due to the larger mass of the latter. Also, the effect of B
is more feeble on the bottom quark, compared to the charm quark. Comparatively, the magnitudes of both κ
and dE=dx are significantly smaller for the case of v ⊥ B. For both the cases, our results show that the
momentum transfer between the HQ and the medium takes place preferentially along the direction of HQ
velocity, thus leading to a significant increase in the momentum-diffusion anisotropy, compared to B ¼ 0.
We also calculate the (scaled) spatial diffusion coefficient, which we find to be independent of the heavy
flavor mass and is almost unaffected by changes in B.
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I. INTRODUCTION

Heavy-ion collisions at experimental facilities such as
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider have presented strong evidence of for-
mation of a deconfined thermal QCD medium, called the
quark gluon plasma (QGP) [1,2]. When the heavy nuclei
collide noncentrally, the spatial asymmetry of the initial
overlap zone is carried over to the momenta of emitted
particles and can be seen experimentally in the final hadron
pT spectra [3–6]. This asymmetric expansion of the QGP
fireball is referred to as elliptic flow. A remarkable property
of this medium is the very small value of the ratio of shear
viscosity to entropy density η=s, making QGP one of the
most perfect fluids known [7]. A microscopic explanation
of these interesting transport properties is still a subject of
intense investigation. To that end, heavy quarks (charm and
bottom) are considered to be excellent probes of the QGP
medium [8]. The large mass of the heavy quark MQ

compared to the temperature of the medium (MQ ≫ T)
means that heavy quarks are formed at very early stages of
heavy-ion collisions, even before the formation of the
thermal medium [9]. Typical heavy quark (HQ) formation

time is ∼1=2MQ [10] (∼0.08 fm/c for charm and
∼0.03 fm/c for bottom). Furthermore, compared to the
light quarks, the HQ thermal relaxation times are larger,
parametrically by a factor MQ=T ∼ 5–15. The light quark
and gluon thermalization time τq;g is ∼0.6 fm, as indicated
by hydrodynamic modeling of the RHIC data [11]. This
implies a HQ thermalization time of 3–9 fm=c, which is of
the order of (for charm) or larger than (for bottom) the
estimated QGP lifetime of ∼5 fm/c [12]. Because of being
created so early and not equilibrating fully with the
medium, the HQs are witnesses to the full history of
space-time evolution of the medium and also retain a
“memory” of their interactions with the medium This
makes heavy quarks ideal probes of the QGP medium.
Extensive discussions on HQ phenomenology can be found
in Refs. [12,13].
Apart from causing an anisotropic expansion of the

created matter, noncentral heavy-ion collisions also lead to
creation of large magnetic fields [14]. The decay rate of the
magnetic field depends strongly on the electrical conduc-
tivity of the medium which is exposed to the field [15–24].
Assuming a large background magnetic field, several
phenomena have been studied such as chiral magnetic
effect [25], chiral magnetic wave [26,27], charge-depen-
dent elliptic flow [28,29], magnetic catalysis [30–32],
inverse magnetic catalysis [33–39], etc. For small con-
ductivities, however, the magnetic field decay would be
very fast. This has led to studies of QGP transport
properties in a weak background magnetic field in the
recent past [24,40–49]. For the case of HQs, their pro-
duction times are small (∼1=2MQ). This is similar to the
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timescale of generation of a (strong) magnetic field.
However, in the plasma frame, the heavy quarks are formed
at a time tfð¼ γτfÞ which could be of the order of 1–2 fm,
depending on the momenta of the produced HQ. By that
time, the strength of the magnetic field may become weak.
Furthermore, although HQ transport has been studied in the
presence of a strong background magnetic field, using both
imaginary and real time formalism [50–53], the literature
using a weak background magnetic field is rather scant.
This motivates us to investigate the dynamics of individual
heavy flavor in the QGP medium, in the limit of a weak
background magnetic field. In the context of heavy quarks,
the diffusion of HQ in a thermal medium has been studied
using perturbation theory [54–65], lattice QCD [66–69],
and in a Polyakov-loop plasma [70]. HQ dynamics in the
presence of external EM fields has been studied in [10,71],
where, in the former, the authors show that the directed
flow (v1) of HQs is a good probe of the magnetic field
generated in noncentral heavy-ion collisions. In the latter
study, the combined effect of the initial tilt of the QGP
fireball and large EM fields on the HQ v1 is studied. Effects
of the initial preequilibrium glasma phase on HQ observ-
ables have been explored in [72,73]. HQ drag and diffusion
in strongly coupled plasmas have been studied in [74,75].
Next-to-leading-order calculation of the HQ diffusion has
also been carried out [76]. The effect of momentum
anisotropy on the dynamics of HQ has also been studied
recently [77,78]. Recently, a nonperturbative study of
HQ diffusion in strong magnetic fields has been carried
out [79].
The HQ mass is the hardest scale in the problem, which

is true even if the magnetic field is strong. The scale
hierarchy considered in this problem is MQ ≫ T ≫ eB=T.
We calculate the energy loss dE=dx and momentum-
diffusion coefficients κ of the HQ moving with a finite
velocity in the QGP by evaluating the scattering rate of the
HQ with the light thermal quarks and gluons. In particular,
we consider two cases of the HQ velocity: one in which the
HQ velocity is parallel to B and the other in which the HQ
velocity lies in a plane perpendicular to B. Cutting rules
allow for determination of this scattering rate from the
imaginary part of the HQ self-energy [80]. This method
was employed to study HQ dynamics for the first time in
[55]. In what follows, the HQ self-energy is evaluated using
an effective gluon propagator, which, in turn, is calculated
in the presence of a weak magnetic field, up to second order
in qB. Hard Thermal Loop (HTL) perturbation theory is
made use of throughout the calculations. Owing to its large
mass, the problem of HQ immersed in a thermal bath of
light particles is amenable to a nonrelativistic treatment, in
general, and a diffusion treatment, in particular, as will be
justified in the next section. We go beyond the static heavy
quarks and evaluate the aforementioned quantities for finite
HQ momentum.

The paper is organized as follows: In Sec. II, the
description of heavy quarks in a thermal medium is
presented, wherein the case of zero magnetic field is
discussed first, followed by the case of a finite magnetic
field. Then, in Sec. III, the calculation of the scattering rate
Γ in the presence of a weak magnetic field is outlined. In
Sec. IV, the evaluation of energy loss dE=dx and momen-
tum-diffusion coefficients κ are presented, first for the case
v k B, followed by the case v ⊥ B. In Sec. V, the results
obtained are discussed. In Sec. VI, phenomenological
applications of the calculations are described. Finally, we
conclude in Sec. VII.

II. DESCRIPTION OF HEAVY QUARKS
IN A THERMAL MEDIUM: STATIC CASE

AND BEYOND

A. Kinematics in the absence of magnetic field

We consider a heavy quark of mass MQ propagating
through a plasma of light quarks and gluons. The HQ
thermal momentum p ∼

ffiffiffiffiffiffiffiffiffiffiffi
MQT

p
≫ T translates to a ther-

mal velocity v ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=MQ

p
≪ 1. Even if one considers hard

scatterings of the HQ with the light medium particles
[characterized by a momentum transfer of OðTÞ], it takes a
large number of collisions (∼MQ=T) to change the HQ
momentum by Oð1Þ, since p ≫ T. This implies that the
momentum changes accumulate over time from uncorre-
lated “kicks,” and the HQ momentum, therefore, evolves
according to Langevin dynamics:

dpi

dt
¼ ξiðtÞ − ηDpi; hξiðtÞξjðt0Þi ¼ κδijδðt − t0Þ; ð1Þ

where ði;jÞ¼ðx;y;zÞ. These are the macroscopic Langevin
equations with ηD being the momentum drag coefficient
and κ the momentum-diffusion coefficient. The random
forces ξðtÞ representing the uncorrelated momentum kicks
are assumed to be white noises. The solution of Eq. (1)
under the assumption η−1D ≪ t is given as

piðtÞ ¼
Z

t

−∞
dt0eηDðt0−tÞξiðt0Þ: ð2Þ

κ can be determined by calculating the mean squared
momentum transfer per unit time from the underlying
microscopic theory:

hp2i ¼
Z

dt1dt2eηDðt1þt2Þhξiðt1Þξjðt2Þi ¼
3κ

2ηD
: ð3Þ

Equivalently, κ can be defined as

3κðpÞ ¼ lim
Δt→0

hðΔpÞ2i
Δt

; ð4Þ
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where,Δp ¼ pðtþ ΔtÞ − pðtÞ. This leads to the following
equations of motion for the heavy quark:

d
dt

hpi≡ −ηDðpÞp; ð5Þ

1

3

d
dt

hðΔpÞ2i≡ κðpÞ: ð6Þ

The drag coefficient or the relaxation rate ηD is related to κ
via the fluctuation-dissipation relation

ηD ¼ κ

2MQT
; ð7Þ

which follows from general thermodynamical arguments.
Apart from ηD and κ, we also have the spatial diffusion
coefficientDs and the heavy quark energy loss dE=dx. The
problem of HQ motion and its subsequent diffusion in a
thermal medium can be characterized fully by these four
quantities, which are related to each other. In particular,

Ds ¼
T

MQηD
¼ 2T2=κ; ð8Þ

as derived in [81]. In a thermal medium of light quarks and
gluons, the random momentum kicks originate from the
scattering processes qH → qH and gH → gH (q → quark
and g → gluon). The former occurs only via t-channel
Coulomb scattering. The latter effectively also occurs via
the same mechanism, since its Compton amplitude is sup-
pressed by v2 ∼ T=MQ, in the rest frame of the plasma. This
is especially true for the bottom quark (M ¼ 4.18 GeV),
compared to the charm quark (M ¼ 1.28 GeV). We assume
that the dominant mechanism for the HQ energy loss is
Coulomb scattering of the HQ with the light medium
particles and ignore radiative energy loss (gluon bremsstrah-
lung), which is suppressed by an additional power in the
strong coupling αs, as explained in [56]. The central quantity
from which all the above-mentioned dynamical quantities
can be obtained is the scattering rate Γ, whose computation
will be outlined in the next section. The energy loss and the
momentum-diffusion coefficient are given, respectively, as

dE
dx

¼ 1

v

Z
d3q

dΓðqÞ
d3q

q0; ð9Þ

3κ ¼
Z

d3q
dΓðqÞ
d3q

q2: ð10Þ

dΓðqÞ
d3q is the differential probability per unit time for the heavy

quarkmomentum to change by q. It can also be interpreted as
the scattering rate of heavy quark via one-gluon exchange
with thermal partons per unit volume of momentum transfer
q. v is the heavy quark velocity. q0 and q are respectively the

energy and 3-momentum (magnitude) of the exchanged
gluon. The factor of 3 comes from assuming isotropicity
of the momentum-diffusion coefficient, which is valid if the
heavy quark under consideration is assumed to be static and
the background magnetic field is weak.
Beyond the case of static heavy quarks, the motion of the

HQ along a particular direction leads to the generalized
Langevin equations:

dpi

dt
¼ ξiðtÞ−ηDpi; hξiðtÞξjðt0Þi¼ κijðpÞδðt− t0Þ; ð11Þ

where κijðpÞ ¼ κLðpÞ bpi bpj þκTðpÞðδij − bpi bpjÞ. κL and κT
are the longitudinal and transverse momentum-diffusion
coefficients, respectively. The direction of HQ velocity
defines an anisotropy direction, and the momentum-
diffusion coefficient breaks into longitudinal and transverse
components as 3κ → κL þ 2κT . The factor of 2 reflects the
fact that there are two equivalent transverse directions:

κL ¼
Z

d3q
dΓðqÞ
d3q

q2L; ð12Þ

κT ¼ 1

2

Z
d3q

dΓðqÞ
d3q

q2T: ð13Þ

The HQ momentum can be diffused via collisions, in the
direction of HQ momentum and also transverse to it, of
which, κL and κT , respectively, are quantitative measures.
κL and κT will separately satisfy Einstein relations as
follows:

ðηDÞL ¼ κL
2MQT

; ðηDÞT ¼ κT
2MQT

: ð14Þ

B. Kinematics with a finite magnetic field

The presence of a magnetic field introduces an additional
scale in the system. In this work, the strength of the
magnetic field is considered to be weak; that is, the scale
hierarchy satisfies MQ ≫ T ≫ eB=T. The direction of the
external magnetic field causes an anisotropy in the momen-
tum-diffusion coefficients, similar to what was discussed
earlier. Considering the case of static HQ and taking the
direction of the external magnetic field to be along ẑ
direction, one obtains the following Langevin equations
corresponding to directions parallel and perpendicular to
the magnetic field [50]:

dpz

dt
¼ −ðηDÞkpz þ ξz; hξzðtÞξzðt0Þi ¼ κkðpÞδðt − t0Þ;

ð15Þ

dp⊥
dt

¼ −ðηDÞ⊥p⊥ þ ξ⊥; hξ⊥ðtÞξ⊥ðt0Þi ¼ κ⊥ðpÞδðt− t0Þ;
ð16Þ
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where ηz and η⊥ are the components of random forces
parallel and perpendicular to B, respectively, and the
momentum-diffusion coefficients are obtained as

κk ¼
Z

d3q
dΓðEÞ
d3q

q2k; ð17Þ

κ⊥ ¼ 1

2

Z
d3q

dΓðEÞ
d3q

q⊥2: ð18Þ

The longitudinal and transverse drag and diffusion coef-
ficients separately satisfy fluctuation-dissipation relations,
as earlier:

ðηDÞk ¼
κk

2MQT
; ðηDÞ⊥ ¼ κ⊥

2MQT
: ð19Þ

Now, if the HQ also has a velocity along a certain direction,
then one needs to consider the interplay between the
directions of HQ velocity and magnetic field.

1. Case 1: v k B

In the first case, we consider the HQ velocity to be along
the direction of the magnetic field, so that, effectively, we
still have a single preferred direction in space (ẑ). Then, one
obtains the longitudinal and transverse momentum-
diffusion coefficients, respectively, as

κL ¼
Z

d3q
dΓðE; vÞ

d3q
q2z ; ð20Þ

κ⊥ ¼ 1

2

Z
d3q

dΓðE; vÞ
d3q

q⊥2: ð21Þ

2. Case 2: v ⊥ B

The HQ velocity could also be in a plane perpendicular
to B (i.e., the x-y plane). In such a case, one generally
defines three momentum-diffusion coefficients based on
the direction of momentum transfer, as

κ1 ¼
Z

d3q
dΓðE; vÞ

d3q
q2x; ð22Þ

κ2 ¼
Z

d3q
dΓðE; vÞ

d3q
q2y; ð23Þ

κ3 ¼
Z

d3q
dΓðE; vÞ

d3q
q2z : ð24Þ

As we shall see, the structure of integrations will be
different for the two cases.

III. PERTURBATIVE DETERMINATION
OF SCATTERING RATE Γ

As mentioned earlier, we consider Coulomb scattering of
the propagating heavy quark with the thermal quarks and
gluons. To leading order, these 2 → 2 processes are repre-
sented by the following tree-level Feynman diagrams. The
double line represents the heavy quark, whereas the thermal
light quark is represented by the single line. Γ calculated
using the tree-level diagrams in Fig. 1 turns out to be
quadratically infrared divergent, which corroborates with
thewell-known fact that the total rate of Coulomb scattering
in a plasma is quadratically infrared divergent [82]. Using a
resummed gluon propagator in Fig. 1 instead of a bare one
softens the divergence to a logarithmic one [55]. This arises
because the dynamical screening of the magnetic interaction
provided by the transverse effective propagator is not
sufficient to completely screen the divergence from the
long-range static magnetic interaction. However, the two
additional powers of q in Eq. (10) render κ infrared finite.
The presence of the logarithm reflects that Γ receives
contribution from both the soft and hard momentum
transfers. Soft processes involve q ∼ gT and occur at a rate
Γsoft ∼ g2T, whereas the relatively scarce hard processes
correspond to q ∼ T and occur at a rate Γhard ∼ g4T. In this
article, we shall be evaluating the soft contribution to Γ and,
therefore, to the heavy quark diffusion coefficient, since it
dominates over hard processes.
An efficient method of calculating the scattering rate was

put forward by Weldon [80], wherein Γ is evaluated from
the imaginary part of the heavy quark self-energy:

ΓðP≡E;vÞ

¼−
1

2E
½1−nFðEÞ�Tr½ðPþMQÞImΣðp0þ iϵ;pÞ�: ð25Þ

The imaginary part of the heavy quark self-energy is related
to the squared amplitude for Coulomb scattering processes
via the cutting rules, for the two-loop self-energy diagrams
shown in Fig. 2. This procedure automatically rules out
using one-loop self-energy diagrams, since the cut (imagi-
nary) parts of those diagrams correspond to processes
which do not conserve energy-momentum and, thus, are
unphysical [83]. The hard contribution to Γ comes from the
two-loop self-energy diagrams in Fig. 2. However, when

FIG. 1. Feynman diagrams of processes contributing to heavy
quark diffusion at leading order.
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the gluon momentum is soft, hard thermal loop corrections
to the gluon propagator contribute at leading order in the
strong coupling g and, therefore, must be resummed. The
resummed propagator is obtained by summing all possible
self-energy corrections proportional to g2T2 to the bare
propagator, as shown in Fig. 3. This is a geometric series
summation, where the second and third diagrams are
nominally of the order of g2T2. Similarly, the fourth and
fifth diagrams areOðg4T4Þ, and so on [55]. The self-energy
diagram, therefore, to be evaluated is the heavy quark self-
energy with resummed gluon propagator (Fig. 4). We use
the imaginary time formalism to compute the heavy quark
self-energy ΣðPÞ. Using Feynman rules, ΣðPÞ in a weak
background magnetic field is given by

ΣðPÞ ¼ ig2
Z

d4Q
ð2πÞ4D

μνðQÞγμSðP −QÞγν: ð26Þ

Since we work in the regime qB
MQ

≪ 1, we can ignore

Landau quantization of the heavy quark energy levels,

as has been done in [51], and write the heavy quark
propagator as

iSðP −Q≡ KÞ ¼ i
K þMQ

K2 −M2
Q
: ð27Þ

The effective gluon propagator in the presence of a weak
magnetic field is expressed as [84]

DμνðQÞ ¼ ξQμQν

Q4
þ ðQ2 − dÞΔμν

1

ðQ2 − bÞðQ2 − dÞ − a2
þ Δμν

2

Q2 − c

þ ðQ2 − bÞΔμν
3

ðQ2 − bÞðQ2 − dÞ − a2

þ aΔμν
4

ðQ2 − bÞðQ2 − dÞ − a2
; ð28Þ

where

bðQÞ ¼ Δμν
1 Πμν; ð29aÞ

cðQÞ ¼ Δμν
2 Πμν; ð29bÞ

dðQÞ ¼ Δμν
3 Πμν; ð29cÞ

aðQÞ ¼ 1

2
Δμν

4 Πμν: ð29dÞ

ΠμνðQÞ is the gluon self-energy computed within the
HTL approximation. Δμν

i are the projection tensors along
which the gluon self-energy and the effective gluon propa-
gator are expressed in the presence of a finite magnetic field,

FIG. 2. Cut (imaginary) part of heavy quark self-energy
diagrams yields the amplitude squared of t channel scattering
processes qH → qH and gH → gH.

=  + +

+ + +

FIG. 3. Resummed gluon propagator. In addition to the leading-order diagrams, resummation takes into account all higher-order
diagrams that contribute to leading order in g.

FIG. 4. HQ self-energy diagram with resummed gluon
propagator.
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details of which can be found in Appendix A. They are
expressed as

Δμν
1 ¼ 1

u2
ūμūν; ð30aÞ

Δμν
2 ¼ gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

; ð30bÞ

Δμν
3 ¼ n̄μn̄ν

n̄2
; ð30cÞ

Δμν
4 ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi

ū2
p ffiffiffiffiffi

n̄2
p : ð30dÞ

uμ is thevelocity of the heat bath, andnμ can be considered to
define the direction of the background magnetic field.
Evaluating the form factors bðQÞ, cðQÞ, dðQÞ, and aðQÞ
of Eq. (29) is akin to evaluating the effective gluon
propagator. The calculation of these form factors under
HTLapproximation, alongwith the other tensors in Eq. (30),
is detailed in Appendix B.
Following [52], we next evaluate the trace in Eq. (25):

Tr½ðPþMQÞΣðPÞ�

¼ ig2
Z

d4Q
ð2πÞ4

1

K2 −M2
Q

×
X4
i¼1

χiTr½ðPþMQÞΔμν
i γμðK þMQÞγν�: ð31Þ

Taking the gauge parameter ξ in Eq. (28) to be 0, the
coefficients χi’s are given by

χ1 ¼
ðQ2 − dÞ

ðQ2 − bÞðQ2 − dÞ − a2
; ð32aÞ

χ2 ¼
1

ðQ2 − cÞ ; ð32bÞ

χ3 ¼
ðQ2 − bÞ

ðQ2 − bÞðQ2 − dÞ − a2
; ð32cÞ

χ4 ¼
a

ðQ2 − bÞðQ2 − dÞ − a2
: ð32dÞ

It should be noted that the gauge can be fixed only when
the quantity being calculated is known to be gauge
invariant. In our case, the scattering rate Γ is known to
be gauge invariant in QED as well as in QCD, as described
in [55]. In fact, the soft and hard contributions to Γ are
separately gauge invariant and can be calculated in any
suitable gauge. In our case, we set ξ ¼ 0, which corre-
sponds to the Landau gauge.
We evaluate the individual traces in Eq. (31):

Tr½ðPþMQÞΔμν
1 γμðK þMQÞγν� ¼

4

ū2
½2ðP:ūÞðK:ūÞ þ ū2ðM2 − P:KÞ� ¼ A1 þ B1; ð33aÞ

Tr½ðPþMQÞΔμν
2 γμðK þMQÞγν� ¼ 4

�
2ðP:KÞ⊥ −

2ðP:QÞ⊥ðK:QÞ⊥
Q2⊥

þ ðM2 − P:KÞ
�
¼ A2 þ B2; ð33bÞ

Tr½ðPþMQÞΔμν
3 γμðK þMQÞγν� ¼

4

n̄2
½2ðP:n̄ÞðK:n̄Þ þ n̄2ðM2 − P:KÞ� ¼ A3 þ B3; ð33cÞ

Tr½ðPþMQÞΔμν
4 γμðK þMQÞγν� ¼

8ffiffiffiffiffi
n̄2

p ffiffiffiffiffi
ū2

p ½ðP:ūÞðK:n̄Þ þ ðP:n̄ÞðK:ūÞ þ ðū · n̄ÞðM2 − P:KÞ� ¼ A4 þ B4: ð33dÞ

The traces have been separated into q0-independent and
q0-dependent terms denoted by Ai and Bi, respectively;
i ¼ 1, 2, 3, 4. This is done to facilitate the frequency sum
over q0, as will be seen later. The condition required for

such a separation to be executed is that the transfer
momentum four-vector Qμ be spacelike, which is indeed
the case for t-channel scattering processes. The Ai’s and
Bi’s come out to be

A1 ¼ 4ð2p2
0 − p · qÞ; B1 ¼ −8p2

0

q20
q2

− 8
q20ðP:QÞ2
Q2q2

þ 16p0q0
P ·Q
q2

; ð34Þ

A2 ¼ 4

�
2fP2⊥ − ðP ·QÞ⊥g − p · qþ 2ðP:QÞ⊥fQ2⊥ − ðP:QÞ⊥g

Q2⊥

�
; B2 ¼ 4p0q0; ð35Þ
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A3 ¼
8

n̄2

�
p2
3 −

2p3q3
q2

ðp · qÞ þ q3
q2

ðp · qÞ2 − n̄2

2
ðp · qÞ

�
; B3 ¼ 4p0q0; ð36Þ

A4 ¼
16ffiffiffiffiffi
n̄2

p
�
−p0p3 þ

p0p3

q2
ðp · qÞ

�
¼ 16p0p3ffiffiffiffiffi

n̄2
p

�
p · q
q2

− 1

�
; ð37Þ

B4 ¼
16ffiffiffiffiffi
n̄2

p
�
p3q20p0

q2
−
p3q0
q2

ðp · qÞ − q20q3p0

Q2q2
ðp · qÞ þ q0q3

Q2q2
ðp · qÞ2

���
−
q20
q2

�
þ higher powers of

q20
q2

�
: ð38Þ

Next, we perform the frequency sum over q0. To that end, a
convenient method is to introduce spectral representations
for the propagators [85]. The fermion propagator is
spectrally represented as

1

K2 −M2
Q

¼ −
1

2E0

Z
β

0

dτ0ek0τ0 ½ð1 − nFðE0ÞÞe−E0τ0 − nFðE0ÞeE0τ0 �;

ð39Þ

where E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

Q

q
and β ¼ 1=T. Similarly, pieces of

the effective gluon propagator χi can be expressed as

χi ¼ −
Z

β

0

dτeq0τ
Z

∞

−∞
dωρiðω; qÞ½1þ nBðωÞ�e−ωτ: ð40Þ

ρi are the spectral functions associated with χi and are odd
functions of ω. Each spectral function contains contribu-
tions from both spacelike and timelike frequencies and is
expressed as

ρiðω; qÞ ¼ ρpolei ðω; qÞ þ ρcuti ðω; qÞ; ð41Þ

with

ρpolei ðω; qÞ ¼ ρresi δðω − ωiðqÞÞ; ð42Þ

ρcuti ðω; qÞ ¼ ρdisi θðq2 − ω2Þ: ð43Þ

Thus, the spectral functions have delta function contribu-
tions at the timelike points (poles) ω ¼ ωiðqÞ, where ωiðqÞ
are the dispersion relations and ρresi are the residues at those
points. For spacelike frequencies jωj < q, ρi’s receive a
discontinuous contribution from the imaginary part of the
resummed propagator (Landau damping):

ρdisi ðω; qÞ ¼ −
1

π
Imðχijq0¼ωþiϵÞ: ð44Þ

Since we work in the regime jωj < q, only the cut part in
Eq. (41) contributes and is denoted simply as ρ hereafter.
The calculation and final expressions of the ρi’s are given in
Appendix C. The advantage of the spectral function
representation is that it simplifies the evaluation of the
frequency sums due to the appearance of delta functions in
the integral, coming from

T
X
q0

eq0ðτ−τ0Þ ¼ δðτ − τ0Þ; ð45aÞ

T
X
q0

q0eq0ðτ−τ
0Þ ¼ δ0ðτ − τ0Þ: ð45bÞ

Using this, Eq. (31) becomes

Tr½ðPþMÞΣðPÞ� ¼ −ig2
Z

d4Q
ð2πÞ4

1

K2 −M2
Q

X4
i¼1

χi½Ai þ Bi�

¼ −g2T
X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�

Z
β

0

dτ0
Z

β

0

dτep0τ
0
e−ωτ

×
X
q0

eq0ðτ−τ0Þ½Ai þ Bi�
ρiðω; qÞ
2E0 ½f1 − nFðE0Þge−E0τ0 − nFðE0ÞeE0

τ0�

¼ −g2T
X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�ðI1 þ I2Þ; ð46Þ
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where, using Eq. (45a),

I1 ¼
Z

β

0

dτ0
Z

β

0

dτep0τ
0
e−ωτAiδðτ − τ0Þ ρiðω; qÞ

2E0 ½f1 − nFðE0Þge−E0τ0 − nFðE0ÞeE0
τ0�: ð47Þ

We use the δ function to integrate over τ0 to obtain

I1 ¼
Z

β

0

dτeðp0−ωÞτ ρiðω; qÞ
2E0 ½f1 − nFðE0Þge−E0τ − nFðE0ÞeE0τ�Ai: ð48Þ

The τ integration ultimately yields

I1 ¼ −
X
j¼�1

jnFðjE0Þ
p0 − ωþ jE0 ½eðp0−ωþjE0Þβ − 1�Ai: ð49Þ

Since Bi is q0 dependent, a sample term can be written as Bi ¼ q0Ci. Then, using Eq. (45b) yields

I2 ¼
Z

β

0

dτ0
Z

β

0

dτep0τ
0
e−ωτ

X
i

Ciδ
0ðτ − τ0Þ ρiðω; qÞ

2E0 ½f1 − nFðE0Þge−E0τ0 − nFðE0ÞeE0τ0 �

¼ −
Z

β

0

dτ
d
dτ

eðp0−ωÞτ½f1 − nFðE0Þge−E0τ − nFðE0ÞeE0τ�Ci

¼
X
j¼�1

jnFðjE0Þ½eðpo−ωþjE0Þβ − 1�Ci: ð50Þ

p0 is discrete, since we are working in the imaginary time formalism. Specifically, p0 ¼ ið2nþ 1Þπ=β. At these discrete
energies, ep0β ¼ −1, and p0 thus gets eliminated from the exponent in Eqs. (49) and (50). Thereafter, we analytically
continue p0 to real values via p0 → Eþ iω. The imaginary part is then extracted, which comes from energy denominator
terms of the form

Im

�
1

p0 þ E0 − ω

�				
p0→Eþiω

¼ −iπδðp0 þ E0 − ωÞ: ð51Þ

Since there is no energy denominator in Eq. (50), I2 does not have any imaginary part, and the contribution to the imaginary
part of the self-energy thus comes solely from I1. Using Eqs. (46), (49), and (51), we can write

Tr½ðPþMQÞImΣðp0 þ iϵ; pÞ� ¼ πg2
X4
i¼1

Z
d3q
ð2πÞ3

Z
∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0

×
X
j¼�1

jnFðσE0ÞðeðσE0−ωÞβ þ 1ÞδðEþ jE0 − ωÞ

¼ πg2ðe−Eβ þ 1Þ
X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0

×
X
j¼�1

jnFðjE0ÞδðEþ jE0 − ωÞ: ð52Þ

Thus, using all the results, Γ in Eq. (25) is given by

ΓðE;vÞ ¼ −
πg2

2E

X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0
X
j¼�1

jnFðjE0ÞδðEþ jE0 − ωÞ: ð53Þ
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We now simplify the above expression further by recalling thatMQ, p ≫ T. The delta function corresponding to j ¼ 1 does
not contribute for ω ≤ T and so can be dropped. For E0 ≫ T, the Fermi distribution function is exponentially suppressed,
so that nFðE0Þ ≈ 0. Employing these approximations, we have

ΓðE;vÞ ¼ πg2

2E

X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E0 δðE − E0 − ωÞ: ð54Þ

Furthermore, we have

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − qÞ2 þM2

Q

q
≃ E

�
1 −

2p · q
E2

�
1=2

≃ E − v · q: ð55Þ

Although E − E0 ∼OðvÞ, 1
E −

1
E0 ∼Oðv2Þ, which we ne-

glect. So, 1
E ≈

1
E0. Thus, we obtain

ΓðE;vÞ ¼ πg2

2E

X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAi

2E

× δðω−v · qÞ: ð56Þ

IV. ENERGY LOSS ANDMOMENTUM-DIFFUSION
COEFFICIENTS

A. Case 1: v k B

After having computed Γ, we use it to evaluate dynamic
quantities such as the heavy quark energy loss and the
momentum-diffusion coefficient. The HQ velocity points
along B, which, in turn, is taken to be of constant
magnitude and pointing along ẑ. The energy loss of the
heavy quark propagating through the high-temperature
QCD plasma is given by Eq. (9). Using Eq. (54) and the
approximations mentioned above, we get for the energy
loss

dE
dx

¼ πg2

2Ev

X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω½1þ nBðωÞ�ω

ρiðω; qÞAk
i

2E

× δðω − v · qÞ; ð57Þ

where Ak
i are the Ai from Eqs. (34)–(37) evaluated with

v⊥ ¼ 0. For ω ≪ T, the Bose distribution function can be
written as an expansion in ω=T so that

1þ nBðωÞ ≃
T
ω
þ 1

2
−O

�
ω

T

�
þO

�
ω

T

�
2

− � � � : ð58Þ

Now, the ρi’s in Eq. (57) are odd functions of ω [86].
Hence, only the even part of 1þ nBðωÞ will contribute to
the integral, since the integration over ω is symmetric.
Thus, we have

dE
dx

¼ πg2

8E2v

X4
i¼1

Z
d3q
ð2πÞ3

Z þ∞

−∞
dω ωρiðω; qÞAk

i δðω−v · qÞ:

ð59Þ

The momentum-diffusion coefficients are given by

κL ¼ πg2

2E

X4
i¼1

Z
d3q
ð2πÞ3 q

2
L

Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAk
i

2E

× δðω − v · qÞ; ð60Þ

κT ¼ πg2

2E

X4
i¼1

Z
d3q
ð2πÞ3 q

2
T

Z þ∞

−∞
dω½1þ nBðωÞ�

ρiðω; qÞAk
i

2E

× δðω − v · qÞ: ð61Þ

This time, only the odd part of 1þ nBðωÞ will contribute to
the integral. Thus, we have

κL ¼
πg2T
4E2

X4
i¼1

Z
d3q
ð2πÞ3q

2
L

Z þ∞

−∞
dω

ρiðω;qÞAk
i

ω
δðω−v ·qÞ;

ð62Þ

κT ¼
πg2T
4E2

X4
i¼1

Z
d3q
ð2πÞ3 q

2
T

Z þ∞

−∞
dω

ρiðω;qÞAk
i

ω
δðω−v · qÞ:

ð63Þ

Because the HQ velocity points along B (hence, along ẑ),
we have v · q ¼ vq cos θ≡ vqη, where θ is both the angle
between q and the v as well as the polar angle of
integration. The delta function is then used to integrate
over η with d3q ¼ 2πq2dqdη, which sets ω ¼ vqη.
Since − 1 ≤ η ≤ 1, −vq ≤ ω ≤ vq. This finally leads to

dE
dx

¼ πg2

8E2v2ð2πÞ2
Z

dqq
Z

vq

−vq
dω ω

X4
i¼1

ρi

�
ω; q;

ω

vq

�
Ak
i ;

ð64Þ

κL ¼ πg2T
4E2v

Z
dqq3

Z
vq

−vq
dω

X4
i¼1

ρi


ω; q; ω

vq

�
Ak
i

ω

�
ω2

v2q2

�
;

ð65Þ
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κT ¼
πg2T
4E2v

Z
dqq3

Z
vq

−vq
dω

X4
i¼1

ρi


ω;q; ωvq

�
Ak
i

ω

�
1−

ω2

v2q2

�
:

ð66Þ

B. Case 2: v ⊥ B

The HQ velocity now lies in the x-y plane, with the
magnetic field pointing in the ẑ direction as earlier. Since v
is no longer oriented along the z axis, v · q is not trivial. The
direction of HQ velocity in the x-y plane can be specified
by the azimuthal angle ϕ0 (the polar angle θ0 ¼ 0, as it is in
the x-y plane). The vector q is specified by q, θ, and ϕ (our
integration variables), where θ is the polar angle and ϕ is
the azimuthal angle. Then,

v · q ¼ vq sin θ cosðϕ − ϕ0Þ; ð67Þ

where v ¼ jvj, q ¼ jqj. The interaction rate becomes1

ΓðE;vÞ ¼ πg2

4E2ð2πÞ3
X4
i¼1

Z
dq

Z
π

0

dθ sin θ

×
Z

2π

0

dϕ
Z þ∞

−∞
dω½1þ nBðωÞ�

× ρiðω; qÞA⊥
i δ½ω − vq sin θ cosðϕ − ϕ0Þ�; ð68Þ

where A⊥
i are the Ai from Eqs. (34)–(37) evaluated

with vz ¼ 0. We introduce a variable y ¼ ϕ − ϕ0. Γ then
simplifies to

ΓðE;vÞ ¼ g2

32E2vπ2

Z
dqq

Z
π

0

dθ sin θ δ

�
sin θ −

ω

vq cos y

�

×
Z

2π−ϕ0

−ϕ0

dy
cosy

Z þ∞

−∞
dω½1þ nBðωÞ�

×
X4
i¼1

A⊥
i ρiðω; qÞ: ð69Þ

We use the resultZ
π

0

dθ sinθδðsinθ− cÞ ¼ 2cffiffiffiffiffiffiffiffiffiffiffiffi
1− c2

p ΘðcÞΘð1− cÞ; c∈R;

ð70Þ

to integrate over θ. The Θ function sets

0 ≤
ω

vq cos y
≤ 1;

0 ≤ ω ≤ vq cos y: ð71Þ

Γ then finally becomes

ΓðE;vÞ¼ g2

16E2vπ2

Z
dq

Z
2π−ϕ0

−ϕ0
dy

Z
vqcosy

0

dω

×
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2q2cos2y=ω2−1
p ½1þnBðωÞ�

cosy

X4
i¼1

A⊥
i ρiðω;qÞ:

ð72Þ
From Eqs. (22)–(24), the momentum-diffusion coefficients
are obtained as

κ1 ¼
g2

16E2v3π2

Z
dq

Z
2π−ϕ0

−ϕ0
dy

Z
vq cos y

0

dω

×
ω3 cos2ðyþ ϕ0Þ½1þ nBðωÞ�
cos3 y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 cos2 y − ω2

p X4
i¼1

A⊥
i ρiðω; qÞ; ð73Þ

κ2 ¼
g2

16E2v3π2

Z
dq

Z
2π−ϕ0

−ϕ0
dy

Z
vq cos y

0

dω

×
ω3 sin2ðyþ ϕ0Þ½1þ nBðωÞ�
cos3 y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 cos2 y − ω2

p X4
i¼1

A⊥
i ρiðω; qÞ; ð74Þ

κ3 ¼
g2

16E2v3π2

Z
dq

Z
2π−ϕ0

−ϕ0
dy

Z
vq cos y

0

dω

×
qω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 cos2 y − ω2

p
½1þ nBðωÞ�

cos3 y

X4
i¼1

A⊥
i ρiðω; qÞ:

ð75Þ

Also, the HQ energy loss [from Eq. (9)] comes out to be

dE=dx ¼ g2

16E2v2π2

Z
dq

Z
2π−ϕ0

−ϕ0
dy

Z
vq cos y

0

dω

×
ω2q½1þ nBðωÞ�

cos y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2q2 cos2 y − ω2

p X4
i¼1

A⊥
i ρiðω; qÞ: ð76Þ

V. RESULTS AND DISCUSSIONS

In this section, we present the results of the heavy quark
(charm and bottom) momentum-diffusion coefficients and
the heavy quark energy loss. The running coupling constant
is taken up to one loop:

gðΛÞ ¼

2
664 48π2

ð33 − 2NfÞ ln
�

Λ2

Λ2

MS

�
3
775
1=2

: ð77Þ

The renormalization scale Λ can be taken to be 2πT to
introduce temperature dependence in the coupling. The MS
scale is taken to be 176 MeV [87]. The use of this form of
the coupling is justified, since qfB ≪ T2. In the strong field
limit, use of momentum-dependent couplings might be1The limits of the q integration are discussed in the next section.
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more appropriate [88]. The bottom and charm quark masses
are taken to be 4.18 and 1.28 GeV, respectively. The HQ
momentum is taken to be p ¼ 0.3 GeV. Heavy quark
dynamics with temperature-dependent couplings was stud-
ied first in [60].
An important point to note is that the integrals in

Eqs. (64)–(66) are logarithmically UV divergent and,
hence, require a UV cutoff. Following the prescription
of [89], we take the UV cutoff to be 3.1Tg1=3. The reason
for this divergence is that our calculations are confined to
the region of soft gauge boson momentum transfer. In the
B ¼ 0 case, it is shown explicitly that the dependence on
this cutoff vanishes once the full range of momentum
transfers is taken into account. We expect the same to be
true in the case of weak magnetic fields, too. However, the
full calculation, including hard scatterings, is left for future
work. As mentioned earlier, the soft scatterings contribute
toOðgðTÞ2Þ in Γ, whereas the hard contribution to Γwill be
of OðgðTÞ4Þ. As such, it can be inferred that the major
contribution to the momentum diffusion of the HQ via
elastic scatterings comes from soft gluon exchange with the
thermal quarks and gluons of the heat bath. It is also worth
mentioning that this UV cutoff is not necessary if one uses
the lowest Landau level approximation for the HQ propa-
gator in the presence of a strong (qfB ≫ T2) magnetic
field, because of the appearence of the exponential factor
e−k

2⊥=jqfBj in the HQ propagator.

A. Case 1: v k B

Figures 5 and 6 show the temperature variation of the
momentum-diffusion coefficients (κL=T) for heavy quarks at
a fixed momentum [p ¼ 0.3 GeV]. For comparison, the
B ¼ 0 results are also shown in Fig. 6. As can be seen
from Figs. 5(a) and 5(b), both the longitudinal and trans-
verse momentum-diffusion coefficients show a monotonic
decreasewith temperature. For bottom quark, themagnitude

of the longitudinal component is ∼1.5 times larger than its
transverse counterpart in the entire temperature range. For
the charm quark, κL=κT is much larger (∼2) at lower
temperatures than at higher temperatures (∼1.5). The figures
also show the behavior of the coefficients with magnetic
field. κT (normalized) for both the heavy flavors show very
little sensitivity to changes in the magnetic field. In the case
of κL, there is a strong dependence on B strength for the
charmquark,which increaseswith decreasing field strength.
For the bottomquark, however, both κL and κT decreasewith
decreasing B. Figure 6 shows the B ¼ 0 result for the
momentum-diffusion coefficients. The momentum diffu-
sion of charm quarks is faster than that of the bottom quark,
owing to the smaller mass of the former. κT is larger than κL
in the entire temperature range, for both the heavy flavors.
Also, the degree of anisotropy is negligible in the case of the
bottom quark, whereas it is discernible in the case of the

FIG. 5. Normalized momentum-diffusion coefficients for bottom (a) and charm (b) quarks as a function of temperature at different
fixed values of background magnetic field.

FIG. 6. Normalized transverse and longitudinal momentum-
diffusion coefficients for both charm and bottom quarks as a
function of temperature in the absence of a background
magnetic field.
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charm quark. A large value of the momentum-diffusion
coefficientwouldwork toward decreasing theyield of bound
states such as the J=ψ (charmonium), bottomonium, etc.,
the Brownian motion of the heavy quarks overwhelming the
screened potential holding the q − q̄ pair together. On the
other hand, a stronger energy loss, dE=dx, of the propa-
gatingHQwould result in the stopping of aq − q̄ pair (not so
much for b − b̄), leading to the increase in yield of mesonic
bound states involving heavy quarks. The fate of aq − q̄ pair
produced in the initial stages of a heavy-ion collision, thus,
depends on these competing factors. This phenomenon has
been elucidated in detail in [90].
Figure 7(a) shows the temperature variation of the HQ

(bottom and charm) energy loss in the presence of a weak
constant background field. In contrast to the momentum-
diffusion coefficients, the energy loss records an increasing
trend with temperature. The sensitivity of the energy loss to
temperature is greater for the charm quark because of its
smaller mass as compared to the bottom quark. The
sensitivity to magnetic field is also greater for the charm
quark compared to the bottom quark, which is reflected in
Fig. 7(a) by the discernible curves at eB ¼ 0.05m2

π and
eB ¼ 0.1m2

π . With regards to variation of HQ energy loss
with magnetic field, the charm quark again records an
opposite trend compared to the bottom quark, wherein the
former decreases with increasing B, while the latter
increases. Figure 7(b) shows the variation of HQ energy
loss with temperature in the absence of a background
magnetic field. The temperature variation is the same as in
the finite B case, with both the magnitude as well as the rate
of increase being greater for the charm quark. Again, this
can be attributed to the lighter mass of the charm quark
compared to the bottom.

B. Case 2: v ⊥ B

In the case of v ⊥ B, we have three momentum-diffusion
coefficients κ1, κ2, and κ3. In Figs. 8(a) and 8(b), we show

the variation of κ1, κ2, and κ3 with T at fixed values of the
background magnetic field strength. For both the charm
and bottom quarks, the κ1 coefficient magnitude is signifi-
cantly larger (∼2 times) than κ2 and κ3. Also, like in the
v k B case, the charm quark coefficients are larger in
magnitude than their bottom quark counterparts. Overall,
the momentum-diffusion coefficients are smaller in mag-
nitude than in the case of v k B. Figures 8(c) and 8(d) focus
on the effect of magnetic field strength on the temperature
variation of charm and bottom quark momentum-diffusion
coefficients, respectively. As is evident, the curves corre-
sponding to different magnetic field strengths almost
overlap. The variation with magnetic field strength is very
feeble (∼0.1%) for both the charm and bottom quarks. The
momentum-diffusion coefficients in this case are, therefore,
much less sensitive to changes in magnetic field strength
compared to the v k B case.
To specify the direction of HQ velocity, one needs to fix

thevalue ofϕ0. Figures 8–10have beenobtainedwithϕ0 ¼ 0.
From Eqs. (73) and (74), one can see that setting ϕ0 ¼ π=2
leads to the following condition on the integrands2:

κ1ðϕ0 ¼ π=2Þ ¼ κ2ðϕ0 ¼ 0Þ;
κ2ðϕ0 ¼ π=2Þ ¼ κ1ðϕ0 ¼ 0Þ: ð78Þ

The condition (78) can be seen in Figs. 9(a) and 9(b), where
the blue and green curves are interchanged. It should be
pointed out that this happens primarily because of the factors
cos2ðyþ ϕ0Þ and sin2ðyþ ϕ0Þ in the κ1 and κ2 integrals

FIG. 7. (a) Energy loss of heavy quark as a function of temperature in the presence of fixed values of background magnetic field of
strengths. (b) Energy loss of heavy quarks in the absence of a background magnetic field.

2The limits of y integration are ϕ0 dependent, which also
change as one changes ϕ0. Thus, strictly, the equality in Eq. (78)
holds only for the integrand, not for the integral. However, the
value of the integral depends very weakly on the limits of the y
integration, so that the final numerical values postintegration
satisfy Eq. (78) up to five significant figures after the decimal
point.
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[Eqs. (73) and (74)]. Physically, ϕ0 ¼ 0 and ϕ0 ¼ π=2
correspond to the HQ velocity pointing toward þx̂ and
þŷ, respectively. Also, κ is a measure of mean squared
momentum transfer between the HQ and the light thermal
particles of the medium [56], so that κ1=2=3 [as defined in

Eqs. (22)–(24)] is a measure of the mean square of the x=y=z
component of the transfermomentum.One can observe from
Figs. 9(a) and 9(b) that, when the HQ velocity points purely
in the þx̂ direction (ϕ0 ¼ 0), κ1 is the largest. Similarly,
when v points along þŷ (ϕ0 ¼ π=2), κ2 is the largest.

FIG. 8. (a) Temperature variation of normalized momentum-diffusion coefficients of both bottom and charm quarks at eB ¼ 0.1m2
π .

(b) The same as (a) but at eB ¼ 0.05m2
π . (c) Temperature variation of charm quark normalized momentum-diffusion coefficients at

different values of magnetic field strength. (d) The same as (c) but for the bottom quark.

FIG. 9. ϕ0 dependence of κ’s. (a) Momentum-diffusion coefficients of both charm and bottom quarks at ϕ0 ¼ 0 and eB ¼ 0.1m2
π .

(b) Momentum-diffusion coefficients of both charm and bottom quarks at ϕ0 ¼ π=2 and eB ¼ 0.1m2
π .
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This suggests that the momentum transfer between the HQ
and themediumhappens preferentially along the direction of
HQ velocity.
Figure 10 shows the variation of energy loss of both

charm and bottom quarks with T and also their dependence
on magnetic field strength. Similar to case 1, the energy
loss is an increasing function of T, where both the
magnitude and the rate of increase are greater for the
charm quark, compared to bottom quark. Compared to case
1, the sensitivity to changes in magnetic field strength is
smaller; the charm quark values decrease by an average of
2.45% as one goes from eB ¼ 0.1m2

π to eB ¼ 0.05m2
π ,

while the corresponding value for the bottom quark is
2.74%. Compared to the case of v k B, the charm quark
energy loss for v ⊥ B is on an average smaller by 76.8%.
The bottom quark values for case 2 are also smaller than
those of case 1, on an average, by 94.3%.

VI. APPLICATION: SPATIAL
DIFFUSION COEFFICIENT

As mentioned in Sec. II, the drag coefficient η can be
obtained from the momentum-diffusion coefficient via the
fluctuation dissipation relation:

ηD ¼ κ

2MQT
: ð79Þ

The zero momentum value of the drag coefficient is then
obtained from the zero momentum value of the momentum-
diffusion coefficient:

ηDðp ¼ 0Þ ¼ κðp ¼ 0Þ
2MQT

: ð80Þ

The spatial diffusion coefficient Ds can be defined via
ηDðp ¼ 0Þ as [12]

Ds ¼
T

ηDðp ¼ 0ÞMq
: ð81Þ

To evaluate κðp ¼ 0Þ, we execute p ¼ 0 in the delta
functions of Eqs. (62) and (63), which leads to ω ¼ 0.
So, we have to calculate the momentum-diffusion coef-
ficients in the ω → 0 limit:

X4
i¼1

ρiðω; qÞAiðω; qÞ
ω

				
ω→0

¼ A1ρ1
ω

				
ω→0

: ð82Þ

All other terms vanish due to either the Ai’s or ρi’s
vanishing in the ω → 0 limit. Finally, we are left with

κL ¼ 1

2

πg2T
4M2

Qð2πÞ2
Z

qmax

0

dq
Z

π

0

dθ
A1ðω ¼ 0Þq4

π½q4 þ q2Rebðω ¼ 0Þ�2

× ðq4 sin3 θÞ Imb

ω

				
ω→0

; ð83Þ

κT ¼ πg2T
4M2

Qð2πÞ2
Z

qmax

0

dq
Z

π

0

dθ
A1ðω ¼ 0Þq4

π½q4 þ q2Rebðω ¼ 0Þ�2

× ðq4 sin θ cos2 θÞ Imb

ω

				
ω→0

: ð84Þ

The important thing to note is that A1ðω ¼ 0Þ ¼ M2
Q and,

hence, the HQ mass dependence vanishes in κL and κT .
Thus, we expect the momentum-diffusion coefficient val-
ues for the charm and bottom quarks to be identical.
Themomentum-diffusion coefficient curves for the charm

and bottom quarks overlap, as expected (Fig. 11). However,
the longitudinal and transverse components are also indis-
tinguishable. Hence, when the heavy quarks are static, the
momentum diffusion of HQ is isotropic, even in the presence
of a background magnetic field.
The case is similar for the spatial diffusion coefficientDs

as well. From Eqs. (80) and (81), it can be seen that the HQ

FIG. 10. Energy loss of both bottom and charm quarks at
different values of background magnetic field strengths. FIG. 11. Normalized transverse and longitudinal momentum-

diffusion coefficients in the static limit (ω → 0) for both charm
and bottom quarks as a function of temperature in the presence
and absence of a background magnetic field.
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mass dependence cancels in Ds. In fact, this is one of the
reasons why HQ diffusion is believed to carry generic
information about the QCD medium.
Figure 12 shows the variation of the scaled spatial

diffusion coefficient (2πTDs) with temperature in the pres-
ence of a backgroundmagnetic field of strength eB ¼ 0.1m2

π .
For comparison, the B ¼ 0 curve is also plotted. The curves
corresponding to the charm and bottom quarks overlap, as
expected. As can be seen, the spatial diffusion coefficient
decreases in the presence of a magnetic field. This simply
means that the mean squared momentum transfer per unit
time between the HQ and the light partons (of which κ is a
measure) increases in the presence of a weak magnetic field,
compared toB ¼ 0. The increasing trendwith temperature is
similar to what has been observed in several pQCD leading-
order studies in the past, with both T-dependent and
T-independent couplings [13,56,90].

VII. SUMMARY AND CONCLUSIONS

In this work, we have investigated the dynamics of heavy
quarks, viz. charm and bottom in the presence of a weak
background magnetic field. In particular, we have calcu-
lated the momentum-diffusion coefficients and the energy
loss perturbatively up to first order in the strong coupling
αs. The interaction rate is calculated by considering 2 → 2
elastic collisions of the form Qq → Qq and Qg → Qg, by
calculating the imaginary part of the heavy-quark self-
energy which is related to the squared matrix elements of
the aforementioned collisional processes via the cutting
rules. Gluon bremsstrahlung and Compton scattering proc-
esses are neglected, since the former contributes only at
higher order in αs and the contribution of the latter is
suppressed by powers ofMQ=T. There is a logarithmic UV
divergence present in the results of both the momentum-
diffusion coefficients and the energy loss. This is due to the

fact that, in this work, as a first attempt, we have calculated
the contribution to the dynamical quantities arising out of
only soft gluon exchange. It should, however, be remem-
bered that the interaction rate is indeed dominated by
processes involving soft gluon exchanges and hard scatter-
ings contribute only at higher orders. In future, we shall
include the hard scatterings, too, to get rid of the afore-
mentioned UV cutoff.
We have investigated the temperature dependence of the

momentum diffusion coefficients and energy loss for both
the heavy flavors, for two cases: (1) v k B and (2) v ⊥ B.
In the former case, we define two momentum-diffusion
coefficients κL and κT , whereas in the latter, we have three
such coefficients: κ1, κ2, and κ3. The temperature behavior
of all the coefficients is similar in that the normalized
coefficient magnitudes decrease with T.
For case 1, κT for both the flavors decreases with T at the

same rate, while κL decreases faster for charm. For the
values of magnetic fields considered, the sensitivity of
charm quark diffusion coefficients to the magnetic field is
found to be greater than that of the bottom quark, possibly
owing to the larger mass of the former. Furthermore, the
effect of increasing the magnetic field strength seems to
have the opposite effects on the magnitudes of the
charm and bottom diffusion coefficients; while the former
decreases, the latter records an increase. For comparison,
the B ¼ 0 results of the momentum-diffusion coefficient
(κ) have also been shown. It can be seen that the degree of
anisotropy is much larger for the charm quark than that of
the bottom quark, which suggests that the mass of the
heavy quark under consideration plays a strong role in
determining the isotropicity of κ. For each of the flavors,
κL=T3 is found to be more sensitive to the magnetic field
strength as compared to κT=T3. The heavy flavor energy
loss is an increasing function of the temperature, in both the
presence and absence of a background magnetic field.
Again, owing to its lighter mass, the sensitivity to both
temperature and magnetic field is greater for the charm
quark, whereas for the bottom quark, the curves corre-
sponding to different magnetic fields almost overlap. The
B ¼ 0 results are similar with the rate of increase of the
charm quark energy loss being steeper.
For case 2, we observe certain similarities as well as

differences vis-à-vis observations of case 1. For instance,
similar to case 1, the rate of variation of κwithT is greater for
charm, compared to bottom. Sensitivity of coefficient mag-
nitudes to magnetic field strength is, however, much less for
both the flavors in comparison with case 1. For both the
flavors, κ2 and κ3 magnitudes, for ϕ0 ¼ 0, are almost similar
for the entire temperature range (the similarity is more for
bottom), which, in turn, is significantly less than the κ1
values. Thus, for ϕ0 ¼ 0, we have jκ1=T3j > jκ2=T3j≈
jκ3=T3j. Similarly, for ϕ0 ¼ π=2, we obtain jκ2=T3j >
jκ1=T3j ≈ jκ3=T3j. Suchahierarchy in coefficientmagnitudes,
where twoof the coefficients are almost of the samemagnitude,

FIG. 12. Spatial diffusion coefficient Ds (multiplied with 2πT)
as a function of temperature in the presence and absence of a
background weak magnetic field.
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which, in turn, are significantly different from the third, is also
seen in [52]. The HQ energy loss exhibits a significant
reduction in magnitude in comparison to case 1. The charm
quark energy loss is on average smaller by 76.8%, whereas the
bottom quark values for case 2 are smaller than those of case 1,
on average, by 94.3%. Similar to case 1, however, the rate of
increase of energy loss with T is significantly larger for the
charm quark, as compared to the bottom quark.
We have also looked at the p ¼ 0 (static limit) results of

momentum-diffusion coefficients of the heavy quarks and
found that the anisotropy in κ completely vanishes in the
said limit. Using this, we have looked at the spatial
diffusion (Ds) of HQ. Interestingly, the HQ mass depend-
ence cancels out in both κðp ¼ 0Þ and Ds.
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APPENDIX A: TENSOR STRUCTURE
OF RESUMMED GLUON PROPAGATOR

IN THE PRESENCE OF A MAGNETIC FIELD

We begin by discussing the four-vectors that characterize
the system under consideration. The fluid 4-velocity in
local rest frame (LRF) and the metric tensor is given by

uμ ¼ ð1; 0; 0; 0Þ; gμν ¼ diagð1;−1;−1;−1Þ: ðA1Þ

The direction of the external magnetic field is specified by
the projection of the EM field tensor Fμν along uμ:

nμ ¼
1

2B
ϵμνρλuνFρλ ¼ ð0; 0; 0; 1Þ: ðA2Þ

Introduction of these four-vectors allows one to define a
Lorentz-invariant energy and momentum component as

q0 ¼ q0 ¼ Q · u; q3 ¼ −q3 ¼ Q · n: ðA3Þ

We define parallel and perpendicular components of
vectors and the metric tensor in the LRF as

Qμ
k ¼ ðQ:uÞuμ þ ðQ · nÞnμ ¼ ðq0; 0; 0; q3Þ; ðA4Þ

Qμ
⊥ ¼ Qμ −Qμ

k ¼ ð0; q1; q2; 0Þ; ðA5Þ

Q2
k ¼ q20 − q23; Q

2⊥ ¼ −ðq21 þ q23Þ ¼ −q2⊥; ðA6Þ

gμνk ¼ uμuν − nμnν ¼ diagð1; 0; 0 − 1Þ; ðA7Þ

gμν⊥ ¼ gμν − gμνk ¼ diagð0;−1;−1; 0Þ: ðA8Þ

One can further redefine uμ and nμ, respectively, as

ūμ ¼ uμ −
ðQ · uÞQμ

Q2
¼ uμ −

q0Qμ

Q2
; ðA9Þ

n̄μ ¼ nμ −
ðQ̃ · nÞQ̃μ

Q̃2
¼ nμ −

q3Qμ

q2
þ q0q3uμ

q2
; ðA10Þ

where Q̃μ ¼ Qμ − ðQ · uÞ. ūμ and n̄μ so defined are
orthogonal to Qμ and Q̃μ, respectively. In the presence
of a magnetic field, a set of basis tensors that are mutually
orthogonal, can be constructed out of the four-vectors
mentioned above:

Δμν
1 ¼ ūμūν

ū2
; ðA11Þ

Δμν
2 ¼ gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

; ðA12Þ

Δμν
3 ¼ n̄μn̄ν

n̄2
; ðA13Þ

Δμν
4 ¼ ūμn̄ν þ ūνn̄μffiffiffiffiffi

ū2
p ffiffiffiffiffi

n̄2
p : ðA14Þ

These tensors satisfy the following properties:

ðΔ4ÞμρðΔ4Þρν ¼ ðΔ1Þμν þ ðΔ3Þμν ; ðA15Þ

ðΔkÞμρðΔ4Þρν þ ðΔ4ÞμρðΔkÞρν ¼ ðΔ4Þμν ; ðA16Þ

ðΔ2ÞμρðΔ4Þρν ¼ ðΔ4ÞμρðΔ2Þρν ¼ 0: ðA17Þ

Any second-rank tensor can be expanded in terms of
these basis tensors. As such, the gluon self-energy can
be written as

Πμνðq0; qÞ ¼ bðq0; qÞΔμν
1 þ cðq0; qÞΔμν

2 þ dðq0; qÞΔμν
3

þ aðq0; qÞΔμν
4 ; ðA18Þ

where, b, c, d, and a are Lorentz-invariant form factors.
The Schwinger-Dyson equation relates the bare propagator,
resummed propagator, and the self-energy of the particle
under consideration. For the gluon propagator, we have

D−1
μν ¼ D0

μν − Πμν; ðA19Þ

where D0
μν is the bare gluon propagator. We recall that any

rank-2 tensor (and its inverse) can be written in terms of the
basis tensors Δ0

is. Then, using Eqs. (A18) and (A19) and
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the fact that D−1
μρDρν ¼ gνμ, we can derive the structure of

the resummed gluon propagator as mentioned in Eq. (28).

APPENDIX B: FORM FACTORS IN A WEAK
MAGNETIC FIELD

The fermion propagator in a weak background magnetic
field is written as a series expansion in powers of qB as [up
to OðqBÞ2]

iSðKÞ ¼ i
ðK þmfÞ
K2 −m2

f

− qfB
γ1γ2ðKk þmfÞ
ðK2 −m2

fÞ2

− 2iðqfBÞ2
½K2⊥ðKk þmfÞ þ K⊥ðm2

f − K2
kÞ�

ðK2 −m2
fÞ4

≡ S0ðKÞ þ S1ðKÞ þ S2ðKÞ:

The quark loop (fermion) contribution to the gluon self-
energy is then given by

Πμν
f ðQÞ¼−

X
f

ig2

2

Z
d4K
ð2πÞ4Tr½γ

νfS0ðKÞþS1ðKÞþS2ðKÞg

×γμfS0ðPÞþS1ðPÞþS2ðPÞg�
¼Πμν

ð0;0ÞðQÞþΠμν
ð1;1ÞðQÞþ2Πμν

ð2;0ÞðQÞþO½ðqfBÞ3�;

where the first term is of OðqBÞ and the remaining are of
OððqBÞ2Þ. The OðqBÞ term vanishes owing to Furry’s
theorem. The nonvanishing terms are given as

Πμν
ð0;0ÞðQÞ ¼

X
f

i2g2
Z

d4K
ð2πÞ4

½PμKν þ KμPν − gμνðK · P −m2
fÞ�

ðK2 −m2
fÞðP2 −m2

fÞ
; ðB1Þ

Πμν
ð1;1ÞðQÞ ¼

X
f

2ig2ðqfBÞ2
Z

d4K
ð2πÞ4

½Pμ
kK

ν
k þ Kμ

kP
ν
k þ ðgμνk − gμν⊥ Þðm2

f − Kk · PkÞ�
ðK2 −m2

fÞ2ðP2 −m2
fÞ2

; ðB2Þ

Πμν
ð2;0ÞðQÞ ¼ −

X
f

4ig2ðqfBÞ2
Z

d4K
ð2πÞ4

�
Mμν

ðK2 −m2
fÞ4ðP2 −m2

fÞ
�
; ðB3Þ

where

Mμν ¼ K2⊥½PμKν
k þ Kμ

kP
ν − gμνðKk · P −m2

fÞ�
þ ðm2

f − K2
kÞ½PμKν⊥ þ Kμ

⊥Pν − gμνðK⊥ · PÞ�:

The complete gluon self-energy is expressed as

ΠμνðQÞ ¼ Πμν
YMðQÞ þ Πμν

f ðQÞ;

where Πμν
YM refers to the Yang-Mills contribution to the

gluon self-energy coming from the ghost and gluon loops,
which is unaffected by the magnetic field. It is given by

Πμν
YMðQÞ ¼ −

Ncg2T2

3

Z
dΩ
2π

�
q0K̂

μK̂ν

K̂ ·Q
− gμ0gν0

�
:

Using the properties of the tensors Δi, the form factors can
be expressed as

bðQÞ ¼ Δμν
1 ðQÞΠμνðQÞ ¼ Δμν

1 ðΠYM
μν þ Πf

μνÞ
¼ bYMðQÞ þ b0fðQÞ þ b2fðQÞ; ðB4Þ

cðQÞ ¼ Δμν
2 ðQÞΠμνðQÞ ¼ Δμν

2 ðΠYM
μν þ Πf

μνÞ
¼ cYMðQÞ þ c0fðQÞ þ c2fðQÞ; ðB5Þ

dðQÞ ¼ Δμν
3 ðQÞΠμνðQÞ ¼ Δμν

3 ðΠYM
μν þ Πf

μνÞ
¼ dYMðQÞ þ d0fðQÞ þ d2fðQÞ; ðB6Þ

aðQÞ ¼ 1

2
Δμν

4 ðQÞΠμνðQÞ ¼ 1

2
Δμν

4 ðΠYM
μν þ Πf

μνÞ
¼ aYMðQÞ þ a0fðQÞ þ a2fðQÞ: ðB7Þ

In terms of powers of qB, the form factors can be
expressed as

FðQÞ ¼F0ðQÞþF2ðQÞ ¼ ½FYMðQÞþF0fðQÞ�þF2fðQÞ;
F≡b;c;d;a: ðB8Þ

1. OðqBÞ0 terms of form factors

Using Eqs. (A11)–(A14) and (A18), we can write

Δ00
1 ¼ ū2; Δ00

2 ¼ Δ00
3 ¼ Δ00

4 ¼ 0; Π00 ¼ bū2:
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Thus,

b0ðQÞ ¼ 1

ū2
½ΠYM

00 ðQÞ þ Πð0;0Þ
00 ðQÞ�: ðB9Þ

In the HTL approximation (K ∼ T, Q ∼ gT),

Πð0;0Þ
00 ðQÞ ¼ Nfg2T2

6

�
1 −

q0
2q

log
q0 þ q
q0 − q

�
;

ΠYM
00 ¼ Ncg2T2

3

�
1 −

q0
2q

log
q0 þ q
q0 − q

�
: ðB10Þ

Thus,

b0ðQÞ ¼ m2
D

ū2

�
1 −

q0
2q

log
q0 þ q
q0 − q

�
; ðB11Þ

where m2
D ¼ ðΠð0;0Þ

00 þ ΠYM
00 Þjp0¼0

p→0
¼ g2T2

3
ðNc þ Nf

2
Þ is the

QCD Debye screening mass in the absence of a magnetic
field.
An alternate way of evaluating the form factors is to

calculate the self-energy diagrammatically. As an example,
the quark loop contribution to c0 will be evaluated this way:

cf0ðQÞ ¼
�
gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

�
Πð0;0Þ

μν ¼ T1 − T2; ðB12Þ

where

T1 ¼ gμν⊥Πð0;0Þ
μν ; T2 ¼

Qμ
⊥Qν⊥
Q2⊥

Πð0;0Þ
μν :

Using the expression ofΠð0;0Þ
μν from Eq. (B1) under the HTL

approximation, we get

T1 ¼ −
X
f

4g2ðI1 − I2Þ; ðB13Þ

where

I1 ¼
Z

d3k
ð2πÞ3 T

X
n

K2⊥
ðK2 −m2

fÞðP2 −m2
fÞ
; ðB14Þ

I2 ¼
Z

d3k
ð2πÞ3 T

X
n

K2

ðK2 −m2
fÞðP2 −m2

fÞ
: ðB15Þ

I2 is a well-known integral which under the HTL approxi-
mation and in the limit ofmf → 0 is T2=24. The I1 integral
after summing over Matsubara frequencies simplifies to

I1 ¼ −
1

2

Z
d3k
ð2πÞ3

�
nFðE1Þ
E1

−
�
1−

q0
q0 − q cos θ

�
dnFðE1Þ

dk

�
× ðcos2θ − 1Þ: ðB16Þ

Here, E1 ≈ k is the energy of the fermion propagator having
4-momentum K, θ is the polar angle made by k, and nF is
the Fermi-Dirac distribution. First term in Eq. (B16)
evaluates to T2=72. The second term can be expanded as

1

8π2

Z
dkdðcos θÞk2 dnFðkÞ

dk

×

�
cos2θ − 1 −

q0cos2θ
q0 − q cos θ

þ q0
q0 − q cos θ

�
:

This evaluates term by term to

−T2=72þT2=24−
q0T2

48q

�
2
q0
q
þq20
q2

log
q0þq
q0−q

− log
q0þq
q0−q

�
:

Thus,

I1 − I2 ¼ −
T2

48q2

�
2q20 − ðq20 − q2Þ q0

q
log

q0 þ q
q0 − q

�
: ðB17Þ

Similarly, it can be shown that

T2 ¼ −
X
f

2g2ð−I1 þ I2 þ I3Þ; ðB18Þ

where

I3ðQÞ ¼
Z

d3k
ð2πÞ3 T

X
n

2k1k2
ðK2 −m2

fÞðP2 −m2
fÞ

¼ 0:

Thus,

cf0ðQÞ¼T1þT2¼−
X
f

2g2½I1−I−2�

¼Nfg2T2

6

1

2q2

�
q20−ðq20−q2Þq0

2q
log

q0þq
q0−q

�
: ðB19Þ

The Yang-Mills contribution is given by

Ncg2T2

3

1

2q2

�
q20 − ðq20 − q2Þ q0

2q
log

q0 þ q
q0 − q

�
:

Hence, finally,

c0ðq0; qÞ ¼
m2

d

2q2

�
q20 − ðq20 − q2Þ q0

2q
log

q0 þ q
q0 − q

�
: ðB20Þ
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Next, we have

d0ðq0; qÞ ¼
n̄μn̄ν

n̄2
ðΠYM

μν þ Πð0;0Þ
μν Þ: ðB21Þ

It turns out that

d0ðq0; qÞ ¼ c0ðq0; qÞ

¼ m2
d

2q2

�
q20 − ðq20 − q2Þ q0

2q
log

q0 þ q
q0 − q

�
: ðB22Þ

The form factor a0 is given by

a0ðq0; qÞ ¼
1

2
Δμν

4 ðΠYM
μν þ Πð0;0Þ

μν Þ

¼ 1

2
ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
�
−2

ū · n
ū2

½ΠYM
00 þ Πð0;0Þ

00 �

þ 2½ΠYM
03 þ Πð0;0Þ

03 �
�

¼ 0: ðB23Þ

2. OðqBÞ2 terms of form factors

b2ðq0; qÞ ¼
uμuν

ū2
½Πð1;1Þ

μν þ 2Πð2;0Þ
μν �: ðB24Þ

Using Eqs. (B2) and (B3) in the above equation, we get

b2ðq0; qÞ ¼ −
X
f

2g2ðqfBÞ2
ū2

Z
d3k
ð2πÞ3 T

X
n

�
K2 þ k2ð1þ cos2θÞ þm2

fÞ
ðK2 −m2

fÞ2ðP2 −m2
fÞ2

þ 8ðk4 þ k2K2Þð1 − cos2θÞ
ðK2 −m2

fÞ4ðP2 −m2
fÞ

�
:

We make use of the HTL simplifications mentioned in Appendix C in [84] to further simplify b2 to obtain

b2 ¼ −
X
f

2g2ðqfBÞ2
ū2

Z
d3k
ð2πÞ3 T

X
n

�
1

ðK2 −m2
fÞ2ðP2 −m2

fÞ
þ ð−7þ 9c2Þk2 þ 2m2

f

ðK2 −m2
fÞ3ðP2 −m2

fÞ
−
8ð1 − c2Þðk4 þm2

fk
2Þ

ðK2 −m2
fÞ4ðP2 −m2

fÞ
�
;

where c ¼ cos θ. Next, we perform the frequency sum using

T
X
n

1

ðω2
n þ E2

kÞ½ðωn − ωÞ2 þ E2
k−q�

¼ ½1 − nFðEkÞ − nFðEk−qÞ�
4EkEk−q

�
1

iωþ Ek þ Ek−q
−

1

iω − Ek − Ek−q

�

þ ½nFðEkÞ − nFðEk−qÞ�
4EkEk−q

�
1

iωþ Ek − Ek−q
−

1

iω − Ek þ Ek−q

�
;

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q
and Ek−q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − qÞ2 þm2

f

q
. We write the expression in terms of mass derivatives to finally

obtain

b2ðq0; qÞ ¼
X
f

2g2q2fB
2

ū2

��
∂
2

∂
2ðm2

fÞ
þ 5

6
m2

f
∂
3

∂
3ðm2

fÞ
�Z

d3k
ð2πÞ3

nFðEkÞ
Ek

�
q0

q0 − q cos θ
− 1

�

þ
�

∂

∂ðm2
fÞ

þ 5

6
m2

f
∂
2

∂
2ðm2

fÞ
�Z

d3k
ð2πÞ3

nFðEkÞ
2E3

k

�
q0

q0 − q cos θ

�

−
�

∂
2

∂
2ðm2

fÞ
þm2

f

2

∂
3

∂
3ðm2

fÞ
�Z

d3k
ð2πÞ3

nFðEkÞ
Ek

cos2 θ

�
q0

q0 − q cos θ
− 1

�

−
�

∂

∂ðm2
fÞ

þm2
f

2

∂
2

∂
2ðm2

fÞ
�Z

d3k
ð2πÞ3

nFðEkÞ
2E3

k

cos2 θ

�
q0

q0 − q cos θ

��
:

After simplification, we finally obtain

b2 ¼
δm2

D

ū2
þ
X
f

g2ðqfBÞ2
ū2π2

×

��
gk þ

πmf − 4T

32m2
fT

�
ðA0 − A2Þ þ

�
fk þ

8T − πmf

128m2
fT

��
5A0

3
− A2

��
: ðB25Þ
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Here, δm2
D is the correction to the Debye mass due to weak magnetic field given by

δm2
D ¼ ½Πð1;1Þ

μν þ 2Πð2;0Þ
μν �q0¼0;q→0 ¼

X
f

g2

12π2T2
ðqfBÞ2

X∞
l¼1

ð−1Þlþ1l2K0

�
mfl

T

�
;

fk ¼ −
X∞
l¼1

ð−1Þlþ1
l2

16T2
K2

�
mfl

T

�
;

gk ¼
X∞
l¼1

ð−1Þlþ1
l

4mfT
K1

�
mfl

T

�
;

A0 ¼
Z

dΩ
4π

q0c0

Q · K̂
¼ q0

2q
log

�
q0 þ q
q0 − q

�
;

A2 ¼
Z

dΩ
4π

q0c2

Q · K̂
¼ q20

2q2

�
1 −

3q23
q2

��
1 −

q0
2q

log
q0 þ q
q0 − q

�
þ 1

2

�
1 −

q23
q2

�
q0
2q

log
q0 þ q
q0 − q

:

K0, K1, and K2 are the modified Bessel functions of the second kind. Similarly, the form factor c2 is given by

c2ðq0; qÞ ¼
�
gμν⊥ −

Qμ
⊥Qν⊥
Q2⊥

�
½Πð1;1Þ

μν þ 2Πð2;0Þ
μν �: ðB26Þ

Using Eqs. (B2) and (B3), we get

c2ðq0; qÞ ¼ −
X
f

g2ðqfBÞ2
2

Z
d3k
ð2πÞ3 T

X
n

�
4k20 − 4k23 − 4m2

f

ðK2 −m2
fÞ2ðP2 −m2

fÞ2
þ 4ð4k23 − 4k20 þ 4m2

fÞ
ðK2 −m2

fÞ3ðP2 −m2
fÞ

−
4ðk20 − k23 −m2

fÞð8k2⊥ − 4K2 þ 4m2
f þ 8ðk · qÞ2⊥=q2⊥

ðK2 −m2
fÞ4ðP2 −m2

fÞ
�
:

Using HTL approximations to simplify as earlier, we write c2 in terms of mass derivatives as earlier:

c2 ¼ −
X
f

2g2ðqfBÞ2
Z

d3k
ð2πÞ3 T

X
n

�
1

2
þ 1

4
ð1 − cos2θÞcos2ϕþ 7

4
sin2θð1þ cos2ϕÞ − 5

4
sin4θð1þ cos2ϕÞ

�

×
∂

∂ðm2
fÞ

1

ðK2 −m2
fÞðP2 −m2

fÞ
:

After performing the frequency sum followed by the integral, we finally obtain

c2ðq0; qÞ ¼ −
X
f

4g2ðqfBÞ2
3π2

gk þ
g2ðqfBÞ2

2π2

�
gk þ

πmf − 4T

32m2
fT

�
×
�
−
7

3

q20
q2⊥

þ
�
2þ 3

2

q20
q2⊥

�
A0

þ
�
3

2
þ 5

2

q20
q2⊥

þ 3

2

q23
q2⊥

�
A2 −

3q0q3
q2⊥

A1−
5

2

�
1 −

q23
q2⊥

�
A4 −

5q0q3
q2⊥

A3

�
: ðB27Þ

The remaining A integrals are

A1 ¼ −
q0q3
q2

�
1 −

q0
2q

log
�
q0 þ q
q0 − q

��
;

A3 ¼
q0
2q

q3
q

�
1 −

5

3

q23
q2

�
−
3

2

q0
q
q3
q

�
1 −

q20
q2

−
q23
q2

þ 5

3

q20
q2

q23
q2

�
×

�
1 −

q0
2q

log
q0 þ q
q0 − q

�
;

A4 ¼
3

8

�
1 −

q23
q2

�
2

−
q20
8q2

�
1 −

5q23
q2

�
2

þ 5

3

q20
q2

q43
q4

−
3

8

��
1 −

q20
q2

�
2

−
2q23
q2

�
1 −

3q20
q2

�
2

þ q43
q4

�
1 −

5q20
q2

�
2

þ 8q40
q4

q23
q2

�
1 −

5q23
3q2

��
×

�
1 −

q0
2q

log
q0 þ q
q0 − q

�
:
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It should be noted that the imaginary parts of the form factors come from the imaginary parts of the Ai’s. We write down the
final expressions. The detailed derivation can be found in [84]:

d2ðq0; qÞ ¼
n̄μn̄ν

n̄2
½Πð1;1Þ

μν þ 2Πð2;0Þ
μν � ¼ F1 þ F2; ðB28Þ

where

F1 ¼ −
X
f

g2ðqfBÞ2q2
π2q2⊥

×

�
gk

�
q20q

2
3

3q4
þ A0

4
−
�
3

2
þ q20q

2
3

q4

�
A2 þ

5

4
A4

�
þ
�

π

32mfT
−

1

8m2
f

��
A0

4
−
�
3

2
þ q20q

2
3

p4

�
A2 þ

5

4
A4

�

− fk
q20q

2
3

q4

�
14

3
− 5A0 þ A2

�
þ q20q

2
3

q4
8T − πmf

128Tm2
f

ð5A0 − A2Þ
�
;

F2 ¼ −
X
f

g2ðqfBÞ2
6π2mfT

q0q3

q2⊥
1

1þ cosh mf

T

×

�
3A1

2
− A3

�
:

Finally,

a2ðq0; qÞ ¼
1

2

�
ūμn̄ν þ ūνn̄μffiffiffiffiffi

ū2
p ffiffiffiffiffi

n̄2
p

�
½Πð1;1Þ

μν þ 2Πð2;0Þ
μν � ¼ G1 þ G2; ðB29Þ

G1 ¼
X
f

4g2ðqfBÞ2
2π2

ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p ×

�
q0q3
q2

��
2

3
− A0 þ A2

�
gk þ

�
4

3
−
5A0

3
þ A2

�
fk

�

þ
�
ð−A0 þ A2Þ

πmf − 4T

32Tm2
f

−
1

6
ð5A0 − 3A2Þ

8T − πmf

64Tm2
f

��
;

G2 ¼
X
f

g2ðqfBÞ2ffiffiffiffiffi
ū2

p ffiffiffiffiffi
n̄2

p
6π2mfT



1þ coshmf

T

� × ð−5A1 þ 4A3Þ:

APPENDIX C: CALCULATION OF SPECTRAL FUNCTIONS ρi

The cut parts of the spectral functions are evaluated from the discontinuity in the pieces of the gluon propagators, which,
in turn, is given by their imaginary parts analytically continued to real values of energy:

ρ1ðω; qÞ ¼ −
1

π
Imðχ1jq0¼ωþiϵÞ

¼ −
1

π
Im

� ðQ2 − dÞ
ðQ2 − bÞðQ2 − dÞ − a2

				
q0¼ωþiϵ

�

¼ −
1

πD
½ImbðIm2

d þ Re2d þQ4 − 2Q2RedÞþ2ImaReaðQ2 − RedÞ þ ImdðRe2a − Im2
aÞ�:

Here, Im and Re, respectively, depict the imaginary and real parts of the form factors.

ρ2ðω; qÞ ¼ −
1

π
Imðχ2jq0¼ωþiϵÞ ¼ −

1

π
Im

�
1

ðQ2 − cÞ
				
q0¼ωþiϵ

�
¼ −

1

π

�
Imc

Im2
c − ðQ2 − RecÞ2

�
;

ρ3ðω; qÞ ¼ −
1

π
Imðχ3jq0¼ωþiϵÞ

¼ −
1

π
Im

� ðQ2 − bÞ
ðQ2 − bÞðQ2 − dÞ − a2

				
q0¼ωþiϵ

�

¼ −
1

πD
½ImdðIm2

b þ Re2b þQ4 − 2Q2RebÞþ2ImaReaðQ2 − RebÞ þ ImbðRe2a − Im2
aÞ�;
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ρ4ðω; qÞ ¼ −
1

π
Imðχ4jq0¼ωþiϵÞ

¼ −
1

π
Im

�
a

ðQ2 − bÞðQ2 − dÞ − a2

				
q0¼ωþiϵ

�

¼ −
1

πD
½Imaf−ImbImd þ RebRed þ Re2a þ Im2

a þQ4 −Q2ðReb þ RedÞg
þ ReaðQ2ðImb þ ImdÞImdReb − ImbRedÞ�:

Here, the denominator D is expressed as

D ¼ ½ð−ImbQ2 − ImdQ2 þ ImdReb þ ImbRed − 2ImaReaÞ2 þ ð−ImbImd þ Im2
a þ ðQ2 − RebÞðQ2 − RedÞ − Re2aÞ2�:
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