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Quantum tomography has become an indispensable tool in order to compute the density matrix ρ of
quantum systems in physics. Recently, it has further gained importance as a basic step to test entanglement
and violation of Bell inequalities in high-energy particle physics. In this work, we present the theoretical
framework for reconstructing the helicity quantum initial state of a general scattering process. In particular,
we perform an expansion of ρ over the irreducible tensor operators fTL

Mg and compute the corresponding
coefficients uniquely by averaging, under properly chosen Wigner D-matrices weights, the angular
distribution data of the final particles. Besides, we provide the explicit angular dependence of a novel
generalization of the production matrix Γ and of the normalized differential cross section of the scattering.
Finally, we rederive all our previous results from a quantum-information perspective using the Weyl-
Wigner-Moyal formalism and we obtain, in addition, simple analytical expressions for the Wigner P andQ
symbols.
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I. INTRODUCTION

The general description of a quantum-mechanical system
is encoded in a central mathematical entity known as the
density matrix, ρ. In this way, any physically accessible
information of the system (any information attained by
performing measurements over it) is theoretically obtained
by computing the expectation values of observables:
hOi ¼ TrfOρg. Here, O stands for the Hermitian and
linear operator associated with the considered experimental
measurement. In particular, when dealing with systems
with finite degrees of freedom, i.e., the associated Hilbert
space has finite dimension, this quantum characterization
takes the form of a complex, unit trace and Hermitian
matrix. Therefore, in order to test with high precision either
new or well-established models of particle physics, a
practical and accurate reconstruction of ρ is needed.
The procedure to determine this density matrix by

performing measurements over the system is known in
the quantum-information context as “quantum tomo-
graphy” [1–3]. Special relevance has been given to the
helicity density matrix since the works of E. Wigner [4],
M. Jacob [5], G. C. Wick [6], and J. Werle [7–9] indicated a
strong relation between angular distribution of final states

and helicity amplitudes for general scattering processes.
For instance, different methods for the tomography of single-
particle systems [10–12] and of pairs of particles [13–17]
have been proposed, all of them based on the reconstruction
via the angular distribution data of the final particles.
Nevertheless, they restrict themselves to final states reached
after a chain of consecutive decays, while the plethora of
other cases are not addressed. In this study we carry out the
extension of the quantum tomography for all possible
scattering processes. As a matter of fact, due to the trans-
formation property under rotations of the irreducible tensor
operators fTL

Mg [11,12,17,18] we base the reconstruction
of ρ on its expansion over this suitable basis, contrary to
other approaches where either the Cartesian vector and
tensors [10,15,19] or generalized Gell-Mann matrices [16,20]
are used.
As aforementioned, once the density matrix is recon-

structed, several properties of the corresponding system
can be tested. Namely, several theoretical papers have
tackled the certification of entanglement as well as violation
of Bell inequalities in pairs of top and antitop [14,21–25],
Λ baryons [26],B0B̄0 pairs [27], charmoniumdecays [28,29],
top quarks [22,30–32], tau leptons [31,33], photons [31],
electron-positron collisions [34], positronium decays [35],
vector bosons [17,36–40] and 2-2 scatterings [41,42]. On
the experimental side, works concerning spin polarization
and spin correlations of top antitop pairs [43–45], vector
bosons [46] as well as violation of Bell inequalities in
ions [47], vector bosons [48], superconducting systems [49],
nitrogen vacancies [50] and in photons [51–53] can also be
found in the literature.
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To sum up, the situation we will be referring to in this
work is a scattering process fromm initial particles to n ≥ 2
final particles. Actually, we are interested in the helicity
density matrix of the initial state and the only information
we have access to is the angular distribution of the final
particles. From this starting point, we are able not only to
perform the tomography of ρ but also to give the explicit
angular dependence of both the generalized production
matrix Γ (see Sec. III for a rigorous definition) and of the
normalized differential cross section of the process, the
latter having been previously studied in [54–60].
The paper is organized as follows: in Sec. II we present the

quantum-mechanical formalism for the representation of
many-particle systems used throughout the paper. Section III
is devoted to the construction of the generalized production
matrix Γ, while in Sec. IV we develop the quantum
tomography of the density matrix ρ from its relation with
both the normalized differential cross section and the
generalized production matrix, elaborating on the case in
which Γ factorizes. We illustrate the quantum tomography
method during Sec. V by providing simple high-energy
particle physics examples. In Sec.VIwe relate the theoretical
framework here introduced to the Weyl-Wigner-Moyal
formalism [61]. Finally, in Sec. VII we summarize thewhole
work and present our conclusions. Appendix A collects the
explicit form of the generalized production matrix for
different scattering processes in terms of the initial and final
particle’s number, whereas Appendix B is dedicated to
mathematical technicalities omitted in the main text.

II. STATE REPRESENTATION FOR
RELATIVISTIC MANY-PARTICLE SYSTEMS

This section is devoted to summarizing and recalling
the formalism of state representations for relativistic

many-particle systems developed in Refs. [7–9]. We
emphasize the indispensable concepts for the work.
Let us consider an arbitrary system of n particles

with definite 3-momenta p⃗i, spins si, and helicities
λi ∈ f−si;…; sig, such that the total linear momentum
χ⃗ ¼Pn

i¼1 pi
!¼ 0⃗. In particular, we will denote this

center-of-mass spatial reference frame byRF and consider
p⃗i ¼ pip̂i, with pi and p̂i the 3-momentum modulus and
unit vector of particle i.
Based on these 3-momenta, we can fix a particularly

useful center-of-mass reference frame as displayed in
Fig. 1, which we denote by RF 0. Namely, we set the
3-momentum of one of the particles (from now on particle
1) to define the z axis via ẑ ¼ p̂1, while the 3-momentum of
a second particle (from now on particle 2) is considered to
lie in the x > 0 half of the xz plane, so that ŷ ¼ p̂1⨯p̂2

jp̂1⨯p̂2j.
Therefore, RF 0 is completely characterized by the
3-momenta of the two selected particles, which we have
assumed to be distinguishable from the rest and
between them.
We denote the 3-momenta of particle i in theRF 0 frame

by p⃗0
i . For instance, the spherical coordinates (modulus as

well as polar and azimuthal angles) characterizing p⃗0
i take

the values

ðp1; θ01;φ
0
1Þ ¼ ðp1; 0; 0Þ; ðp2; θ02;φ

0
2Þ ¼ ðp2; θ02; 0Þ;

ðpi; θ0i ;φ
0
i Þ for i ¼ 3;…; n: ð1Þ

We notice that only 3n − 3 nontrivial coordinates are
needed to describe the system in this frame. On the other
hand, the corresponding 3n coordinates of p⃗i in a general
RF are obtained from the ones in RF 0 by performing a
Euler rotation Rðα; β; γÞ of the whole system as a
rigid body.

FIG. 1. On the left, a sketch of the most general center-of-mass spatial reference frame of n particlesRF (only three of the n particles
are displayed for clarity). On the right, a sketch of the special center-of-mass reference frame of n particlesRF 0 fixed by particles 1 and
2 (only three of the n particles are displayed). The corresponding Euler rotation to move from one frame to another is also shown.
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The inverse operation can also be done: the RF 0

description is recovered by applying a Rðα; β; γÞ−1 rotation
to the system described in RF , see Fig. 1. In this sense,
the physical meaning of the Euler angles characterizing
the rotation is easily obtained once particles 1 and 2 are
identified in RF . Specifically, ðα; βÞ ¼ ðφ1; θ1Þ are the
angular components of particle 1 inRF whereas γ ¼ φ12 is
the azimuthal coordinate of particle 2 after applying an
initial Rðα; β; 0Þ−1 rotation to the system, i.e., after setting
the 3-momentum of particle 1 to be in the z axis.
Following this convention, the quantum state of a general

n-particle system with definite 3-momenta and helicities as
well as null total linear momentum is given by

Yn
i¼1

jp⃗iλii ¼ D̂ðRÞ
Yn
i¼1

jp⃗0
i λii ¼ jRp0λi: ð2Þ

Here D̂ðRÞ is the unitary representation of the rotation
acting on the quantum states, R ¼ Rðα; β; γÞ (for simplicity
we omit the angle dependence of R) and p⃗i ¼ Rp⃗0

i . In
addition, we have denoted by λ the whole set of the
particle’s helicities and by p0 the set of 3n − 3 spherical
coordinates needed to describe the system in RF 0, as
specified in Eq. (1). The orthogonality conditions for these
states read

hR0p00λ0jRp0λi ¼ δðR;R0Þδðp0p00 ; λλ0Þ;
with δðR; R0Þ ¼ δðα − α0Þδðcos β − cos β0Þδðγ − γ0Þ

and δðp0p00 ; λλ0Þ ¼ δðp1 − p0
1Þ

p2
1

δðp2 − p0
2Þ

p2
2

δðθ02 − θ0
0
2 Þ

sin θ02

×
Yn
i¼3

δ3ðp⃗0
i − p⃗00

i Þ
Yn
j¼1

δλjλ0j : ð3Þ

Following [9], a more convenient representation of (2) is
possible. Namely, the p0 set of quantum numbers is
replaced by the total energy of the system E, the total null
linear momentum χ⃗ ¼ 0⃗, and a set κ of 3n − 7 parameters,
functions of p0, to be chosen depending on the case of
interest. Whenever 3n − 7 ≤ 0 we take κ ¼ ∅, the empty
set. Besides, due to the conservation of the total energy and
since we are dealing with center-of-mass frames, both E
and χ⃗ will play no role in what follows. Hence, the state (2)
becomes jRκλi, whose orthogonality conditions are

hR0κ0λ0jRκλi ¼ δðR0; RÞδðκκ0; λλ0Þ

and δðκκ0; λλ0Þ ¼
Y3n−7
i¼1

δðκi − κ0iÞ
Yn
j¼1

δλjλ0j : ð4Þ

Finally, let us also introduce the relation between the states
in Eq. (4) and those of definite angular momentum:

jJMΛκλi¼ ðJþ1=2Þ1=2
2π

Z
dRDJ

MΛðRÞ�jRκλi; with

hRκ0λ0jJMΛκλi¼ ðJþ1=2Þ1=2
2π

DJ
MΛðRÞ�δðκκ0;λλ0Þ: ð5Þ

The function DJ
MM0 ðRÞδJJ0 ¼ hJMjD̂ðRÞjJ0M0i is the

Wigner D matrix associated with the Euler rotation R,
dR is the differential with respect to the angles character-
izing R and the quantum number Λ corresponds to the
projection of the total angular momentum of the system
over p̂1. From the orthogonality conditions of the Wigner D
matrices,

Z
dRDJ0

M0Λ0 ðRÞ�DJ
MΛðRÞ ¼

8π2

2J þ 1
δJJ0δMM0δΛΛ0 ; ð6Þ

we get

hJ0M0Λ0κ0λ0jJMΛκλi ¼ δJJ0δMM0δΛΛ0δðκκ0; λλ0Þ: ð7Þ

The inverse relation concerning the states in Eq. (5) is

jRκλi ¼
X
J

X
MΛ

ðJ þ 1=2Þ1=2
2π

DJ
MΛðRÞjJMΛκλi: ð8Þ

A further final comment is needed: during this section
we have assumed that the particles we are dealing with have
a fixed and known mass mi. Nevertheless this may not be
the case, for example, when working with off-shell par-
ticles. For those scenarios, we also need to treat mi as an
extra quantum number per particle (to add in the parameter
set κ) in order to have a complete representation of the
system. Specific examples are analyzed in Appendix A.

III. GENERALIZED PRODUCTION MATRIX

In this section we generalize the concept of a production
(or decay) matrix to any kind of scattering process. This
matrix was previously defined, e.g., in [10,62] in terms of
the helicity amplitudes, but only accounting for decay and 2
to 2 scattering processes. In addition, in order to give a
practical characterization of the matrix we also introduce a
generalization for any scattering process of the so-called
reduced helicity amplitudes [10,15,62], which were defined
as well only in the context of decay and 2 to 2 scattering
processes. For instance, we define the generalized pro-
duction matrix by

Γλλ̄0 ∝
X
λ

Mλλ̄M
�
λλ̄0 ð9Þ

where the normalization TrfΓg ¼ 1 is left to impose.
Here, as done in [7–9], we have denoted the initial
state quantities with an overbar and the final state ones
without it. The amplitudes Mλλ̄ are the so-called helicity
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amplitudes, whose expression in terms of the scattering
matrix S and the states introduced in Eq. (8) is

Mλλ̄ ¼ hRκλjSjR̄ κ̄ λ̄i: ð10Þ

The rotations R̄; R are performed with respect to a fixed
reference frame, RF 0, and along with ðκ̄; λ̄Þ as well as
ðκ; λÞ completely characterise the initial and final states.
Furthermore, by definition of (2) and (8), the property

jRκλi ¼ D̂ðRÞj1κλi ð11Þ

holds, where the notation 1 refers to the absence of a
rotation and D̂ðRÞ is the unitary representation of the
rotation R in the Hilbert space of interest.
As will be justified later on [see Eq. (19) in Sec. IV and

Eq. (79) in Sec. VI], the relevant matrix for our final goal is
the transposed of the generalized production matrix, ΓT .
Therefore, using the expression of Mλλ̄:

ΓT
λ̄λ̄0 ∝

X
λ

hR̄ κ̄ λ̄ jS†jRκλihRκλjSjR̄ κ̄ λ̄0i

¼ hR̄ κ̄ λ̄ j
�X

λ

ðS†jRκλihRκλjSÞ
�
jR̄ κ̄ λ̄0i: ð12Þ

Using property (11) of jRκλi as well as the rotation
invariance of the scattering matrix S, we get

ΓT
λ̄λ̄0 ∝ hR̄ κ̄ λ̄ jD̂ðRÞ

�X
λ

ðS†j1κλih1κλjSÞ
�
D̂ðRÞ−1jR̄ κ̄ λ̄0i

¼ h1̄ κ̄ λ̄ jðD̂ðR̄Þ−1D̂ðRÞÞ
�X

λ

ðS†j1κλih1κλjSÞ
�

× ðD̂ðR̄Þ−1D̂ðRÞÞ−1j1̄ κ̄ λ̄0i

¼ h1̄ κ̄ λ̄ jD̂ðR̄−1RÞ
�X

λ

ðS†j1κλih1κλjSÞ
�

× D̂ðR̄−1RÞ−1j1̄ κ̄ λ̄0i: ð13Þ

This last equation implies that in the helicity basis for
the initial states, fj1̄ κ̄ λ̄igλ̄, the matrix ΓT only depends
on the relative rotation between the initial and final
states, i.e., ΓTðR̄; RÞ ¼ ΓTðR̄−1RÞ, and it is given by
rotating ΓTð1̄; 1Þ ¼ ΓTð1Þ accordingly, as it should happen
for a generic quantum-mechanical operator in a rotated
system [18]:

ΓTðR̄;RÞ¼ΓTðR̄−1RÞ¼ D̂ðR̄−1RÞΓTð1ÞD̂ðR̄−1RÞ−1: ð14Þ

Furthermore, it is worth mentioning that instead of con-
sidering two different rotations ðR̄; RÞ with respect to the
fixed reference frame RF 0, we can always set the initial
state of the scattering process to define RF 0. Thus, R̄ ¼ 1̄

and the whole relative rotation only comes from a rotation
of the final state with respect to this reference frame,
R̄−1R ¼ R. Following the physical interpretation given in
Sec. II, the set of Euler angles characterizing R are denoted
by ðα; β; γÞ ¼ ðφ1; θ1;φ12Þ ¼ Ω. In consequence,

R̄−1R ¼ R ¼ Rðφ1; θ1;φ12Þ ¼ RðΩÞ ⇒ ΓTðR̄−1RÞ
¼ ΓTðRÞ ¼ D̂ðRÞΓTð1ÞD̂ðRÞ−1: ð15Þ

From now on, we will consider ΓT ≡ ΓTð1Þ and specify the
argument (1) only when needed.
The exact expression for ΓT is presented in full detail in

Appendix A. For instance, some relevant features of this
matrix are discussed for the following scattering processes
(labeled in terms of the initial and final particle’s number):

1Þ 1̄ → 2 2Þ 1̄ → n 3Þ 2̄ → 2

4Þ 2̄ → n 5Þ m̄ → 2 6Þ m̄ → n:

In general, the generalized production matrix can be
expanded in the canonical basis feσiσ0ig via a sum over
the possible spin projections σi ∈ f−si;…; sig of the initial
particles:

ΓT ∝
X
σσ0

aσσ0eσσ0 ; with σ ¼ ðσ1;…; σmÞ

and same with primes;

ΓT
σσ0 ∝ aσσ0 ¼

X
λ

h1̄ κ̄ σjS†j1κλih1κλjSj1̄ κ̄ σ0i;

eσσ0 ¼ ⊗
m

i¼1
eσiσ0i ; ½eσiσ0i �λ̄i;λ̄0i ¼ δσi;λ̄iδσ0i;λ̄0i : ð16Þ

In other words, eσiσ0i is a unit matrix with the ðσi; σ0iÞ
element equal to 1 and all the others null. In addition, the
ðσ; σÞ elements aσσ0 ¼ aσσ0 ðκ̄; κÞ are a generalization of
the so-called reduced helicity amplitudes [10,15,62] and
encode the kinematics not included in Ω. Nonetheless,
during the current and next sections the ðκ̄; κÞ dependence
will be, in general, omitted as it is not relevant.
Moreover, imposing TrfΓTg ¼ TrfΓg ¼ 1 one can

deduce the normalization factor in ΓT as a function of aσσ0 :

Trfeσσ0 g ¼ δσσ0 ⇒ Tr
�X

σσ0
aσσ0eσσ0

�
¼
X
σ

aσσ;

where aσσ ¼
X
λ

jh1κλjSj1̄ κ̄ σij2 ∈Rþ: ð17Þ

Hence, defining aþ ≡Pσ aσσ ∈Rþ,

ΓT ¼ 1

aþ

X
σσ0

aσσ0eσσ0 ⇒ ΓTðRÞ

¼ 1

aþ

X
σσ0

aσσ0D̂ðRÞeσσ0D̂ðRÞ−1: ð18Þ
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IV. RECONSTRUCTION OF THE DENSITY
MATRIX

The goal of this section is to develop the quantum
tomography for the initial state helicity density matrix ρ.
The main idea is to expand ρ over the basis of irreducible
tensor operators fTL

Mg and then compute each coefficient in
the decomposition by performing an integration over the
angular distribution of the final state. Alternative proposals
for a quantum tomographymethod in this context [10,15,16]
arevalid only for decay processes anduse either theCartesian
vectors or the generalized Gell-Mann matrices instead of the
irreducible tensor operators as a basis for the decomposition
of the density matrix.
To accomplish the final result, we first deepen in some

properties of ΓTðRÞ, providing its decomposition over
fTL

Mg and the Wigner D matrices fDL
MΛðRÞg. This decom-

position will make explicit the ΓTðRÞ transformation
properties under rotations of the system as well as its
kinematic dependence.
Second, given the relation between the production matrix,

the normalized differential cross section, and the density
matrix in helicity space of the initial state [10,15,62]

1

σ

dσ
dΩdκ̄dκ

¼ NTrfρΓTðRÞg ð19Þ

(with N a normalization constant to be fixed later on)
we give the, as far as we know, first decomposition of the
normalized differential cross section over fDL

MΛðRÞg and the
coefficients of the expansion of ρ under the irreducible tensor
operators.
Finally, we provide a practical and experimentally viable

way of reconstructing the density matrix of any system
(to use, e.g., in further studies about spin correlation or
entanglement properties) once the normalized differential
cross section of the scattering process is measured.
As has just been anticipated, in order to perform the

tomography of ρ we need to expand both ΓTðRÞ and ρ over
the convenient basis of irreducible tensor operators, whose
transformation under rotations will be crucial for the
incoming reasoning. Let us briefly explain the properties
of this basis. We follow the notation presented in [18],
where the irreducible tensor operators are fTL

MðsÞgL;M. In
the context we are working on, s ¼ ðs1;…; smÞ represents
the vector of spins of the initial particles, which furthermore
fixes the dimension of TL

MðsÞ to be equal to d ⨯ d,
with d ¼Qm

i¼1 di ¼
Q

m
i¼1 ð2si þ 1Þ.

In addition, L∈ f0;…; 2sTg and M∈ f−L;…; Lg,
where sT is seen as an “effective spin” corresponding
to the whole system, i.e., d ¼ 2sT þ 1. Denoting by
σT; σ0T ∈ f−sT;…; sTg the possible projections of sT , an
explicit expression for the elements of TL

MðsÞ is [18]

½TL
MðsÞ�σTσ0T ¼ ð2Lþ 1Þ1=2CsTσT

sTσ0TLM
; ð20Þ

where Cjm
j1m1j2m2

¼ hj1m1j2m2jjj1j2jmi are the Clebsch-
Gordan coefficients, which following the Condon and
Shortley convention are chosen to be real. Throughout
the paper, we will denote TL

M ≡ TL
MðsÞ when there is no

ambiguity and recover the s-vector notation otherwise.
Finally, some other properties concerning the Hermitian

conjugation as well as the orthogonality relations among
the tensors are

ðTL
MÞ† ¼ ð−1ÞMTL

−M;

TrfTL
MðTL0

M0 Þ†g ¼ TrfTL
MðTL0

M0 ÞTg ¼ dδLL0δMM0 : ð21Þ

The latter one leads to a theoretical simple way of
computing the coefficient of a general operator O with
respect to this basis:

O ¼ 1

d

X
LM

OLMTL
M; with OLM ¼ TrfOðTL

MÞ†g: ð22Þ

We will apply the last result to first obtain the expansion
of ΓTðRÞ and then ρ, getting the desired quantum tomog-
raphy. We start by determining the coefficients in the
expansion of the matrix eσσ0 :

Trfeσσ0 ðTL
MÞ†g ¼ Trfeσσ0 ðTL

MÞTg ¼ ½TL
M�σTσ0T

¼ ð2Lþ 1Þ1=2CsTσT
sTσ0TLM

; ð23Þ

where σT is defined via the scalar product of σ with a
suitable vector only dependent on the dimensions of the
Hilbert spaces:

σT ¼ σ · dðvÞ and σ0T ¼ σ0 · dðvÞ;

with dðvÞ ¼ ðdðvÞ1 ;…; dðvÞm Þ; ð24Þ

dðvÞi ¼
Ym
j¼iþ1

dj; for i < m and dðvÞm ¼ 1: ð25Þ

In particular, the vector dðvÞ can be seen as a mathematical
tool connecting the spin projection σi of every particle with
the spin projection σT of the effective spin sT corresponding
to the whole system. Moreover, using the properties of the
Clebsch-Gordan coefficients:

Trfeσσ0 ðTL
MÞ†g ¼ ð2Lþ 1Þ1=2CsTσT

sTσ0TLM

¼ ð2Lþ 1Þ1=2CsTσT
sTσ0TLσ

−
T
δMσ−T

; ð26Þ

with σ−T ¼ σT − σ0T ¼ ðσ − σ0Þ · dðvÞ. Finally

eσσ0 ¼
1

d

X
LM

½ð2Lþ1Þ1=2CsTσT
sTσ0TLσ

−
T
δMσ−T

�TL
M ¼ 1

d

X
L

CLσσ0TL
σ−T
;

ð27Þ
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where CLσσ0 ≡ ð2Lþ 1Þ1=2CsTσT
sTσ0TLσ

−
T
∈R. Plugging the

expansion into ΓT and rearranging the sum in ðσ; σ0Þ:

ΓT ¼ 1

aþ

X
σσ0

aσσ0
�
1

d

X
L

CLσσ0TL
σ−T

�

¼ 1

d

X
L

X
σ−T

�
1

aþ

X
σσ0

ðσ−σ0Þ·dðvÞ¼σ−
T

aσσ0CLσσ0

�
TL
σ−T

¼ 1

d

X
Lσ−T

B̃Lσ−T
TL
σ−T
: ð28Þ

The newly introduced coefficient is defined as

B̃Lσ−T
ðκ̄; κÞ≡ 1

aþðκ̄; κÞ
X
σσ0

ðσ−σ0Þ·dðvÞ¼σ−
T

aσσ0 ðκ̄; κÞCLσσ0 ð29Þ

and carries the dependence on ðκ̄; κÞ via the reduced helicity
amplitudes aσσ0 ðκ̄; κÞ.
Furthermore, making use of the Hermitian-conjugation

properties of ΓT , eσσ0 and TL
M, we can deduce the ones for

aσσ0 ; B̃Lσ−T
and CLσσ0 . Namely, it is easy to see that

a�σσ0 ¼ aσ0σ; B̃�
Lσ−T

¼ ð−1Þσ−T B̃L−σ−T ;

CLσ0σ ¼ ð−1Þσ−T CLσσ0 : ð30Þ

For the special σ−T ¼ 0 case, the condition ðσ−σ0Þ ·dðvÞ ¼0
is equivalent to σ ¼ σ0. The proof of this statement is
presented in Appendix B, and the simplified expressions
for the coefficients in that case read

aσσ0 jσ−T¼0 ¼ aσσ ∈Rþ; CLσσ0 jσ−T¼0 ¼ ð2Lþ 1Þ1=2CsTσT
sTσTL0

;

B̃L ≡ B̃L0 ¼
1

aþ

X
σσ0
σ¼σ0

aσσ0CLσσ0

¼ ð2Lþ 1Þ1=2
aþ

X
σ

aσσC
sTσT
sTσTL0

∈R: ð31Þ

Coming back to the computation of ΓTðRÞ, as explained
in Sec. III we obtain it by rotating ΓT with the unitary
representation of R, which we recall refers to the Euler
rotation connecting the initial and final states in the
scattering. Denoting σ−T ¼ M0 for simplicity in what comes,

ΓTðRÞ ¼ D̂ðRÞΓTD̂ðRÞ−1 ¼ 1

d

X
LM0

B̃LM0 ðD̂ðRÞTL
M0D̂ðRÞ−1Þ:

ð32Þ

Taking into account the transformation properties under
rotations of the irreducible tensor operators,

D̂ðRÞTL
M0D̂ðRÞ−1 ¼

X
M

DL
MM0 ðRÞTL

M ⇒

⇒ ΓTðRÞ ¼ 1

d

X
LM

�X
M0

B̃LM0DL
MM0 ðRÞ

�
TL
M ð33Þ

with DL
MM0 ðRÞ the Wigner D matrix associated with the

rotation R. Expression (33) gives the exact decomposition
of the generalized production matrix in terms of irreducible
tensor operators. It is worth mentioning that the kinematic
dependence on the coefficients has been factorized as

B̃LM0 ¼ B̃LM0 ðκ̄; κÞ; DL
MM0 ðRÞ ¼ DL

MM0 ðΩÞ: ð34Þ

The ρ matrix is also expanded with respect to the
irreducible tensor operators following the recipe in
Eq. (22). Hence,

ρ ¼ 1

d

X
LM

ALMTL
M; with ALM ¼ ALMðκ̄Þ: ð35Þ

The coefficients ALM do not depend on the parameters
ðκ; RÞ characterizing the final state, as ρ is a mathematical
entity only referred to the initial one.
In order to experimentally reconstruct ρ, let us recall

Eq. (19), which relates ρ to both the normalized differential
cross section and the production matrix. The normaliza-
tion constant N appearing in Eq. (19) is such thatR
dΩ dκ̄dκ 1

σ
dσ

dΩdκ̄dκ ¼ 1, therefore

N −1 ¼
Z

dΩdκ̄dκ TrfρΓTðRÞg

¼
Z

dκ̄dκ Trfρ
Z

dΩΓT ðRÞg: ð36Þ

In the last step we have used that the only Ω-dependent
quantity is ΓTðRÞ. Actually, the integration over Ω can be
performed using the decomposition in Eq. (33) as well as
property (6):

Z
dΩΓT ðRÞ ¼ 1

d

X
LM

X
M0

B̃LM0

�Z
dΩDL

MM0 ðRÞ
�
TL
M

¼ 8π2

d
B̃00T0

0 ¼
8π2

d
1: ð37Þ

In the end, since ρ is normalized we get

N −1 ¼ 8π2

d

Z
dκ̄dκ Trfρg ¼ 8π2K̄K

d
;

with K̄ ¼
Z

dκ̄ and K ¼
Z

dκ: ð38Þ

Using this in Eq. (19) this value of N along with Eq. (35)
gives
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1

σ

dσ
dΩdκ̄dκ

¼ d
8π2K̄K

�
1

d

X
LM

ALMTrfTL
MΓTðRÞg

�

¼ 1

8π2K̄K

X
LM

ALMTrfTL
MΓTðRÞg: ð39Þ

The last term in the previous equation can be obtained from
the expansion and Hermiticity of ΓTðRÞ as well as general
properties of the trace:

TrfTL
MΓTðRÞg ¼ TrfðTL

MÞTΓðRÞg ¼ TrfðTL
MÞ†ΓTðRÞg�

¼
�X

M0B̃LM0DL
MM0 ðRÞ

��
¼
X
M0

B̃�
LM0DL

MM0 ðRÞ�: ð40Þ

Plugging the above result in the expression of the normal-
ized differential cross section leads to its expansion in terms
of both the Wigner D matrices and the coefficients B̃LM0 ,

1

σ

dσ
dΩdκ̄dκ

¼ 1

8π2K̄K

X
LM

ALM

X
M0

B̃�
LM0DL

MM0 ðRÞ�: ð41Þ

The presence of the coefficients ALM in the right-hand side
of the latter equation is clear. In order to isolate them we use

the orthogonality conditions for the Wigner D matrices
introduced in Eq. (6). Finally, making explicit the depend-
ence on ðκ̄; κÞ:Z

dΩ
�
1

σ

dσ
dΩdκ̄dκ

��
2Lþ 1

4π

�
1=2

DL
MM0 ðΩÞ

¼
�
2Lþ 1

4π

�
1=2 1

8π2K̄K

X
L̂ M̂

AL̂ M̂ðκ̄Þ
X
M̂0

B̃L̂M̂0 ðκ̄; κÞ�

×
Z

dΩDL̂
M̂M̂0 ðΩÞ�DL

MM0 ðΩÞ

¼ 1

½4πð2Lþ 1Þ�1=2
�
B̃LM0 ðκ̄; κÞ�

K̄K

�
ALMðκ̄Þ

¼ BLM0 ðκ̄; κÞ�
4π

ALMðκ̄Þ: ð42Þ

Here, we have defined the coefficient

BLM0 ðκ̄; κÞ≡
�

4π

2Lþ 1

�
1=2 B̃LM0 ðκ; κ̄Þ

K̄K
ð43Þ

which shares the same conjugation relations as B̃L;M0 ðκ̄; κÞ.
In this sense, the main goal of the work is achieved

and the expansion of ρ in the fTL
MgL;M basis can be fully

reconstructed via the integration of the normalized differ-
ential cross section under a properly chosen kernel,

ALMðκ̄Þ ¼
4π

BLM0 ðκ̄; κÞ�
Z

dΩ
�
1

σ

dσ
dΩdκ̄dκ

��
2Lþ 1

4π

�
1=2

DL
MM0 ðΩÞ: ð44Þ

This expression generalizes a first approach given for a
specific decay process in [17]. The procedure for extracting a
densitymatrix coefficient for fixedL andM stands as long as
B̃LM0 ðκ̄; κÞ ≠ 0 for at least oneM0. TheBLM0 ðκ̄; κÞ ¼ 0 ∀ M0
scenario would imply, by Eq. (41), that the normalized
differential cross section has no component associated with
the angular momentum L. Thus, it is not that the method is
incomplete in order to extract the density matrix, but that the
scattering process considered carries no such angular in-
formation, so it is physically impossible to reconstruct that
part of the initial state from the process in hand.
Of special relevance is the M0 ¼ 0 case, for whichZ
dΩ
�
1

σ

dσ
dΩdκ̄dκ

��
2Lþ1

4π

�
1=2

DL
M0ðΩÞ¼

BL0ðκ̄;κÞ�
4π

ALMðκ̄Þ

⇔
Z

dΩ
�
1

σ

dσ
dΩdκ̄dκ

�
YM
L ðθ;φÞ�¼

BLðκ̄;κÞ
4π

ALMðκ̄Þ;

ð45Þ
where we have used the relation between the Wigner D
matrices and the spherical harmonics as well as the

definition of a new coefficient BL for consistency with
the notation used in [17]

DL
M0ðRÞ� ¼ DL

M0ðφ; θ;φ12Þ� ¼
�

4π

2Lþ 1

�
1=2

YM
L ðθ;φÞ;

BLðκ̄; κÞ≡ BL0ðκ̄; κÞ ¼
�

4π

2Lþ 1

�
1=2 B̃Lðκ̄; κÞ

K̄K

¼
ffiffiffiffiffiffi
4π

p

aþðκ̄; κÞK̄K
X
σ

aσσðκ̄; κÞCsTσT
sTσTL0

∈R: ð46Þ

In general, when BLðκ̄; κÞ ≠ 0, M0 ¼ 0 constitutes the
simplest choice in order to apply the quantum tomography
procedure here developed.

A. Factorization of the production matrix

Among all of the scattering processes taking place in
particle physics, there are several of them for which the Γ
matrix factorizes. Some examples have been already
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studied in the literature [10,15–17]. In this section we
explain how the quantum tomography of the density matrix
is simplified in those scenarios.
In particular, let us consider a scattering process of the

form

ðĀ1B̄1C̄1…ÞðĀ2B̄2C̄2…Þ…ðĀNB̄NC̄N…Þ
→ ðA1B1C1…ÞðA2B2C2…Þ…ðANBNCN…Þ; ð47Þ

where we have the factorization ðĀjB̄jC̄j…Þ →
ðAjBjCj…Þ ∀ j. Therefore, the production matrix of
the whole process also factorizes as

Γ ¼ ⊗
N

j¼1
ΓjðRjÞ; ð48Þ

with ΓjðRjÞ being the production matrix of each individual
j process presented above and Rj the associated Euler
rotation. This factorization leaves an impact in Eq. (19),
which is rewritten as

1

σ

dσ
dΩdκ̄dκ

¼ NTr

�
ρ

�
⊗
N

j¼1
ΓT
j ðRjÞ

��
: ð49Þ

Here, ðΩ; κ̄; κÞ denotes the vector of kinematic parameters
ðΩj; κ̄j; κjÞ for each process.
In this context, instead of expanding our density

matrix in the fTL
MðsÞgL;M basis, we choose the preferred

f⊗N
j¼1 T

Lj

Mj
ðsjÞgLj;Mj

one, with fTLj

Mj
ðsjÞgLj;Mj

being the

basis of irreducible tensor operators to be used for the
individual ðĀjB̄jC̄j…Þ → ðAjBjCj…Þ process. Thus,
the density matrix expansion reads

ρ ¼ 1

d

X
L1L2…LN

X
M1M2…MN

AL1M1;L2M2;…;LNMN
⊗
N

j¼1
T
Lj

Mj
ðsjÞ:

ð50Þ
Applying a similar reasoning than the one for the gen-
eral case,

AL1M1;L2M2;…;LNMN
ðκ̄Þ ¼ 4πQ

N
j¼1 BLjM0

j
ðκ̄j; κjÞ�

Z
dΩ
�
1

σ

dσ
dΩdκ̄dκ

�"YN
j¼1

�
2Lj þ 1

4π

�
1=2

D
Lj

MjM0
j
ðΩjÞ

#
: ð51Þ

Finally, let us elaborate on the situation for which all the j
processes considered correspond to the particle’s decays;
this is N ¼ m and

Ā1Ā2…Ām → ðA1B1C1…ÞðA2B2C2…Þ…ðAmBmCm…Þ:
ð52Þ

In these examples, the AL1M1;L2M2;…;LmMm
coefficients have

a clear physical interpretation. They are related to the spin
polarizations and the spin correlations between the particles
taking part in the process:

(i) Lj ¼ Lj0δjj0 ⟶ AL1M1;L2M2;…;LmMm
coincides with

the spin polarization vector of the particle j0.
(ii) Lj ¼ 0 except for Lj1 ; Lj2 ⟶ AL1M1;L2M2;…;LmMm

represents the spin correlation matrix of particles
j1 and j2.

..

.

(iii) Lj ≠ 0 ∀ j ⟶ AL1M1;L2M2;…;LmMm
gives the spin

correlation tensor of the whole system.

V. HIGH-ENERGY PARTICLE PHYSICS
EXAMPLES

In this section we provide several simple examples in the
context of high-energy physics (all of them verifying
κ̄ ¼ κ ¼ ∅) for which the quantum tomography method

here developed applies. With these processes we aim to
exemplify how to apply our method to different initial
states, to show the simplicity it provides compared to
other proposals [10,16], and to point out the new avenues it
opens because of covering a broader class of scattering
processes.
We begin with the quantum tomography of single-

particle states, then we move to analyze different two-
particle systems and we end with what, to the best of
our knowledge, is the first detailed theoretical example
given in the literature for the quantum tomography of a
three-particle system.

A. t → bW + → bl + νl
The reconstruction of the density matrix ρ for the top

quark constitutes one of the initial steps to perform further
analysis either of single-particle systems [10,16] or com-
posed ones [22,30–32]. Since the top quark is a spin-1=2
particle, we have s ¼ 1=2 and the irreducible tensor
operators entering in the decomposition of ρ are those
with L ¼ 0, 1 and M ¼ −L;…; L:

ρ ¼ 1

2

X1
L¼0

XL
M¼−L

ALMTL
Mð1=2Þ: ð53Þ

The explicit expressions for TL
Mð1=2Þ are
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T0
0ð1=2Þ ¼ 12; T1

1ð1=2Þ ¼ −
ffiffiffi
2

p �
0 1

0 0

�
;

T1
0ð1=2Þ ¼

�
1 0

0 −1

�
; T1

−1ð1=2Þ ¼ −T1
1ð1=2ÞT:

Besides, the production matrix for a spin-1=2 particle is
given by [10]

ΓTðθ;φÞ ¼
 

1þα cos θ
2

α sin θ
2

e−iφ

α sin θ
2

eiφ 1−α cos θ
2

!
; ð54Þ

where α is known as the spin analyzing power of the
decay products. Its expression is given in terms of the
reduced helicity amplitudes, which for decay processes (see
Appendix A 1 for further details) fulfil aσσ0 ¼ aσσδσσ0 .
Namely, denoting aσ ¼ aσσ we have

α ¼ a1=2 − a−1=2
a1=2 þ a−1=2

: ð55Þ

In particular, αb ≃ −0.41 when considering the bottom
quark as particle 1, i.e., the one whose momentum defines
ðθ;φÞ [63]. On the contrary and when neglecting the
final leptons masses, the decay Wþ → lþνl joined to the
posterior measure of the charged lepton momentum direc-
tion act, due to maximal parity violation, as a projective
measure over the helicity of theWþ. Therefore, we can take
the charged lepton as particle 1 and its corresponding spin
analyzing power is αlþ ≃ 1.
The trace TrfTL

MΓTðθ;φÞg lets us identify the coeffi-
cients B̃L and BL, defined in Eq. (31) and Eq. (46),
respectively, which are necessary to perform the
tomography:

TrfT0
0ð1=2ÞΓTðθ;φÞg ¼ D0

00ðΩÞ� ⇒ B̃0 ¼ 1; B0 ¼
ffiffiffiffiffiffi
4π

p
;

TrfT1
Mð1=2ÞΓTðθ;φÞg ¼ αD1

M0ðΩÞ� ⇒ B̃1 ¼ α; B1 ¼
ffiffiffiffi
4π
3

q
α:

ð56Þ

Plugging these results in Eq. (44) leads to

A00 ¼ 1; A1M ¼ 3

α

Z
dΩ
�
1

σ

dσ
dΩ

�
D1

M0ðΩÞ: ð57Þ

As expected, A00 ¼ 1 due to normalization of the density matrix. Regarding A1M, these coefficients give the components of
the spin polarization vector of the top quark [13,45] and are easily obtained by integrating the product of D1

M0ðΩÞ times the
experimentally determined normalized differential cross section.

B. Z → l + l −
In the same fashion as with the top quark, the density matrix for single vector bosons has been studied both from the

theoretical [10–12] and experimental [46] side. This process corresponds to the decay of a spin-1 particle, hence s ¼ 1 and
L ¼ 0, 1, 2:

ρ ¼ 1

3

X2
L¼0

XL
M¼−L

ALMTL
Mð1Þ: ð58Þ

The relevant irreducible tensor operators are given by

T0
0ð1Þ ¼ 13; T1

1ð1Þ ¼
ffiffiffi
3

2

r 0
B@

0 −1 0

0 0 −1
0 0 0

1
CA; T1

0ð1Þ ¼
ffiffiffi
3

2

r 0
B@

1 0 0

0 0 0

0 0 −1

1
CA;

with T1
−1ð1Þ ¼ −T1

1ð1ÞT and

T2
2ð1Þ ¼

ffiffiffi
3

p
0
B@

0 0 1

0 0 0

0 0 0

1
CA; T2

1ð1Þ ¼
ffiffiffi
3

2

r 0
B@

0 −1 0

0 0 1

0 0 0

1
CA; T2

0ð1Þ ¼
1ffiffiffi
2

p

0
B@

1 0 0

0 −2 0

0 0 1

1
CA;
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with T2
−2ð1Þ ¼ T2

2ð1ÞT and T2
−1ð1Þ ¼ −T2

1ð1ÞT . Moreover, the production matrix for a spin-1 particle is given by [10]

ΓTðθ;φÞ ¼ 1

4

0
B@

1þ δþ ð1− 3δÞcos2θþ 2α cosθ
ffiffiffi
2

p
sinθðαþ ð1− 3δÞcosθÞe−iφ ð1− 3δÞð1− cos2θÞe−i2φffiffiffi

2
p

sinθðαþ ð1− 3δÞ cosθÞeiφ 4δþ 2ð1− 3δÞsin2θ ffiffiffi
2

p
sinθðα− ð1− 3δÞ cosθÞe−iφ

ð1− 3δÞð1− cos2θÞei2φ ffiffiffi
2

p
sinθðα− ð1− 3δÞ cosθÞeiφ 1þ δþ ð1− 3δÞcos2θ− 2α cosθ

1
CA;

ð59Þ

with ðθ;φÞ the angles defining the momentum direction of one of the final charged leptons. In this case, two parameters are
needed to characterize the Γ matrix. Their expressions in terms of the diagonal reduced helicity amplitudes, aσ ¼ aσσ, are

α ¼ a1 − a−1
a1 þ a−1 þ a0

; δ ¼ a0
a1 þ a−1 þ a0

: ð60Þ

Since we are taking the Z boson as the initial vector boson, one can neglect the masses of the final leptons (in comparison
tomZ) and therefore obtain δ ¼ 0 and α ≃ −0.13. Proceeding as in the last subsection, we derive the coefficients B̃L and BL

by computing traces over ΓTðθ;φÞ:

TrfT0
0ð1ÞΓTðθ;φÞg ¼ D0

00ðΩÞ� ⇒ B̃0 ¼ 1; B0 ¼
ffiffiffiffiffiffi
4π

p
;

TrfT1
Mð1ÞΓTðθ;φÞg ¼

ffiffi
3
2

q
αD1

M0ðΩÞ� ⇒ B̃1 ¼
ffiffi
3
2

q
α; B1 ¼

ffiffiffiffiffiffi
2π

p
α;

TrfT2
Mð1ÞΓTðθ;φÞg ¼ ð1−3δÞffiffi

2
p D2

M0ðΩÞ� ⇒ B̃2 ¼ ð1−3δÞffiffi
2

p ; B2 ¼
ffiffiffiffi
2π
5

q
ð1 − 3δÞ:

ð61Þ

Plugging these values in Eq. (44) gives

A00 ¼ 1; A1M ¼
ffiffiffi
6

p

α

Z
dΩ
�
1

σ

dσ
dΩ

�
D1

M0ðΩÞ; A2M ¼ 5
ffiffiffi
2

p

1 − 3δ

Z
dΩ
�
1

σ

dσ
dΩ

�
D2

M0ðΩÞ: ð62Þ

We get A00 ¼ 1 due to normalization of the density matrix.
Regarding the coefficients defining the spin polariza-
tion vector [46], A1M and A2M, they are obtained by
integrating the product of either D1

M0ðΩÞ or D2
M0ðΩÞ times

the experimentally determined normalized differential
cross section.

C. tt̄ → ðbl + νlÞðb̄l − ν̄lÞ
This is the first process involving an initial two-particle

state. Namely, we are dealing with the simplest bipartite
initial state (2 qubits), which is composed by a tt̄ pair.
Several properties have been studied concerning this
system, ranging from spin correlations [43,44] to entangle-
ment and Bell inequality violations [14,21–25].
The quantum state decomposition for these 2-spin-1=2

particles, s1 ¼ s2 ¼ 1=2, reads

ρ ¼ 1

4

X1
L1L2¼0

X
M1M2

AL1M1;L2M2
TL1

M1
ð1=2Þ ⊗ TL2

M2
ð1=2Þ: ð63Þ

As detailed in Sec. IVA, the coefficients AL1M1;00 (A00;L2M2
)

constitute the spin polarization of particle 1 (2), while
AL1M1;L2M2

with L1; L2 ≠ 0 gives the spin correlation

matrix of the two-fermion system. Furthermore, this is
the simplest scenario in which the production matrix
factorizes:

ΓTðθ1;φ1; θ2;φ2Þ ¼ ΓT
1 ðθ1;φ1Þ ⊗ ΓT

2 ðθ2;φ2Þ: ð64Þ

Here ΓT
i ðθi;φiÞ is the production matrix associated with the

decay of fermion i and the angles ðθi;φiÞ refer to the
momentum direction of one of the final particles in its
corresponding decay. Their explicit expressions are given
in Eq. (54).
The components of the now two-dimensional vectors

B̃L ¼ ðB̃L1
; B̃L2

Þ and BL ¼ ðBL1
; BL2

Þ coincide with the
coefficients B̃L and BL computed in Sec. VA. In addition,
for each decay we could have, in principle, different spin
analyzers α, so

B̃0 ¼ 1; B̃Li¼1 ¼ αi;

B0 ¼
ffiffiffiffiffiffi
4π

p
; BLi¼1 ¼

ffiffiffiffiffiffi
4π

3

r
αi: ð65Þ

Replacing their values in Eq. (51):
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A1M1;00 ¼
3

α1

Z
dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D1

M10
ðΩ1Þ;

A00;1M2
¼ 3

α2

Z
dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D1

M10
ðΩ2Þ;

A1M1;1M2
¼ 9

α1α2

Z
dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
×D1

M10
ðΩ1ÞD1

M20
ðΩ2Þ; ð66Þ

and A00;00 ¼ 1 due to normalization. Finally, the values of
α1 and α2 will depend on which final particle (either the
bottom quark or the charged lepton) is defining ðθi;φiÞ and
their explicit values coincide with those given in Sec. VA,
αb ≃ −0.41 and αl ≃ 1.

D. V1V2 → ðf 1f̄ 1Þðf 2f̄ 2Þ
In this scattering process we are dealing with another

scenario in which the production matrix factorizes. For
instance, we start with two vector bosons (s1 ¼ s2 ¼ 1)
decaying each into two final fermions. Exhaustive theo-
retical and experimental studies of these kinds of systems
have been carried out [36–40,46], so we provide a practical
method for extracting its density matrix following an initial

idea shown in [17]. The complete production matrix is
given by

ΓTðθ1;φ1; θ2;φ2Þ ¼ ΓT
1 ðθ1;φ1Þ ⊗ ΓT

2 ðθ2;φ2Þ: ð67Þ
Here ΓT

i ðθi;φiÞ is the production matrix associated with
the decay of boson i and the angles ðθi;φiÞ refer to the
momentum direction of one of the final fermions in its
corresponding decay. Their explicit expressions are
given in Eq. (59). With respect to the density matrix, its
decomposition is given by

ρ ¼ 1

9

X2
L1L2¼0

X
M1M2

AL1M1;L2M2
TL1

M1
ð1Þ ⊗ TL2

M2
ð1Þ: ð68Þ

The coefficients AL1M1;00 (A00;L2M2
) are interpreted as the

elements of the spin polarization vector of particle 1 (2),
while AL1M1;L2M2

with L1; L2 ≠ 0 gives the spin correlation
matrix of the two-boson system.
The components of the vectors B̃L ¼ ðB̃L1

; B̃L2
Þ and

BL ¼ ðBL1
; BL2

Þ coincide with the coefficients B̃L and BL

computed in Sec. V B. In addition, for each decay we
could have, in principle, different spin analysers α and δ
parameters, so

B̃0 ¼ 1; B̃Li¼1 ¼
ffiffiffi
3

2

r
αi; B̃Li¼2 ¼

ð1 − 3δiÞffiffiffi
2

p ;

B0 ¼
ffiffiffiffiffiffi
4π

p
; BLi¼1 ¼

ffiffiffiffiffiffi
2π

p
αi; BLi¼2 ¼

ffiffiffiffiffiffi
2π

5

r
ð1 − 3δiÞ: ð69Þ

Finally, replacing their values in Eq. (51):

A1M1;00 ¼
ffiffiffi
6

p

α1

Z
dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D1

M10
ðΩ1Þ;

A2M1;00 ¼
5
ffiffiffi
2

p

1 − 3δ1

Z
dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D2

M10
ðΩ1Þ;

A1M1;1M2
¼ 6

α1α2

Z
dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D1

M10
ðΩ1ÞD1

M20
ðΩ2Þ;

A1M1;2M2
¼ 10

ffiffiffi
3

p

α1ð1 − 3δ2Þ
Z

dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D1

M10
ðΩ1ÞD2

M20
ðΩ2Þ;

A2M1;2M2
¼ 50

ð1 − 3δ1Þð1 − 3δ2Þ
Z

dΩ1dΩ2

�
1

σ

dσ
dΩ1dΩ2

�
D2

M10
ðΩ1ÞD2

M20
ðΩ2Þ ð70Þ

and similarly for A00;L2M2
and A2M1;1M2

(A00;00 ¼ 1 due
to normalization). We will always consider the final
fermions massless in comparison to the mass of the
initial bosons, therefore δi ¼ 0, the value of α on the
contrary will depend on the vector boson in hand.
Namely, for the Z boson αZ ≃ −0.13 while for the W
boson αW ≃ −1.

E. tt̄W → ðbW + Þðb̄W − ÞðlνlÞ → ðbl + νlÞðb̄l − ν̄lÞðlνlÞ
In this final example we cover the process for

which three different particles reach a final eight-particle
state. We aim to illustrate a constructive approach to
measure the spin correlation tensor between three
particles (among all the others spin polarisation and
spin correlation matrices). Since each decay takes place
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independently, the production matrix for the whole
process factorizes as

ΓTðθ1;φ1; θ2;φ2; θ3;φ3Þ ¼ ΓT
t ðθ1;φ1Þ ⊗ ΓT

t̄ ðθ2;φ2Þ
⊗ ΓT

Wðθ3;φ3Þ: ð71Þ

The first two production matrices coincide in form with
the one of spin-1=2 particles, Eq. (54), while the latter
one corresponds to the production matrix for a spin-1
particle, Eq. (59). The angular coordinates appearing in

the argument of each matrix identify, for each particular
decay, the momentum direction of the final charged
lepton.
Analogously to the previous example, the components of

the vectors B̃L ¼ ðB̃L1
; B̃L2

; B̃L3
Þ and BL ¼ ðBL1

; BL2
; BL3

Þ
are directly computed by replacing the corresponding
values of α and δ in the expressions (56) and (61). For
instance, in the top and antitop decay we have αt; αt̄ ≃ 1,
whereas for the W decay αW ≃ −1 and δ ¼ 0. Using these
specific values we get

B̃0 ¼ 1; B̃L1¼1 ¼ B̃L2¼1 ¼ 1; B̃L3¼1 ¼ −
ffiffiffi
3

2

r
; B̃L3¼2 ¼

1ffiffiffi
2

p ;

B0 ¼
ffiffiffiffiffiffi
4π

p
; BL1¼1 ¼ BL2¼1 ¼

ffiffiffiffiffiffi
4π

3

r
; BL3¼1 ¼ −

ffiffiffiffiffiffi
2π

p
; BL3¼2 ¼

ffiffiffiffiffiffi
2π

5

r
: ð72Þ

The expressions for the coefficients entering in ρ decomposition are

AL1M1;L2M2;L3M3
¼ 4π

BL1
BL2

BL3

Z
dΩ1dΩ2dΩ3

�
1

σ

dσ
dΩ1dΩ2dΩ3

�

×

��ð2L1 þ 1Þð2L2 þ 1Þð2L3 þ 1Þ
4π

�
1=2

DL1

M10
ðΩ1ÞDL2

M20
ðΩ2ÞDL3

M30
ðΩ3Þ

�
:

In the latter equation we have not replaced the different
values of BLi

and Li in order to give a more compact
expression, but further simplifications take place when
replacing them. The values of AL1M1;L2M2;L3M3

associated
with Li ≠ 0 ∀ i conform the spin correlation tensor of the
three-particle system, while analogous interpretations for
the spin correlation matrix and spin polarization vectors as
the ones given in the previous example apply for
AL1M1;L2M2;00, AL1M1;00;L3M3

, etc.

VI. WEYL-WIGNER-MOYAL FORMALISM

In this section, we generalize the definition of Wigner Q
and P symbols of an operator given a projective measure
[61] to account for operators acting over larger Hilbert
spaces and when considering nonprojective measures.
Once this generalization is set, we explain the relation
between these concepts and the quantum tomography
procedure we have developed, deepening in the relation
between particle physics and quantum information first
noticed in [16].
We start by introducing the whole formalism of the

Wigner P and Q symbols. Let J be the vector spin operator
fulfilling J · J ¼ jðjþ 1Þ, then the original definition of the
Wigner Q symbol associated with an operator AðJÞ acting
on a particle with definite spin j is that of the function

ΦQ
A ðn̂Þ ¼ hn̂jAðJÞjn̂i ¼ TrfAðJÞΠn̂ðθ;φÞg: ð73Þ

Here n̂ ¼ n̂ðθ;φÞ is a three-dimensional unit vector char-
acterized by the spherical coordinates ðθ;φÞ, jn̂i is the
normalized state satisfying J · n̂jn̂i ¼ jjn̂i and Πn̂ðθ;φÞ ¼
jn̂ihn̂j is a projective measure over that state. Meanwhile,
the correspondingWigner P symbol (in general not unique)
for the operator AðJÞ is defined by

AðJÞ ¼ 2jþ 1

4π

Z
dn̂ΦP

Aðn̂Þjn̂ihn̂j

¼ 2jþ 1

4π

Z
dΩn⃗ΦP

AðΩn⃗ÞΠn̂ðΩn⃗Þ; ð74Þ

whereΩn⃗ is the solid angle defined by ðθ;φÞ. An equivalent
definition for the Wigner P symbol of an operator AðJÞ is
that of a function ΦP

Aðn̂Þ satisfying that for any other
operator BðJÞ and for which the following property holds:

TrfAðJÞBðJÞg ¼ 2jþ 1

4π

Z
dn̂ΦP

Aðn̂ÞΦQ
B ðn̂Þ

¼ 2jþ 1

4π

Z
dΩn⃗ΦP

AðΩn⃗ÞΦQ
B ðΩn⃗Þ: ð75Þ

These two notions are generalized when considering
operators acting on larger Hilbert spaces, AðΩ; κ̄; κÞ, and
when dealing with nonprojective measures, FðΩ; κ̄; κÞ. The
parameters Ω, κ̄, and κ refer to the ones presented in
previous sections and, unless it is needed, will be omitted in
what follows. In particular, the generalized Wigner Q
symbol of an operator A with respect to F is
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Φ̃Q
ATrfAFg: ð76Þ

The operator F corresponds to a positive operator-valued
measure (POVM) [16,64]. This is an element of a set of
positive semidefinite Hermitian operators fFl ¼ K†

lKlgl,
where the so-called Kraus operators Kl [64] fulfilX

l

K†
lKl ¼

X
l

Fl ¼ 1: ð77Þ

In our context and according to the definition given in [16],
the components of the measurement operator K leading to
F ¼ K†K coincide, up to a normalization factor, with the
helicity amplitudes Mλλ̄ introduced in Sec. III. Hence,

Kλλ̄ ∝ Mλλ̄ ⇒ Fλ̄λ̄0 ∝
X
λ

M�
λλ̄
Mλλ̄0 : ð78Þ

In consequence, comparing this result to the expression
of ΓT and taking into account the normalization factor,
we obtain

Fλ̄λ̄0 ¼ ΓT
λ̄λ̄0 ⇒ Φ̃Q

A ¼ TrfAΓTg: ð79Þ

Therefore, the POVM F is exactly the transposed of the
production matrix related to the scattering process, ΓT . The
interpretation of ΓT as a POVM may be tricky, as for it
to hold one needs, by definition, a set of positive semi-
definite Hermitian operators fFlgl such that

P
l Fl ¼ 1,

while in our case we are dealing with a single one.
However, one can always complete the set by considering
only two POVM, fΓT; 1 − ΓTg.
Regarding the generalized Wigner P symbol of an

operator A, this one is defined as the function Φ̃P
A (again

not unique) such that for any other operator B (or for a basis
of operators) fulfils

TrfABg ¼ d
8π2K̄K

Z
dΩΦ̃Q

B Φ̃P
A: ð80Þ

Let us now check that we reproduce the quantum
tomography of ρ by only using the properties of these Q
and P symbols, providing in addition explicit expressions
for them in terms of Wigner D matrices.
For that purpose, denoting by ðΦ̃Q

LMÞð†Þ and ðΦ̃P
LMÞð†Þ the

Q and P symbols of ðTL
MÞð†Þ, it is clear from the results

derived in Sec. IV that

Φ̃Q
LMðΩ; κ̄; κÞ ¼ TrfTL

MΓTðΩ; κ̄; κÞg ¼
X
M0

B̃LM0 ðκ̄; κÞ�DL
MM0 ðΩÞ�: ð81Þ

Moreover, we notice that when dealing with A ¼ TL
M and B ¼ ðTL̂

M̂
Þ†, an equivalent formulation for the definition of the

generalized P symbol is deduced:

dδL;L̂δM;M̂ ¼ TrfTL
MðTL̂

M̂
Þ†g ¼ d

8π2K̄K

Z
dΩΦ̃Q

LM ðΦ̃P
L̂ M̂

Þ†

⇔
1

8π2K̄K

Z
dΩΦ̃Q

LM ðΦ̃P
L̂ M̂

Þ† ¼ δLL̂δMM̂: ð82Þ

Thus, once the generalized Q symbol for TL
M is known, a suitable family (labeled by M̂0) of generalized P symbols for

ðTL
MÞ† is

ðΦ̃P
L̂ M̂;M̂0 ðΩ; κ̄; κÞÞ† ¼ 4π

BL̂M̂0 ðκ̄; κÞ�
�
2L̂þ 1

4π

�
1=2

DL̂
M̂M̂0 ðΩÞ; ð83Þ

which is well defined provided that BL̂M̂0 ≠ 0. Indeed, we can verify this function satisfies the characterization of the
generalized P symbol:

1

8π2K̄K

Z
dΩΦ̃Q

LM ðΦ̃P
L̂ M̂;M̂0 Þ† ¼ 1

8π2K̄K

Z
dΩ
�X

M0
B̃�
LM0DL

MM0 ðΩÞ�
��

4π

B�
L̂M̂0

�
2L̂þ 1

4π

�
1=2

DL̂
M̂M̂0 ðΩÞ

�

¼
X
M0

��
4π

2L̂þ 1

�
1=2 B̃�

LM0

K̄K
1

B�
L̂M̂0

��
2L̂þ 1

8π2

Z
dΩDL

MM0 ðΩÞ�DL̂
M̂M̂0 ðΩÞ

�

¼
X
M0

�
B�
L̂M̂0

B�
L̂M̂0

�
δLL̂δMM̂δM0M̂0 ¼ δLL̂δMM̂: ð84Þ
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Concerning the density matrix ρ, applying the definition of the generalized P symbol (80) for A ¼ ρ and B ¼ ðTL̂
M̂
Þ†, we get

on the one hand the coefficient we want to compute

d
8π2K̄K

Z
dΩΦ̃Q

ρ ðΦ̃P
L̂ M̂;M̂0 Þ† ¼ TrfρðTL̂

M̂
Þ†g ¼ AL̂ M̂; ð85Þ

where in the last step we have used expansion (35). It is left to relate the left-hand side of the previous equation to the
angular distribution of the final particles. For instance, Φ̃Q

ρ is directly related to the differential cross section by Eq. (19)

1

σ

dσ
dΩdκ̄dκ

¼ d
8π2K̄K

TrfρΓTg ¼ d
8π2K̄K

Φ̃Q
ρ ⇒ Φ̃Q

ρ ¼ 8π2K̄K
d

1

σ

dσ
dΩdκ̄dκ

: ð86Þ

Hence, using this characterization of Φ̃Q
ρ as well as the explicit form of ðΦ̃P

L̂ M̂;M̂0 Þ†, we get on the other hand

d
8π2K̄K

Z
dΩΦ̃Q

ρ ðΦ̃P
L̂ M̂;M̂0 Þ† ¼

Z
dΩ
�
1

σ

dσ
dΩdκ̄dκ

�
ðΦ̃P

L̂ M̂;M̂0 Þ† ¼ 4π

B�
L̂M̂0

Z
dΩ
�
1

σ

dσ
dΩdκ̄dκ

��
2L̂þ 1

4π

�
1=2

DL̂
M̂M̂0 ðΩÞ: ð87Þ

Finally, equating and simplifying both Eq. (85) and Eq. (87),

Z
dΩ
�
1

σ

dσ
dΩdκ̄dκ

��
2L̂þ 1

4π

�
1=2

DL̂
M̂M̂0 ðΩÞ ¼

B�
L̂M̂0

4π
AL̂ M̂ðκ̄Þ: ð88Þ

This expression reproduces exactly the same result as the one derived in Eq. (44). For the choice M̂0 ¼ 0when possible, the
generalized P symbol reduces to

ðΦ̃P
L̂ M̂

Þ† ≡ ðΦ̃P
L̂ M̂;0

Þ† ¼ 4π

BL̂0

�
2Lþ 1

4π

�
1=2

DL̂
M̂0

ðΩÞ ¼ 4π

BL̂
YM̂
L̂
ðθ;φÞ�: ð89Þ

VII. SUMMARY AND CONCLUSIONS

In this paper we have provided a complete formalism for
the quantum tomography of the helicity quantum initial
state ρ in a general scattering process. Following the
method here developed, the coefficients in the parametri-
zation of the density matrix ρ in terms of irreducible tensor
operators fTL

Mg are determined by averaging over the
angular distribution data of the final state; see Eq. (44).
As an intermediate step to accomplish the main goal, we
have defined a generalization of the production matrix of a
scattering Γ, deriving its expansion with respect to the
irreducible tensors (a formulation that makes explicit its
angular dependence) as well as the exact form of its
elements, which generalize the well-known reduced hel-
icity amplitudes for a variety of processes (labeled accord-
ing to the number of initial and final particles).
The crucial feature we exploited in order to achieve the

tomography of the helicity initial state is the transformation
property of the irreducible tensor basis under rotations of
the system. Actually, this property along with the existent
relation between ρ and Γ leads to a novel expansion of the
normalized differential cross section in terms of the Wigner
D matrices, which eventually gives rise to a constructive

and experimentally practical algorithm to extract the
relevant helicity information of any process in hand.
Special attention has been given in this work to the case
in which Γ factorizes, i.e., when the whole process can be
decomposed in subgroups of independent processes. In
particular, when all the involved scatterings are in fact
decays, the basis coefficients in the ρ expansion have a
quite clear physical meaning and we recover and extend the
studies previously done in the literature, which we illustrate
with some simple examples.
Finally, we have also presented a rederivation of all our

previous results from a quantum-information perspective.
Namely, based on the Weyl-Wigner-Moyal formalism we
defined and computed the generalized Wigner P and Q
symbols for the irreducible tensor operators. Thus, compact
analytical expression are deduced and a rather simple
relation between particle physics and quantum information
is manifested.
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APPENDIX A: EXPLICIT COMPUTATION
OF THE GENERALIZED
PRODUCTION MATRIX

In this appendix we compute in detail and for the cases
mentioned in Sec. III, the expressions of aσ;σ0 , B̃Lσ−T

, and
BLM0 . For the computation we will consider on-shell
particles for the initial states as this feature is almost
irrelevant for the reasoning. However, comments related to
the off-shell case will be done when needed at the end of
each subsection, as they may change the BLM0 coefficient.
Regarding the particles of the final state, they are always
on-shell as they are the physical particles we are doing
measurements on for reconstructing the density matrix ρ.
Furthermore, we will make explicit the ð1̄; 1Þ and ðκ̄; κÞ
dependence only when needed.

1. 1̄ → 2

We recall that

ΓT
λ̄λ̄0 ∝ h1̄ κ̄ λ̄ j

�X
λ

ðS†j1κλih1κλjSÞ
�
j1̄ κ̄ λ̄0i; ðA1Þ

with

j1κλi ∝
X
J

X
MΛ

ð2J þ 1Þ1=2DJ
MΛð1ÞjJMΛκλi

¼
X
J

X
MΛ

ð2J þ 1Þ1=2δMΛjJMΛκλi

¼
X
J

X
Λ
ð2J þ 1Þ1=2jJΛκλi: ðA2Þ

Because of the reduced number of particles in both the
initial and final states, we have κ̄ ¼ κ ¼ ∅. Furthermore,
Λ̄ ¼ λ̄ and Λ ¼ λ1 − λ2 ≡ ζ−λ are well-defined quantum
numbers, so we do not sum in them. In addition, the initial
total angular momentum is alsowell defined: J̄ ¼ s̄, where s̄
is the spin of the initial particle. Taking everything into
account:

j1̄ κ̄ λ̄i ¼ j1̄ λ̄i ∝ ð2s̄þ 1Þ1=2js̄ λ̄i ∝ js̄ λ̄i
j1κλi ¼ j1λi ∝P

J
ð2J þ 1Þ1=2jJζ−λ λi

�
⇒

⇒ ΓT
λ̄λ̄0 ∝ hs̄ λ̄ j

X
λ1λ2

S†
�X

J

ð2J þ 1Þ1=2jJζ−λ λi
��X

J0
ð2J0 þ 1Þ1=2hJ0ζ−λ λj

�
Sjs̄λ̄0i

¼
X
λ1λ2

X
JJ0

ð2J þ 1Þ1=2ð2J0 þ 1Þ1=2hs̄ λ̄ jS†jJζ−λ λihJ0ζ−λ λjSjs̄λ̄0i: ðA3Þ

As the scattering S matrix conserves both J2 and Jz [this last one coincides with Λ because DJ
MΛð1Þ ¼ δMΛ], we have

hs̄ λ̄ jS†jJζ−λ λi ¼ hλ̄jSs̄†ζ−λ jλiδs̄Jδλ̄ζ−λ
hJ0ζ−λ λjSjs̄λ̄0i ¼ hλjSs̄ζ−λ jλ̄

0iδs̄J0δλ̄0ζ−λ

�
⇒

⇒ ΓT
λ̄λ̄0 ∝

X
λ1λ2

hλ̄jSs̄†ζ−λ jλihλjS
s̄
ζ−λ
jλ̄0iδλ̄ζ−λ δλ̄0ζ−λ

¼
X
λ1λ2

jhλjSs̄ζ−λ jλ̄ij
2 δλ̄λ̄0δλ̄ζ−λ : ðA4Þ

Rewriting the sum in ðλ1; λ2Þ as one in ðλ1; ζ−λ Þ and applying the Kronecker delta

ΓT
λ̄λ̄0 ∝

X
λ1

X
ζ−λ

jhλjSs̄ζ−λ jλ̄ij
2 δλ̄λ̄0δλ̄ζ−λ ∝

X
ζ−λ

aζ−λ δλ̄λ̄0δλ̄ζ−λ ;

aζ−λ ¼ 2s̄þ 1

4π

X
λ1

jhλ1λ1 − ζ−λ jSs̄ζ−λ jζ
−
λ ij2; ðA5Þ

where we have introduced the well-known reduced helicity amplitudes [10,15,62], which we are denoting here as aζ−λ .

Moreover, since the ðλ̄; λ̄0Þ element of ΓT is proportional to δλ̄λ̄0 , it is clear that ΓT is diagonal and its expression in terms of
the eσσ0 matrices is
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ΓT ∝
X
σσ0

aσσ0eσσ0 ; with aσσ0 ¼ aσ δσσ0

¼ 2s̄þ 1

4π

X
λ1

jhλ1λ1 − σjSs̄σjσij2 δσσ0 : ðA6Þ

Taking into account the normalization factor aþ ¼P
σ aσσ ¼

P
σ aσ:

ΓT ¼ 1

aþ

X
σ

aσeσσ; with

aσ ¼
2s̄þ 1

4π

X
λ1

jhλ1λ1 − σjSs̄σjσij2: ðA7Þ

Finally, let us obtain B̃Lσ−T
and BLM0 knowing aσσ0 .

Because of m ¼ 1, we have dðvÞ ¼ 1 and therefore σ−T ¼
σ − σ0 ¼ σ− and CðL; s̄; σ; σ0Þ ¼ ð2Lþ 1Þ1=2Cs̄σ

s̄σ0Lσ− .
Hence, substituting in the expression for B̃Lσ−T

¼ B̃Lσ−

and noticing that δσσ0 ¼ δσσ0δσ−0,

B̃Lσ− ¼ 1

aþ

X
σσ0

σ−σ0¼σ−

aσσ δσσ0 ð2Lþ 1Þ1=2Cs̄σ
s̄σ0Lσ−

¼ ð2Lþ 1Þ1=2
aþ

X
σ

aσCs̄σ
s̄σL0δσ−0: ðA8Þ

In consequence, the only possible nonzero B̃Lσ− is B̃L0. For
BLM0 , one should distinguish between the on-shell and off-
shell cases for the particle in the initial state, as it leads to
κ̄ ¼ ∅ and κ̄ ¼ fm̄g respectively. Namely, for the on-shell
scenario

BLM0 ¼
�

4π

2Lþ 1

�
1=2

B̃LM0 ¼
�

4π

2Lþ 1

�
1=2

B̃L0 δM00

¼
ffiffiffiffiffiffi
4π

p

aþ

X
σ

aσCs̄σ
s̄σL0δM00 ¼ BLδM00: ðA9Þ

Meanwhile, for the off-shell one

BLM0 ¼
�

4π

2Lþ 1

�
1=2 B̃LM0 ðm̄Þ

K̄

¼
ffiffiffiffiffiffi
4π

p

aþðm̄ÞK̄
X
σ

aσðm̄ÞCs̄σ
s̄σL0δM00; with K̄ ¼

Z
dm̄:

ðA10Þ

Furthermore, due to the normalization condition over ΓT,
all the magnitudes appearing in BLM0 should come in a
dimensionless combination. In the special case of massless
final particles, m̄ becomes the only dimensional free
magnitude and therefore cannot appear in BLM0 . Actually
for the massive case, the BLM0 dependence on the masses of
the particles comes as the combination mi=m̄, with mi the
masses of the on-shell final particles. This is indeed what
has been obtained in Refs. [10,15,17].

2. 1̄ → n

As the initial state is the same than in the previous case,
we still have κ̄ ¼ ∅, J̄ ¼ s̄ and Λ̄ ¼ λ̄, leading to

j1̄ κ̄ λ̄i ∝ js̄ λ̄i: ðA11Þ

On the other hand, for the final state it will no longer be true
that Λ is well defined nor does κ ¼ ∅. Then,

j1 κ λi ∝
X
J

X
Λ

ð2J þ 1Þ1=2jJΛ κ λi: ðA12Þ

Following the same reasoning done before

ΓT
λ̄λ̄0 ∝

X
λ

X
JJ0

X
ΛΛ0

ð2J þ 1Þ1=2ð2J0 þ 1Þ1=2hs̄ λ̄ jS†jJΛ κ λihJ0 Λ0 κ λjSjs̄λ̄0i: ðA13Þ

Applying conservation of both J2 and Jz [this last one coincides with Λ because DJ
MΛð1Þ ¼ δMΛ]:

ð2J þ 1Þ1=2hs̄ λ̄ jS†jJΛ κ λi ¼ ð2s̄þ 1Þ1=2hλ̄jSs̄†Λ jκ λiδs̄Jδλ̄Λ
ð2J0 þ 1Þ1=2hJ0 Λ0 κ λjSjs̄λ̄0i ¼ ð2s̄þ 1Þ1=2hκ λjSs̄Λ0 jλ̄0iδs̄J0δλ̄0Λ0

�
⇒

⇒ ΓT
λ̄λ̄0 ∝

X
ΛΛ0

X
λ

hΛjSs̄†Λ jκλihκ λjSs̄Λ0 jΛ0iδλ̄Λδλ̄0Λ0 ∝
X
ΛΛ0

aΛΛ0δλ̄Λδλ̄0Λ0 ;

aΛΛ0 ¼ 2s̄þ 1

4π

X
λ

hΛjSs̄†Λ jκλihκ λjSs̄Λ0 jΛ0i: ðA14Þ
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The expression of ΓT in the eσσ basis is straightforward:

ΓT ¼ 1

aþ

X
σσ0

aσσ0eσσ0 ;

with aσσ0 ¼
2s̄þ 1

4π

X
λ

hσjSs̄†σ jκ λihκ λjSs̄σ0 jσ0i and aþ ¼
X
σ

aσσ: ðA15Þ

Like in the 1̄ → 2 case, σ−T ¼ σ − σ0 ¼ σ− and CðL; s̄; σ; σ0Þ ¼ ð2Lþ 1Þ1=2Cs̄σ
s̄σ0Lσ− , simplifying the explicit form of B̃Lσ−T

and BLM0 . Namely, taking into account that κ ≠ ∅,

B̃Lσ− ¼ ð2Lþ 1Þ1=2
aþ

X
σσ0

σ−σ0¼σ−

aσσ0Cs̄σ
s̄σ0Lσ− ¼ ð2Lþ 1Þ1=2

aþ

X
σ

aσðσ−σ−ÞCs̄σ
s̄ðσ−σ−ÞLσ− ;

BLM0 ¼
�

4π

2Lþ 1

�
1=2 B̃LM0

K
¼

ffiffiffiffiffiffi
4π

p

aþK

X
σ

aσðσ−M0ÞCs̄σ
s̄ðσ−M0ÞLM0 : ðA16Þ

Regarding the M0 ¼ 0 choice,

BL ¼
ffiffiffiffiffiffi
4π

p

aþK

X
σ

aσσCs̄σ
s̄σL0; with aσσ ¼

2s̄þ 1

4π

X
λ

jhκ λjSs̄σjσij2: ðA17Þ

In contrast, when the initial particle is off-shell, a dependence on the initial mass appears. Therefore, κ̄ ≠ ∅ and

BLM0 ¼
�

4π

2Lþ 1

�
1=2 B̃LM0

K̄K
¼

ffiffiffiffiffiffi
4π

p

aþK̄K

X
σ

aσðσ−M0ÞCs̄σ
s̄ðσ−M0ÞLM0 ;

BL ¼
ffiffiffiffiffiffi
4π

p

aþK̄K

X
σ

aσσCs̄σ
s̄σL0: ðA18Þ

3. 2̄ → 2

For this case, neither the initial nor final states have well-defined J2. Nevertheless, it is still true that Jz is a well-defined
quantum number. Moreover, κ̄ ¼ κ ¼ ∅. Denoting ζ̄−λ ≡ λ̄1 − λ̄2 and ζ−λ ≡ λ1 − λ2 and following the standard steps:

j1̄ κ̄ λ̄i ¼ j1̄ λ̄i ∝P
J̄
ð2J̄ þ 1Þ1=2jJ̄ ζ̄−λ λ̄i

j1 κ λi ¼ j1 λi ∝P
J
ð2J þ 1Þ1=2jJ ζ−λ λi

9=
;⇒ ðA19Þ

⇒ ΓT
λ̄λ̄0 ∝

X
λ1λ2

X
JJ0

ð2J þ 1Þð2J0 þ 1Þhλ̄jSJ†ζ−λ jλihλjS
J0
ζ−λ
jλ̄0iδζ̄−λ ζ−λ δζ̄−0λ ζ−λ

: ðA20Þ

Thus,

ΓT ¼ 1

aþ

X
σσ0

aσσ0eσσ0 ; with aþ ¼
X
σ

aσσ ðA21Þ

and the factor aσσ0 is given by

aσσ0 ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ1λ2

hσ1 σ2jSJ†ζ−λ jλ1 λ2ihλ1 λ2jS
J0
ζ−λ
jσ01; σ02iδζ−σ ζ−λ δζ−σ ζ−0σ

¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ1

hσ1 σ2jSJ†ζ−σ jλ1ðλ1 − ζ−σ Þihλ1ðλ1 − ζ−σ ÞjSJ0ζ−σ jσ01; σ02iδζ−σ ζ−0σ :
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Finally, let us obtain B̃Lσ−T
and BLM0 knowing the

structure of aσσ0 . As stated in the main text, in B̃Lσ−T
we

need to sum over σ ¼ ðσ1; σ2Þ and σ0 ¼ ðσ01; σ02Þ con-
strained to ðσ − σ0Þ · dðvÞ ¼ σT − σ0T ¼ σ−T . Actually, this
condition can be rewritten as a Kronecker delta in a free
sum over ðσ; σ0Þ. In addition, using the restriction ζ−σ ¼ ζ−

0
σ

coming from the aσσ0 expression, it is possible to rearrange
the sums in the B̃Lσ−T

asX
σσ0

δσ0TðσT−σ−T Þδζ−σ ζ−0σ ⟶
X
σTσ

0
T

X
ζ−σ ζ

−0
σ

δσ0T ðσT−σ−T Þδζ−σ ζ−0σ

⟶
X
σTζ

−
σ

⟶
X
σ

: ðA22Þ

Hence, instead of summing over both ðσ; σ0Þ it is only
needed to sum over σ ¼ ðσ1; σ2Þ once we have done the
following replacements in σ0 ¼ ðσ01; σ02Þ:

σ01 ¼
σ0T þ ζ−0σ
d2 þ 1

¼ σT þ ζ−σ
d2 þ 1

−
σ−T

d2 þ 1
¼ σ1 −

σ−T
d2 þ 1

;

σ02 ¼
σ0T − d2ζ−0σ
d2 þ 1

¼ σT − d2ζ−σ
d2 þ 1

−
σ−T

d2 þ 1
¼ σ2 −

σ−T
d2 þ 1

:

ðA23Þ
In consequence, one has

B̃Lσ−T
¼ ð2Lþ 1Þ1=2

aþ

X
σ1σ2

aσσ0 jσ−T C
sTσT
sT ðσT−σ−T ÞLσ−T ;

BLM0 ¼
�

4π

2Lþ 1

�
1=2

B̃LM0 ¼
ffiffiffiffiffiffi
4π

p

aþ

X
σ1σ2

aσσ0 jM0CsTσT
sTðσT−M0ÞLM0 :

ðA24Þ

Here, aσσ0 jσ−T (and aσσ0 jM0 ) is aσσ0 after having done the
substitutions in σ0. In particular, for M0 ¼ 0

BL ¼
ffiffiffiffiffiffi
4π

p

aþ

X
σ1σ2

aσσ0 j0CsTσT
sTσTL0

¼
ffiffiffiffiffiffi
4π

p

aþ

X
σ1σ2

aσσC
sTσT
sTσTL0

; with

aσσ ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ1

hσ1 σ2jSJ†ζ−σ jλ1ðλ1 − ζ−σ Þi

× hλ1ðλ1 − ζ−σ ÞjSJ0ζ−σ jσ1; σ2i: ðA25Þ

For off-shell initial particles, κ̄ ¼ fm̄1; m̄2g and the nor-
malization factor K̄ is added to the BLM0 expression:

BLM0 ¼
�

4π

2Lþ 1

�
1=2 B̃LM0

K̄
¼

ffiffiffiffiffiffi
4π

p

aþK̄

X
σ1σ2

aσσ0 jM0CsTσT
sT ðσT−M0ÞLM0 ;

BL ¼
ffiffiffiffiffiffi
4π

p

aþK̄

X
σ1σ2

aσσC
sTσT
sTσTL0

: ðA26Þ

4. 2̄ → n

The initial and final states have already been studied in
previous sections and are given by

j1̄ κ̄ λ̄i ¼ j1̄ λ̄i ∝
X
J̄

ð2J̄ þ 1Þ1=2jJ̄ ζ̄−λ λ̄i;

j1 κ λi ∝
X
J

X
Λ

ð2J þ 1Þ1=2jJΛ κ λi: ðA27Þ

Therefore,

ΓT
λ̄λ̄0 ∝

X
λ

X
JJ0

ð2J þ 1Þð2J0 þ 1Þhλ̄jSJ†
ζ̄−λ
jκ λihκ λjSJ0

ζ̄−
0

λ

jλ̄0i and

ΓT ¼ 1

aþ

X
σσ0

aσσ0eσσ0 ; with aσσ0 ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ

hσjSJ†ζ−σ jκ λihκ λjSJ
0

ζ−
0

σ
jσ0i: ðA28Þ

In order to obtain B̃Lσ−T
and BLM0 , we can reason with the sum over ðσ; σ0Þ as in the previous section but only considering the

Kronecker delta stemming from ðσ − σ0Þ · dðvÞ ¼ σT − σ0T ¼ σ−T . Nonetheless, due to the new replacements to be done:

σ01 ¼
σ0T þ ζ−0σ
d2 þ 1

¼ σ1 −
1

d2 þ 1
½σ−T þ ðζ−σ − ζ−

0
σ Þ� and

σ02 ¼
σ0T − d2ζ−0σ
d2 þ 1

¼ σ2 −
1

d2 þ 1
½σ−T − d2ðζ−σ − ζ−

0
σ Þ�; ðA29Þ

the corresponding expressions for the coefficients are not as simple as before. Indeed, we have a sum over σ ¼ ðσ1; σ2Þ
and ζ−

0
σ :
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B̃Lσ−T
¼ ð2Lþ 1Þ1=2

aþ

X
σ1σ2

X
ζ−

0
σ

aσσ0 jσ−T C
sTσT
sTðσT−σ−T ÞLσ−T ;

BLM0 ¼
�

4π

2Lþ 1

�
1=2 B̃LM0

K
¼

ffiffiffiffiffiffi
4π

p

aþK

X
σ1σ2

X
ζ−

0
σ

aσσ0 jM0CsTσT
sTðσT−M0ÞLM0 ; ðA30Þ

where aσσ0 jσ−T (and aσσ0 jM0) is aσσ0 after having done the corresponding replacements. The amount of sums can be reduced for
certain values of σ−T (M0), as it happens for σ−T ¼ M0 ¼ 0 due to the result proven in Appendix B:

BL ¼
ffiffiffiffiffiffi
4π

p

aþK

X
σ1σ2

X
ζ−

0
σ

aσσ0 j0CsTσT
sTσTL0

¼
ffiffiffiffiffiffi
4π

p

aþK

X
σ1σ2

aσσC
sTσT
sTσTL0

; with

aσσ ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ1

hσ1σ2jSJ†ζ−σ jλ1ðλ1 − ζ−σ Þihλ1ðλ1 − ζ−σ ÞjSJ0ζ−σ jσ1; σ2i: ðA31Þ

For off-shell initial particles, κ̄ ¼ fm̄1; m̄2g and the normalization factor K̄ is added to the BLM0 expression:

BLM0 ¼
ffiffiffiffiffiffi
4π

p

aþK̄K

X
σ1σ2

X
ζ−

0
σ

aσσ0 jM0CsTσT
sT ðσT−M0ÞLM0 ;

BL ¼
ffiffiffiffiffiffi
4π

p

aþK̄K

X
σ1σ2

aσσC
sTσT
sTσTL0

: ðA32Þ

5. m̄ → 2

The general roles of the initial and final states are exchanged with respect to the previous scenario:

j1̄ κ̄ λ̄i ∝
X
J̄

X
Λ̄

ð2J̄ þ 1Þ1=2jJ̄ Λ̄ κ̄ λ̄i;

j1 κ λi ¼ j1 λi ∝
X
J

ð2J þ 1Þ1=2jJ ζ−λ λi: ðA33Þ

In consequence,

ΓT
λ̄λ̄0 ∝

X
λ1λ2

X
JJ0

ð2J þ 1Þð2J0 þ 1Þhκ̄ λ̄ jSJ†ζ−λ jλihλjS
J0
ζ−λ
jκ̄λ̄0i and

ΓT ¼ 1

aþ

X
σσ0

aσσ0eσσ0 ; with aσσ0 ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ1λ2

hκ̄σjSJ†ζ−λ jλihλjS
J0
ζ−λ
jκ̄σ0i: ðA34Þ

Regarding the expressions of the B̃Lσ−T
, BLM0 , and BL coefficients, in general the σ−T constraint does not significantly help in

simplifying them. However, we recall their definitions:

B̃Lσ−T
¼ ð2Lþ 1Þ1=2

aþ

X
σσ0

ðσ−σ0Þ·dðvÞ¼σ−
T

aσσ0 jσ−T C
sTσT
sT ðσT−σ−T ÞLσ−T ;

BLM0 ¼
ffiffiffiffiffiffi
4π

p

aþK̄

X
σσ0

ðσ−σ0Þ·dðvÞ¼M0

aσσ0 jM0CsTσT
sT ðσT−M0ÞLM0 ; BL ¼

ffiffiffiffiffiffi
4π

p

aþK̄

X
σ

aσσC
sTσT
sTσTL0

;

with aσσ ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
λ1λ2

hκ̄σjSJ†ζ−λ jλihλjS
J0
ζ−λ
jκ̄σi: ðA35Þ

For off-shell initial particles, the κ̄ set of parameters increases accordingly. Nevertheless the general form of the BLM0

coefficient remains invariant.
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6. m̄ → n

For completeness, let us analyze the general scenario, for which

j1̄ κ̄ λ̄i ∝P
J̄

P
Λ̄
ð2J̄ þ 1Þ1=2jJ̄ Λ̄ κ̄ λ̄i

j1 κ λi ∝P
J

P
Λ
ð2J þ 1Þ1=2jJΛ κ λi

9>>=
>>;⇒

⇒ ΓT
λ̄λ̄0 ∝

X
λ

X
JJ0

ð2J þ 1Þð2J0 þ 1Þ
X
ΛΛ0

hκ̄ λ̄jSJ†Λ jκ λihκ λjSJ0Λ0 jκ̄ λ̄0i and

ΓT ¼ 1

aþ

X
σσ0

aσσ0eσσ0 ; with aσσ0 ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
ΛΛ0

X
λ

hκ̄ σjSJ†Λ jκ λihκ λjSJ0Λ0 jκ̄ σ0i: ðA36Þ

Finally, independently of whether the initial particles are on shell or off shell, we have

B̃Lσ−T
¼ ð2Lþ 1Þ1=2

aþ

X
σσ0

ðσ−σ0Þ·dðvÞ¼σ−
T

aσσ0 jσ−TC
sTσT
sT ðσT−σ−T ÞLσ−T ;

BLM0 ¼
ffiffiffiffiffiffi
4π

p

aþK̄K

X
σσ0

ðσ−σ0Þ·dðvÞ¼σ−
T

aσσ0 jM0CsTσT
sTðσT−M0ÞLM0 ; BL ¼

ffiffiffiffiffiffi
4π

p

aþK̄K

X
σ

aσσC
sTσT
sTσTL0

;

with aσσ ¼
X
JJ0

�
2J þ 1

4π

��
2J0 þ 1

4π

�X
ΛΛ0

X
λ

hκ̄σjSJ†Λ jκλihκλjSJ0Λ0 jκ̄σi: ðA37Þ

APPENDIX B: PROOF FOR THE σ −
T = 0

CONDITION

We want to prove that σ−T ¼ 0 is equivalent to σ ¼ σ0.
From the definition of σ−T the necessary condition is trivial,
so let us focus on the sufficient one. Because of dðvÞ ≠ 0,

σ−T ¼ 0 ⇔ ðσ − σ0Þ · dðvÞ ¼ 0 ⇔ σ ¼ σ0∨ðσ − σ0Þ⊥ dðvÞ:

ðB1Þ
We proceed by induction in m:
Case m ¼ 2.
Let us assume that σ ≠ σ0, we have

σ−T ¼ 0 ⇔ d2ðσ1 − σ01Þ þ ðσ2 − σ02Þ ¼ 0 ⇔ d2ðσ1 − σ01Þ
¼ −ðσ2 − σ02Þ: ðB2Þ
Taking into account the previous relation, σ ≠ σ0 ⇔

ðσ1 − σ01Þ; ðσ2 − σ02Þ ≠ 0. Moreover, due to σ1; σ01 ∈
f−ðd1−1

2
Þ;…; d1−1

2
g, the combination ðσ1 − σ01Þ is a nonzero

integer that takes values ðσ1 − σ01Þ∈ f−ðd1 − 1Þ;…;
ðd1 − 1Þgnf0g and the same with ðσ2 − σ02Þ exchanging
d1 → d2. Hence,

d2 ≤ jd2ðσ1 − σ01Þj ¼ jσ2 − σ02j ≤ d2 − 1; ðB3Þ
leading to a contradiction. Therefore σ ¼ σ0.

Case m.
Assuming the result to hold for m − 1, let us see it for m.

In this case, if σ ≠ σ0

σ−T ¼ 0 ⇔ −ðσm − σ0mÞ ¼
Xm−1

i¼1

ðσi − σ0iÞdðvÞi

¼ dm
Xm−1

i¼1

ðσi − σ0iÞdðvÞi jm−1 ¼ dmσ−T jm−1; ðB4Þ

where we have identified the last two terms in the previous
equation with the dðvÞ and σ−T associated with the m −
1 case.
By inspection of the previous relation, σm − σ0m ¼

0 ⇔ σ−T jm−1 ¼ 0, so if σm − σ0m ¼ 0 the induction
hypothesis applied in σ−T jm−1 ¼ 0 guarantees σ ¼ σ0.
For σm − σ0m ≠ 0, we follow the same reasoning as
in the m ¼ 2 case. We know that ðσm−σ0mÞ ∈
f−ðdm−1Þ;…;ðdm−1Þgnf0g and σ−T jm−1∈f−ðd=dm−1Þ;
…;ðd=dm−1Þgnf0g. Thus,

dm ≤ jdmσ−T jm−1j ¼ jσm − σ0mj ≤ dm − 1; ðB5Þ

leading to a contradiction. Therefore, σ ¼ σ0. □
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