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Self-polarizing weak decays of Λ-hyperons provide unique insight into the role of entanglement in the
fragmentation of QCD strings through measurements of the spin correlations of ΛΛ̄ pairs produced in
collider experiments. The simplest quantum field theory representing the underlying parton dynamics is the
four-flavor massive Schwinger model plus an effective spin-flip term, where the flavors are mapped to light
(up or down) and heavy (strange) quarks and their spins. This construction provides a novel way to explore
hyperon spin correlations in 1þ 1 dimensions. We investigate the evolution of these correlations for
different string configurations that are sensitive to the rich structure of the model Hamiltonian.
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An intriguing question in QCD and QCD-like theories
is the role of entanglement in the confinement of quarks
and gluons (partons) within hadrons [1,2]. In high energy
QCD, features of entanglement were explored recently in
the context of parton distributions in deeply inelastic
scattering [3–12] and in parton fragmentation into hadrons
[13–19]. A strong motivation is the promise of fresh
insight from quantum information science (QIS) into
these fundamental quantum many-body parton features
of hadrons [20–24].
Several proposals have emerged for quantum entangle-

ment and Bell-type inequality measures in the challenging
environment of collider experiments [25–31]. In [16], two of
us proposed that the self-polarizingweak decays of hyperons
can be exploited to measure ΛΛ̄ spin correlations in the
fragmentation of QCD strings. Following earlier work [32]
on the Clauser-Horne-Shimony-Holt (CHSH) inequality
[33] for ΛΛ̄ spin correlations, we constructed a modified
CHSH inequality and entanglement measures of the string
spin density matrix. Since Λ (Λ̄) hyperons contain a flavor
triplet of up, down, and strange (anti)quarks, measurements
of their spin correlations probe quantum features of parton

dynamics within QCD strings. In particular, clean extraction
of hyperon spin correlations [34]will be possible at the future
Electron Ion Collider [35].
Further progress exploiting the potential of hyperon

spin correlations requires a dynamical model of parton
dynamics in the formation and fragmentation ofQCDstrings.
Nonperturbative first principles quantum field theory (QFT)
methods such as lattice QCD are inapplicable because
of the intrinsically realtime dynamics of hadronization.
Therefore, phenomenological models are the state of the
art in describing hadronization at colliders, the quintessential
example being theLund stringmodel [36] implemented in the
widely used event generator PYTHIA [37]. Since this model is
a semiclassical implementation of 1þ 1-d QED (also known
as the Schwinger model), computations on quantum devices
offer a promising path towards performing first principles
simulations of string dynamics [38–40] that may be relevant
to understanding quantum features of hadronization at
colliders. In particular, such studies can help towards imple-
menting QIS features in phenomenological semiclassical
frameworks in the near future [41].
In this paper, we will outline the simplest 1þ 1-

dimensional QFT that captures the rich flavor and spin
dynamics of light and heavy partons in the QCD string,
allowing us to model the realtime production and evo-
lution of light and heavy quark flavors in a QCD string
for the first time. It significantly extends the static string
configuration study in [16]. Further, our QFT provides
novel insight that can help identify quantum features of
measured ΛΛ̄ correlations; this effort is timely, motivating
experimental measurements of hyperon spin correlations
at colliders [42].
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We will assume, as in the nonrelativistic quark model,
that Λ spin is carried by the heavy strange quark. The status
of this ansatz is uncertain; for proposed experimental tests,
see [34,43–46]. An interesting, albeit nontrivial, extension
of our study would be to construct baryons in a similar
1þ 1-dimensional setup and contrast their “spin” correla-
tions with those of their strange quark constituents. In the
present work, we model hyperon spin correlations by solely
studying heavy-quark spin correlations.
To construct our QFT model of parton dynamics in the

QCD string, we start from the massive Schwinger model
with Nf ¼ 4 quark flavors [47], for reasons we will
elaborate on shortly. In temporal gauge A0 ¼ 0, this model
is described by the Hamiltonian

HSchwinger ¼
Z

dx
1

2
E2ðxÞ

þ
XNf¼4

f¼1

ψ̄fðxÞð−iγ1∂1þgγ1A1ðxÞþmfÞψfðxÞ;

ð1Þ
where g is the dimensionful coupling constant and the
electric field E ¼ −F01 ¼ −∂0A1, with A1 denoting the
other component of the Uð1Þ gauge field. Note that there is
no magnetic field in 1þ 1 dimensions. The two component
fermion spinors ψf, with flavor indices f ¼ 1; 2; 3; 4,
satisfy the canonical commutation relations,

fψf;αðxÞ;ψ l;βðyÞg ¼ 0;

fψ†
f;αðxÞ;ψ l;βðyÞg ¼ δðx − yÞδf;lδα;β; ð2Þ

where α, β are spinor indices (left implicit in what follows).
The electric field satisfies Gauss’ law, ∂xE ¼ g

P
f ψ

†
fψf; it

is not a dynamical degree of freedom and can be explicitly
integrated out.
To adapt this model to our problem of hyperon spin

correlations, we first make the simplifying assumption that
since the ratio of the physical up and down quark masses is
mu=md ∼Oð1Þ [48], their dynamics are indistinguishable.
Further, since the mass gap between the heavy strange
flavor and these light flavors is ms=ðmd þmuÞ ∼Oð10Þ, it
is sufficient to simply consider a light and a heavy flavor
fermion in our study; later, we will discuss how this isospin
symmetry can be lifted in our model.
More importantly, the structure of the Lorentz group

dictates that there is no notion of spin in 1þ 1 dimensions.
We will show here that one can nevertheless construct an
effective model of spin dynamics using the map [flavor
ðfÞ → ðspeciesðsÞ; spinðσÞÞ]

1 → ðh;↑Þ; 2 → ðh;↓Þ; 3 → ðl;↑Þ; 4 → ðl;↓Þ; ð3Þ
where the h, l indices denote the heavy and light fermions,
with masses mh and ml ≪ mh, while ↑;↓ correspond to

their up or down spin state. Using this double label ðs; σÞ,
we have therefore mapped the four two-component
spinors to two four-component spinors, and Eq. (2) satisfies
the 3þ 1-d QED anticommutation relations with δl;f →
δs;s0δσ;σ0 . Due to the large mass gap between fermionic
species, the global flavor symmetry group of Eq. (1)
reduces from SUfð4Þ → SUhð2Þ × SUlð2Þ.
An important difference from 3þ 1-d QED is the

absence of magnetic fields in 1þ 1-d; there are therefore
no Thomas precession or Larmor interaction terms.
However, we anticipate that such interactions would be
suppressed for our problem of interest [49]. The spin-
dependent interactions of light and heavy flavors in the
QCD string are therefore well approximated by adding to
Eq. (1) the effective spin Hamiltonian

Hspin ¼
Z

dx g0llψ̄ l;↑γ
0ψ l;↓ þ g1llψ̄ l;↑ψ l;↓

þ g0lhðψ̄h;↑γ
0ψ l;↓ þ ψ̄h;↓γ

0ψ l;↑Þ
þ g1lhðψ̄h;↑ψ l;↓ þ ψ̄h;↓ψ l;↑Þ þ H:c:; ð4Þ

where we used the mapping in Eq. (3). The first two terms
describe the spin-flip interactions between the light fer-
mions with their respective coupling constants. The sub-
sequent terms describe the spin interactions between light
and heavy fermions. Direct heavy spin-flip interactions are
assumed to be suppressed by their large mass [50]. The
addition of Hspin reduces the global symmetry of the Nf ¼
4 Schwinger model from SUhð2Þ × SUlð2Þ → SUspinð2Þ
corresponding to the residual symmetry group of light and
heavy quarks in the QCD string [51].
Themodel deformedHamiltonianH ¼ HSchwinger þHspin

can now be employed to explore the realtime dynamics of
spin correlations between heavy fermions in the dynamical
process eþe− → qq̄ → ΛΛ̄þ X. This is illustrated in Fig. 1
(top). Recall that, inspired by the nonrelativistic quarkmodel,
we treat strange quark (antiquark) spin as a proxy for Λ (Λ̄)
spin in our model.
The qualitative picture of this process is as follows. The

injection of energy from the virtual photon forms the
primordial qq̄ pair. Additional pair production taking place
due to the Schwinger mechanism [52,53] is demonstrated
by explicit computation using tensor network techniques
(discussed below) for theNf ¼ 1 case in Fig. 1 (bottom) for
an expanding QCD string. As suggested by Fig. 1 (top), the
string should be mostly populated by light quarks. The light
and strange quarks carry spin, and their self-interactions
dynamically generate nontrivial correlations between the
rarer heavy strange quark pairs, with the multiparton
quantum dynamics reflected in the ΛΛ̄ spin correlations
measured in hyperon weak decays.
This complex dynamical evolution can be captured by

extending the gauge sector in Eq. (1) to [54–56]Z
dxE2ðxÞ →

Z
dx ðEðxÞ þ EextðxÞÞ2: ð5Þ
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The external field Eext plays the role of the embedding
string [see Fig. 1 (top)], taking the form

Eext ¼ −jQjΘðx<ðtÞ < x < x>ðtÞÞ; ð6Þ

with jQj the absolute value of the external charges [the qq̄
pair in Fig. 1 (top)] generating the field and x>ð<Þ ¼ þð−Þt
referring to their right (left) dynamical spatial positions along
the forward light cone. For analogous detailed studies of
realtime evolution of pair production, charge separation, and
screening for theNf ¼ 1 Schwinger model, see [31,57–60].
We will now explore, in our Nf ¼ 4 framework, the

quantitative realization of the picture we have outlined. We
discretize the Hamiltonian H by employing staggered
fermions [61,62] on a lattice with N sites and lattice
spacing a. The staggered discretization of the dimensionful,
continuous, two component spinor ψf leads to the dimen-
sionless single component spinor χs;σðñÞ on the lattice; they
are related as

ψfðx ¼ 2ñaÞ → 1ffiffiffi
a

p
�

χfð2ñÞ
χfð2ñ − 1Þ

�
: ð7Þ

The lattice index ñ ¼ 1; 2;…Ñ ¼ N=4 labels the stag-
gered sites; for each one of these, there are four
computational lattice sites, labeled by n ¼ 1; 2;…; N,
that follow the ordering implicit in Eq. (3) [63]. The
single component spinor χs;σðñÞ represents fermions on
even sites and antifermions on odd sites, and it satisfies

the commutation relations

fχs;σðñÞ; χs0;σ0 ðm̃Þg ¼ 0;

fχ†s;σðñÞ; χs0;σ0 ðm̃Þg ¼ δñ;m̃δs;s0δσ;σ0 : ð8Þ

Since Gauss’ law, as noted previously, dictates that the
electric field is not dynamical, all dependence on gauge
fields can be integrated out, resulting in a (nonlocal)
expression for the electric field and HSchwinger entirely in
terms of χ. Indeed, using open boundary conditions with
Lð0Þ ¼ 0, the electric field L ¼ E=g on the nth link is
given by

LðnÞ ¼ Lðn − 1Þ þ
X
f

�
χ†fðnÞχfðnÞ −

1

2
ð1 − ð−1ÞñÞ

�
;

ð9Þ

where the sum over the flavors is not made fully explicit.
As a result, using Eq. (7), we can write the different
lattice elements entering H; for the fermionic sector we
have [61]

Z
dxmfψ̄fðxÞψfðxÞ →

XN
ñ¼1

mfð−1Þñχ†fðñÞχfðñÞ;
Z

dx ψ̄fðxÞð−iγ1∂1 þ gγ1A1ðxÞÞψfðxÞ

→ −
i
2a

X̃N−1

ñ¼1

χ†fðñÞχfðñþ 1Þ − H:c:; ð10Þ

where we have performed a residual gauge transforma-
tion [64] to obtain an explicitly fermionic theory. Note
that here the index dependence on the flavor label is not
made fully explicit. We provide the full dependence
below in the spin Hamiltonian, which admits a similar
treatment:

Hspin →
X̃N
ñ¼1

ðg0ll þ g1llð−1ÞñÞðχ†l;↑ðnÞχl;↓ðnÞÞ

þ ðg0lh þ g1lhð−1ÞñÞðχ†h;↑ðñÞχl;↓ðñÞ þ χ†h;↓ðñÞχl;↑ðñÞÞ
þ H:c: ð11Þ

Finally, using Eq. (9), the pure gauge term in H
reduces to

1

2
g2a

X̃N−1

n¼1

�X
f

X̃n
k̃¼1

χ†fðk̃Þχfðk̃Þ −
1

2
ð1 − ð−1Þk̃Þ

�
2

: ð12Þ

With the goal of quantum simulating the model, we
further map the lattice Hamiltonian to a one-dimensional
spin chain model via a multiflavor JordanWigner transform

FIG. 1. Top panel: illustration of realtime evolution of the
confining string described by the model Hamiltonian H ¼
HSchwinger þHspin. The string stretched between a qq̄ pair moving
along the forward light cone is increasingly populated by light
quarks with each proper time τ slice. The heavy quark multi-
plicity is suppressed due to its larger mass, and its spin is
modified primarily due to multiparticle interactions. Bottom
panel: lattice computation in the Nf ¼ 1 massive Schwinger
model for the light quark correlator hq̄lqli. For ml < g, the
increase of this observable is directly related to a larger
multiplicity of light quarks N l within the string, as shown in
the illustration. Details of the figures are given in the main text.
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(JWt) [62,65,65,66]. For our particular case, it can be
expressed as

χh;↑ðñÞ ¼ SðñÞσ−h;↑ðñÞ;
χh;↓ðñÞ ¼ iSðñÞσzh;↑ðñÞσ−h;↓ðñÞ;
χl;↑ðñÞ ¼ −SðñÞσzh;↑ðñÞσzh;↓ðñÞσ−l;↑ðñÞ;
χl;↓ðñÞ ¼ −iSðñÞσzh;↑ðñÞσzh;↓ðñÞσzl;↑ðñÞσ−l;↓ðñÞ; ð13Þ

where we introduced the string operator

SðñÞ≡Y
k̃<ñ

½σzh;↑ðk̃Þσzh;↓ðk̃Þσzl;↑ðk̃Þσzl;↓ðk̃Þ� ð14Þ

in terms of local Pauli operators σis;σðñÞ acting on site ñ of
the staggered lattice. The subscript indicates the flavor and
spin indices, and the superscript denotes the direction on
the Bloch sphere. With these identifications, our model
Hamiltonian can be mapped to a spin chain with the
Hamiltonian [66,67]

Hlat ¼
1

2
g2a

X̃N−1

ñ¼1

�
1

2

X
s;σ

X̃n
k̃¼1

ðσzs;σðk̃Þ þ ð−1Þk̃Þ
�
2

þ
X̃N
ñ¼1

X
s;σ

msð−1Þñ
�
1þ σzs;σðñÞ

2

�

þ i
2a

XNfðÑ−1Þ

n¼1

ðσþðnÞσzðnþ 1Þσzðnþ 2Þσzðnþ 3Þσ−ðnþ 4Þ − σþðnþ 4Þσzðnþ 3Þσzðnþ 2Þσzðnþ 1Þσ−ðnÞÞ

þ
X̃N
ñ¼1

ð−iÞðg0ll þ g1llð−1ÞñÞðσþl;↑ðñÞσ−l;↓ðñÞ − σþl;↓ðñÞσ−l;↑ðñÞÞ þ iðg0lh þ g1lhð−1ÞñÞðσþh;↑ðñÞσzh;↓ðñÞσzl;↑ðñÞσ−l;↓ðñÞ

− σþl;↓ðñÞσzl;↑ðñÞσzh;↓ðñÞσ−h;↑ðñÞ þ σþl;↑ðñÞσ−h;↓ðñÞ − σþh;↓ðñÞσ−l;↑ðñÞÞ; ð15Þ

where s ¼ h; l (or 1,2), σ ¼ ↑;↓ (or 1,2), and the second
sum is indexed with respect to the computational lattice.
The explicit form of Hlat makes it evident that the

numerical simulation of realtime evolution in this theory
is highly nontrivial, especially when implementing the
picture detailed in Fig. 1. This problem therefore constitutes
an ideal setting to use digital quantum computers to simulate
realtime processes in gauge theories that have direct contact
with high energy physics phenomenology and are not likely
easily simulated using other methods. The circuit depth and
system size necessary to see nontrivial effects are parametri-
cally controlled by the total evolution time t ∼ L≳ dc; here
dc ∝ 1

g is the critical charge separation for nonlinear effects
leading to string breaking to become important, assuming
g=ml ≪ 1 [58]. Working in the gaugeless version of the
theory, the total number of logical qubits would then scale as
nqubits ∼Oð1=ðagÞÞ. For a ·ml ¼ 0.1, one would thus need,
at a minimum, Oð4 × 10Þ logical qubits to fully capture the
system, ignoring lattice and staggering effects.
The number of basic quantum gates depends on the

particular decomposition of the Hamiltonian, but its cost
will be dominated by the nonlocal gauge term. Note that
since the spin terms do not require extra qubits or introduce
more complex operators at the Hamiltonian level, the
simulation complexity should grow parametrically as in
the vanilla Nf ¼ 4 Schwinger model. A detailed analysis
of the complexity and system size growth can be found in
[68] for the Nf ¼ 1 theory; naively extrapolating to the
Nf ¼ 4 case, one should expect a linear growth in the
number of qubits, while the number of basic quantum gates

should grow exponentially, due to the all-to-all form of the
pure gauge term.
Due to the current limitations of quantum devices to

perform sufficiently long simulations, we will study the
time evolution and spatial correlations present in this model
separately using two different approaches. To test the
quantum dynamics of the time evolution of the QCD
string, we will use the exact diagonalization (ED) method.
This allows one to perform exact time evolution, albeit for
small system sizes. To study spatial and spin correlations
between the light and heavy quarks, we will consider a
longer spin chain which is limited by current resources to
evolve only for short time intervals. For this case, we will
therefore employ tensor network methods.
We first discuss the longer time evolution of the QCD

string using ED methods. We employ a lattice of N ¼ 24
sites and initially prepare the ground state jGSi of Hlat. To
simulate the effect of the external field Eext., we construct a
time-dependent HamiltonianHextðtÞ by rewriting the gauge
term in Eq. (15) as

1

2
g2a

X̃N−1

ñ¼1

�
1

2

X
s;σ

X̃n
k̃¼1

ðσzs;σðk̃Þ þ ð−1Þk̃Þ

−QΘð−xðtÞ þ 1 ≤ k̃ − N=8 < xðtÞÞ
�
2

; ð16Þ

where xðtÞ ¼ t for discrete time steps t ¼ 1; 2 � � � ; N=8.
For instance, for N ¼ 24, the external field extends from
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3 ≤ k̃ < 4 at t ¼ 1, from 2 ≤ k̃ < 5 at t ¼ 2, etc. Evolving
jGSi under HextðtÞ for these discrete time steps thus
simulates a particle-antiparticle pair with charge Q initial-
ized at the center of the lattice and moving apart at speed
c ¼ a=t. Time evolution is computed using the Krylov
subspace method, which involves approximating Hjψi by
restricting evolution to a smaller Hilbert space generated by
the repeated action ofH on jψi [69]. Our flavor ordering on
the lattice follows the convention in Eq. (13).
At each time step, we compute the internal electric field

Ei and charge densityQi at each lattice site i ¼ s0 þ σ0 þ ñ,
where

hEii ¼
g
2

Xs0;σ0
s;σ

X̃n
k̃¼1

hσzs;σðk̃Þ þ ð−1Þk̃i;

hQii ¼ hχ†s0;σ0 ðñÞ; χs;σðñÞi ¼
1

2a
hσzs0;σ0 ðñÞ þ ð−1Þñi;

with the ground state values implicitly subtracted. Note that
the internal electric field does not include the external
field imposed by the qq̄ pair flying along the light cone. We
use a representative parameter set a · g ¼ 2, a ·ml ¼ 0.5,

a ·mh ¼ 7.5, Q ¼ 1, gð0;1Þll ¼ 0, 4, and gð0;1Þlh ¼ 0, 2, with
the numerical results in Fig. 2.
As seen from the local Q, for all sets of parameters

gll ¼ 0; 4, glh ¼ 0; 2, ll̄ pairs of both spins are induced in
the vacuum by the external field—this exemplifies the
Schwinger pair production mechanism in our four-flavor
model. These pairs result in a positive electric field within
the light cone, thus partially screening the negative external
field −Q. Moreover, when a · gll ¼ 4, a · glh ¼ 0, the lack
of spin-flip interactions between heavy and light particles
localizes pair production within light particles at the center
of the string. In contrast, when a · glh ¼ 4, a · glh ¼ 2,
the additional kinetic exchange between heavy and light
spins allows pair production to be seen across all sites
within the light cone of the expanding external charges.

Whena · gll ¼ 0, a · glh ¼ 0, the bare four-flavor Schwinger
model with anisotropic masses is simulated. In this case, pair
production occurs nearly uniformly across the center of the
string. Only minor differences from the bare four-flavor
model are visible when a · gll ¼ 0, a · glh ¼ 2, indicating
that fast dynamics in the system are generally mediated by
light-light quark interactions. Notably for all cases, pair
production is seen predominantly in the light species; this
phenomenon is to be expected because the Schwinger pair
production formula tells us that heavier pairs should be
exponentially suppressed relative to light ones.
Having explored the time evolution of the system as

illustrated in Fig. 1, we shall now consider the buildup of
spatial correlations after a short evolution. Taking into
account the well-known limitations of tensor networks in
performing realtime evolution, we will restrict ourselves to
a simpler yet highly informative setup. Using an N ¼ 40
site lattice, we first prepare the ground state of the system
for g0ll ¼ g1ll ¼ g0lh ¼ g0lh ¼ 0, in other words, the ground
state of the four-flavor massive Schwinger model at finite
coupling [70]. We adopt a matrix product state (MPS)
architecture using the density matrix renormalization group
(DMRG) algorithm [71,72]. We then time evolve the
system under the full Hamiltonian with finite spin cou-
plings, inserting a static external electric field in the middle
of the lattice (between lattice sites 9 and 32) as shown in
Fig. 3. The evolution time is chosen to be t ¼ a [73] and is
performed using the time-dependent variational principle
(TDVP) algorithm [74,75].
Observables are computed on the time evolved state in

the region spanned by the external field; note that its spatial
extent is chosen to minimize boundary effects due to open
boundary conditions and to maximize the number of usable
lattice points. All simulations are performed using the
tensor network package ITensor [76] in Julia for the
parameter set a · g ¼ 2, a ·ml ¼ 0.5, and a ·mh ¼ 7.5.
The bare fermion masses are chosen such that their ratio
is of the order of ms=ðmu þmdÞ, and they include the
improvement term [77] discussed in [78,79].

(a) (b)

FIG. 2. Top (a),(b): local charge density of dynamics under HextðtÞ for the different parameters indicated in the text; ground state
values are subtracted. The region over which the external field acts is outlined at each time step. Four flavors—h↑; h↓; l↑; l↓—are located
at each of six staggered lattice sites, for a total of N ¼ 24 sites. Pink and green regions indicate particle-antiparticle pairs of light quarks
in the string. Bottom (a),(b): local electric field strength of dynamics under HextðtÞ for the parameters indicated in the text, with ground
state values subtracted. Pair production induced by the external electric field results in a local field of opposite direction, thus leading to
screening.
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To illustrate the key features of our model, we begin by
computing the one point fermion correlator hψ̄ψin; the
subscript denotes the expectation value at site n. As shown
in Fig. 3, the ground state is characterized by two
condensates (in blue) for each of the two fermion species.
The light fermions have a larger value for the condensate.
After time evolution (in red), light fermion pairs are easily
excited in the region where the electric field is activated
(denoted by the gold q=q̄ labels), and the heavy and light
condensates disappear. For both species, the points are
grouped in doublets; this reflects the residual SUspinð2Þ
symmetry of the model.
To study spin correlations of the heavy (strange) quarks,

we introduce the fermion correlator

Cσ;σ0 ðΔÞ≡
P

ñ;m̃hĉσðñÞĉσ0 ðm̃ÞiconnδΔ;ñ−m̃P
ñ;m̃ δΔ;ñ−m̃

; ð17Þ

whereΔ ¼ 1; 2; 3;… is the spatial lattice separation, and ñ,
m̃ are chosen such that they correlate fermions with
antifermions, with the operator

ĉσðñÞ ¼ ψ̄h;σψh;σ − hψ̄h;σψh;σijψi; ð18Þ

evaluated at the staggered site ñ. We subtract the ground
state expectation value to minimize the dependence on the
initial state; the connected correlator eliminates classical
correlations.
In Fig. 4 we show numerical results for the C↑;↓

correlator. For the initial state (gray band), the correlator

takes on small values and vanishes for large lattice
separations. The same trend also occurs both for glh ¼ 0
(red and pink curves), corresponding to no spin flips
between the two fermions species, and for small, finite
glh at gll ¼ 0 (black and gold circles). The lack of large
correlations between heavy fermions is expected when
glh ¼ 0: in the absence of direct spin interactions between
the heavy and light particles, there is no efficient mecha-
nism to generate nontrivial correlations between heavy
species. The fact that correlations are also weak at nonzero
glh but zero gll indicates that the system prefers to generate
correlations between heavy fermions indirectly through
spin exchanges via the light degrees of freedom. This is
consistent with what one would anticipate in QCD (see
Fig. 1), where strange quark spin correlations are highly
sensitive to the lighter degrees of freedom present in the
string. Our conclusion is further supported by the other
curves in Fig. 4. As glh increases, generating stronger
interactions between light and heavy fermions, short and
long range correlations build up. Calculations performed
for C↑;↓ exhibit quantitatively similar results. This is to be
expected since our initial state is not prepared in a particular
heavy fermion spin state.
Finally in Fig. 5, we plot the half-chain entanglement

entropy, which can be easily extracted from the MPS. Since
the initial state is not empty, we subtract the entropy present
in the initial state: ΔS ¼ S − Sjψit¼0

. As expected, larger
values of the electric field result in a larger entanglement
entropy, while ΔS also increases as a function of glh. These
results are in agreement with the behavior seen in Fig. 4,
with larger correlations being reflected in larger ΔS.
However, numerical simulations with other parameter sets
show that the evolution of the entropy as a function of glh
can be nonmonotonic. This is not surprising since the

FIG. 3. Lattice distribution of local one point function hψ̄ψin.
The top depicts the staggered construction alternating between
fermions (q) and antifermions (q̄). Each staggered site corre-
sponds to four computational sites. Gray bands mark where
lattice artifacts prevail. The gold band at the bottom (and gold
q=q̄ symbols) indicates where the external electric field is active.
Thick (thin) blue and red symbols represent, respectively, heavy
(light) fermion sites for the ground (t ¼ 0) and excited (t ¼ a)
states, respectively. Particle spins are denoted by ↑↓. Dashed
lines denote the ground state condensate for each particle species.

FIG. 4. Heavy fermion correlator C↑;↓ as a function of the
lattice separation Δ. The electric field is generated with jQj ¼ 2.
The different colors depict the parameter sets used; the curve
corresponding to the initial state is shown in gray.
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connection between ΔS and correlation functions of
the form of Cσ;σ0 is, in general, nontrivial [16]; we leave
a more in-depth study of the time dependence of ΔS to
future work.
In summary, ongoing studies of Λ hyperon spin corre-

lations at colliders have the potential to offer unique insight
into quantum features of fragmentation and hadronization
in QCD strings. To model the underlying dynamics, we
constructed and explored the simplest QFT that captures
fundamental aspects of the formation and many-body
dynamics of heavy and light flavors in a QCD string.
Though relatively simple compared to QCD, this spin
model has an extremely rich phase structure worthy of
study in its own right, and it shares many of its qualitative
features such as a confining potential, chiral symmetry
breaking, etc. As a result, the proposed setup offers a
quantitative approach to study spin correlations in a QFT
with a qualitative connection to QCD. This is in contrast to
state-of-the-art hadronization models such as the Lund
string picture. As noted, such 1þ 1-d qualitative models of
nonperturbative aspects of QCD do not fully capture the
intrinsic quantum dynamics of 1þ 1-d QFT analogs of
QCD, and they require extensive tuning to be compared to
collider data.
Our 1þ 1-d QFT framework can be brought in closer

analogy to QCD in several ways. The isospin symmetry
used in the light fermion sector can be easily lifted by
introducing two additional flavors. Such a transformation
allows one to distinguish between up and down quarks; as a
result, one can directly measure spin correlations of
hadrons instead of spin correlations of heavy fermions.
These hadrons would of course be Uð1Þ hadrons, but the
generalization to other gauge groups is straightforward.
However, on a technical level the inclusion of hadrons into
our model would lead to a significant increase in the
simulation complexity. Another refinement of our model

would be to augment the spin termHspin beyond the simple
form taken in this paper. For example, quartic operators can
be considered; these allow for direct spin exchanges
between heavy fermions mediated by the light degrees
of freedom.
Further progress is, at present, hindered on several fronts

that deserve further attention. While our tensor network
study can potentially be extended to larger lattices by
further numerical optimization, time evolution will still
pose a challenge. Exact diagonalization can circumvent the
latter, but we found its application has to be restricted at
present to small lattices [80]. Quantum computers have the
potential to overcome both these constraints, thereby
demonstrating quantitative progress in a problem of fun-
damental interest in collider physics.
From the modeling perspective, one can further simplify

the problem by integrating over the light degrees of
freedom since the desired measurements are of heavy
fermion spin correlations. Such a program can, in principle,
be accomplished in the limit where the light fermion
density is large and the heavy degrees of freedom only
interact with a time averaged fluctuation of these fields. In
addition, classical-statistical techniques could also be
employed to study the time evolution of the system; see
e.g. [57–59]. Indeed, the present setup offers a useful
testing ground to probe where such classical methods
capture the full evolution; doing so allows one to isolate
truly quantum effects. We hope our work spurs further
developments in these directions.
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