
Electric corrections to π-π scattering lengths in the linear sigma model

R. Cádiz
Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile

M. Loewe
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile

and Centre for Theoretical and Mathematical Physics and Department of Physics,
University of Cape Town, Rondebosch 7700, South Africa

R. Zamora *

Instituto de Ciencias Básicas, Universidad Diego Portales, Casilla 298-V, Santiago, Chile
and Facultad de Medicina Veterinaria, Universidad San Sebastián, Santiago, Chile

(Received 8 April 2024; accepted 17 May 2024; published 7 June 2024; corrected 4 September 2024)

In this article, we analyze the role of an external electric field, in the weak field approximation, on π-π
scattering lengths. The discussion is presented in the frame of the linear sigma model. To achieve this, we
take into account all one-loop corrections in the s, t, and u channels associated with the insertion of a
Schwinger propagator for charged pions, focusing on the region characterized by small values of the
electric field. Furthermore, one of the novelties of our work is the explicit calculation of box diagrams,
which were previously overlooked in discussions regarding magnetic corrections. It turns out that the
electric field corrections have an opposite effect with respect to magnetic corrections calculated previously
in the literature.
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I. INTRODUCTION

During the last years, several research proposals have
concentrated their attention on the response of matter under
extreme conditions due to external agents. A clear example
of this corresponds to relativistic heavy ion collisions, like
Au-Au, where extreme high temperatures are produced,
allowing for different phase transitions like deconfinement
or chiral symmetry restoration. Density effects might be
also taken into account, producing an interesting and rich
phase diagram in the temperature-density plane. The latter
scenario can be found in compact objects like neutron stars.
Also, a quite interesting role is played by the extremely
high magnetic field produced during the very first stages of
the collision between two heavy nuclei like Au-Au. In the
case of a relativistic collision between a heavy and a light
nuclei, for example, Au-Cu, also an electric field appears,
due to the imbalance in the number of protons associated
to each nucleus. Both fields, the electric and the magnetic
one, are produced in a relative perpendicular configuration.

The magnetic field points essentially perpendicular to
the collision plane, whereas the electric field points along
the collision plane. In the existing literature, there are several
works related to the study of different physical parameters in
the presence of a magnetic and/or electric field [1–20].
It is important to elucidate the relative effects associated

to these external agents on physical, in principle, measur-
able, quantities. For example, we know that temperature
and magnetic field conspire against each other in several
scenarios. Here, we want to consider the effect of an
external weak electric field on π-π scattering lengths, being
these pions produced during the collision. For this purpose,
we work in the frame of the linear sigma model, computing
all relevant corrections to the scattering lengths. Fermion
contributions are neglected in the analysis since they are
much more massive than the other particles involved in the
model: pions and the scalar sigma field. It is important to
avoid the strong field case since Schwinger instabilities
associated to pair productions of pions could appear. This
scenario goes beyond the present discussion.
Our discussion also considered the effects of box dia-

grams, previously not taken into account [21–23] due the
relative highmass of the sigma field. Although the influence
of those diagrams, as expected, is in fact small, they could
play a relevant role when summing up, for example, ladder
diagrams with boxes, looking for Reggeized amplitudes
dependent on external agents.
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This analysis of π-π scattering length corrections has
been carried out previously, using the same model, for
the magnetic case [21–23]. As we see, the electric field
corrections turn out to be opposite in respect to the
equivalent magnetic corrections. This is an indication that
it will be not an easy task to isolate, in a clear way, the
influence a certain specific external agent has on physical
observables.
This article is organized as follows: In Sec. II, we present

the linear sigma model concentrating on the general
structure of the π-π scattering amplitudes and their pro-
jection into different isospin channels. In Sec. III, we
present the propagator for a boson immersed in a constant
external electric field showing also its weak field limit. We
then go into the different relevant diagrams and the
techniques used for their evaluation. Details are given in
the Appendixes. Finally, we present our conclusions.

II. LINEAR SIGMA MODEL
AND π-π SCATTERING

Gell-Mann and Lévy [24] proposed the linear sigma
model (LSM) as an effective framework to elucidate chiral
symmetry breaking through both explicit and spontaneous
mechanisms. In the chiral broken phase, the model is
expressed as

L¼ ψ̄ ½iγμ∂μ−mψ −gðσþ iπ⃗ · τ⃗γ5Þ�ψ

þ1

2
½ð∂π⃗Þ2þm2

ππ⃗
2�þ1

2
½ð∂σÞ2þm2

σσ
2�

−λ2vσðσ2þ π⃗2Þ−λ2

4
ðσ2þ π⃗2Þ2þðεc−vm2

πÞσ: ð1Þ

Pions are described by an isospin triplet, π⃗ ¼ ðπ1; π2; π3Þ,
cσ is the term that breaks explicitly the SUð2Þ × SUð2Þ
chiral symmetry, being σ a scalar field, and ε is a small
dimensionless parameter. The model also incorporates a
doublet of Fermi fields, associated in the original version to
nucleon states, which in our context are ignored since they
are too heavy as compared to the scalar sigma meson mass
and to the relevant energy scale. It is intriguing to note
that the masses of all fields in the model are determined
by v. Indeed, the following relations can be proved to be
valid: mψ ¼ gv, m2

π ¼ μ2 þ λ2v2, and m2
σ ¼ μ2 þ 3λ2v2.

Perturbation theory at the tree level allows us to identify the
pion decay constants as fπ ¼ v.
The LSM turns out to be a wonderful scenario for

exploring effects of external agents like temperature,
magnetic field, electric field, and vorticity. These effects
have been studied in a series of articles by various authors
[25–28]. In the present, work we explore, in the frame of
the LSM model, how an external electric field, generated
in collisions between a heavy and a light nuclei, as, for
example, Au-Cu collisions, affect the π-π scattering

lengths. We compare our results with previous analysis
where instead a magnetic field was considered.
The most general decomposition for the scattering

amplitude for particles with definite isospin quantum
numbers is given by [29,30]

Tαβ;δγ ¼ Aðs; t; uÞδαβδγε þ Aðt; s; uÞδαεδβγ
þ Aðu; t; sÞδαγδβε; ð2Þ

where α, β, γ, and δ represent isospin components.
Through the utilization of suitable projection operators,

P0 ¼
1

3
δαβδγε; ð3Þ

P1 ¼ −
1

2
ðδαγδβε − δαεδβγÞ; ð4Þ

P2 ¼
1

2

�
δαγδβε þ δαεδβγ −

2

3
δαβδγε

�
; ð5Þ

it is possible to find the following isospin dependent
scattering amplitudes:

T0 ¼ 3Aðs; t; uÞ þ Aðt; s; uÞ þ Aðu; t; sÞ; ð6Þ

T1 ¼ Aðt; s; uÞ − Aðu; t; sÞ; ð7Þ

T2 ¼ Aðt; s; uÞ þ Aðu; t; sÞ; ð8Þ

where TI denotes a scattering amplitude in a given isospin
channel I ¼ f0; 1; 2g.
As is commonly understood [29], below the inelastic

threshold, any scattering amplitude can be expanded in
terms of partial amplitudes parametrized by phase shifts for
each angular momentum channel l. Hence, in the low-
energy region, the isospin dependent scattering amplitude
can be expanded in partial wave components TI

l. The real
part of such an amplitude,

ReðTI
lÞ ¼

�
p2

m2
π

�
l
�
aIl þ

p2

m2
π
bIl þ…

�
; ð9Þ

is normally expressed in terms of the scattering lengths aIl
and the scattering slopes bIl, respectively. The scatter-
ing lengths satisfy the hierarchy jaI0j > jaI1j > jaI2j….
Specifically, in order to obtain the scattering lengths aI0,
it is sufficient to calculate the scattering amplitude TI in the
static limit, i.e., when s → 4m2

π , t → 0 and u → 0,

aI0 ¼
1

32π
TIðs → 4m2

π; t → 0; u → 0Þ: ð10Þ

The first measurement of π-π scattering lengths was carried
on by Rosellet et al. [31]. More recently, these parameters
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have been measured using pionium atoms in the DIRAC
experiment [32], as well as through the decay of heavy
quarkonium states into π-π final states, where the so called
cusp effect was found [33].

III. SCATTERING LENGTHS AT FINITE
ELECTRIC FIELD

In previous works, we have computed the magnetic and
thermal dependence of the π-π scattering lengths within the
framework of the linear sigma model [21–23]. In this
instance, our aim to employ the same model exploring the
electric field dependence of the π-π scattering lengths. For
this purpose, we use the bosonic scalar propagator in the
presence of an electric field [34,35], given by

DðpÞ ¼
Z

∞

0

ds
e−sð

tanhðqiEsÞ
qiEs p2

kþp2⊥þm2Þ

coshðqiEsÞ ; ð11Þ

where q is the electric charge, and pk and p⊥ refer to
ðp4; 0; 0; p3Þ and ð0; p1; p2; 0Þ, respectively. For simplicity,
the electric field points along the z-axis. Note that in the
euclidean version p2 ¼ p2

k þ p2⊥ ¼ p2
4 þ p2

3 þ p2
1 þ p2

2.
We are interested in the weak electric field region, since
for a strong electric field the Schwinger effect might appear,
i.e., the generation of charged π� pion pairs. Therefore, we
proceed to expand the previous expression up to order
OðE2Þ, to obtain

DðpÞ ≈ 1

p2 þm2

− ðqEÞ2
�
−

1

ðp2 þm2Þ3 þ
2p2

k
ðp2 þm2Þ4

�
: ð12Þ

However, using the relation p2 ¼ p2
k þ p2⊥, Eq. (12) can be

written as

DðpÞ≈ 1

p2þm2
þq2E2½2ðp2⊥þm2Þ− ðp2þm2Þ�

ðp2þm2Þ4 : ð13Þ

The above expression, being more symmetric, is useful to
carry on the integrals that appear when computing all
relevant loop corrections. Also, to distinguish between the
free and charged propagators, we define the free scalar
propagator as

SðpÞ ¼ 1

p2 þm2
: ð14Þ

A. Loop integrals classification

For the analysis, we need to compute 21 Feynman
diagrams. The diagrams that contribute to the s channel
are shown in Fig. 1, and those diagrams relevant for the t
channel can be seen in Fig. 2. The u channel diagrams are

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

FIG. 1. (a)–(j) s channel diagrams.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

FIG. 2. (a)–(k) t channel diagrams.
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analogous to the t channel. The only difference corresponds
to a permutation of isospin indexes of the external legs.
In previous works [21–23], and because the sigma boson

mass is much bigger than the pion mass, considering also
the static limit approximation, the diagrams that contained
sigma bosons were pinched; i.e., the sigma propagator was
contracted to a point. The following limit was used:

1

p2 þm2
σ
⟶

1

m2
σ
: ð15Þ

Pinching the sigma propagators simplify several diagrams,
and all the calculations can be reduced to computing only
five integrals.
In the present analysis, we present a detailed discussion

of all diagrams, including full sigma propagators. This
implies the calculation of several box diagrams which have
not been considered in our previous articles.
Before going into the details of the calculation, it is

useful to classify all integrals into different types of
integrals, which are called Ii, where i ¼ 1;…; 9 represents
the i-type integral, except for the case of IB1 and IB2, that
represents the integrals associated to the box diagrams 1
and 2, respectively. These integrals can be found in
Appendix A, where only terms up to the order OðE2Þ
were considered.

B. Mathematical methods

For the purpose of computing the different loop correc-
tions, essentially twomethodswere used. For some integrals,
the standard dimensional regularization was employed.
For the remaining integrals, which are the majority of

cases, four-dimensional hyperspherical coordinates were
used. This is because the integrals that depend on the
electric field are all convergent.
In particular, the calculations of the first box diagram

can be found in Appendix B. Based on [36], the set of
coordinates used were

8>>><
>>>:

x0 ¼ r cos θ1
x1 ¼ r sin θ1 cos θ2
x2 ¼ r sinφ sin θ1 sin θ2
x3 ¼ r cosφ sin θ1 sin θ2;

ð16Þ

where0 ≤ φ ≤ 2π,0 ≤ θi ≤ π,0 ≤ r < ∞, and the Jacobian
of the transformation given by J ¼ r3 sin2 θ1 sin θ2.
Along with the change of coordinates, it is important to

note that a frame of reference can be set, without loss of
generality, where the four momenta p takes the form
pμ ¼ ðmπ; 0Þ, selecting a privileged direction according to

k · p ¼ mπr cos θ1: ð17Þ

C. Isospin projections

Because of the associated Feynman rules, all the integrals
emerging from the diagrams have a determined isospin
structure. These structures are simplified when isospin
projection operators acting on the different integrals are used.
Using the projection operators (3)–(5), all projections

can be easily obtained. The numerical factors associated to
each one of them can be seen in the following Table I.
After this computation, it is interesting to note that both

the t and u channels give the same results, except for an
opposite sign. Therefore, our analysis leads to the following
scattering amplitudes in the three isospin channels, which
consider only one-loop corrections.

T0
1L ¼ 3Aðs; t; uÞ þ 2Aðt; s; uÞ; ð18Þ

T1
1L ¼ 0; ð19Þ

T2
1L ¼ 2Aðt; s; uÞ: ð20Þ

Using expressions (18)–(20), along with the projections
reported in Table I, it is found that the scattering amplitudes
get the following form:

T0
1L ¼ 32λ8v4

�
9

2
IB1 þ IB2 þ I9

�
þ I3

�
144λ8v4

4m2
π þm2

σ
þ 120λ6v2

�
þ I4

�
32λ8v4

m2
σ

þ 80λ6v2
�
þ I6

�
432λ8v4

4m2
π þm2

σ
þ 72λ6v2

�

þ I5

�
96λ8v4

m2
σ

þ 16λ6v2
�
þ I7

�
216λ6v3

ð4m2
π þm2

σÞ2
þ 48λ6v3

m4
σ

�
þ I8

�
72λ6v2

4m2
π þm2

σ
þ 16λ6v2

m2
σ

�

þ I2

�
300λ4 þ 432λ8v4

ð4m2
π þm2

σÞ2
þ 360λ6v3

4m2
π þm2

σ

�
þ I1

�
120λ4 þ 96λ8v4

m4
σ

þ 80λ6v3

m2
σ

�
; ð21Þ

T2
1L ¼ 160λ8v4ðIB2 þ I9Þ þ I4

�
160λ8v4

m2
σ

þ 160λ6v2
�
þ I5

�
480λ8v4

m2
σ

þ 80λ6v2
�
þ 240λ6v3

m4
σ

I7 þ
80λ6v2

m2
σ

I8

þ I1

�
360λ4 þ 480λ8v4

m4
σ

þ 400λ6v3

m2
σ

�
: ð22Þ
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In order to obtain the scattering lengths aI0, using
Eq. (10), we get

a00ðEÞ ¼ a00ðexpÞ þ
1

32π
T0
1L;

a20ðEÞ ¼ a20ðexpÞ þ
1

32π
T2
1L; ð23Þ

where T0
1L and T2

1L are given by Eqs. (21) and (22),
respectively.
The experimental values in the absence of an elec-

tric field are determined by [37] a00ðexpÞ ¼ 0.217 and
a20ðexpÞ ¼ −0.041.
In order to discuss the behavior of scattering lengths in

the presence of an electric field, we employ Eq. (23)
normalizing to experimental values. We use the following

parameters mπ¼140MeV, mσ ¼ 550 MeV, v ¼ 89 MeV,
and λ2 ¼ 4.26, obtaining the plot in Fig. 3.

IV. CONCLUSIONS

We have presented an analytic calculation of π-π
scattering lengths within the linear sigma model at the
one-loop level in the isospin channels I ¼ f0; 2g, as a
function of the external electric field intensity. We provide
a plot illustrating the calculation of scattering lengths a00
and a20 as a function of the electric field. It is evident that
a00 increases with the electric field, while a20 decreases.
This behavior is interesting, as it contrasts sharply with the
effect of an external magnetic field. Such opposition
between electric and magnetic fields is also observed in
the calculation of renormalons [34]. Another interesting
comparison with the effects of the magnetic field is that
the modification of the amplitudes a20 with an electric field
is much more intense than with a magnetic field. This
might be related to the different structure of both propa-
gators. A significant novelty of this calculation is our
inclusion of box diagrams, which have been fully com-
puted, unlike in previous works [21–23]. Nevertheless, it
is worth mentioning that the approximation made in
Refs. [21–23] is very accurate when compared to the full
calculation of the box diagrams. Finally, it would be
interesting to explore how temperature effects, together
with the presence of an electric field, might change or
affect the results presented here due only to an external
electric field.
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APPENDIX A: TYPES OF INTEGRALS

As stated in Sec. III A, by analyzing all the integrals
found from the Feynman diagrams, we can classify them
into several types, as shown below:

I1 ≡ R
d4k
ð2πÞ4 DðkÞ2,

I2 ≡
R

d4k
ð2πÞ4 DðkÞDðk − 2pÞ,

I3 ≡ R
d4k
ð2πÞ4 SðkÞDðpþ kÞDðp − kÞ,

I4 ≡ R
d4k
ð2πÞ4 SðkÞDðp − kÞ2,

I5 ≡ R
d4k
ð2πÞ4 Sðp − kÞ2DðkÞ,

I6 ≡
R

d4k
ð2πÞ4 Sðpþ kÞSðp − kÞDðkÞ,

I7 ≡
R

d4k
ð2πÞ4 DðkÞ,

I8 ≡ R
d4k
ð2πÞ4 Sðp ∓ kÞDðkÞ,

TABLE I. Table of factors obtained from the different isospin
structures when acting with the isospin projectors.

Isospin structure P0 P1 P2

7δαγδβε þ 2δαβδγε þ 2δαεδβγ 15 −15 45
7δαβδγε þ 2δαγδβε þ 2δαεδβγ 25 0 20
δαβδγε þ δαγδβε þ δαεδβγ 5 0 10
δαβδγε 3 0 0
δαγδβε 1 −3 5
7δαεδβγ þ 2δαβδγε þ 2δαγδβε 15 15 45
δαεδβγ 1 3 5

FIG. 3. Behavior of the normalized scattering lengths as a
function of qE=m2

π . Red lines represent a00ðEÞ=a00ðexpÞ, while
blue lines represent a20ðEÞ=a20ðexpÞ.
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I9 ≡ R
d4k
ð2πÞ4 Sðp − kÞ2DðkÞ2,

IB1 ≡
R

d4k
ð2πÞ4 Sðpþ kÞSðp − kÞDðkÞ2,

IB2 ≡
R

d4k
ð2πÞ4 Sðp − kÞ2DðkÞDð2p − kÞ,

with DðpÞ and SðpÞ defined in Eqs. (12) and (14),
respectively.
Also, in I8, the change of sign does not produce a new

class of integrals.

APPENDIX B: BOX DIAGRAM CALCULATION

As mentioned in Sec. III B, one of the innovations of this
work is the calculation of the full box diagrams. Let us
begin by analyzing the first one of them. In the s channel,
we have the image in Fig. 4.
By means of an adequate isospin parametrization,

together with the Feynman rules, the associated integral
IB1 gets the following form:

IB1¼ 16λ8v4δαβδγε

Z
d4k
ð2πÞ4DðkÞ2SðkþpÞSðk−pÞ: ðB1Þ

After expanding the propagators up to OðE2Þ, we get

DðkÞ2Sðpþ kÞSðp − kÞ ¼ 1

ðk2 þm2
πÞ2ððpþ kÞ2 þm2

σÞððp − kÞ2 þm2
σÞ

þ 2q2E2

�
2ðk2⊥ þm2

πÞ
ðk2 þm2

πÞ5ððpþ kÞ2 þm2
σÞððp − kÞ2 þm2

σÞ

−
1

ðk2 þm2
πÞ4ððpþ kÞ2 þm2

σÞððp − kÞ2 þm2
σÞ
�
þOðE3Þ: ðB2Þ

To continue our calculation, from Eq. (B2), we have to deal with three different integrals. These calculations were
performed using the hyperspherical coordinates introduced in Sec. III B. We obtain

I1 ¼
1

ð2πÞ4
Z

1

ðr2 þm2
πÞ2ðr2 þ 2mπr cos θ1 þm2

π þm2
σÞðr2 − 2mπr cos θ1 þm2

π þm2
σÞ

· r3 dr dΩ4; ðB3Þ

I2 ¼
1

ð2πÞ4
Z ðr sinφ sin θ1 sin θ2Þ2 þ ðr sin θ1 cos θ2Þ2 þm2

π

ðr2 þm2
πÞ5ðr2 þ 2mπr cos θ1 þm2

π þm2
σÞðr2 − 2mπr cos θ1 þm2

π þm2
σÞ

· r3 dr dΩ4; ðB4Þ

I3 ¼
1

ð2πÞ4
Z

1

ðr2 þm2
πÞ4ðr2 þ 2mπr cos θ1 þm2

π þm2
σÞðr2 − 2mπr cos θ1 þm2

π þm2
σÞ

· r3 dr dΩ4; ðB5Þ

where dΩ4 ¼ sin2θ1 sin θ2dθ1dθ2dφ represents the angular measure. It is important to note that the angular integration can
be carried out without major problems. After performing all the integrals, we find the following results:

I1 ¼
2mπð2m2

πþm2
σÞ
�
tanh−1 m2

σffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

πþm4
σ

p þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

πþm4
σ

p
þ2m2

π−m2
σffiffiffiffiffiffiffiffiffiffiffiffiffi

4m4
πþm4

σ

p
−2m2

πþm2
σ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m6

πþ4m4
πm2

σþm2
πm4

σþm6
σ

p
ln

� ffiffiffiffiffiffiffiffiffiffiffi
m2

πþm2
σ

p
þmπffiffiffiffiffiffiffiffiffiffiffi

m2
πþm2

σ

p
−mπ

�

16π2mπm4
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

πþm4
σ

p ; ðB6Þ

FIG. 4. Box diagram 1 associated to the s channel.
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I2 ¼
1

2304π2m12
π m10

σ ðm4
σ þ 4m4

πÞ7=2
�
m10

σ ð−8m2
πm2

σ − 3m4
σ þ 18m4

πÞðm4
σ þ 4m4

πÞ7=2

þm4
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

σ þ 4m4
π

q
ð−1536m20

π m2
σ þ 480m18

π m4
σ − 1536m16

π m6
σ − 160m14
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σ þm2
π

q
ðm2

π − 2m2
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σ þm2
π
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þmπÞ

m2
σ

þ 1

�

− 24m12
π ð−384m14

π m2
σ − 64m12

π m4
σ − 256m10

π m6
σ − 224m8

πm8
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πm10
σ − 114m4

πm12
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·

�
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−m2
σ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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σ þ 4m4
π

p
þ 2m2

π

��
; ðB7Þ

I3 ¼
1

96π2m4
πm8
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πÞ3
�
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σ −24m6
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πm6
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�
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2m2

π −m2
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m4
σ þ 4m4

π

p
��

:

ðB8Þ

With expressions (B6)–(B8), these can be combined and
simplified to obtain an analytical result for the total loop. In
fact, from the expansion of the propagators, it is found that
we can write

IB1 ¼ −16λ8v4δαβδγε½I1 þ 2q2E2ð2I2 − I3Þ�: ðB9Þ

Therefore, and because we are interested in the electric
corrections, the vacuum term is not considered. From
this, after replacing (B7)–(B9), the terms proportional to
ðqEÞ2, which are denoted by IB1;NV and obviously does
not include vacuum terms, are given by the following
expression:

IB1;NV ¼ −
λ8v4δαβδγεðqEÞ2

36π2m12
π m10

σ ðm4
σ þ 4m4

πÞ7=2
�
12m8

πm6
σð2m4

πm4
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σ þ 24m8
πÞðm4
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σ þ 4m4
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q
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σð−1536m20
π m2

σ þ 480m18
π m4

σ − 1536m16
π m6

σ − 160m14
π m8

σ − 420m12
π m10

σ þ 288m10
π m12
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− 54m8
πm14

σ þ 96m6
πm16

σ þ 18m4
πm18
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πm20
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π
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π
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·

�
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��

: ðB10Þ

With this correction, the second box diagram can be computed in a completely analogous way. However, the calculation
for IB2 is much longer, because in that case, five integrals must be solved to get the needed analytical result.
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