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We propose a new mechanism of absorption of dark matter particles in atoms which resembles the
Migdal effect of inelastic dark matter scattering. In this process, atoms may be ionized upon absorption of a
scalar particle through the scalar-nucleon Yukawa-type interaction. The crucial difference from the inelastic
dark matter scattering on atoms is that the total energy of the particle, including its rest mass mc2 term, is
transferred to the electron. As a result, the emitted electron kinetic energy is about 6 orders in magnitude
bigger than that in the dark matter scattering process. This absorption process allows one to probe dark
matter particles with a relatively small mass, in the range from 1 to 100 keV, that cannot be detected in the
scattering process. It is also possible to detect hypothetical scalar particles emitted from the Sun. We
calculate absorption cross sections of this process in Na, Si, Ar, Ge, I, Xe, and Tl target atoms and extract
limits on the scalar-nucleon interaction constant from null results of the XENONnT experiment.
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I. INTRODUCTION

Recent advancements in dark matter (DM) detection
technology have witnessed a remarkable surge in sensi-
tivity, propelling the field into an era of unprecedented
precision. Notably, liquid noble gas detectors, exemplified
by argon and xenon time-projection chambers, and solid
state DM particle detectors based on NaI, Ge, and Si
crystals, have emerged as pivotal instruments in the pursuit
of understanding the elusive nature of DM, see, e.g., [1] for
a review. These detectors, originally conceived for the
detection of weakly interacting massive particle (WIMP)
DM candidates through nuclear recoil, have achieved
sensitivities nearing those required for neutrino detection
at certain energies. Intriguingly, their versatility extends
beyond the traditional WIMP paradigm, as these detectors
are also sensitive to direct electron recoil arising from
DM-atom scattering events and atomic absorption of
pseudoscalar, scalar, and vector DM candidate particles
(see, e.g., [2–8]).
In this work, we investigate the viability of DM detectors

in capturing the signatures of Yukawa-type scalar-nucleon
interactions in atomic ionization by the scalar particle
absorption. This process has similar kinematics to the

scalar field absorption in atoms through the scalar-electron
interaction (see, e.g., [9]). On the other hand, it resembles
the Migdal effect in the scattering process when an atom is
ionized due to a sudden nucleus motion caused by collision
with a heavy DM particle [10]. The Migdal effect poten-
tially allows one to probe the sub-GeV DM particles in
liquid noble gas DM detectors.
Theoretically, the scalar particles are very well motivated

DM candidates arising in different scenarios such as
sgoldstino, dilaton, relaxion, moduli, and Higgs-portal
DM (see, e.g., [11] for a review). For light scalar fields,
with mass mϕ ≪ 1 eV, a variety of detection techniques
have been employed and proposed: atomic clocks [12–17],
accelerometers [18], resonant-mass detectors [19], gravi-
tational wave detectors [20], laser and maser interferometry
[13,21–23], atomic and molecular spectroscopy [24–26],
cavity resonators [27], atomic transitions in trapped atoms
and molecules [28,29], and permanent magnets [30]. For
heavier scalar fields, most of these approaches are, how-
ever, inefficient, and different techniques are needed. In this
paper, we demonstrate that liquid noble gas detectors are
suitable for probing the scalar-nucleon coupling constant if
the scalar field mass falls in the range from 1 to 50 keV.
Although we focus mainly on nonrelativistic massive

scalar DM particles, light ultrarelativistic scalar particles
potentially produced in the Sun with OðkeVÞ energy may
also be absorbed by atoms through the scalar-nucleon
interaction. We derive the general expression for the cross
section of absorption of scalar particles on atoms which
holds both for massive and massless scalar field. In contrast
with the corresponding cross section of direct electron
ionization from Ref. [9], the ionization due to the scalar-
nucleon interaction is described by a dipole atomic matrix
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element while the contributions from other multipoles are
negligible. We calculate this matrix element and the
corresponding ionization cross section numerically for
a variety of atoms of experimental interest: Na, Si, Ar,
Ge, I, Xe, and Tl. In the Appendix B, the results of these
calculations are tabulated, and an analytic fitting function
for the absorption cross section is presented in the
Appendix A. More detailed numerical files are provided
in the Supplemental Material [31].
It is important to note that actual DM absorption rates in

liquid noble gas and solid state detectors may significantly
differ from the ones estimated with atomic matrix element
calculations because of interatomic interactions and col-
lective electron effects in solids. To address this problem,
we derive a universal relation between the scalar field
absorption cross section and the photoionization one.
Making use of this relation, the scalar DM particle
absorption rate may be estimated in actual experiments
once the photoionization cross section is measured for the
detector’s active medium. This relation is similar to the one
for the axioelectric effect [32,33].

II. THE MODEL

Let us consider a free DM particle with mass mϕ

described by a real scalar field ϕ. Given one quanta of
this particle in a unit volume, this field is represented by the
following plane wave solution:

ϕ ¼ 1ffiffiffiffiffiffi
2ω

p ½eiðk⃗ r⃗−ωtÞ þ e−iðk⃗ r⃗−ωtÞ�; ð1Þ

with dispersion relation ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ þ k⃗2
q

in natural units

with ℏ ¼ c ¼ 1. This field may have a Yukawa-type
interaction with Dirac spinor fields of nucleon ψn and
electron ψe:

Lint ¼ gϕnϕψ̄nψn þ gϕeϕψ̄eψe; ð2Þ

with some small coupling constants gϕn and gϕe. Here

ψ̄n;e ¼ ψ†
n;eγ0 are Dirac conjugate spinors and

γ0 ¼
�
12×2 0

0 −12×2

�
:

The Lagrangian (2) corresponds to the following
Hamiltonian:

Hint ¼ −ðQe−iωt þQ†eiωtÞ; ð3Þ

where the operator

Q ¼ 1ffiffiffiffiffiffi
2ω

p
�
gϕnγ0ðnÞe

ik⃗r⃗n þ gϕeγ0ðeÞe
ik⃗r⃗e

�
ð4Þ

consists of two terms which depend on the electron r⃗e and
the nucleon r⃗n variables, respectively.
More generally, in Eq. (2) one can consider independent

coupling constants to proton, gϕpr, and neutron, gϕne.
Upon averaging over a nucleus with mass number A and
charge number Z, these couplings contribute to gϕn as
gϕn ¼ ½Zgϕpr þ ðA − ZÞgϕne�=A.
In an atom, all nucleons interact with the background

scalar field ϕ coherently, while the electrons in different
shells may respond differently. Therefore, upon consider-
ing scattering of the scalar field on an atom, one has to
average the operator (4) over the nucleons and sum over the
atomic electrons. As a result, the atomic transitions due to
the interaction with the background scalar field ϕ are driven
by the operator

Q̄ ¼ QN þQe; ð5aÞ

QN ¼ gϕnAffiffiffiffiffiffi
2ω

p eik⃗r⃗N ; ð5bÞ

Qe ¼
gϕeffiffiffiffiffiffi
2ω

p
XZ
i¼1

γ0ðiÞe
ik⃗r⃗i ; ð5cÞ

where r⃗N is the position vector of the nucleus and r⃗i are
positions of atomic electrons. Below, we will use this
operator for calculation of the atomic ionization rate due to
absorption of the scalar DM particles.

III. ATOMIC IONIZATION UPON ABSORPTION
OF A SCALAR PARTICLE

We consider a process of absorption of one quanta of the
scalar field (1) with speed v ¼ k=ω and ejection of one of
the atomic electrons with kinetic energy in the interval
½Ef ; Ef þ dE�. The cross section of this process has the
following general form:

dσϕ ¼ 2π
ω

k

X
I;F

jhFjQ̄jIij2δðEF − EI − ωÞdE; ð6Þ

where jIi and jFi are the initial and final atomic states with

energies EI ¼ p2
i

2mat
þ Ei and EF ¼ p2

f
2mat

þ Ef , respectively.
Here pi and pf are the initial and final momenta of the
atom, respectively, and Ei and Ef are the corresponding
energies of the electronic cloud. In Eq. (6), the sum runs
over all final electronic configurations with energy Ef, and
averaging over all initial electronic configurations with
energy Ei is assumed.
Similar to photoionization, the atomic recoil energy may

be neglected, and the DM particle energy is predominantly
spent for the atomic transition, ω ≈ Ef − Ei. Imposing the
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conservation of energy we find the total cross of this
process,

σϕ ¼ 2π
ω

k

X
I;F

jhFjQ̄jIij2: ð7Þ

The atomic states in the coordinate representation may
be written as

hr⃗e i; r⃗N jIi ¼ e−ip⃗i r⃗atψ iðr⃗e i − r⃗NÞ; ð8aÞ
hr⃗e i; r⃗N jFi ¼ e−ip⃗f r⃗atψ fðr⃗e i − r⃗NÞ; ð8bÞ

where

r⃗at ¼
mNr⃗N þme

P
Z
i¼1 r⃗e i

mat
; ð9Þ

mat ¼ mN þ Zme ≈ Amp: ð10Þ

Here r⃗e i, i ¼ 1;…; Z denote position vectors of atomic
electrons, andmp is the nucleon mass. In Eq. (8), ψ iðr⃗e iÞ≡
hr⃗e ijii and ψ fðr⃗e iÞ≡ hr⃗e ijfi represent wave functions of
the electron cloud while the factors e−ip⃗i r⃗at and e−ip⃗f r⃗at take
into account the motion of the center of mass of the atom.
With the atomic wave functions (8), the matrix elements

in Eq. (7) may be explicitly represented as

MðNÞ
fi ≡ hFjQN jIi ¼

gϕnAffiffiffiffiffiffi
2ω

p
Z

d3rNdτeiq⃗r⃗atþik⃗r⃗N

× ψ�
f ðr⃗e i − r⃗NÞψ iðr⃗e i − r⃗NÞ; ð11aÞ

MðeÞ
fi ≡ hFjQejIi ¼

gϕeffiffiffiffiffiffi
2ω

p
Z

d3rNdτeiq⃗r⃗at

× ψ�
f ðr⃗e i − r⃗NÞ

XZ
l¼1

eik⃗r⃗elγ0ðlÞψ iðr⃗e i − r⃗NÞ;

ð11bÞ

with q⃗ ¼ p⃗f − p⃗i the momentum transfer, and dτ ¼
d3re1…d3reZ is the integration measure over all electronic
coordinates. After shifting the electronic variables in the
integrand, r⃗e i − r⃗N → r⃗e i, we perform the integration over
d3rN that yields the momentum conservation, q⃗þ k⃗ ¼ 0.
As a result, the matrix elements (11) are expressed in terms
of the electronic wave functions,

MðNÞ
fi ¼ gϕnAffiffiffiffiffiffi

2ω
p hfj exp

�
−i

me

mat
k⃗ R⃗

�
jii; ð12aÞ

MðeÞ
fi ¼ gϕeffiffiffiffiffiffi

2ω
p hfj

XZ
l¼1

eik⃗ðr⃗el−R⃗me=matÞγ0ðlÞjii

≈
gϕeffiffiffiffiffiffi
2ω

p hfj
XZ
l¼1

eik⃗r⃗elγ0ðlÞjii; ð12bÞ

where R⃗ ¼ P
Z
i¼1 r⃗e i is the sum of position vectors of all

atomic electrons. In the last line of (12b) we neglected a
small term R⃗me=mat as compared with r⃗el.
In the case when the final atomic state jfi corresponds to

an ionized Coulomb electron, the transition amplitudes (12)
may be visualized by diagrams in Fig. 1.
In general, the coupling constants gϕn and gϕe are

independent. However, if their values are comparable,
gϕn ∼ gϕe, the absorption through the nuclear recoil with
the matrix element (12) is strongly suppressed by the factor
me=mat, as compared with the direct electron ionization

described byMðeÞ
fi . The latter process was studied in Ref. [9]

where limits on gϕe were found from the results of the
Xenon1T experiment [34]. In the present paper, we focus
on the contributions from the matrix element (12b) which
may be significant if gϕe ≪ gϕn.
The matrix element (12a) contains a strong suppression

factor me
mat

≪ 1 under the exponent. As a result, for DM
particles this matrix element is dominated by the dipole term,

MðNÞ
fi ≈ −i

gϕnAffiffiffiffiffiffi
2ω

p me

mat
hfjk⃗ R⃗ jii: ð13Þ

Substituting this matrix element into Eq. (7) and making use
of the identity jhfjk⃗ R⃗ jiij2 ¼ 1

3
k2jhfjR⃗jiij2 which holds for

nonpolarized atoms, we find the ionization cross section in
the dipole approximation

σϕ ¼ πg2ϕn
m2

e

m2
p

k
3

X
i;f

jhfjR⃗jiij2: ð14Þ

We stress that Eq. (14) originates from the dipole
approximation for the matrix element (12a). This approxi-
mation is applicable for hk⃗ R⃗ime=mat ≪ 1. At large incom-
ing particle momenta, the absorption is strongly dominated
by inner s and p atomic shells. Therefore, hRi may be
estimated as the radius of the 1s shell, hRi ∼ aB=Z, where
aB is the Bohr radius. As a result, the cross section (14) is
applicable up to a relatively high DM particle momenta:

k ≪ a−1B Zmat=me ≈ AZ × 6.8 MeV: ð15Þ

(a) (b)

FIG. 1. Diagrams representing atomic ionization by absorption
of a scalar particle ϕ through (a) scalar-nucleon interaction and
(b) scalar-electron vertex.
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The cross section (14) represents the central result in the
present work which allows us to study the absorption rate
of the scalar particles in atoms and compare it with
observational data. We calculate this cross section numeri-
cally for a variety of atomic targets of experimental interest:
Na, Si, Ar, Ge, I, Xe, and Tl. The results of numerical
calculations within the relativistic Hartree-Fock method are
presented in tables in the Appendix B. To facilitate further
applications of these results, we also provide an analytic
fitting function for the absorption cross section. For Xe and
Ar atomic targets, the numerically calculated cross sections
are represented by orange dashed curves in Fig. 2 which are
in good agreement with the results obtained from exper-
imental values of the photoionization cross section con-
sidered below.

IV. RELATION WITH PHOTOIONIZATION
CROSS SECTION

The scalar field absorption cross section (14) is expressed
in terms of the standard atomic dipole matrix element. The
same matrix element gives the leading contribution to the
photoionization cross section, see, e.g., [37,38],

σγ ¼
4π2α

3
ω
X
i;f

jhfjR⃗jiij2: ð16Þ

As a result, we find the relation between the scalar field
absorption cross section (14) and the photoionization one (16),

σϕ ¼ g2ϕn
m2

e

m2
p

k
ω

σγ
4πα

: ð17Þ

Note that the number of excited electrons produced by the
absorption of one particle may be bigger than 1.

The expression (16) for the photoionization cross section
in the dipole approximation is applicable for photon
wavelength greater than the typical size of the 1s atomic
orbital,

k ≪ Z=aB ≈ Z × 3.7 keV: ð18Þ

As a result, this bound sets the region of applicability
of the relation (17). In particular, for the Xe atom, Z ¼ 54,
Eq. (17) holds for scalar particle momenta k ≪ 200 keV.
This is well in the range of DM searching experiments with
nuclear recoil in liquid Xe [39–41].
The photoionization cross section is calculated and

measured experimentally to a high accuracy for a variety
of atoms and molecules. In particular, for noble gases the
value of this cross section is tabulated in Refs. [35,36].
Using these data, in Fig. 2 we present the plots of the
absorption cross section (17) of a massless scalar field in
the Ar and Xe targets. Note that in the case of massive
scalar field the cross sections are similar, but are reduced by
a factor of k=ω ¼ v=c which is of order 10−3 for Galactic
dark matter particles.
Although the relation (17) is derived for atomic targets, it

may be applied for liquid and solid state detectors as well.
Making use of this relation, the scalar DM particle
absorption rate may be estimated in actual experiments
once the photoionization cross section is measured for the
detector’s active medium. Thus, Eq. (17) is a powerful tool
for studying the scalar DM particle absorption with various
detectors.

V. CONSTRAINTS FROM XENON-NT

Consider massive DM particles virialized in the halo
of our Galaxy with a speed distribution fðvÞ. The rate of

FIG. 2. Absorption cross sections of a massless scalar field through scalar-nucleon interaction in Xe (left) and Ar (right) atomic targets.
Blue curve corresponds to Eq. (17) with experimental values of the photoionization cross section from Refs. [35,36], orange dashed
curve is obtained by direct numerical calculation of the matrix elements in Eq. (14), black dashed curve is obtained by similar numerical
calculations but assuming a detection threshold on ionized electron kinetic energy below 1 keV, and green curve is obtained with the use
of the analytical fitting formula for ionization cross section (A11). In the case of massive dark matter, the values of cross sections are to
be reduced by the factor v=c ∼ 10−3. Note that at large energies the relation (17) between the scalar and experimental photoionization
cross sections is violated since the photoinozation acquires high multipoles which do not contribute to the scalar ionization.
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absorption of such particles on atoms with emission of
electrons is

R ¼ 1

mat

ρDM
mϕ

Z
σϕðvÞfðvÞvdv

¼ g2ϕn
4πα

1

mat

ρDM
mϕ

m2
e

m2
p

Z
σγfðvÞv2dv; ð19Þ

where in the second line we made use of the relation (17).
Note that the photoionization cross section σγ depends
on the DM particle velocity through the energy of the
scalar field E ¼ mϕðc2 þ v2=2Þ. This dependence is very
weak for nonrelativistic DM particles. Hence, we obtain
the following expression for the absorption rate of the
scalar field:

R ¼ g2ϕn
4πα

1

mat

ρDM
mϕ

m2
e

m2
p
hv2iσγðmϕÞ; ð20Þ

where hv2i ¼ R
v2fðvÞdv ≈ 1.4 × 10−6c2. Here we

employed the DM particle velocity distribution function
corresponding to the standard dark matter halo model from
Refs. [42,43]:

fðvÞ ¼ vffiffiffi
π

p
v0vobs

e−ðvþvobsÞ2=v20ðe4vvobs=v20 − 1Þ: ð21Þ

Here v0 ≈ 220 km=s is the speed in the local rotation curve,
and vobs ≈ 232 km=s is the speed of the Sun in the halo
rest frame.
The XENONnT experiment [39] reported null result

in the searches for dark matter particles with the mass
ranging from 1 to 30 keV. The reported background is
ð15.8� 1.3Þ events=ðton × year × keVÞ. This means that
the scalar field absorption rate (20) should not exceed the
error in the reported background, R < Rerror ¼ 1.3 events=
ðton × year × keVÞ. This allows us to find the following
limit on the coupling constant:

jgϕnj <
�
4παRerrormatmϕm2

p

σγhv2iρDMm2
e

�
1=2

: ð22Þ

Assuming that the local DM energy density is
ρDM ¼ 0.3 GeV=cm3, we find the following limit at
mϕ ¼ 3 keV:

jgϕnj < 1.2 × 10−10: ð23Þ

Here we used the following value for the photoionization
cross section σγ ¼ 1.55 × 10−19 cm2 at ω ¼ 3 keV.
To provide a more accurate estimate of the limits on the

scalar-nucleon interaction, one has to consider the pre-
dicted transition rate (19) on top of the actual background
model in the XENONnT experiment [39], and compare it

with the experimental data. The same result may be
achieved by rescaling the limits on the axion-electron
coupling gae from Ref. [39] using the relation

σϕ
σa

¼ 4

3

g2ϕn
g2ae

v2

c2
m4

e

m2
pm2

ϕ

; ð24Þ

where σϕ is given by Eq. (14) and σa is the axioionization
cross section calculated in Refs. [33,44]. The correspond-
ing limits on the scalar-electron coupling are given in Fig. 3
for mass ranging from 1 to 30 keV. Note that unlike the
QCD axion model, there is no universal relation between
the coupling constant gϕn and the scalar particle mass mϕ

which could indicate target sensitivity for experiments.
Recall that the XENONnT experimental data have a

lower cutoff at 1 keV for the deposited energy. As a result,
the measured cross section σ̃ϕ in this experiment is
significantly different from the theoretical cross section
σϕ near the 1 keV cutoff. The cross section σ̃ϕ may be
calculated numerically using the same formula (14), but
one should keep in the sum only those electron shells which
are characterized by the energy exceeding the experimental
threshold in absolute value, jEij > 1 keV. The results of
these numerical calculations are given in the Appendix B;
the corresponding plots of these cross sections are shown in
Fig. 2 by a black dashed curve.
In Fig. 3, we included indirect limits on the scalar-

nucleon coupling from Ref. [45] represented by a dashed
line. These limits are based on one-loop radiative
corrections to the scalar-photon interaction. The latter
coupling is constrained in the keV region by the
nonobservation of excess in the diffuse x-ray back-
ground in various space-based x-ray observatories, see
Refs. [46–48]. Although our limits are a few orders in
magnitude weaker than the indirect ones, they should be
considered as complimentary results because these two
approaches are based on different effects.

FIG. 3. Pink excluded region for the scalar-nucleon coupling
constant gϕn is found from nonobservation of DM particles in the
XENONnT experiment [39]. Dashed line represents indirect
limits on this constant from Ref. [45].
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VI. SUMMARY

In this paper, we propose a new mechanism for atomic
ionization by dark matter particles. We consider a model of
dark matter represented by a real scalar field with OðkeVÞ
mass and Yukawa-type interaction to the electron and
nucleon. We assume that the scalar-nucleon interaction is
much stronger than the scalar-electron one, as the opposite
case was studied in Ref. [9]. We derive a general for-
mula (14) for absorption of this scalar field in atoms and
show that it is strongly dominated by the dipole matrix
element, in contrast with the case of the scalar-electron
interaction where the E0 atomic transitions give significant
contributions to the cross section [9]. Equation (14) is
applicable for both cold dark matter particles and relativ-
istic scalars which may be emitted by the Sun.
We have found a relation between the scalar particle

absorption cross section in atoms to the photoionization
cross section at the corresponding energy; see Eq. (17).
Note that the number of excited electrons produced by
the absorption of one particle may be bigger than 1. This
relation allows one to consider the absorption of hypo-
thetical scalar particles not only on isolated atoms, but also
in liquid noble gas and solid state detectors.
We also calculate the dipolematrix element numerically for

a variety of atoms of experimental interest: Na, Si, Ar, Ge, I,
Xe, and Tl. This matrix element enters the expression of the
scalar field absorption cross section on atoms (14). In the
Appendix B, we present tables of the results of numerical
calculations of this cross section in the case of a massless
scalar particles with energy ranging from 0.1 to 100 keV, and
analytical formulas fitting these numerical data are derived in
the Appendix A. Files with detailed numerical data are
provided in the Supplemental Material [31]. For massive
particles there is an extra factor v=c. These results may be
used in the DM-searching experiments based on the liquid
noble gas and solid-state detectors.
As a demonstration, we employ the null result in the

XENONnT experiment [39] in order to find a limit on the
scalar-nucleon coupling constant, jgϕnj < 1.2 × 10−10 at
mϕ ¼ 3 keV. For other energies, the exclusion plot is given
in Fig. 3. To the best of our knowledge, this is the first direct
limit on this coupling constant for the scalar field DM with
mass ranging from 1 to 30 keV from laboratory experiment.
In the recent work [45], done after the submission of this
paper, we complemented these laboratory limits by the ones
obtained from astrophysical measurements of scalar par-
ticle decays into two photons.
In conclusion, we would like to note that the suggested

effect is of interest from a theoretical physics perspective. We
consider dark matter interaction with a nucleus. When
considering such an interaction, a bare nucleus, due to its
substantial mass M relative to that of a dark matter particle,
receives a very small amount of kinetic energy, E ¼ q2=2M,
from the dark matter particle; here q is the momentum
transfer. For example, the 132Xe nucleus receives kinetic

energy of about 10−9 eV from a nonrelativistic dark matter
particle with mass 10 keV. Contrastingly, while dark matter
interacts with the atomic nucleus only, an electron may
receive energy exceeding 1 keV, which is 12 orders of
magnitude greater! Notably, all nucleons interact coherently
with the DM particle, preserving the nucleus in its ground
nuclear state. Thus, in this phenomenon, the entirety of the
dark matter particle’s energy, including its rest mass term, is
directed toward the ionization of atomic electrons. Although
the probability of such a process is low, suppressed by the
factor ðme=MÞ2, it is distinctly nonzero. This phenomenon is
fundamentally enabled by the quantum mechanical proper-
ties of atomic structure.
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APPENDIX A: ANALYTICAL FORMULA FOR
IONIZATION CROSS SECTION

The ionization cross section for photons and scalars is
dominated by the contribution from deepest shells allowed
by the energy conservation. When the particle possesses
sufficient energy for ionization from a 2p3=2 electron
orbital (see Table I), the dipole term in the ionization cross
section may be approximated by the analytical formula
from Ref. [44]. This formula includes contributions from
1s, 2s, and 2p atomic shells which were obtained by fitting
the results of the numerical calculations,

σγðEÞ ¼
4

3
πα

�
E0

E

�
2

KðEÞa2B; ðA1Þ

where aB is the Bohr radius and the function K is given by

K ¼ K1s þ K2s þ K2p; ðA2Þ

K1s ¼ f1ðZ; E þ E1sÞ
384πE4

1s

ðE0ZEÞ2
e−4ν1arccotν1

1 − e−2πν1
; ðA3Þ

TABLE I. Hartree-Fock energies of the 2p3=2 electron shells of
some neutral atoms of interest.

Z Atom jE2p3=2
j; keV

11 Na 0.04122
14 Si 0.1156
18 Ar 0.2598
32 Ge 1.528
53 I 4.615
54 Xe 4.835
81 Tl 12.76
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K2s ¼ f2ðZ; E þ E2sÞ
6144πe32
E0E2

�
1þ 3

e2
E

�

×
e−4ν2arccotðν2=2Þ

1 − e−2πν2
; ðA4Þ

K2p ¼ f2ðZ; E þ E2pÞ
12288πe43
E0E3

�
3þ 8

e3
E

�

×
e−4ν3arccotðν3=2Þ

1 − e−2πν3
; ðA5Þ

where E0 ¼ 27.21 eV is the Hartree unit of energy,
e2 ¼ jE2sj, e3 ¼ jE2pj, ν1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E1s=ðE1s þ EÞp

,

ν2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E2s=ðE2s þ EÞp

, and ν3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−E2p=ðE2p þ EÞp

.
Here E1s, E2s, and E2p are Hartree-Fock energies of the
core states represented by the following fitting formulas for
atoms with 18 < Z < 60:

E1s

E0

¼ −
Z2 − 7.49Z þ 43.39

2
; ðA6Þ

E2s

E0

¼ −0.000753Z3 − 0.028306Z2

− 0.066954Z þ 2.359052; ðA7Þ
E2p

E0

¼ −0.000739Z3 − 0.027996Z2

þ 0.128526Z þ 1.435129: ðA8Þ

The functions f1 and f2 in Eqs. (A3), (A4), and (A5) are

f1ðZ; EÞ ¼ ð5.368 × 10−7Z − 1.17 × 10−4ÞE=E0

− 0.012Z þ 1.598; ðA9Þ
f2ðZ; EÞ ¼ ð−1.33 × 10−6Z þ 1.17 × 10−4ÞE=E0

− 0.0156Z þ 1.15: ðA10Þ
Note that the approach in derivation of these formulas is
based on correcting the formulas obtained for ionization of
the electron in the pure Coulomb potential.
Making use of Eq. (A1), the cross section (17) may be

cast in the form

σϕðEÞ ¼
g2ϕn
3

m2
e

m2
p

k
E

�
E0

E

�
2

KðEÞa2B: ðA11Þ

This formula is plotted in Fig. 1 by a green line labeled
“Fit.” It shows a good agreement with the results of direct
numerical calculations for the cross section (dashed orange
curve) and with the use of experimental values of the
photoionization cross section (solid blue curve).

APPENDIX B: NUMERICAL RESULTS FOR
CROSS SECTION OF ATOMIC IONIZATION
THROUGH SCALAR FIELD ABSORPTION

The general formula for the cross section of atomic
ionization with absorption of a scalar particle with

TABLE II. Results of numerical calculation of cross section (14) using the relativistic Hartree-Fock method in the case of massless
scalar field. More detailed data tables are provided in separate files.

σϕ=g2ϕn, barn

ω; keV Na Si Ar Ge I Xe Tl

0.2000 2.591 10.44 1.068 15.82 5.101 5.166 7.292
0.2636 1.427 5.898 5.367 10.84 5.522 5.710 15.71
0.3474 0.7691 3.129 7.520 6.623 4.435 4.723 18.29
0.4578 0.4077 1.604 4.261 3.830 3.137 3.395 16.56
0.6034 0.2121 0.7988 2.245 2.128 2.033 2.216 11.56
0.7953 0.1083 0.3921 1.135 1.142 8.183 8.594 8.039
1.048 0.05418 0.1902 0.5585 0.5992 5.653 6.002 4.980
1.381 0.4707 0.09108 0.2682 2.188 3.225 3.465 2.881
1.821 0.2388 0.04299 0.1276 1.353 1.690 1.823 1.592
2.399 0.1151 0.2707 0.06016 0.6741 0.8535 0.9254 0.8533
3.162 0.05345 0.1330 0.02805 0.3245 0.4219 0.4590 2.039
4.168 0.02415 0.06242 0.1463 0.1531 0.2021 0.2201 1.168
5.493 0.01065 0.02838 0.07067 0.07004 0.5014 0.4754 0.5902
7.239 0.004620 0.01257 0.03279 0.03172 0.2472 0.2644 0.2897
9.541 0.001968 0.005450 0.01474 0.01419 0.1166 0.1254 0.1388
12.57 0.0008244 0.002317 0.006445 0.05453 0.05387 0.05805 0.06373
16.57 0.0003385 0.0009681 0.002752 0.02568 0.02388 0.02595 0.1317
21.84 0.0001352 0.0003966 0.001148 0.01151 0.01038 0.01125 0.06175
28.79 0.00005172 0.0001581 0.0004694 0.004952 0.004408 0.004782 0.02787
37.94 0.00001841 0.00006067 0.0001866 0.002051 0.01508 0.01616 0.01214
50.00 5.808 × 10−6 0.00002172 0.00007158 0.0008176 0.006448 0.006957 0.004975
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scalar-nucleon interaction is given by Eq. (14). This cross
section is expressed via the standard electric dipole matrix
element that may be calculated numerically for isolated
atoms to a high accuracy. We calculated this matrix element
using the relativistic Hartree-Fock method for a variety of
atoms of experimental interest, Na, Si, Ar, Ge, I, Xe, and Tl,
for the scalar field with the energy ranging from 0.1 to
100 keV. In Table II, we provide the results of calculations
of the absorption cross section obtained with a massless
analog of Eq. (14),

σϕðωÞ
g2ϕn

¼ ω
m2

e

m2
p

π

3

X
i;f

jhfjR⃗jiij2: ðB1Þ

Here jii is the ground state of the atom, and jfi is an energy
eigenstate of the ionized electron in the Coulomb field of
the ion.
In the case of nonrelativistic Galactic halo DM particles,

the corresponding cross section is obtained from Eq. (B1)
by a rescaling with the factor v=c (for DM v=c ∼ 10−3).
It is important to note that some of the DM particle

detectors have a lower energy threshold for detection of
ionized electrons through photoscintillation. For instance,
the detectors in the XENONnT experiment [39] have the
electron energy cutoff at Ecut ¼ 1 keV. This means that the
application of the formula (B1) for estimates of the event
rate in such detectors would give an overestimated result at
the energies near the threshold.

FIG. 4. Left: cross sections σϕ=g2ϕn of atomic ionization with absorption of a massless scalar field calculated numerically with Eq. (14).
Right: similar cross sections, but assuming the energy detection threshold for ionized electrons at 1 keV.

TABLE III. Results of numerical calculation of cross section (14) in the case of massless scalar field assuming a threshold of electron
energy at 1 keV in the detector. More detailed data tables are provided in separate files.

σ̃ϕ=g2ϕn, barn

ω; keV Na Si Ar Ge I Xe Tl

1.000 0. 0. 0. 0. 0. 0. 0.
1.216 0.03700 0.1281 0.02587 0.4195 0.5292 0.5236 1.712
1.479 0.02222 0.07576 0.2235 0.2600 0.3547 0.3850 1.979
1.798 0.01337 0.04447 0.1320 0.1596 1.062 1.174 1.558
2.187 0.1476 0.02594 0.07753 0.09828 1.077 1.167 1.055
2.659 0.08678 0.01502 0.04535 0.5151 0.6572 0.7140 0.6682
3.234 0.05017 0.1253 0.02635 0.3057 0.3982 0.4330 0.4203
3.932 0.02862 0.07342 0.01520 0.1798 0.2360 0.2575 0.9690
4.782 0.01612 0.04229 0.1024 0.1037 0.1398 0.1524 0.8310
5.815 0.008982 0.02403 0.06049 0.05953 0.2662 0.08983 0.5107
7.071 0.004965 0.01349 0.03506 0.03395 0.2626 0.2814 0.3081
8.599 0.002718 0.007482 0.01999 0.01924 0.1551 0.1667 0.1832
10.46 0.001475 0.004111 0.01123 0.01084 0.09039 0.09728 0.1080
12.72 0.0007961 0.002237 0.006229 0.05298 0.05217 0.05624 0.06175
15.46 0.0004240 0.001206 0.003414 0.03121 0.02943 0.03199 0.09419
18.8 0.0002232 0.0006454 0.001850 0.01790 0.01636 0.01772 0.09356
22.87 0.0001157 0.0003412 0.0009916 0.01003 0.009021 0.009777 0.05424
27.81 0.00005859 0.0001780 0.0005258 0.005517 0.004914 0.005330 0.03080
33.81 0.00002871 0.00009105 0.0002750 0.002974 0.002646 0.00287 0.01724
41.12 0.00001336 0.00004542 0.0001420 0.001574 0.01188 0.01276 0.009444
50.00 5.793 × 10−6 0.00002173 0.00007157 0.0008177 0.006448 0.006958 0.004975
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In order to take into account the energy threshold of
ionized electrons in actual detectors, we consider a modi-
fied cross section, σ̃ϕ, which is formally defined by the
same expression (B1), but the sum should include only
those electron shells which are characterized by the energy

exceeding the detector threshold in absolute value,
jEij > Ecut. In Table III, we tabulate the results of numerical
calculations of σ̃ϕ assuming the energy cutoff at
Ecut ¼ 1 keV. The cross sections σϕ and σ̃ϕ are plotted
in Fig. 4.
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