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The self-interacting dark matter (SIDM) paradigm offers a potential solution to the small-scale structure
problems faced by collisionless cold dark matter. This framework incorporates self-interactions among
dark matter particles, typically mediated by a particle with a MeV-scale mass. Recent evidences of nano-
Hertz gravitational waves from pulsar timing arrays (PTAs) such as NANOGrav, CPTA, EPTA, and PPTA
suggest the occurrence of a first-order phase transition (FOPT) at a MeV-scale temperature. Considering the
close proximity between these two scales, we propose that the mediator mass in the SIDM model originates
from the spontaneous breaking of a U(1)’ symmetry, which is driven by the FOPT indicated by PTA data.
Consequently, the alignment of these two scales is believed to be deeply connected by the same underlying
physics. By extensively exploring the parameter space, remarkably, we find that the parameter space
favored by SIDM just provides an explanation for the PTA data.
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I. INTRODUCTION

The widely accepted cold dark matter (CDM) model
successfully explains the Universe’s structure and evolution.
However, it faces challenges when addressing small-scale
structure problems [1-8]. These difficulties arise in under-
standing the behavior and distribution of dark matter (DM)
within galaxies and galaxy clusters. To address these
challenges, the self-interacting dark matter (SIDM) paradigm
has emerged. It suggests that dark matter particles can
interact through short-range forces mediated by a new
particle called “dark photon” or “dark mediator,” typically
with amass atthe MeV range. Validating the SIDM paradigm
requires crucial searches for evidence of the existence of the
dark sector.

Recently, the NANOGrav, CPTA, EPTA, and PPTA
collaborations have presented new observations of stochastic
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gravitational waves (GWs) using pulsar timing arrays (PTAs)
[9-12]. In particular, the NANOGrav [9] and CPTA [10]
collaborations report a signal significance ~4¢ for the
Hellings-Downs correlation curve. These observations pro-
vide compelling evidence for the presence of stochastic GWs
with a peak frequency around 10~® Hz. While the standard
interpretation has been inspiraling supermassive black hole
binaries (SMBHBs), alternative explanations such as a first-
order phase transition (FOPT) remain viable. It is known that
a GW signal at 10® Hz implies a FOPT at the MeV scale,
and a Bayesian analysis of the NANOGrav data even favors
the FOPT model over the baseline SMBHB model [13].
Therefore, this observation potentially shows the first evi-
dence of signals from the early Universe prior to the big bang
nucleosynthesis (BBN) and cosmic microwave background
(CMB). Studies on the theoretical models to explain the
previous NANOGrav data can be found in Refs. [14-34].

The remarkable proximity between the scale of mediat-
ing DM self-interaction and that of the FOPT indicated by
the PTA data suggests a profound connection between
them. We propose that the SIDM mediator mass originates
from the spontaneous symmetry breaking of a new gauge
sector, which occurs through a strong FOPT in the early
Universe. Consequently, the alignment of these two scales
signifies the presence of a unified underlying physics that
governs the dynamics within the dark sector.

Published by the American Physical Society
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In this work, we present a concise and comprehensive
model within the framework of SIDM to explain the
recently reported PTA data, specifically focusing on the
NANOGrav and CPTA observations. By thoroughly inves-
tigating our proposed model, we explore and identify a
parameter space that can successfully account for the
observed GW signals while addressing the small-scale
structure problems. This model holds promise for exper-
imental testing in the near future.

The article is organized as follows: Sec. II provides an
introduction to our model and explores the physics asso-
ciated with SIDM. Section III focuses on the calculation of
the FOPT and the corresponding GW signals. In Sec. IV, we
present our numerical results, showcasing the viable
parameter space, and engage in further discussions.
Finally, we conclude in Sec. V.

II. SELF-INTERACTING DARK MATTER

Small-scale problems are series of discrepancies between
astrophysical observations and the simulation of collision-
less CDM at the scale smaller than O(1) Mpc. For
example, the diversity of inner rotation curves of spiral
galaxies is difficult to be explained by CDM [4]. However,
if there is an elastic scattering process between DM
particles, the inner region of DM halo will be heated up
and avoid being too dense due to thermalization, then the
diversity problem can be alleviated [35-37].

Overall, for dwarf galaxies or galaxies with a DM
average velocity (v) around 10-200 km/s, the cross
section o/mpy needs to be within the range O(1)—
O(10) cm?/g [38,39]. However, for galaxy clusters where
(v) ~2000 km/s, current fit result favors o/mpy ~
0.2 cm?/g [40]. It has been shown that a velocity-
dependent o/mpy; can solve small-scale problems at
different systems [38-61]. Such a velocity-dependent
cross section can be easily induced via a light mediator
between DM particles [50].

In this work, we propose a model that the mediator A’ is the
gauge boson of a spontaneous broken dark U (1)’ symmetry.
The breaking of this U(1)’ is through a FOPT in the elarly
Universe, which generates the 10-8 Hz GWs, as we will
show later. The corresponding Lagrangian for the dark sector
is given by

. 1 )
Lyy = jy(ib - m;())( - ZF;H/F/ﬂ

+ (D,S)'D*S - V(S), (1)

where y is the Dirac DM candidate, and § = (¢ + i) /v/2 is
the dark Higgs field whose potential is

V(S) = —u2STS + A(STS)>. (2)

D, =0, +iQ;gA, with ¢ being the dark gauge coupling.
For U(1)" charge assignment we choose {Q,,Qs} =
{+3/2,+1}." The Mexican hat shape of potential (2)
generates a nonzero vacuum expectation value
v, = u/\/A, breaking the U(1)" spontaneously, resulting
in a massive A’ with my = ¢'v,; and dark Higgs boson ¢
with my = V/2u. We emphasize that the simple Lagrangian
we presented here is primarily focused on the phase transition
and dark matter self-interaction. However, to avoid the limit
of the BBN and CMB, an extension of the model is needed
and we will give the details in the appendices.

Previous studies show that a DM candidate with a mass
m, ~O(10) GeV and a mediator with a mass my ~
O(10) MeV can well fit the DM data from dwarf galaxies
to galaxy clusters [62-80]. In our model, for v~
O(10) MeV and ¢ ~ O(1), a mediator mass m, around
10 MeV can be easily generated. On the other hand, the scale
of v, also indicates the phase transition occurs at a temper-
ature around MeV.

To fit the small-scale data, one needs to calculate the
thermal averaged DM scattering cross section & [81]. Here
o is given by

<0VUEel> .
247y’

where oy is the viscosity cross section [75,82,83] and vy is
the velocity dispersion. Analytic formulas of DM scattering
cross section at different parameter regions corresponding
to different coupling strength and kinetic energy have been
given in the literature [63,75,81,84—-89], and implemented
in public package crassics [81], which is used in our
calculation. The fit result will be given in Sec. IV.

It should be pointed out that the A’-induced Sommerfeld
effect [90] will largely enhance the yj annihilation during
the recombination period, leading to severe constraints
from CMB [91-93]. However, such limit can be easily
evaded in the asymmetric DM scenario in which the dark
sector has a nonzero Y,, = (n, —n;)/s, similar to the
baryon asymmetry in the visible sector [80,80,94-102].
The detail of the generation of the dark asymmetry and
correct dark matter relic can be found in supplemental
material Sec. II. Here we also assume the chemical
potential in the dark sector is small enough to not affect
the FOPT of the dark sector.

o=

d
oy = / dQsinzﬁé, (3)

III. FIRST-ORDER PHASE TRANSITION
FROM DARK SECTOR

Shortly after the inflationary reheating, the Universe
enters the radiation era with high temperature and density.
We assume the dark and visible sectors are in thermal

"The reason for such a charge assignment will be given in the
supplemental material.
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equilibrium (see Sec. IV). The scalar potential receives
thermal corrections and becomes temperature dependent.
The one-loop finite temperature potential reads

Vi@, T) = Vo(p) + Vi(p) + 6V ()
+Vr1(h. T) + Vaisy (¢, T), (4)

where V,, is Eq. (2) with § — ¢/+/2, V, is the Coleman-
Weinberg potential, 6V is the counter term, V; is the
thermal correction, and Vg, is the daisy resummation.
The complete form of V(¢,T) is given in supplemental
material Sec. I with the comparison with Ref. [103].

At zero temperature, the U(1)’ symmetry is spontaneously
broken. However, at high temperatures in the early Universe,
thermal corrections can restore the U(1)" symmetry. This is
evident from V (¢, T) = (—p® + g*T?/4)¢*/2 at ¢ ~ 0,
where a positive mass square term arises due to sufficiently
high temperatures [104]. Initially the Universe is at ¢p = 0.
As it cools down and the potential shape changes, it
transitions to the vacuum state ¢ # 0. This transition can
occur smoothly through the rolling of the ¢ field. However, in
certain parameter ranges, a potential barrier induced by the A’
field separates the two vacua, leading to a discontinuous
quantum tunneling process known as a FOPT that proceeds
via vacuum bubble nucleation and expansion.

To quantitatively calculate the FOPT dynamics, one
needs to solve the O(3) symmetric bounce solution for
Vr and derive the classical action S5, and decay probability
per unit volume is then [105]

S. \3/2
r(r)u‘*(ﬁ) eSiIT, (5)

The nucleation of bubbles containing the true vacuum
occurs at a temperature 7, when the decay probability
within a Hubble volume and a Hubble time, given by
[(T,)H*(T,), reaches O(1). Note that bubble nucleation
itself does not guarantee the successful completion of a
FOPT. A more rigorous criterion of FOPT is the existence
of percolation temperature 7', at which the true vacuum
bubbles form an infinite connected cluster, and the volume
of space occupied by the true vacuum keeps increasing
[106]. However, for a mild FOPT (as considered here),
which ensures completion once nucleation occurs, we
adopt the nucleation condition as a practical criterion
and rewrite it as

S5 1 [ 45 My
— 41 — , 6
7, (4:: 79.(T,) n) ©)

where Mp = 1.22 x 10! GeV is the Planck scale, and g,
is the number of relativistic degrees of freedom. We focus
on T, ~MeV, where g, = 10.75 and the right-hand-side of
Eq. (6) is around 190.

During a FOPT, the collision of bubbles, the motion of
sound waves and turbulence in the plasma generate stochas-
tic GWs [107]. Typically, the bubble walls reach a terminal
velocity due to the friction force exerted by the plasma
particles, and most of the released vacuum energy goes to
surrounding plasma. As a consequence, the main GW
sources are sound wave and turbulence, and the former
usually dominates [108]. The GW spectrum today, defined as

1d
Qow(f) = g1 ™

with pgw and p,. being the GW and current Universe energy
density, respectively, can be written as numerical functions of
the FOPT parameters {a, #/H.,, T, v, } [109], where a is the
ratio of latent heat to the radiation energy density, f/ H., is the
inverse ratio of the FOPT duration to the Hubble timescale,
T. is the temperature and v,, is the bubble velocity. The sound
wave contribution is [110]

2 -8 Kya 2 ﬁ/H* -
Q. (f)h? =5.71x 10 vw<1+a> <—100

() 0 ()
(8)

where «y is the fraction of vacuum energy that is released to
bulk motion, and

few = 13x1078 Hz
1/6
LEEE"
v, \ 100 / \MeV / \ 10
is the peak frequency, which implies f, ~ 107® Hz for
T, ~MeV.

To obtain the GW spectrum, we use the package cCosMO
TRANSITIONS [111] to resolve the bounce equation and
derive S3/T and hence derive T, via Eq. (6), and analyze
the hydrodynamic motion of the plasma using the bag
model to determine the FOPT energy budget [112].
Numerical simulations from previous studies are then
utilized to calculate Qgw (f)A> contributions from sound
waves and turbulence, where T, = T, and H, = H(T,,) are
adopted. According to Eq. (8), the GW signal strength has a
mild positive correlation with the bubble expansion veloc-
ity v,,. The velocity is determined by the competition
between the outward vacuum pressure and the friction force
induced by the particles interacting with the bubble wall,
and numerical simulations show that the electroweak
FOPTs in the singlet scalar extended SM typically exhibit
a wall velocity of v,, 2 0.6 [113,114]. In our scenario, the
dark U(1)" FOPT only features the friction force from the
A’ boson, thus we expect v,, can be larger. As a benchmark,
we plot the envelop of GW spectra for », €[0.6,1].
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for details.

We account for the finite lifetime of sound waves through
an additional suppression factor Hrzg, <1 [115]. While
turbulence usually has a subleading contribution, it modi-
fies the tail of the sound wave GW signal, thus we include
its effect in our analysis using results from Ref. [116].

IV. RESULTS AND DISCUSSION

Using the established framework, we conducted numeri-
cal calculations to determine the parameter space necessary
to address both the small-scale problems and explain the PTA
data. By systematically exploring this parameter space, we
identified specific benchmark points (BPs) that simultane-
ously reconcile the PTA data and resolve the small-scale
problems, as summarized in Table I. In the left and right
panels of Fig. 1, we present the velocity-dependent elastic
cross sections of DM particles and the corresponding GW
spectra derived from the BPs, respectively. As we explained
in Sec. I1, in the velocity region 10-200 km/s, we require the
cross section &/m,, to be within range O(1) — O(10) cm?/g
[38,39]. For galaxy groups where (v)~ 1150 km/s and
galaxy clusters where (v) ~ 1900 km/s, we use the result
given in [40] which requires 5/m, = 0.5 £ 0.2 cm?/g and
6/m, = 0.19 + 0.09 cm?/g, respectively. The NANOGrav
data are from the collaboration result [9], while the CPTA
data point is converted from the best fit point of f = 14 nHz
and IgA = —14.47)9 [10]. Remarkably, we find that the
identified BPs not only satisfy the required cross section
values to explain the small-scale problems but also accom-
modate the observational data from NANOGrav and CPTA.

3
1

BP1 NANOGrav

15 yr data
BP3 A

10719 BP4

Qaw(b)h?

CPTA
Data Release 1
10714 - (estimate)

]0—[6
10710 1070 1078 1077 107¢

f [Hz]

Velocity-dependent DM elastic scattering cross sections (left) and GW spectra (right) for our benchmark points. See the text

Since the FOPT temperature is relatively low, a few
discussions on other cosmological constraints are in order.
As T, 2 3 MeV, the CMB and BBN constraints can be
satisfied; for example, the effective number of neutrinos
(Ng) is essentially not affected by the FOPT reheating
[117,118]. The constraint from ultra-compact minihalo
(UCMH) abundance is rather severe [119,120], but this
issue can be relaxed by choosing a conservative value of the
red shift of the last formation of UCHM at z. = 1000.

We further require the lifetime of ¢ to be short enough to
avoid energy injection to the visible sector during the BBN
period. For particles with mass larger than about 4 MeV and
an e'e” decay final state, the lifetime should be shorter
than 0.1 s, assuming the dark sector number of degrees of
freedom at MeV is 1 [121,122]. In our model, the decay
width of ¢ is suppressed by its tiny mixing angle with the
SM Higgs boson, which is constrained to be |8] < 107> by
the Higgs exotic decay [123], making the lifetime exceed
10 s. However, this bound can be avoided by extending the
Higgs sector with an additional Higgs doublet, whose
mixing with the ¢ can enhance the ¢e~e™ coupling,
leading to a safely fast-decaying ¢. We give a detail of
the model in supplemental material.

V. CONCLUSION

In this study, we established that a FOPT at the MeV
scale, as inferred from the PTA data, provides a compelling
mechanism for generating a mediator mass within the MeV
range, which is crucial in addressing the small-scale

problem within the framework of the SIDM. By
TABLE I. Relevant parameters for the benchmark points of our model.
Benchmark point m,, [GeV] my [MeV] my [MeV] q T, [MeV] p/H, a
BP1 32.0 21.7 4.40 0.960 5.81 15.8 0.326
BP2 36.0 19.8 4.01 0.985 5.00 20.0 0.356
BP3 31.0 22.1 4.10 0.921 4.72 12.0 0.542
BP4 32.0 22.3 4.51 0.990 5.56 28.8 0.363
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considering various constraints, we identified the parameter
space where the small-scale structure problem can be
effectively resolved while simultaneously fitting the
PTA data.

Our model has rich phenomenology. Direct detection
experiments (yN — yN mediated by A’) like PandaX-II
[124] constrain the kinetic mixing between A’ and photons
to e < 107! for m, ~ O(10) GeV and my ~ O(10) MeV.
We note that the introduction of the additional Higgs would
loop-induced kinetic mixing of the visible photon and dark
photon. However, it has been found that the loop induced
kinetic mixing of the visible photon and dark photon is highly
suppressed [125], which appears at five loops in our model.
The combination of loop factors and coupling suppression
provides sufficient suppression to maintain consistency with
current limits. Furthermore, the very distinct gravothermal
evolution of SIDM halo, which start with core formation-
expansion and followed by core collapse [61,83,126—137],
leave imprint on star formation history [138-141] and
supermassive black holes seeding [142—-144].

In summary, the PTA data can help us better reveal the
properties of SIDM by combing with those astronomy
observations and shed light on the nature of DM. The
upcoming experiments have the potential to detect various
signals from our model, providing a complementary inves-
tigation of the new physics associated with nano-Hertz GWs.
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APPENDIX A: DETAILED EXPRESSIONS OF
THERMAL POTENTIAL

In this appendix we list the concrete expression of each
term in Eq. (4). The Coleman-Weinberg potential can be
derived using the field-dependent mass as

M () 3)

My 2

Vi ((b) = 6472

i),
647>

1

+3

I

where M (¢) =—u>+3Ap*, My (dp) =—*+1¢*, My ()=
g ¢, and uy is the renormalization scale which is adopted as

10 MeV. We have dropped the contribution from the
Goldstone 7 to avoid IR divergence [145]. The counterterm

ou? oA
SV(p) = ——-¢* + % (A2)
2 4
is derived by the conditions
oV, + oV ?(V, + 6V
0(]’7 p=v; ad) Pp=v,

such that the zero temperature tree-level relations between
(u*,2) and (vy, my, my) still hold.
The one-loop thermal correction is

T4 2
V(¢ T) = Z ”21;; Jp <M1T(2¢)

i=p.n,A

)

where ny, = 1 and ny = 3, and the Bose thermal integral
is defined as

Jp(y) = /oo x2dxlog(l — e V¥ ), (A5)
0
Finally, the daisy resummation term is
g/3T
Vi@ T) = =S (@ + TP =), (a6)

where we only consider the dominant A’ contribution, as
the parameter space of interest always has ¢ > 1. The
above discussions define our finite temperature potential
Vr(¢,T) in Eq. (4).

The potential of BP1 described in the main text are
plotted in Fig. 2, where the left panel represents V, at
critical temperature 7' at which two degenerate vacua exist,
while the right panel represents V; at nucleation temper-
ature at which the bubbles start to emerge. The solid,
dashed, and dotted lines represent the complete one-loop,
low temperature and high temperature expansions, respec-
tively. We obtain v,/T, ~ 5 for the BPs, as the observed
GW signal requires a strong FOPT. This also implies that
the low- or high-temperature expansions are not suited in

)
)

Vi@ T/
Vi@ D/AW

Solid: full expression ] 0.10 Solid: full expression
low~T expansion Dashed: low-T1
P

FIG. 2. The potential plots of BP1 at critical temperature 7.
(left) and nucleation temperature 7, (right). The solid, dashed
and dotted lines represent the complete one-loop, low temper-
ature and high temperature expansions, respectively.
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this scenario, although they are good approximations at ¢) ~
v, and small-¢b limits, respectively [103], as illustrated in
Fig. 2. Therefore, we include the complete one-loop
expression to calculate the FOPT. The two-loop thermal
correction is subdominant since we are considering the
parameter space of ¢’ ~1 and 4~ 0.01, which does not
satisfy ¢* < A < g% [146].

APPENDIX B: GENERATION OF DM
ASYMMETRY AND CMB BOUND

In this appendix we detail how to generate the asym-
metry in the dark sector, and how this asymmetry helps to
escape the stringent limit from CMB. Similar analysis can
be found in our previous study [80] and references therein.

Firstly, an easy method to generate DM asymmetry is the
CP violated and out-of-equilibrium decay of some heavy
particle. Similar to the vanilla leptogenesis mechanism, we
introduce two flavors of neutral right handed neutrinos, N,
and N,, as the source of asymmetry. Corresponding
Lagrangian is given by:

|
Lrun = ) ZNi(la— MNi)NiC
=12

= > (il +He),

i=1.2

(B1)

N; and N, can certainly couple to the SM leptons and
generate the asymmetry in the visible sector. Here we
assume couplings between N;, SM leptons, and SM Higgs
are negligible small and thus we can focus on the dark
sector. We also introduce another dark scalar ¢ with U(1)’
charge +3/2 to realize the darkgenesis. The new scalar ¢
should have vanishing vacuum to avoid the Majorana mass
for the dark matter through the seesaw mechanism. If £ has
amass much lighter than the dark matter mass, for example,
0.1 GeV, then the ¢ becomes stable and becomes one of
dark matter candidate. Since the relic number density of the
{ is same as the dark matter y, its abundance is much
smaller than the fermion dark matter which contributes less
than one percent of dark matter (this number can be reduced
if the mass of { becomes even smaller). We do not expect it
affect the dynamics of the main component of the dark
matter and the discussion of the dark matter part would
safely ignore it.

We choose N, to be the lighter one between N and N,.
In the case where parameters y; have complex phases, the
CP asymmetry generated in N; decay is given by:

L(Ny = x¢") =T(Ny = 70)
L(Ny = x¢") +T(Ny = x¢)
1 My, Im[(y3y,)°]
lezMy, |y>

€

~ —

To simplify expression, in the second line we con-
sider My, > My, .

We assume N, is originally in the thermal bath with the
standard model sector and dark matter sector. When the
decay of N, is sufficiently out-of-equilibrium, the yield of
DM asymmetry Y, (definedas Y, =Y, — Y;)is given by:

YA)( -

where Yy = n% ~ (0.004 is the yield of N; before it decays,
and wash-out factor # can be around 1 depending on the
parameters.

Current DM relic density is

m
thz ~ mXYAXSO/pcr ~ YA)( (ch);,> x 2.72 x 108 (B4)

The correct value, i.e., th2z0.12, can always be
achieved via a combined tuning of parameters in
Eq. (B3). For example, if m, = 40 GeV, then setting:

My, =10° GeV, My, =107 GeV,

y, = 0.05 +i1.38 x 1072, yi = 1078, (B5)
gives the correct relic density.

It should be noticed that, after the out-of-equilibrium and
CP broken decay of N, the asymmetry of ¢ is also
generated (i.e., Y5, = —Y,,). Due to the U(1)" charge
assignment, only (£7¢)? and (£7¢)(STS) are allowed
operators. Thus, in addition to y, { is also stable dark
matter. Here we simply set { mass m; to be around
0(0.1) GeV scale. In this case, relic density is still
dominated by y. O(0.1) GeV scale ¢ will not affect
BBN and N, because (" — A’A’ annihilation will be
negligible when the universe temperature is below MeV.
The existence of ¢ will not affect the discussion of DM
small-scale structure in the main text, this is because the
rate of momentum-changing inside DM halo is dominated
by y [96]. Furthermore, dark atom composed by y — ¢
cannot form due the MeV scale dark photon [96]. Thus we
can conclude that in the following discussion of y, we can
safely ignore the impact from ¢.

Next we turn to the CMB bound. For later convenience, we
label the ratio of DM and anti-DM number densities by r:

(B6)

e

r is certainly a function of time. Compared with the
symmetric case, the DM anti-DM annihilation cross section
will be suppressed by the small value of r during CMB
period.
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FIG. 3. r, as functions of ¢ for different benchmark spectrum

favored by small-scale data.

After freeze-out, the evolution of r is approximately
described by following differential equation [147]:

dr ~ m;(MPl e
dx x2 45

<0ann7j> YA)(r’ <B7)

with Mp, the Planck scale, x = m, /T, (6,4,v) the thermally
averaged annihilation cross section, and g, the effective
degree of freedom. In Fig. 3 we present the value of r
during CMB period (labeled by r,) as functions of U(1)’
coupling strength ¢/, for two benchmark spectrum favored
by small-scale data. It shows that r., decrease rapidly as ¢
growing.

During the CMB period, DM become very nonrelativistic
and thus the nonperturbative effective, i.e., Sommerfeld
enhancement, tends to be important. The annihilation
cross section during CMB period can be expressed as
following [148]:

(Gannv> = S(”) X (Ganny)m (Bg)
with (6,u,0)g = (3 ¢)*/16zm; the tree-level annihilation
cross section. Sommerfeld enhancement factor S(v) is given
by:

S(v) = n sinh(2z.A(v)B)
~ A(v) cosh(22A(v)B) — cos(2z/B = (A(v)B)?)
(B9)
with:
T Zm
Alv) = % _ zzgm; . (B10)

It can be seen that the value of S(v) can be very large when
v < 1 and my < m,. This is why, for the symmetric DM
scenario, the SIDM model with MeV scale mediator is highly
constrained by CMB limit on DM annihilation cross sec-
tion [93].

FIG. 4. Annihilation cross section as functions of ¢ for
different benchmark spectrum. Region below red line is allowed
by current CMB data.

But for our asymmetric DM scenario, the situation is
completely different. For the asymmetric DM scenario,
annihilation can only happen between DM and anti-DM
(which has a very small number density), and the annihi-
lation cross section changes as:

2
<6annv> X #2
(1+ry)

asymmetric case

{Camv) =
symmetric case (B11)

Thus the CMB limit on the asymmetric DM scenario is
given by [149]:

(1+ry)* m,

<5x 1078 em®s ! GeV-!l.  (B12)

It is easy to see that since the number density of anti-DM is
much smaller than the number density of DM during CMB
period (i.e., 7, is very small), the limit on asymmetric DM
model are greatly weakened.

In Fig. 4 we present annihilation cross section as
functions of ¢, for two benchmark spectrum favored by
small-scale data. It shows that CMB limit can be easily
escaped when ¢’ 2 0.20. To solve the small-scale problems,
¢ generally need to be much larger than 0.2, thus our model
is safe from CMB bound.

APPENDIX C: SHORTENING THE LIFETIME
OF ¢ BY TYPE-X 2HDM

Our dark Higgs sector is charged under a U(1)’ and thus
the lightest particle, i.e., ¢, can only decay to SM fermion
pairs via coupling ASTS®T® (® is the SM Higgs doublet).
However, due to the limit from Higgs invisible decay,
parameter A cannot be large enough to make the lifetime of
¢ to be shorter than 0.1 sec [150].

To overcome this problem, here we consider a simple
extension of the SM Higgs sector, the type-X two-
Higgs-doublet-model (2HDM) [151]. The Higgs potential
of type-X 2HDM with softly-broken Z, symmetry is
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VZHDM = —m%lq)];d% - m%z(l);q)z - [m%zq)iitbz + HC]
1 1 .
t54 (@]®))* + Eﬁz(q’é@z)z
+ /ﬁ(‘ﬂ‘bl )(‘Dz‘l’z) + 14(‘31@2)(‘1’;@1)

1.
+ 5/15(<1>{ol>2)2+H.c. , (C1)

where ®@; and ®, are two Higgs doublets with the same
quantum number. In type-X 2HDM, ®; only couples to
leptons and @, only couples to quarks. Yukawa couplings
is given by:

—Y"gy (ioy®%)ug — Y9q, Prdg
— Ye7L¢1€R + H.c.

L:Yukawa =
(C2)

After electroweak symmetry breaking, these two Higgs
doublets are expanded as:

Hy
@ - . 2
! \/ii(vl—l—hl—l-lal)
Hy
b, = . .
2 \/LE(/UQ + l’l2 + laz)

Parameter tan g is the ratio of two VEVs, tanf = v,/v.
The observed 125 GeV SM-like Higgs boson, to be labeled
as h, is the mixing of i; and h,:

<H>_<cosa sina><h1>
h) \—sina cosa hy)’

with H the CP-even Higgs in addition to h.

To be consistent with current measurement of 125 GeV
Higgs, we consider the so-called alignment limit where
sin(f — a) = 1 [152]. In the alignment limit, it is conven-
ient to consider the Higgs basis, where:

Dy sinff —cosp D,
<<bh><cosﬁ sin >(<1>z>’

where @, can be considered as the SM doublet which takes
responsibility for electroweak symmetry breaking, and @
will have no VEV. The coupling between 7 and SM
fermions are the same as their SM value and thus to be
consistent with current Higgs data. While the coupling
between H and fermions depend on tan f:

(C3)

(C4)

(C5)

ven ny oy 1 oy
eYuekawa UEW <huu — m HMM)
_ 1 _
_ M (hdd — Hdd)
VEw tan/j
— L (nl1 + tan pHII). (C6)
VEw

So it is possible to make MeV scale dark Higgs ¢ short-
lived via the mixing between ¢ and H, provided tanf is
large enough.

Next, we consider the portal terms between dark sector
and visible sector:

Vyoral = 1 8'S(@, @y + Hec.) + 1,8'S(0,®,,)

+ 13STS (@], @), (C7)
where we assume 4, and A; to be negligible small. After
electroweak and U(1) symmetry breaking, mixing term
A vpwH is induced. Because H is much heavier than ¢,
thus the mixing angle € is approximately given by:

O~ T B (C8)
My

so the Yukawa coupling between s and electron pair is

Yo R Ay ysy];w Me tan g, (C9)
mH Vgw

To get rid of the limit from AN ¢ from BBN, we need the
thermalization of visible sector and dark sector [122] at
least at a temperature T = m,, which requires

2

_ 2 My _ _ T
which set a limit that,
1Y an > 15 x 1074, (C11)
m

H

Note that this term could be taken as an effective mixing
sin @ in the scenario which s mixes with the standard model
Higgs. From the Fig. 12 of [122], it clearly shows that
sin® = 10~ cannot make the dark sector thermalize with
visable sector but pretty close, therefore our calculation is
consistent with the result with [122]. The obstacle of
thermalzation in only SM Higgs scenario mainly from
the limit of Higgs invisible decay which sets sin@ < 107,
In our case, the new Higgs boson only has very weak
coupling with quarks, then its production rate is very small
at the LHC, therefore current limit on it is very weak and it
is even allowed to be low as tens of GeV [153]. As an
conservative estimation, we can set my = 200 GeV,
2y ~ 1, with v, ~20 MeV, we find tanf > 1.5 enough

115025-8
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to satisfy above limit. A larger tan can further enhance
such coupling.
On the other hand, the lifetime of ¢ is

1 8n’mi,

Ty =—=Res——a—.
’Tr AfvimZtanfm

(C12)
When my =200 GeV, A, ~1, wv,~20MeV, and
my ~4 MeV, the lifetime of ¢ is about 02 sec. So it

tan® B

is easy to make ¢ short-lived.

We note that the introduction of the additional Higgs
would loop-induced kinetic mixing of the visible photon
and dark photon, which is highly constrained by dark
matter direct detection. However, it has been found that the
loop induced kinetic mixing of the visible photon and dark
photon is highly suppressed [125], which appears at five
loops in our model. The combination of loop factors and
coupling suppression provides sufficient suppression to
maintain consistency with current limits.
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