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We investigate the potential to detect Higgs boson decays to four bottom quarks through a pair of
pseudoscalars, a final state that is predicted by many theories beyond the Standard Model. For the first time,
the signal sensitivity is evaluated for the final state using the vector boson fusion (VBF) production with
and without an associated photon, for the Higgs at mH ¼ 125 GeV, at hadron colliders. The signal
significance is 0.5σ to 6σ, depending on the pseudoscalar massma, when setting the Higgs decay branching
ratio to unity, using an integrated luminosity of 150 fb−1 at

ffiffiffi
s

p ¼ 13 TeV. This corresponds to an upper
limit of 0.3, on the Higgs branching ratio to four bottom quarks, with a nonobservation of the decay. We
also consider several variations of selection requirements—input variables for the VBF tagging and the
kinematic variables for the photon—that could help guide the design of new triggers for the Run-3 period of
the LHC and for the HL-LHC.
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I. INTRODUCTION

After the discovery of the Higgs boson at mH ¼
125 GeV by the ATLAS and CMS Collaborations in
2012 [1,2], the question of whether the observed particle
shows any deviation from the Standard Model (SM) has
been vigorously pursued. So far, the experimental obser-
vation of several decay and production properties have
confirmed the hierarchy of Yukawa couplings [3–11] and
further studies of the CP properties are consistent with the
SM [12–17]. The combined fits of these individual mea-
surements constrain the decay width of the Higgs boson
and put a constraint on the undetected non-SM fraction of
all decays to be less than 0.12 (ATLAS [18]) or 0.16 (CMS
[19]). These constraints do not include the undetectable
decays as inputs to the combination. However, these fits
make assumptions, such as the range of allowed couplings
to vector bosons, that may not be involved in searches for

specific final states predicted by theories beyond the
Standard Model (BSM). Therefore, direct searches, such
as those proposed in this paper, provide complementary
information.
Due to the relatively narrow width of the SM Higgs

boson ΓH ≈ 4 MeV [20], a small coupling to a new light
state could lead to a branching ratio that is large enough to
be observed at the Large Hadron Collider (LHC) while still
evading current experimental constraints. A wide range of
models in which the Higgs boson decays ‘exotically’ to
light scalars or pseudoscalars have been proposed [21–29].
In these models, such a particle is called a and typically
decays to SM particles. Following the Yukawa ordered
coupling patterns of the Higgs boson, the branching ratio of
a to fermions scales with the mass of the fermion, so the
decay a → bb̄ is the largest. For the kinematically acces-
sible cases, the Higgs boson decays into two a particles
leading to the overall final state ofH → aa → bb̄bb̄, which
we write as H4b. We consider the models in which the a
pseudoscalar decays promptly. In other models not exam-
ined in this paper, the a particle can have a significant
lifetime (see Ref. [30] for a recent review).
However, such exotic decays of the Higgs boson [30]

present an experimental challenge at the LHC, as all-
hadronic final states are often difficult to separate from the
large background rate from QCD production of multiple
hadronic jets (multijet). A variety of proposals exist to
trigger on the lepton from the W or Z decay in the
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associated production of the Higgs boson for H4b
[26,27,31], on b physics triggers for H4b at LHCb [32],
and on the vector boson fusion (VBF) production mode for
H → aa → bb̄ττ [23,33–35]. The VBF production mode in
particular has been shown to be of importance for a
particles with significant lifetime [36]. For prompt signa-
tures, VBF has been proposed for the H → 4τ [37] and
H → γγjj [38] final states, the latter of which inspired an
ATLAS search for H → γγjj final state [39].
The ATLAS search using the W or Z associated

production channel resulted in an upper limit on the
branching ratio of BðH4bÞ for ma ¼ 60 GeV at approx-
imately 0.6 with an expected value of 0.4 at 95% con-
fidence level [40,41]. No searches have yet been
attempted for H4b in the VBF production channel, the
topic of this paper, although promising searches for di-
Higgs, HH → 4b, exist [42].
Additional searches for exotic Higgs decays with cleaner

final states, such as H → aa → bb̄μμ allow for improved
sensitivity [43–45]. However, some models—such as type-
I two-Higgs doublet models called 2HDMs—prefer final
states with b quarks with relatively low branching ratios to
muons [46], so H4b remains an important benchmark at the
LHC. The model-specific branching ratio to the 4b final
state is the product of the branching ratio of Higgs to aa
and a → bb, BðH → aaÞ · Bða → bb̄Þ2. To simplify the
presentation and for comparison with existing literature, we
present results assuming BðH4bÞ ¼ 1.
Beyond the LHC, H4b is often suggested as a bench-

mark for searches at future colliders, such as the ILC [47],
a proposed electron-positron collider, and the LHeC
[48,49], an upgrade to the LHC to allow for ep collisions.
A future electron-positron collider provides the cleanest
final state and the strongest constraint, with a sensitivity of
BðH4bÞ as low as 3 × 10−4 [50,51]. It is also reported in
Ref. [50] that the high luminosity LHC (HL-LHC) will
probe BðH4bÞ to around 0.2. Given the importance of H4b
as a benchmark, the LHC experiments should consider
various methods to target this final state during Run-3 as
well as later at the HL-LHC. In particular, trigger
strategies should be considered that maximize the poten-
tial of this channel.
As the LHC experiments have explored W or Z

associated Higgs production, we investigate the potential
of the hadronic VBF final state, with and without a
photon. As previously mentioned, the multijet back-
ground is expected to dominate the VBF signal for
H4b. One proposed handle for the background is to
require a photon produced in association with the VBF
Higgs production [52–55]. Figure 1 shows a Feynman
diagram of the VBF signal production channel without a
photon (VBF0γ) and with a photon (VBF1γ). In addition to
reducing the background, the photon also provides a
handle for implementing a more efficient level-1 (L1)
trigger, increasing the overall acceptance for the final

state. The ATLAS experiment, for example, has already
successfully utilized the photon in the VBF production
channel in the search for the SM decay H → bb̄ [56,57]
and the search for the BSM-enhanced invisible H
decay [58]. We show later that a similar photon strategy
would be beneficial for targeting H4b, and all production
modes taken together will lead to a comprehensive search
strategy, such as utilized in other exotic decays like Higgs
to invisible [59,60].
The relatively recent development of implementing

machine learning (ML) methods for classification and
regression, such as hls4ml’s implementation of neural
networks [61–64] and boosted decision trees (BDT) by
hls4ml/conifer [65] and FWXMACHINA [66,67], on custom
electronics boards with field programmable gate arrays
(FPGA) has opened up a new era of possibility for ML-
based L1 triggers. These tools have demonstrated the
ability to perform ML classification of VBF production
based on jets within 20 ns [66], which is well below the
latency and resource constraints of L1 triggers at the LHC
experiments [68,69]. Therefore, we assume that the BDT
taggers proposed in this paper are implementable at L1
using the above-mentioned tools.
In this paper, we present the first detailed estimate

of the sensitivity of H4b using a BDT-based VBF tagger
that could be implemented at the ATLAS or CMS L1
trigger. We also compare the H4b sensitivity of the BDT-
based tagger to cut-based triggers inspired by triggers
already implemented by the ATLAS and CMS experi-
ments [69–73].
The paper is organized as follows. The next subsection

describes the overall analysis strategy. Section II describes
the data sample, the event generation and simulation as well
as the detector setup and reconstruction techniques.
Section III describes the data analysis, introducing a
VBF tagger and Higgs taggers. Section IV presents the
results, an estimate of the sensitivity for L ¼ 150 fb−1 of
integrated luminosity and a projection for the HL-LHC.
Various trigger scenarios and methods for improving the
signal sensitivity are also discussed. Section V concludes
with an outlook for future searches.

FIG. 1. VBF production channel without a photon (left) and
with a photon (right) followed by the Higgs decay. In both cases,
the Higgs boson decays to two pseudoscalars to four bottom
quarks. Representative Feynman diagrams are shown and that the
photon on the right can radiate from any of the charged particles,
including from the vector bosons.
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A. Analysis strategy

The strategy for separating signal from the SM back-
ground is as follows. First, a VBF tagger is used to target
the VBF production mode of the Higgs boson. The sample
is separated into two channels, VBF0γ and VBF1γ that
contain events without and with a photon, respectively.
For the Higgs reconstruction (HR), two channels are

considered corresponding to the number of reconstructed
b-quark jets, HR4b and HR3b. The former channel has six
total reconstructed jets; two from the production and four
from the Higgs decay. The HR4b channel has limitations,
however, because the lowest-pT b jet is generally below
40GeVandmay evade identification. Figure 2 shows thepT
distribution for the VBF0j signal sample for ma ¼ 50 GeV
with the jet requirement of pT > 20 GeV. This selection
requirement leads to a large fraction of eventswith only three
reconstructed jets from theH4b decay. The latter 3b channel
catches scenarios in which one of the H4b jets is not
reconstructed. The loss of a jet can occur either due to
merging with a nearby jet or if the jet fails one of the
reconstruction requirements, which can cause it to fail the
b-tagging selection, or a combination of both. Examining

the signal for ma ¼ 35 GeV, approximately 20% of events
had three b-flavored jets, while only approximately 3%
had four b-flavored jets. The fraction is lower for the
ma ¼ 10 GeV sample, for which 1.5% of events had three
b-flavored jets and 0.1% of events had four b-flavored jets.
Therefore, we consider HR3b in which there are five total
reconstructed jets. A dedicatedBDT-based tagger is used for
each HR.
The combinations of the Higgs production and decay

reconstruction gives rise to four analysis channels, which are
given in Table I. All taggers are described later in Sec. III.

II. SIMULATED DATA SAMPLES

Approximately 1.5 billion events are generated for
this study using Monte Carlo simulation. The event
simulation (Sec. II A) is described followed by the event
reconstruction (Sec. II B). A subsample of about 150 mil-
lion events—those that pass a loose set of requirements on
the number of reconstructed jets specified in Sec. II B—can
be found online [74].
The data sample collected during in the Run-3 data

taking period is expected to be around 150 fb−1 [75]. Our
main study (Sec. IVA) is optimized for this integrated
luminosity. The study is extended to HL-LHC (Sec. IV C)
by scaling the luminosity to 3 ab−1.

A. Event simulation

The signal and background samples considered are
listed in Table II. All samples are generated at leading
order (LO) with MadGraph5 v2.7.3 [76] with the Standard
Model configuration. The generated event is then passed to
PYTHIA v8.306 for the parton shower and hadronization
process [77,78] using the ATLAS AZ Tune 17 [79]. All
events are generated with a proton-proton center-of-
mass energy of

ffiffiffi
s

p ¼ 13 TeV, which was the value for
Run-2 operations. For the Run-3 operations that started in
2022, the LHC increased the center-of-mass energy to
13.6 TeV. A previous scaling study [55] demonstrated a
linear increase in cross section from

ffiffiffi
s

p
from 13 TeV to

13.6 TeV, and therefore this percent-level difference is not
considered here.
The background processes are weighted according to the

cross sections stated in Table II. These cross sections are
calculated by MadGraph5 at leading order during sample
generation. Notationally, final states such as bb̄þ jj
involve requirements on the parton selections passed to
MadGraph, which in this case correspond to two b-quark jets
and two light-flavor jets j. The latter refers to gluons as well
as quarks with a smaller mass than the bottom quark. For
each sample, the following requirements are applied.
Hadronic jets were produced with a minimum pT of
20 GeV and an angular separation ΔR > 0.4 between
every jet, where ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2 þ Δy2

p
is the distance in

azimuthal angle ϕ and rapidity y. Photons are required to
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FIG. 2. The pT distribution of each of the four b jets from the
H4b signal sample with ma ¼ 50 GeV. These jets, as well as the
VBF jets, are required to have pT > 20 GeV at reconstruction in
DELPHES. The plots are normalized to unity.

TABLE I. The four analysis channels considered in this study.
OVBF represents the VBF tagger. Oma

4b=3b represents the Higgs
taggers for the 4b and 3b Higgs reconstruction (HR) channels,
respectively, for a given ma. Different values of ma change the
kinematic distributions of the final state, thus require different
BDT.

Production

Reconstruction VBF0γ VBF1γ channel

HR4b channel Oma
4b , OVBF Oma

4b , OVBF, req. γ
HR3b channel Oma

3b , OVBF Oma
3b , OVBF, req. γ
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have a minimum pT > 10 GeV and a maximum pseudor-
apidity jηj < 2.5. Photons are also required to be separated
from any hadronic jets by ΔR > 0.4 at the generator level.
The signal samples are produced with the Higgs mass of

125 GeV for the two production channels, VBF0γ and
VBF1γ. The same jet and photon selections at generator
level, as described for the background processes, are
applied. The cross section of VBF0γ is normalized to the
prediction from the LHC Higgs Working Group [80],
computed at next-to-next-to-leading-order (NNLO) in
QCD using proVBF [81] and includes corrections at
next-to-leading-order (NLO) from electroweak and photon
processes computed using HAWK [82]. The cross section of
VBF1γ is taken from the Auxiliary Material of Ref. [58],
computed at NLO using MadGraph5_aMC@NLO v2.6.2 with the
parton shower computed using HERWIG v7.1.3p1 [83,84].
There is no explicit photon veto for VBF0γ and there is no
overlap with VBF1γ at the event generation level. We
verified that approximately 1% of VBF0γ events contain a
photon after showering and reconstruction.
After the Higgs production, the Higgs boson is decayed to

H4b using PYTHIA v8.306 without any generator-level cuts.
Four separate decays are considered corresponding to
pseudoscalar masses ma ¼ 10 GeV, 25 GeV, 35 GeV, and
50 GeV. In summary, four signal samples are made for the
combination of the two production and four decay processes.
Ideally, processes with six or more partons would be

simulated with many of these partons being b quarks.
However, it is computationally expensive to simulate such
events with high parton multiplicity. In MadGraph each

additional parton increases the simulation time by approx-
imately an order of magnitude. For instance, the simulation
time for events with more than four partons is Oð1Þ hour
[85]. Therefore, it is not practical to generate some
potentially relevant background samples such as bb̄bb̄þ
jjþ γ with a statistically robust sample size. Our solution
to address the sample statistics is twofold. First, we truncate
the number of partons required in the MadGraph generation at
four total jets at the generator level, such as bb̄þ jj, for the
background processes and rely on PYTHIA to produce
additional jets via parton shower. Second, we weight the
events by the product of b-tagging probabilities for the non-
VBF jets.
At this point, we introduce some notation to ease our

discussion. The two jets with the highest invariant mass
[56] are denoted as the ‘VBF jet pair’ and are labeled with
uppercase letters JJ. Individually, they are distinguished as
J1 and J2, with the ordering to denote the leading and
subleading pT jet, respectively. To validate this decision, a
sample of 100k VBF0γ signal events are investigated. In
only 8% of those events, one or both of the jets in the pair
with the highest invariant mass included a b quark and
therefore arise from the Higgs decay rather than the VBF
process. We conclude that for the signal process, choosing
the jet pair with the highest invariant mass correctly selects
those arising from VBF production in 92% of events.
The remaining jets, four of them for HR4b and three of

them for HR3b, are candidate b quarks with subscripts
labeled according to their large-to-small sorted pT values as
b1, b2, b3, and b4, with the last jet only considered for HR4b.
In the generation of background processes, we limit

MadGraph at four jets with additional parton shower jets from
PYTHIA. After identifying the VBF jets JJ, the remaining bi
jets are considered for their b-tagging probability, ϵb.
Instead of requiring that the remaining jets be b-tagged,
we consider the product of their b-tagging probability as
the event weight [86,87] using the ϵb function of the CMS
Delphes card, derived from Ref. [88].
We validated our twofold approach as follows. The

truncation is validated using three samples—corresponding
to bb̄þ j, bb̄þ jj, and bb̄þ 3j at parton level—of around
100 k events each. As described above, any additional jets in
the sample are acquired from the parton shower in PYTHIA.
Using the b event weight described above, we compare the
number of events from each sample with four reconstructed
b jets. The difference with respect to the prediction for the
number of events is found to be within 10%.
The b-event weight method is validated in a simulated

multijet sample by comparing the number of events with
four b tags to the expected number from the weighting
scheme. The difference is found to be within 1%.

B. Event reconstruction

The detector simulation is performed using DELPHES3.5

and object reconstruction is done using DELPHES-based

TABLE II. List of samples used and the corresponding cross
sections. The j refers to light-flavor hadronic jets.

Sample Cross section [pb]

Signal, mH ¼ 125 GeV
VBF0γ production channel 3.8 [80]
VBF1γ production channel 9.45 × 10−2 [58]

Background for VBF0γ
bb̄ 2.83 × 106

bb̄þ j 9.86 × 105

bb̄þ jj 5.04 × 105

bb̄þ bb̄ 1541
tt̄ 505
Zbb þ bb̄ 10.4

Background for VBF1γ
bb̄þ γ 738
bb̄þ jþ γ 732
bb̄þ jjþ γ 433
tt̄þ γ 2.1
Zbb þ jjþ γ 1.8
Zbb þ bb̄þ γ 1.6 × 10−2
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algorithms [89,90]. Detector parameters are selected to
match the CMS detector as implemented using the CMS
card without pileup.
Hadronic jets with a pT of at least 20 GeV are

reconstructed with the FastJet program [91] using the anti-
kt algorithm with a radius parameter of 0.4 [92]. In order to
ensure that the CMS card is appropriately reconstructing
jets, the pT resolution is evaluated using QCD multijet
events and reconstructing generator-level anti-kt jets with
the same parameters. If the nearest generator-level jet is
within ΔR ≤ 0.3 of the reconstructed jet, then it is assumed
that the matching reconstructed jet came from that gen-
erator-level jet. The jet energy resolution is found to be
approximately 10%, consistent with the values reported by
ATLAS [93] and CMS [94].
The identification of jets containingb hadrons (b tagging)

is performed by first identifying the flavor of the parton in
the jet, then assigning the corresponding efficiency using the
values given in Ref. [88]. The b-tagging efficiency, εb, is a
function of jet flavor and jet pT [95].
The tagging efficiency expression reduces to a maximum

efficiency of 70% for jets with a bottom quark, 20% for jets
with a charm quark and 1% for light-flavor jets.
Improvements in b tagging, such as those from ML-based
algorithms are not included here [96,97].
Photon candidates are reconstructed with a minimum pT

of 10 GeVand jηj < 2.5. Each photon is weighted using an
efficiency factor that depends on its pT and η [98].

III. DATA ANALYSIS

The analysis of the MC samples described in the
previous section consists of three parts. The trigger
assumptions are stated (Sec. III A) and target only the
VBF jets. The VBF production of the Higgs boson, with
and without a photon, is selected using a single VBF tagger
(Sec. III B) independent of the Higgs decay. TheH4b decay
is selected for the two reconstruction channels using Higgs
taggers (Sec. III C) independent of the VBF production.

A. Trigger

Multipurpose experiments, such as ATLAS [99,100] and
CMS [101], utilize two-level trigger systems. The first-level
L1 trigger evaluates algorithms within a few microseconds
in hardware [68,69,102], while the second high-level
trigger (HLT) evaluates algorithms in software [103] in
Oð1Þ second. In the current configuration of ATLAS and
CMS, the L1 trigger system is limited in information
and primarily utilizes only information from the muon
and calorimeter subdetectors.
For the HL-LHC data-taking, CMS plans to incorporate

tracking into L1 [104]. ATLAS upgrades are also planned
[105,106] to expand the capabilities of the calorimeter
reconstruction for L1. While these upgrades will
undoubtedly improve the general capabilities of the trigger

system, we focus on variations that are similar to the current
trigger capabilities available in Run 2 and Run 3.
The trigger strategy followed in this paper, as well as the

current stated strategy of ATLAS and CMS, is to use only
the VBF jets. The VBF jets are generally higher in pT
compared to the bi jets from the Higgs decay as was
discussed in Sec. II A. Therefore, the Higgs decay products
or the Higgs taggers are not considered for triggering.
The VBF tagger presented here makes favorable trigger

assumptions, such as the presence of all reconstructed
hadronic jets with the reconstruction thresholdspT>20GeV
as inputs to OVBF. In Sec. IV B, we compare our BDT
method to VBF taggers using various cut-based approaches
for the trigger that drop some of these assumptions.

B. VBF tagger

Hadronic jets arising from VBF Higgs production have a
distinct kinematic signature. This signature includes a high
dijet invariant mass, a large difference in η between the jets,
and a small separation in ϕ relative to the QCD multijet
background. Using the pair of VBF jets JJ defined in the
previous section, we develop a BDT-based VBF tagger
using J1 and J2.
TMVA [107] is used to train a forest of 200 decision trees

at a maximum depth of 6 using the adaptive boost
algorithm [108]. The input variables to the BDT, listed
below, are based on the two VBF jets J1 and J2.

(i) mJJ, dijet invariant mass;
(ii) pT;J1, transverse momentum of leading VBF jet;
(iii) pT;J2, transverse momentum of subleading VBF jet;
(iv) EJ1, energy of the leading VBF jet [109];
(v) EJ2, energy of the subleading VBF jet [109];
(vi) jΔϕJJj, azimuthal separation [110];
(vii) jΔηJJj, pseudorapidity gap.
The additional jets that are needed for the two HR channels
are not used as inputs. Distributions of the input variables
can be found in Ref. [66].
The samples used for the BDT training are the signal and

background samples for the VBF0γ channel, combining the
HR4b and HR3b channels. The output score of the VBF
BDT is called OVBF. Figure 3 shows the distributions for
VBF0γ (solid lines).
We find no need to train a separate tagger for the VBF1γ

channel. Figure 3 shows that the signal-background sep-
aration for the BDToutputs evaluated on the VBF1γ sample
without a photon requirement (dotted lines) is similar to
that of VBF0γ (solid lines). The VBF1γ analysis channel
requires a photon with pT > 15 GeV in addition to passing
the VBF BDT requirements.

C. Higgs taggers

A BDT is also developed to evaluate the non-VBF jets,
b1 to b4 for HR4b and b1 to b3 for HR3b. In combination
with the two pseudoscalar mass scenarios, ma ¼ 25 GeV
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and 50 GeV, this results in four Higgs tagger BDTs with
scores denoted as O50

4b, O
50
3b, O

25
4b, and O25

3b.
In the following subsections, the BDT training strategies

for the HR4b and HR3b channels are described. The
strategies are identical for the each of the ma masses with
the only differences being the input signal samples.

1. HR4b channel

Four b candidate jets are paired to find the two jet pairs
associated with each a → bb̄ decay. The two jet pairs will
have nearly the same invariant mass,mbb, if they are decays
of the a particle. Therefore, the jet pairings are chosen such
that the absolute difference in the sets of the invariant mass,
Δmbb ¼ jmðbi; bi0 Þ −mðbii; bii0 Þj, is minimized between
two dijet pairs.
TMVA is configured using the same setup as the VBF

BDT with the following three input variables:
(i) m4b, the invariant mass of the four-jet system;
(ii) Δmbb, the mass difference between the dijet pairs;
(iii) mavg

bb , the average mass of the dijet pairs.
The BDT score distributions for ma ¼ 50 GeV for the

two VBF0=1γ channels are shown in the first row of Fig. 4.
The largest background contribution is from bb̄ with one or
more jets produced at LO, which is two orders of
magnitude larger than the other backgrounds.

2. HR3b channel

When events are reconstructed with only three b jets,
different selections are used.
TMVA is configured as before. As it is not possible to

pair the jets as was done for HR4b, the following six input
variables are used:

(i) m3b, the invariant mass of the three jet system;

(ii) mb1;b2, the invariant mass of the leading and sub-
leading b jets;

(iii) mb1;b3, invariant mass of the leading and third-
leading b jets;

(iv) mb2;b3, invariant mass of the nonleading b jets;
(v) ΔRavg

bb , average ΔRbb of the three dijet pairs [40];
(vi) ΔRmin

bb , minimum ΔRbb of the three dijet pairs [40].
The BDT score distributions for the ma ¼ 50 GeV

signal in the two VBF0=1γ channels are shown in the
second row of Fig. 4. A similar pattern of background
contributions as HR4b is seen.

IV. RESULTS

We present the expected sensitivity using the expected
Run-3 data sample of 150 fb−1 (Sec. IVA), trigger pro-
posals based on our study (Sec. IV B), and HL-LHC
projections for 3 ab−1 (Sec. IV C).

A. Expected sensitivity for LHC Run-3

The expected sensitivity to H4b is estimated using a
counting experiment. As the backgrounds in a more
complete experimental setting will likely rely on data-
driven background estimation procedures for the multijet
background, no attempt at an estimation of the statistical
impact of the simulated sample size or of systematic
uncertainties is undertaken. Though systematic uncertain-
ties are expected to reduce the sensitivity, the result is
expected to be statistically limited and this choice would
not change the conclusions presented here.
Using the VBF tagger and Higgs taggers described in the

previous section, we count the numbers of signal (S) and
background events (B). An output score selection is chosen
to maximize the sensitivity σ quantified by S=

ffiffiffiffi
B

p
, which is

found to be greater than 0.6 for OVBF and O50=25
4b=3b. The

distributions shown in Fig. 4 are after the VBF tagger
selection onOVBF, as well as the photon requirement for the
VBF1γ channel.
For HR4b, the signal significance in VBF0γ after O50

4b is
2.1σ, corresponding to a signal acceptance of 0.43 and
background rejection of 0.993. The signal significance in
VBF1γ after O50

4b is 1.7σ, corresponding to a signal
acceptance of 0.46 and background rejection of 0.998.
(Acceptance is defined as ε ¼ Npass=Ntotal while rejection is
defined as 1 − ε.) The m4b distributions after selections on
both the VBF and the Higgs tagger is shown in Fig. 5.
For HR3b, the signal significance in VBF0γ after the O50

3b
selection is 4.6σ, corresponding to a signal acceptance of
0.62 and background rejection of 0.97. The signal signifi-
cance in VBF1γ after the O50

3b selection is 3.1σ, correspond-
ing to a signal acceptance of 0.64 and background rejection
of 0.97.
The above results for ma ¼ 50 GeV, as well as the

results for ma ¼ 10 GeV, 25 GeV, 35 GeV, are given
in Table III, assuming BðH4bÞ ¼ 1 and an integrated
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FIG. 3. VBF tagger score distribution. The score distributions
are shown for the BDT using only the VBF jets. The unit-
normalized distributions are shown for the ma ¼ 50 GeV the
signal (S, dark-colored lines) and SM background (B, light-
colored lines). The VBF0γ (solid lines) and VBF0γ (dotted lines)
show similar distributions for the S and for the B.
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luminosity of 150 fb−1. A total sensitivity of between 0.5σ
and 6σ, depending on ma, is obtained by combining the
individual channels. The signal efficiency is greatly
reduced for ma ¼ 10 GeV because the b-jets from the
a-decay become highly collimated and fewer events pass
the b-tagging selections. These final states with collimated
jets could be searched for using alternative analysis
strategies, such as those proposed in Ref. [111]. In the

absence of a clear signal, an upper limit on the branching
ratio can be derived assuming the SM Higgs cross section.
The upper limit on the branching ratio of Higgs to four
bottom quarks is estimated using 2=σ, the approximate
statistics-only sensitivity estimate at 95% confidence level,
for ma ¼ 50 GeV and is found to be 0.33.
As noted in Sec. II A, samples are produced without

pileup interactions. To investigate the effects of pileup
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FIG. 4. Higgs tagger score distributions. The distribution O4b (O3b) from the BDT for the two Higgs reconstruction channels HR4b
(HR3b) is given in the top row (bottom row). The signal (S) is for ma ¼ 50 GeV assuming BðH4bÞ ¼ 1 and the SM background (B) are
shown for VBF0γ (VBF1γ) in the left column (right column). Also shown is the squared event count for the signal (S2, dotted line) so that

S=
ffiffiffiffi
B

p
can be visualized. The statistical error on the MC statistics is shown as the shaded boxes around the background prediction. A

selection on the VBF tagger, OVBF > 0.6, is applied.
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the caption of Fig. 4 for the technical aspects of the plots.
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TABLE III. Event counts for the number of signal S assuming BðH4bÞ ¼ 1 and background B (top half) and estimated sensitivity σ
(bottom half) using 150 fb−1 of data. The analysis is performed with a BDT VBF trigger and BDT Higgs tagger for the signal samples
withma ¼ 50 GeV (a) and 25 GeV (b). In this table, nj refers to the number of hadronic jets of any flavor and nb the subset identified as
b-quark jets.

(a) Event counts

VBF0γ prod. chan. � � � � � � � � � � � � � � � � � � VBF1γ prod. chan. � � � � � � � � � � � � � � �
HR4b reco. chan. HR3b reco. chan. HR4b reco. chan. HR3b reco. chan.

S B S B S B S B
Total events for 150 fb−1 5.7 × 105 6.5 × 1011� � � � � � � � � � � � � � � � � � 1.4 × 104 2.9 × 108� � � � � � � � � � � � � � � � � �
For ma ¼ 50 GeV

nj ¼ 6 for HR4b, nj ¼ 5 for HR3b 6.6 × 104 3.5 × 109 1.4 × 105 9.2 × 109 2096 6.4 × 106 3986 1.4 × 107

nb ¼ 4 for HR4b, nb ¼ 3 for HR3b 965 3.5 × 106 1.2 × 104 7.6 × 107 29.8 8661 324 1.5 × 105

VBF production selections 509 4.8 × 105 5146 6.0 × 106 8.6 460 91.2 5028
Higgs reconstruction selections 295 2.0 × 104 2293 2.5 × 105 5.2 9.9 41.6 178

For ma ¼ 35 GeV
nj ¼ 6 for HR4b, nj ¼ 5 for HR3b 6.3 × 104 3.5 × 109 1.4 × 105 9.2 × 109 1975 6.4 × 106 3826 1.4 × 107

nb ¼ 4 for HR4b, nb ¼ 3 for HR3b 994 3.5 × 106 11934 7.6 × 107 29 8661 309 1.5 × 105

VBF production selections 501 4.8 × 105 4379 6.0 × 106 8.2 460 77 5028
Higgs reconstruction selections 280 7799 1686 2.2 × 105 4.6 5.4 30 157

For ma ¼ 25 GeV
nj ¼ 6 for HR4b, nj ¼ 5 for HR3b 5.2 × 104 3.5 × 109 1.3 × 105 9.2 × 109 1427 6.4 × 106 3155 1.44 × 107

nb ¼ 4 for HR4b, nb ¼ 3 for HR3b 527 3.5 × 106 8535 7.6 × 107 13.5 8661 194 1.5 × 105

VBF production selections 165 4.8 × 105 2455 6.0 × 106 2.4 460 39 5028
Higgs reconstruction selections 72 3518 1522 2.1 × 105 1.1 0.8 25 150

For ma ¼ 10 GeV
nj ¼ 6 for HR4b, nj ¼ 5 for HR3b 3.6 × 104 3.5 × 109 1.1 × 106 9.2 × 109 1173 6.4 × 106 3281 1.44 × 107

nb ¼ 4 for HR4b, nb ¼ 3 for HR3b 42.7 3.5 × 106 1186 7.6 × 107 1.15 8661 41.4 1.5 × 105

VBF production selections 21.9 4.8 × 105 419 6.0 × 106 0.32 460 7.3 5028
Higgs reconstruction selections 7.44 1609 250 3.2 × 106 0.02 1.3 4.01 365

(b) Signal sensitivity

VBF0γ prod. chan. � � � � � � � � � � � � � � � � � � VBF1γ prod. chan. � � � � � � � � � � � � � � � � � �
HR4b reco. chan.
� � � � � � � � � � � � � � � � � �

HR3b reco. chan.
� � � � � � � � � � � � � � � � � �

HR4b reco. chan.
� � � � � � � � � � � � � � � � � �

HR3b reco. chan.
� � � � � � � � � � � � � � � � � �

For ma ¼ 50 GeV
Per Higgs reco. chan. 2.1σ� � � � � � � � � � � � � � � � � � 4.6σ� � � � � � � � � � � � � � � � � � 1.7σ� � � � � � � � � � � � � � � 3.1σ� � � � � � � � � � � � � � �
Per VBF prod. chan. 5.1σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
All combined 6.1σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

For ma ¼ 35 GeV
Per Higgs reco. chan. 3.2σ� � � � � � � � � � � � � � � � � � 3.6σ� � � � � � � � � � � � � � � � � � 2.0σ� � � � � � � � � � � � � � � 2.4σ� � � � � � � � � � � � � � �
Per VBF prod. chan. 4.8σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3.1σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
All combined 5.7σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

For ma ¼ 25 GeV
Per Higgs reco. chan. 1.2σ� � � � � � � � � � � � � � � � � � 3.3σ� � � � � � � � � � � � � � � � � � 1.2σ� � � � � � � � � � � � � � � 2.0σ� � � � � � � � � � � � � � �
Per VBF prod. chan. 3.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 2.3σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
All combined 4.2σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

For ma ¼ 10 GeV
Per Higgs reco. chan. 0.2σ� � � � � � � � � � � � � � � � � � 0.4σ� � � � � � � � � � � � � � � � � � 0.0σ� � � � � � � � � � � � � � � 0.2σ� � � � � � � � � � � � � � �
Per VBF prod. chan. 0.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 0.2σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
All combined 0.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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on the signal sensitivity, a small sample of VBF0γ signal
with a mean pileup of hμi ¼ 50 is generated. For the
VBF tagger, we find that 38% of the pile-up events pass
compared to 39% of the events without pileup. Similarly
for the O50

4b Higgs tagger, we find that 50% of the pile-up
events pass compared to 69% of the events without
pileup. The latter indicates that pileup may have up to
a 30% relative impact on the upper limit presented above.

B. Trigger optimization

We first compare various VBF jet trigger possibilities
that affects both the VBF0γ and VBF1γ channels. Then we
discuss the effect of the photon pT threshold for the VBF1γ
channel.

1. VBF trigger comparisons

In Sec. III A, we noted that optimistic assumptions were
made about what data would be available from the trigger.
Here, we revisit those assumptions, considering a range of
alternate VBF triggers to compare to our BDT-based VBF
tagger:

(i) Cuts—our cut-based proposal made below on the
VBF jets inspired by similar studies [3,4,55,56,112];

(ii) ATLAS—ATLAS-inspired VBF trigger selec-
tions [73,113];

(iii) CMS—CMS-inspired VBF trigger selections [69].
As a comparison to the VBF BDT, we demonstrate cut-

based selections on the VBF jets that could be implemented
in the ATLAS trigger without using a BDT in the L1 trigger.

Our cut-based proposal is as follows:
(i) pT;J1 > 50 GeV;
(ii) pT;J2 > 50 GeV;
(iii) mJJ > 1000 GeV;
(iv) jΔηJJj > 3;
(v) jΔϕJJj < 2.
The ATLAS-inspired VBF trigger follows ATLAS’s

implementation that only utilizes the VBF jets, with no
additional requirements, in the L1 subsystem that computes
topological variables such as the invariant mass [73,113].
The set of offline selections, applied after the trigger, above
which the trigger is greater than 95% efficient is given as
follows:

(i) pT;J1 > 90 GeV;
(ii) pT;J2 > 80 GeV;
(iii) jηJ1j < 3.2;
(iv) mJJ > 1300 GeV;
(v) jΔηJJj > 4;
(vi) jΔϕJJj < 2.

Approximately 40 fb−1 of data with this trigger was
collected during 2018 [73]. We utilize the offline selections
for our ATLAS-inspired L1 selections.
The CMS-inspired VBF trigger follows CMS’s imple-

mentation of a similar VBF trigger [69]. The set of offline
trigger selections is given as follows:

(i) pT;J1 > 150 GeV;
(ii) pT;J2 > 60 GeV;
(iii) mJJ > 800 GeV.
A comparison of the results using the BDT-based trigger

as well as the three introduced above is given in Table IV.

TABLE IV. Sensitivity estimates for thema ¼ 50 GeV model assuming BðH4bÞ ¼ 1, using 150 fb−1 of data, the statistical sensitivity
S=

ffiffiffiffi
B

p
of all final states after applying VBF and final-state selections. Sensitivity is presented for using the ATLAS-inspired VBF HLT

cut-based trigger, the CMS-inspired VBF L1 cut-based trigger, and our VBF cut-based trigger selections are presented here. Selections
on the Higgs taggers corresponding to the HR channels are applied. For the VBF1γ channel, a photon pT > 15 GeV threshold is used for
all analyses.

VBF0γ production channel VBF1γ production channel

HR4b reco. chan. HR3b reco. chan. HR4b reco. chan. HR3b reco. chan.

Our VBF BDT (from Table III)
Per Higgs reco. chan. 2.1σ 4.6σ 1.7σ 3.1σ
Per VBF production channel 5.1σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 3.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Combined 6.1σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Our VBF cut-based trigger
Per Higgs reco. chan. 1.5σ 3.2σ 1.5σ 2.5σ
Per VBF production channel 3.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 2.9σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Combined 4.5σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ATLAS-inspired VBF trigger
Per Higgs reco. chan. 0.8σ 1.7σ 0.7σ 1.0σ
Per VBF production channel 1.9σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1.2σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Combined 2.2σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

CMS-inspired VBF trigger
Per Higgs reco. chan. 0.9σ 1.6σ 1.0σ 1.0σ
Per VBF production channel 1.8σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1.4σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Combined 2.3σ� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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The table shows the sensitivity σ using S=
ffiffiffiffi
B

p
. The VBF

BDTachieves 6σ while the others range from 2σ to 4σ. This
results confirms and expands on the previous findings
of Ref. [66].

2. Photon threshold for VBF trigger

VBF1γ is a useful target for triggering because requiring
a photon enables a significant reduction of the QCD
multijet background. Therefore, with a photon, it is
possible to implement a trigger with relatively low pT
thresholds for VBF jets. As the current L1 trigger saves
events with an electron or photon pT > 25 GeV [114],
many of these events are already saved by the trigger.
Stricter selections can be used to further isolate signal at the
HLT using VBF jets or b-tagging information.
For these reasons, VBF1γ has already been used in

published analyses. For example, the ATLAS experiment
searched for H → bb̄ with triggers requiring a photon with
pT > 30 GeV, four or more jets with pT > 40 GeV, a VBF
pair with mJJ > 700 GeV, and one or more b-tagged
jet using 77% efficiency selections [56,112]. The trigger
used in the study is similar to the selections described in
Sec. III B; it obtains a similar sensitivity to that reported in
this study. For the H4b search, however, a modification is
necessary because the pT > 40 GeV jet threshold signifi-
cantly reduces signal acceptance. A modified approach
could apply a tighter mJJ threshold with a lower jet pT
threshold. Additional details of the ATLAS trigger menu
can be found in Refs. [70–73].
The results shown so far in Tables III and IV assume a

threshold of photon pT > 15 GeV.
To evaluate the effect of varying the threshold of photon

pT, we evaluate the sensitivity as a function of photon pT
for three VBF trigger scenarios: our VBF BDT trigger, our
VBF cut-based trigger, and the ATLAS-inspired VBF
trigger. The sensitivity as a function of photon pT is shown
in Fig. 6. The plot shows that lower photon pT thresholds
can increase the sensitivity by a factor of 1.5 for the HR3b
category. We leave the details and implementation to the
experiments, but the studies here can be used as
benchmarks.

C. HL-LHC projection

The HL-LHC is projected to collect approximatelyR
Ldt ¼ 3 ab−1 of data, 20 times the 150 fb−1 assumed

so far in this paper [115]. This increase in data improves the
statistical sensitivity, resulting in an upper limit on branch-
ing ratio on the Higgs decay to four bottom quarks of 9% in
the VBF0γ channel and 13% in the VBF1γ channel at the
95% confidence level. A combination of the two produc-
tion channels results in an upper limit on the branching
ratio of 7% at 95% confidence level for ma ¼ 50 GeV.
There is an expected increase in

ffiffiffi
s

p
from 13.6 TeV at the

LHC Run-3 to 14 TeVat HL-LHC. As stated previously for

the increase from 13 TeV to 13.6 TeV, we do not expect theffiffiffi
s

p
increase to alter the conclusions presented here by more

than a few relative percent.

V. CONCLUSIONS

We have presented a detailed study of VBF Higgs
production with and without a photon in the H → aa →
4b decay chain. To estimate the signal sensitivity, two
relatively simple BDTs are deployed; one for the VBF jets
for a ‘VBF tagger’, and one for the reconstructed Higgs
decay for a ‘Higgs tagger’. Comparable sensitivity is found
for the two VBF channels, with a combined sensitivity of
over 6σ assuming a 150 fb−1 dataset for ma ¼ 50 GeV.
The photon provides an additional way to retrieve events

from the L1 trigger. We find that including the production
channel with a photon yields a significantly improves
combined sensitivity. We recommend that the LHC experi-
ments provide combined triggers using photons and VBF
jets in order to support this analysis for Run 3 and the HL-
LHC. The sensitivity of the proposed search was estimated
using thresholds that may be implementable in the L1
trigger systems of ATLAS or CMS. To motivate these
choices, we compare to existing triggers that are available
in public documentation and provide benchmark selections
to indicate the possible improvements. These results
assume prompt decays of the a, but the conclusions
regarding the trigger proposals are also relevant for longer
lifetimes, such as those discussed in Ref. [36].
A threshold-based ‘cuts’ trigger yields sensitivity of up

to 2.3σ for the current experiment triggers considered and
up to 4.5σ for our proposed cut-based trigger. While these
triggers produce a good sensitivity, the BDT-based trigger
yields the best results. The availability of ML-on-FPGA
packages allows for the implementation of BDT-based
triggers at L1. These tools will continue to enable improved
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sensitivity in searches for rare signals, such as the one
presented here.
Looking forward, the development of low-latency and

resource-efficient ML implementations are paving way to
more sophisticated constructions of artificial intelligence
(AI) methods on FPGA, such as autoencoder-based
anomaly detectors constructed using hls4ml-based neural
networks [116] and FWXMACHINA-based decision trees
[117]. Such AI algorithms that were previously only
executed in an offline environment may present opportu-
nities for further improvements in the L1 trigger systems.
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