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We determine the masses of the sequential fourth generation quarks b0 and t0 in the extension of the
Standard Model by solving the dispersion relations associated with the mixing between the neutral states
Qq̄ and Q̄q, with Q (q) being a heavy (light) quark. The box diagrams responsible for the mixing, which
provide the perturbative inputs to the dispersion relations, involve multiple intermediate channels, i.e., the
ut and ct channels, u (c, t) being an up (charm, top) quark, in the b0 case, and the db0, sb0, and bb0 ones, d
(s, b) being a down (strange, bottom) quark, in the t0 case. The common solutions for the above channels
lead to the masses mb0 ¼ ð2.7� 0.1Þ and mt0 ≈ 200 TeV unambiguously. We show that these superheavy
quarks, forming bound states in a Yukawa potential, barely contribute to Higgs boson production via gluon
fusion and decay to photon pairs and bypass current experimental constraints. The mass of the b̄0b0 ground
state is estimated to be about 3.2 TeV. It is thus worthwhile to continue the search for b0 quarks or b̄0b0

resonances at the (high-luminosity) Large Hadron Collider.

DOI: 10.1103/PhysRevD.109.115024

I. INTRODUCTION

Our recent dispersive analyses of some representative
physical observables (heavy meson decay widths, neutral
meson mixing, etc.) have accumulated substantial indica-
tions that the scalar sector of the Standard Model (SM) is
not completely free, but arranged properly to achieve
internal dynamical consistency [1–3]. Fermion masses
can be derived by solving the dispersive relations for decay
widths of a heavy quark Q as an inverse problem [4–7]:
starting with massless final-state up and down quarks, we
demonstrated that the solution for theQ → dud̄ (Q → cūd)
mode with the leading-order heavy-quark-expansion input
yields the charm-quark (bottom-quark) mass mc ¼ 1.35
ðmb ¼ 4.0Þ GeV [1]. Requiring that the dispersion relation
for the Q → sud̄ (Q → dμþνμ, Q → uτ−ν̄τ) decay gener-
ates the identical heavy-quark mass, we deduced the
strange-quark (muon, τ lepton) mass ms ¼ 0.12 GeV
(mμ ¼ 0.11, mτ ¼ 2.0 GeV). The similar studies of fer-
mion mixing [3] established the connections between the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and
quark masses and between the Pontecorvo-Maki-
Nakagawa-Sakata matrix elements and neutrino masses.
These connections explained the known numerical relation
Vus ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=mb

p
[8], Vus being a CKM matrix element, and

the maximal mixing angle θ23 ≈ 45° in the lepton sector and
discriminated the normal hierarchy for neutrino masses
from the inverted hierarchy or quasidegenerate spectrum.
The dispersion relation for the correlation function of

two b-quark scalar (vector) currents, with the perturbative
input from the b-quark loop, returns the Higgs (Z) boson
mass 114 (90.8) GeV [2] in accordance with the measured
values. It implies that the parameters μ2 and λ in the Higgs
potential are also constrained by internal dynamical con-
sistency. Particle masses and mixing angles in the SM
originate from the independent elements of the Yukawa
matrices [9], as the electroweak symmetry is broken.
Inspired by the above observations, we attempt to make
a bold conjecture that the SM contains only three funda-
mental parameters actually, i.e., the three gauge couplings,
and the other parameters, governing the interplay among
various generations of fermions, are fixed by SM dynamics
itself. The analyticity, which is inherent in quantum field
theories, imposes additional constraints. Its impact is not
revealed in naive parameter counting at the Lagrangian
level based on symmetries, but through dispersive analyses
of dynamical processes. Dispersion relations, which physi-
cal observables like heavy-to-light decay widths must
respect, link different types of interactions at arbitrary
scales. The resultant constraints are so strong that the
parameters in the scalar sector must take specific values,
instead of being discretionary.
To maintain the simplicity and beauty conjectured above,

a natural extension of the SM is to introduce the sequential
fourth generation of fermions, since the associated param-
eters in the scalar sector are not free. That is, their masses
and mixing with lighter generations can be predicted
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unambiguously in a similar manner [2]. We first determine
the top-quark mass mt by solving the dispersion relations
for the mixing between the neutral states Qū and Q̄u. The
perturbative inputs to the dispersion relations come from
the imaginary contributions of the box diagrams for the
mixing with the intermediate db, sb, and bb channels.
Given the corresponding thresholds md þmb, ms þmb,
and 2mb for the typical quark masses md ¼ 0,
ms ¼ 0.1 GeV, and mb ¼ ð4.15� 0.01Þ GeV, we extract
mt ¼ ð173� 3Þ GeV from the common solution to the
three channels. The existence of such a common solution is
highly nontrivial, making convincing our formalism and
predictions obtained from it. We then go ahead to calculate
the masses of the sequential fourth generation quarks b0 and
t0 in the same framework, considering the multiple inter-
mediate channels ut and ct in the b0 case, and db0, sb0, and
bb0 in the t0 case. It will be observed that the common
solutions for the various channels also exist and demand the
masses mb0 ¼ ð2.7� 0.1Þ and mt0 ≈ 200 TeV.
Many merits of the sequential fourth generation model

have been explored: condensates of the fourth generation
quarks and leptons could be the responsible mechanism of
the dynamical electroweak symmetry breaking [10,11];
electroweak baryogenesis through the first-order phase
transition could be realized in this model [12]; it could
provide a viable source of CP violation for the baryon
asymmetry of the Universe based on the dimensional
analysis of the Jarlskog invariants [13]. However, it is
widely conceded that this model has been ruled out mainly
by the data of Higgs boson production via gluon fusion
gg → H and decay into photon pairs H → γγ [14].
Measurements of the oblique parameters, which depend
on the additional mixing angles associated with the fourth
generation quarks and the unclear contribution from the
fourth generation leptons [15], give relatively weaker
constraints. We point out that the superheavy fourth
generation quarks b0 and t0 with the aforementioned masses
form bound states in a Yukawa potential [16,17]. Once they
form bound states, physical degrees of freedom change and
new resonances emerge, so one has to reformulate the
interaction between the fourth generation quarks and Higgs
bosons with these new resonances [18]. We will show that
the b̄0b0 scalars contribute to the gg → H cross section only
at 10−3 level, relative to that from the top-quark loop in the
SM. It is thus likely for the sequential fourth generation
model to bypass the current experimental constraints, even
without the expansion of the scalar sector [19]. For an
analogous reason, the model could also bypass the con-
straint from Higgs boson decay to photon pairs.
The rest of the paper is organized as follows. We compute

the top-quark mass from the dispersion relations for the Qū
and Q̄umixing through thedb, sb, andbb channels inSec. II.
The framework is extended to the prediction for the b0 (t0)
quark mass in Sec. III by investigating the multiple inter-
mediateut and ct (db0, sb0, and bb0) channels. The properties

of the b̄0b0 scalar bound states S in a Yukawa potential,
including the binding energies and the widths, are derived in
Sec. IV, based on which we estimate the gg → S → H cross
sections using the ggS and SH effective couplings and Breit-
Wigner propagators for S. In particular, the mass of the b̄0b0
ground state, being either a pseudoscalar or a vector, is
evaluated in a relativistic approach and found to be about
3.2 TeV. Some processes, which are promising for searching
for b0 quarks and their resonances at the (high-luminosity)
Large Hadron Collider, are proposed. Section V contains the
summary.

II. FORMALISM AND TOP-QUARK MASS

Consider the mixing between the neutral states Qū and
Q̄u through the box diagrams with a heavy quarkQ of mass
mQ and a massless u quark [2,20]. The construction of a
dispersion relation follows the procedure in [1] straight-
forwardly, which starts with the contour integration of the
mixing amplitudesΠij, ij ¼ db, sb, and bb, in the complex
m plane. The contour consists of two pieces of horizontal
lines above and below the branch cut along the positive real
axis, two pieces of horizontal lines above and below the
branch cut along the negative real axis, a small circle
around the pole m ¼ mQ located on the positive real axis,
and a circle CR of large radius R as depicted in Fig. 1. As
recollected in the Appendix, we have the dispersion
relations for the imaginary pieces of Πij

Z
R2

M2
ij

ImΠijðmÞ
m2

Q −m2
dm2 ¼

Z
R2

m2
ij

ImΠbox
ij ðmÞ

m2
Q −m2

dm2: ð1Þ

The quark-level thresholds mij for the box-diagram con-
tributions ImΠbox

ij denote mi þmj, i.e., mdb ¼ md þmb,
msb ¼ ms þmb, and mbb ¼ 2mb. The physical quantities
ImΠijðmÞ on the left-hand side of the above expression
have the hadronic thresholds Mdb ¼ mπ þmB, Msb ¼
mK þmB, and Mbb ¼ 2mB with the pion (kaon, B-meson)

FIG. 1. Contour for the derivation of Eq. (1), where the thick
lines represent the branch cuts.
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mass mπ (mK , mB). The CKM factors associated with the
db, sb, and bb channels can vary independently in a
mathematical viewpoint, so their corresponding dispersion
relations can be analyzed separately. These dispersion
relations, holding for arbitrary mQ, impose stringent con-
nections between high- and low-mass behaviors of the
mixing amplitudes.
The box diagrams generate two effective four-fermion

operators of the ðV − AÞðV − AÞ and ðS − PÞðS − PÞ
structures. Viewing that the two structures endow separate
dispersion relations, and the latter also receives contribu-
tions from amplitudes other than the box diagrams, like the
double penguin amplitude [21], we concentrate on the
former. The imaginary piece of the ðV − AÞðV − AÞ struc-
ture in perturbative evaluations [22,23] is written as

Γbox
ij ðmQÞ∝

C2
2ðmQÞ
m4

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

Q− ðmiþmjÞ2�½m2
Q− ðmi−mjÞ2�

q
ðm2

W −m2
i Þðm2

W −m2
jÞ

×

�
2

�
m4

Wþm2
i m

2
j

4

�
½m2

Q− ðmiþmjÞ2�

× ½m2
Q− ðmi−mjÞ2�

−3m2
Wm

2
Qðm2

i þm2
jÞðm2

Q−m2
i −m2

jÞ
�
; ð2Þ

with the W-boson mass mW and the intermediate quark
masses mi and mj. A d quark is also treated as a massless
particle, i.e., md ¼ 0. The overall coefficient, irrelevant to
the derivation below, is implicit. We have kept only the
Wilson coefficient C2ðμÞ [24], which dominates over C1ðμÞ
at the renormalization scale μ ¼ mQ ≥ mb. The second
term in the curly brackets of Eq. (2) is down by a tiny ratio
ðm2

i þm2
jÞ=m2

W , so the behavior of Eq. (2) inmQ is dictated
by the first term. In the threshold regions with mQ ∼mij, it
is approximated by

Γbox
db ðmQÞ ∼

ðm2
Q −m2

bÞ3
m4

Q
;

Γbox
sb ðmQÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

Q − ðmb þmsÞ2�½m2
Q − ðmb −msÞ2�

q
3

m4
Q

;

Γbox
bb ðmQÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q − 4m2
b

q
3

mQ
: ð3Þ

Because of ms ≪ mb, mb −ms is not very distinct from
mb þms, and the dependence on the former has been
retained in the second line of Eq. (3).
Motivated by the above threshold behaviors, we choose

the integrands for the dispersion integrals in Eq. (1) as [2]

ImΠdbðmÞ ¼ m4ΓdbðmÞ
ðm2 −m2

bÞ2
;

ImΠsbðmÞ ¼ m4ΓsbðmÞ
½m2 − ðmb þmsÞ2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðmb −msÞ2

p
3
;

ImΠbbðmÞ ¼ mΓbbðmÞ
m2 − 4m2

b

; ð4Þ

where ΓijðmÞ are the unknowns to be solved for shortly,
and the definitions of ImΠbox

ij ðmÞ by means of Γbox
ij ðmÞ

should be self-evident. Note that Γbox
bb ðmÞ is an odd function

in m, which accounts for the odd power of m in the
numerator of ImΠbbðmÞ [2]. The above integrands with
powers of m in the numerators suppress any residues in the
low-m region, including those from the poles at m ¼
�ðmi þmjÞ and m ¼ �ðmi −mjÞ, compared to the ones
from m ¼ �mQ at large mQ. The denominators alleviate
the divergent behaviors caused by the modified numerators
at large m. The factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðmb −msÞ2

p
in ΠsbðmÞ

introduces an additional branch cut along the real axis in
the interval −ðmb −msÞ < m < mb −ms in the m plane.
Our contour crosses the real axis between m ¼ −ðmb þ
msÞ and m ¼ −ðmb −msÞ and between m ¼ mb −ms and
m ¼ mb þms and runs along the real axis marked by m <
−ðmb þmsÞ and m > mb þms, such that this additional
branch cut does not contribute.
Moving the integrands on the right-hand side of Eq. (1)

to the left-hand side, we arrive at

Z
∞

m2
ij

ΔρijðmÞ
m2

Q −m2
dm2 ¼ 0; ð5Þ

with the subtracted unknown functions ΔρijðmÞ≡
ImΠijðmÞ − ImΠbox

ij ðmÞ. Owing to the subtraction of the
box-diagram contributions and the limits ImΠijðmÞ →
ImΠbox

ij ðmÞ at large m, the integrals in Eq. (5) converge
even after the upper bound of m2 is extended to infinity.
The unknowns ΔρijðmÞ are fixed to the initial conditions
−ImΠbox

ij ðmÞ in the interval ðmij;MijÞ of m, in which the
physical quantities ImΠijðmÞ vanish. The idea behind our
formalism is similar to that of QCD sum rules [25], but with
power corrections in ðMij −mijÞ=mQ arising from the
difference between the quark-level and hadronic thresholds,
which are necessary for establishing a physical solution
[20]. As seen later, it is easier to solve forΔρijðmQÞ than for
ΔΓijðmQÞ≡ ΓijðmQÞ − Γbox

ij ðmQÞ, because the initial con-
ditions of the former are simpler. Once ΔρijðmQÞ are
attained, we convert them to ΔΓijðmQÞ following
Eq. (4). Without the power corrections, i.e., if mij are
equal to Mij, there will be only the trivial solutions
ΔΓijðmQÞ ¼ 0, i.e., ΓijðmQÞ ¼ Γbox

ij ðmQÞ and no constraint
on the top-quark mass.
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The steps of solving Eq. (5) have been elucidated in [1]
and briefly reviewed in the Appendix. The solution of the
unknown function can be constructed with a single Bessel
function of the first kind JαðxÞ,

ΔρijðmQÞ ≈ yij

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q − ðmi þmjÞ2
q �

αij

× Jαij

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q − ðmi þmjÞ2
q �

: ð6Þ

A solution to the dispersion relation must not be sensitive to
the arbitrary scale ω, which results from scaling the
integration variable m2 in Eq. (5) artificially [2]. To realize
this insensitivity, we make a Taylor expansion ofΔρijðmQÞ,

ΔρijðmQÞ ¼ ΔρijðmQÞjω¼ω̄ij
þ dΔρijðmQÞ

dω

����
ω¼ω̄ij

× ðω − ω̄ijÞ þ
1

2

d2ΔρijðmQÞ
dω2

����
ω¼ω̄ij

× ðω − ω̄ijÞ2 þ � � � ; ð7Þ
where the constant ω̄ij, together with the index αij and the
coefficient yij, are fixed through the fit of the first term
ΔρijðmQÞjω¼ω̄ij

to the initial condition in the interval
ðmij;MijÞ of mQ. The insensitivity to the variable ω
commands the vanishing of the first derivative in
Eq. (7), dΔρijðmQÞ=dωjω¼ω̄ij

¼ 0, from which roots of
mQ are solved. Furthermore, the second derivative
d2ΔρijðmQÞ=dω2jω¼ω̄ij

should be minimal to maximize
the stability window around ω̄ij, in which ΔρijðmQÞ
remains almost independent of ω.
The threshold behaviors in Eq. (3) and the initial

conditions ΔρijðmQÞ ¼ −ImΠbox
ij ðmQÞ with ImΠbox

ij ðmQÞ
being defined according to Eq. (4) set the initial conditions
in the limits mQ → mij,

ΔρdbðmQÞ ∼m2
Q −m2

b;

ΔρsbðmQÞ ∼ ½m2
Q − ðmb þmsÞ2�−1=2;

ΔρbbðmQÞ ∼ ðm2
Q − 4m2

bÞ1=2: ð8Þ

The solution in Eq. (6) scales in the threshold region mQ ∼
mij like ΔρijðmQÞ ∼ ½m2

Q − ðmi þmjÞ2�αij owing to the
relation JαðzÞ ∼ zα in the limit z → 0. Contrasting this
scaling law with Eq. (8), we read off the indices

αdb ¼ 1; αsb ¼ −1=2; αbb ¼ 1=2: ð9Þ

It is clear now why we employed those modified integrands
in Eq. (4); the corresponding inputs in Eq. (8) are propor-
tional to simple powers of m2

Q − ðmi þmjÞ2, so that the
indices αij can be specified unambiguously. The coeffi-
cients yij are related to the boundary conditions at the high
end mQ ¼ Mij of the interval ðmij;MijÞ, ΔρijðMijÞ ¼
−ImΠbox

ij ðMijÞ, which fix the coefficients

yij ¼ −ImΠbox
ij ðMijÞ

��
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ij − ðmi þmjÞ2
q �

αij

× Jαij

�
2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ij − ðmi þmjÞ2
q �	

−1
: ð10Þ

The running coupling constant is given by

αsðμÞ ¼
4π

β0 lnðμ2=Λ2
QCDÞ

�
1 −

β1 ln lnðμ2=Λ2
QCDÞ

β20 lnðμ2=Λ2
QCDÞ

	
; ð11Þ

with the coefficients β0 ¼ 11 − 2nf=3 and β1 ¼
2ð51 − 19nf=3Þ. We take the QCD scale ΛQCD ¼
0.21 GeV for the number of active quark flavors nf ¼ 5

[26] and choose the renormalization scale μ ¼ mQ as stated
before. Note that we need only the quark-mass inputs for
the initial conditions in the interval ðmij;MijÞ of mQ.
Adopting the quark masses ms ¼ 0.1 and mb ¼ 4.15 GeV
in the MS scheme at the scale μ ∼mb, which are close
to those from lattice calculations [27], and the pion
(kaon, B-meson) mass mπ ¼ 0.14 GeV (mK ¼ 0.49,
mB ¼ 5.28 GeV) [28], we get ω̄db ¼ 0.0531, ω̄sb ¼
0.0268, ω̄bb ¼ 0.0128 GeV−1 from the best fits of
ΔρijðmQÞ in Eq. (6) to −ImΠbox

ij ðmQÞ in the interval
ðmij;MijÞ. The fit results by means of ΔΓijðmQÞ, which
are related to ΔρijðmQÞ via Eq. (4), are compared with

4.2 4.4 4.6 4.8 5.0 5.2 5.4

5

4

3

2

1

1

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8
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2

2

8.5 9.0 9.5 10.0 10.5
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FIG. 2. Comparison of ΔΓijðmQÞ≡ ΓijðmQÞ − Γbox
ij ðmQÞ from the fit (dotted line) with the input −Γbox

ij ðmQÞ (dashed line) in the
interval ðmij;MijÞ of mQ for (a) ij ¼ db, (b) ij ¼ sb, and (c) ij ¼ bb.
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−Γbox
ij ðmQÞ in the interval ðmij;MijÞ in Fig. 2. Their perfect

matches confirm that the approximate solutions in
Eq. (6) work well and that other methods for obtaining
ω̄ij should return similar values. For example, equating
ΔρijðmQÞ and −ImΠbox

ij ðmQÞ at the midpoints mQ ¼
ðmij þMijÞ=2 leads to ω̄db ¼ 0.0503, ω̄sb ¼ 0.0268, and
ω̄bb ¼ 0.0129 GeV−1, very close to those from the best fits.
The unknown subtracted functions ΔρijðmQÞ with the

above αij, yij, and ω̄ij are displayed in Fig. 3(a) through
ΔΓijðmQÞ. They exhibit oscillatory behaviors in mQ, and
the first (second, third) peak of the solution for the bb (sb,
db) channel is located around mQ ≈ 170–195 GeV. The
coincidence between the sequences of the peaks and of the
quark generations is intriguing. The similar feature will
appear again in the plots for the fourth generation quark
masses in the next section. To evince the implication of the
above peak overlap, we present in Fig. 3(b) the depend-
encies of the derivatives dΔρijðmQÞ=dω on mQ by

DijðmQÞ≡ d
dω

Jαijð2ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q − ðmi þmjÞ2
q

Þ
Jαijð2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ij − ðmi þmjÞ2
q

Þ

������
ω¼ω̄ij

; ð12Þ

where the factors independent of ω have been dropped for
simplicity.
The band of the bb curve is induced by the variation of

the bottom-quark mass mb in the range mb ¼ ð4.15�
0.01Þ GeV with roughly 1σ deviation from the value
4.18þ0.03

−0.02 GeV in [28]. The considered error of mb is also
compatible with that obtained in Ref. [27]. The result for
the db channel is less sensitive to mb, but depends more
strongly on the methods of determining ω̄db as mentioned
before. Namely, the band of the db curve is mainly
attributed to the latter source of uncertainties with ω̄db

being lowered to 0.0503 GeV−1. The derivativeDsbðmQÞ is
stable with respect to various sources of uncertainties;
for instance, changing the strange-quark mass ms by 10%

causes only about 1% effects. It is the reason why the sb
curve discloses a narrow band. Every curve in Fig. 3(b)
indicates the existence of multiple roots. It has been
checked that the second derivatives are larger at higher
roots [1], so smaller roots are preferred in the viewpoint of
maximizing the stability windows in ω. Figure 3(b) shows
that the three derivatives first vanish simultaneously around
mQ ≈ 173 GeV, as manifested by the intersection of the
three curves in the interval (170, 176 GeV), which
corresponds to the location of the peak overlap in
Fig. 3(a). To be explicit, we read off the roots mQ ¼
169.1þ9.5

−1.1 GeV for the db channel,mQ ¼ 176.2� 0.6 GeV
for the sb channel, and mQ ¼ 175.7þ7.3

−6.3 GeV for the bb
channel in Fig. 3(b). The result of mQ, as a common
solution to the considered channels, is identified as the
physical top-quark mass, which agrees well with the
observed one mt ¼ ð172.69� 0.30Þ GeV [28].
A remark is in order. The tiny error 0.01 GeV for the

input mb ¼ ð4.15� 0.01Þ GeV was adopted to examine
the sensitivity of our predictions to the variation of the
bottom-quark mass. We emphasize that the main purpose of
the present work is to predict the fourth generation quark
masses, for which both the bottom- and top-quark masses
are necessary inputs. Hence, the reproduction of the top-
quark mass from the given bottom-quark mass in its
allowed range is not only to validate our formalism, but
to calibrate the inputs for the predictions. This calibration is
essential owing to the sensitivity to the inputs as noticed
above (the determination of the lighter quark masses in our
formalism is more stable against variations of inputs [1]).
Additionally, we set the renormalization scale to the
invariant mass mQ of the heavy quark in Eq. (2) and stick
to this choice for the consistent determination of the top-
quark mass and the fourth generation quark masses. We
think that mb ¼ 4.15� 0.01 GeV and the resultant
mt ¼ 173� 3 GeV, in agreement with the extractions from
other known means and current data, serve as the appro-
priate inputs. Note that only the outcome from the bb
channel, which involves two bottom quarks in the

0 50 100 150 200 250 300

1500

1000

500

500

1000

1500 bb

sb

db

0 50 100 150 200 250 300

400
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400

FIG. 3. (a) Dependencies of the solutions ΔΓijðmQÞ onmQ for ij ¼ db (solid line), ij ¼ sb (scaled by a factor 0.02, dashed line), and
ij ¼ bb (scaled by a factor 0.1, dotted line). (b) Dependencies of the derivatives DijðmQÞ on mQ.
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intermediate states, is sensitive to the input of mb.
Therefore, a resolution to the aforementioned sensitivity
that one can make is to discard the bb channel and to
consider simply the db and sb channels. The simultaneous
vanishing of their derivatives in Eq. (12) is sufficient for
deriving a stable and definite top-quark mass.

III. FOURTH GENERATION QUARK MASSES

After verifying that the dispersive analysis produces the
correct top-quark mass, we extend it to the predictions of
the fourth generation quark masses, starting with the b0 one.
Consider the box diagrams for the mixing of the neutral
states Qd̄ and Q̄d and construct the associated dispersion
relations. The intermediate channels, which contribute to
the imaginary pieces of the box diagrams, contain not only
those from on-shell quarks ut, ct, and tt described by
Eq. (2), but those from on-shell W bosons. Since these
channels can be differentiated experimentally, we can focus
on the former for our purpose. The necessary power
corrections proportional to the differences between the
quark-level thresholds mij and the physical thresholds Mij

further select the ut channel with mut ¼ mt (mu ¼ 0) and

Mut ¼ mπ þmt, and the ct channel with mct ¼ mc þmt
and Mct ¼ mD þmt, with mD being the D-meson mass.
Note that the second term in the curly brackets of Eq. (2)
becomes more important in the present case owing to the
large ratio ðm2

i þm2
jÞ=m2

W ≈m2
t =m2

W . Equation (2) behaves
approximately in the threshold regions with mQ ∼mij like

Γbox
ut ðmQÞ ∼

ðm2
Q −m2

t Þ2
m2

Q
;

Γbox
ct ðmQÞ ∼

m2
Q −m2

t −m2
c

m2
Q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

Q − ðmt þmcÞ2�½m2
Q − ðmt −mcÞ2�

q
:

ð13Þ

Because of mc ≪ mt, the terms ðmt −mcÞ2 and m2
t þm2

c,
which are not very distinct from ðmt þmcÞ2, have stayed in
the second expression of Eq. (13).
Motivated by the above threshold behaviors, we choose

the integrands for the dispersion integrals in Eq. (1) as

ImΠutðmÞ ¼ m2ΓutðmÞ
m2 −m2

t
;

ImΠctðmÞ ¼ m2ΓctðmÞ
½m2 − ðmt þmcÞ2�ðm2

Q −m2
t −m2

cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðmt −mcÞ2

p : ð14Þ

Similarly, the above integrands with powers of m in the
numerators suppress the residues from the poles at m ¼
�ðmi þmjÞ and m ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þm2
j

q
in the low-m region,

compared to the ones from m ¼ �mQ at large mQ. Our
contour for ΠctðmÞ crosses the real axis between m ¼
−ðmt þmcÞ and m ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

t þm2
c

p
and between m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

c

p
and m ¼ mt þmc and runs along the real

axis marked by m < −ðmt þmcÞ and m > mt þmc.
Therefore, the branch cut associated with the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðmt −mcÞ2

p
in ΠctðmÞ does not contribute. The

solutions for the unknown subtracted functions ΔρijðmQÞ
and the coefficients yij have the same forms as Eqs. (6) and
(10), respectively. The initial conditions near the thresholds
mQ ∼mij are given by

ΔρutðmQÞ ∼m2
Q −m2

t ;

ΔρctðmQÞ ∼ ½m2
Q − ðmt þmcÞ2�−1=2; ð15Þ

which assign the indices

αut ¼ 1; αct ¼ −1=2: ð16Þ

For the numerical study, we take the QCD scale Λð6Þ
QCD ¼

0.11 GeV for the number of active quark flavors nf ¼ 6

according to [29]

ΛðnfÞ
QCD ¼ Λðnf−1Þ

QCD

�Λðnf−1Þ
QCD

mt

	2=ð3β0Þ
; ð17Þ

with mt ¼ 173 and Λð5Þ
QCD ¼ 0.21 GeV [26]. The behaviors

of the box-diagram contributions Γbox
ij ðmQÞ in the interval

ðmij;MijÞ of mQ matter in solving the dispersion relations.
In view of the high top-quark mass, the renormalization-
group (RG) evolution of the charm-quark mass to a scale of
OðmtÞ needs to be taken into account. This RG effect is
minor in the previous section, since mb does not deviate
much from the range μ ≈ 1–2 GeV, in which the strange-
quark mass is defined. We have at μ ¼ mt [26]

mcðmtÞ ¼ mcðmcÞ
�
αsðmtÞ
αsðmcÞ

	
4=β0

≈ 0.7 GeV; ð18Þ
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for mcðmcÞ ¼ 1.35 GeV [1]. The inputs of the pion mass
mπ ¼ 0.14 GeV and the D-meson mass mD ¼ 1.87 GeV
[28] then yield ω̄ut ¼ 0.00326 and ω̄ct ¼ 0.00176 GeV−1

from the best fits of Eq. (6) to −ImΠbox
ij ðmQÞ in the

interval ðmij;MijÞ of mQ, which is proportional to
Eq. (2). Equating ΔρijðmQÞ and −Πbox

ij ðmQÞ at the mid-
points mQ ¼ ðmij þMijÞ=2 generates ω̄ut ¼ 0.00326 and
ω̄ct ¼ 0.00175 GeV−1, almost identical to the values from
the best fits. This consistency supports the goodness of our
solutions.
The dependencies of the unknown subtracted functions

ΔρijðmQÞ on mQ from solving the dispersion relations are
presented in Fig. 4(a) by means of ΔΓijðmQÞ. We have
confirmed the excellent matches between ΔΓijðmQÞ from
the fits and the initial conditions −Γbox

ij ðmQÞ in the interval
ðmij;MijÞ of mQ, which will not be shown here. The
feature noticed before hints that the second (third) peak of
the curve for the ct (ut) channel should be located at
roughly the samemQ. Figure 4(a), with the overlap of peaks
around mQ ≈ 2.7 TeV, corroborates this expectation. The
corresponding derivatives in Eq. (12) as functions of mQ

are drawn in Fig. 4(b). Similarly, our results for the ct
channel are insensitive to the variation of mc: 10% changes
of mc stimulates only about 1% effects on the outcome of
the fourth generation quark mass mb0 . The uncertainties
from different ways of fixing ω̄ij are negligible as inves-
tigated above. Hence, we consider only the uncertainties
from the variation of the top-quark mass within mt ¼
ð173� 3Þ GeV attained in the previous section, which
are reflected by the bands of the curves. It is found that
the two derivatives first vanish simultaneously around
mQ ≈ 2.7 TeV, coinciding with the location of the peak
overlap in Fig. 4(a). That is, a common solution mb0 ¼
ð2.7� 0.1Þ TeV, as inferred from Fig. 4(b), exists for the
two considered channels.
The prediction of the fourth generation quark mass mt0

proceeds in exactly the same manner. The box diagrams
governing the mixing of the neutral states Qū and Q̄u

involve the intermediate db0, sb0, and bb0 channels, which
are associated with the quark-level thresholds mdb0 ¼ mb0

(md ¼ 0), msb0 ¼ ms þmb0 , and mbb0 ¼ mb þmb0 and the
physical thresholds Mdb0 ¼ mπ þmb0 , Msb0 ¼ mK þmb0 ,
andMbb0 ¼ mB þmb0 , respectively. Since a top quark does
not form a hadronic bound state, we do not expect that a b0
quark will, and so we keep the quark mass mb0 in the
hadronic thresholds. Certainly, this is an assumption owing
to the uncertain 4 × 4 CKM matrix element Vtb0 . The
second term in the curly brackets of Eq. (2) dominates
because of the large ratio ðm2

i þm2
jÞ=m2

W ≈m2
b0=m

2
W . The

behaviors of Eq. (2) in the threshold regions withmQ ∼mij

are approximated by Eq. (13), with the first expression for
the db0 channel and the second expression for the sb0 and
bb0 channels. The appropriate replacements of the masses
mc;t by ms;b;b0 are understood. The modified integrands for
the dispersion integrals in Eq. (1) and their expressions near
the thresholds mQ ∼mij follow Eqs. (14) and (15), respec-
tively, also with the first lines for the db0 channel and the
second lines for the sb0 and bb0 channels. We then acquire
the indices

αdb0 ¼ 1; αsb0 ¼ αbb0 ¼ −1=2: ð19Þ

The QCD scale takes the value Λð7Þ
QCD ¼ 0.04 GeV for

nf ¼ 7 according to Eq. (17), but with mb0 being sub-
stituted for mt. The RG effects on the quark masses are
included via Eq. (18), which give ms ≈ 0.07 and mb ≈
3.2 GeV at the scale μ ¼ mb0 . Inputting the same masses
mπ , mK , mB, and mb0 ¼ 2.7 TeV, we get ω̄db0 ¼ 0.0438,
ω̄sb0 ¼ 0.0223, and ω̄bb0 ¼ 0.0233 TeV−1 from the best fits
of Eq. (6) to −ImΠbox

ij ðmQÞ in the interval ðmij;MijÞ ofmQ.
Figure 5(a) collects the solutions ΔΓijðmQÞ as functions of
mQ, where the curves for the bb0 and sb0 channels are close
in shape, and their second peaks overlap with the third peak
for the db0 channel aroundmQ ≈ 200 TeV. The bb0 and sb0

channels share the identical formula characterized by the
same indices αsb0 ¼ αbb0 ¼ −1=2. Moreover, the difference
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FIG. 4. (a) Dependencies of the solutions ΔΓijðmQÞ on mQ for ij ¼ ut (solid line) and ij ¼ ct (scaled by a factor 0.02, dashed line).
(b) Dependencies of the derivatives DijðmQÞ on mQ. The curve for ij ¼ ut has been scaled by a factor 0.01.
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between ms and mb (also between mK and mB) is minor
relative to the high mb0 , so that these two solutions behave
similarly. Hence, there are only two categories of solutions
in the t0 case, and the overlap takes place between the
second and third peaks.
The dependencies of the derivatives DijðmQÞ on mQ,

defined in Eq. (12), are displayed in Fig. 5(b) for ω ¼ ω̄ij.
The three derivatives first vanish simultaneously around
mQ ≈ 200 TeV, which coincides with the aforementioned
peak locations. It is sure that a common root for the fourth
generation quark mass mt0 exists. Since the value of mt0 is
obviously beyond the current and future reach of new
particle searches, we do not bother to include theoretical
uncertainties with the prediction. One may wonder whether
mt0 ≈ 200 TeV violates the unitarity limit signified by the
large Yukawa coupling. However, bound states would be
formed in this case, such that physical degrees of freedom
change, and the high Yukawa coupling is not an issue. This
subject will be elaborated in the next section. It is not
unexpected that a t0 quark is so heavy, viewing that a c
quark is 13 times heavier than an s quark, and a t quark is
about 40 times heavier than a b quark. Here a t0 quark is
about 70 times heavier than a b0 quark.

IV. b̄0b0 BOUND STATES

As remarked in the Introduction, the sequential fourth
generation model is disfavored by the data of Higgs boson
production via gluon fusion and decay into photon pairs
[14]. Nevertheless, it has been known [16] that the fourth
generation quarks, whose mass mQ meets the criterion
KQ ¼ m3

Q=ð4πv2mHÞ > 1.68, with the vacuum expectation
value v ¼ 246 GeV, form bound states in a Yukawa
potential. The binding energy for the Q̄Q ground state
with the massesm�

Q ≈ 1.26 andm�
H ≈ 1.45 TeV at the fixed

point of the RG evolution in this model was found to be
−4.9 GeV. The fixed point depends on the initial values of
the quark masses at the electroweak scale of Oð100Þ GeV:
the larger the initial values, the lower the fixed point is.

The b0-quark mass mb0 ¼ 2.7 TeV predicted in the pre-
vious section, greater than the fixed-point value 1.26 TeV,
satisfies the criterion KQ > 1.68 definitely. The binding
energy for the b̄0b0 bound state ought to be higher. We will
demonstrate that the new scalars S formed by b̄0b0, with tiny
couplings to a Higgs boson, escape the current experi-
mental constraints. It is then worthwhile to keep searching
for a superheavy b0 quark at future colliders [30].
Once the bound state of mass at TeV scale is formed, the

gluon fusion process involving internal b0 quarks at the low
scale mH should be analyzed in an effective theory with
different physical degrees of freedom. In other words, one
has to regard the process as gluon fusion into the scalar S,
followed by production of a Higgs boson through a
coupling between them. The order of magnitude of the
corresponding amplitude is assessed below. First, the gluon
fusion into S is proportional to

ffiffiffi
s

p
gggS, where the invariant

mass
ffiffiffi
s

p
of S takes into account the dimension of the

effective operator AμAνS, with Aμ being a gluon field, and
where gggS is a dimensionless effective coupling. The scalar
S then propagates according to a Breit-Wigner factor
1=ðs −m2

S − i
ffiffiffi
s

p
ΓSÞ, where ΓS denotes the width of S.

At last, S transforms into a Higgs boson H with the
magnitude being described by sgSH, where gSH is a
dimensionless effective coupling. The total amplitude is
thus written, in the effective approach, as

M ∼
ffiffiffi
s

p
3gggSgSH

s −m2
S − i

ffiffiffi
s

p
ΓS

; ð20Þ

where factors irrelevant to our reasoning have been
suppressed.
Properties of heavy quarkonium states, like b̄0b0, in a

Yukawa potential

VðrÞ ¼ −αY
e−m

�
Hr

r
; ð21Þ
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FIG. 5. (a) Dependencies of the solutionsΔΓijðmQÞ onmQ for ij ¼ db0 (solid line), ij ¼ sb0 (scaled by a factor 0.02, dashed line), and
ij ¼ bb0 (scaled by a factor 0.02, dotted line). (b) Dependencies of the derivativesDijðmQÞ onmQ for ij ¼ db0 (scaled by a factor 10−4,
solid line), ij ¼ sb0 (dashed line), and ij ¼ bb0 (dotted line).
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of the strength αY ¼ m2
b0=ð4πv2Þ, have been explored

extensively in the literature (for a recent reference, see
Ref. [31]). With the involved superheavy quark-mass scale,
we have adopted the fixed-point Higgs boson mass m�

H in
the exponential. Note that the number of bound states is
finite for a Yukawa potential, distinct from the case for a
Coulomb potential which allows infinitely many bound-
state solutions. It turns out that only the states characterized
by ðn; lÞ ¼ ð1; 0Þ, (2, 0), (2, 1), (3, 0), and (3, 1) are
bounded, n (l) being the principal (angular momentum)
quantum number. The states labeled by ðn; lÞ ¼ ð3; 2Þ or
higher quantum numbers are not bounded. The ground
state with ðn; lÞ ¼ ð1; 0Þ, being either a pseudoscalar or a
vector, is expected to have a negligible coupling to a Higgs
boson. It is easy to read off the value ϵ10 ¼ −0.75 of this
state from Fig. 1 in [31], i.e., the binding energy E10≡
α2Ymb0ϵ10=4 ≈ −41 TeV, for the parameter 1=ðm�

Ha0Þ ¼
8.9, with a0 ≡ 2=ðαYmb0 Þ being the Bohr radius. It is
apparent that this deep ground state has revealed the
nonrelativistic Thomas collapse [32] and calls for a relativ-
istic treatment [17,33].
To examine the coupling to a Higgs boson, we concentrate

on theP-wave scalar states with l ¼ 1, and deduce the value
ϵ21 ¼ −0.08 for the ðn; lÞ ¼ ð2; 1Þ state from Fig. 2 in [31],
i.e., the binding energy E21 ≡ α2Ymb0ϵ21=4 ≈ −4.96 TeV.
We suspect that this deep bound state also suffers from
the Thomas collapse, but continue our order-of-magnitude
estimate for completeness. Figure 5 in [31] provides the first
derivative of the corresponding wave function at the origin

32πa50jψ 0
21ð0Þj2 ≈ 0.7; ð22Þ

for the parameter δ ¼ m�
Ha0 ¼ 0.11. The width ΓS is then

approximated by the S → gg decay width as in the heavy
quarkonium case [34],

ΓS ¼ 48α2Sð2mb0 Þ
jR0

21ð0Þj
mS

≈ 570 GeV; ð23Þ

where the strong coupling has been evaluated at twice the b0-
quark mass, R0

nlð0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4π=3

p
ψ 0
nlð0Þ is the derivative of the

radial wave function at the origin [31], and the scalar has the
massmS ¼ 2mb0 þ E21 ≈ 440 GeV. Thewidth in Eq. (23) is
larger than the scalar mass, signaling another warning to the
consistency of this state.
To pin down the product of the effective couplings

gggSgSH, we match the amplitude in Eq. (20) to the one in
the fundamental theory by considering the production of a
fictitious Higgs boson with mass squared s ≈m2

S. The
involved scale is so high that the evaluation in the
fundamental theory [35,36] based on the direct annihilation
of the b̄0b0-quark pair ought to yield a result the same as in
the effective approach. We identify the part of the ampli-
tude, which approaches 3=2 in the lowest-order expression
from the fundamental theory [35,36],

���� vs
ffiffiffi
s

p
3gggSgSH

s −m2
S − i

ffiffiffi
s

p
ΓS

����2 ≈
�
vgggSgSH

ΓS

�
2

≈
�
3

2

�
2

: ð24Þ

The factor s −m2
S ≪

ffiffiffi
s

p
ΓS has been ignored in the

denominator for s ≈m2
S on the right-hand side of the first

equal sign. Equation (24) implies gggSgSH ¼ ð2=3ÞΓS=v
obviously. We then obtain, by extrapolating Eq. (20) to
s ¼ m2

H, the suppression factor on the S contribution
relative to the top-quark one in the SM,

���� vs
ffiffiffi
s

p
3gggSgSH

s −m2
S − i

ffiffiffi
s

p
ΓS

����2 ≈
�
2

3

mHΓS

m2
S

�
2

≈ 6.2%: ð25Þ

The above result also suggests that the S contribution
decreases like m−4

S .
We repeat the discussion for the ðn; lÞ ¼ ð3; 1Þ state,

whose binding energy and the first derivative of the
corresponding wave function at the origin read

E31 ≡ 1

4
α2Ymb0ϵ31 ≈ −124 GeV;

729

8
πa50jψ 0

31ð0Þj2 ≈ 0.2; ð26Þ

with ϵ31 ¼ −0.002 according to Figs. 2 and 5 in [31],
respectively. The width ΓS in Eq. (23) is given, for this
state, by

ΓS ¼ 48α2Sð2mb0 Þ
jR0

31ð0Þj
mS

≈ 694 GeV; ð27Þ

with mS ¼ 2mb0 þ E31 ≈ 5.28 TeV. The similar matching
procedure leads to the diminishing suppression factor

�
2

3

mHΓS

m2
S

�
2

≈ 4.3 × 10−6; ð28Þ

on the S contribution to the Higgs boson production via
gluon fusion in the SM.
We confront the above estimates with those from the

relativistic calculation [33], whose Eq. (28) indeed allows
only the bound-state solutions characterized by n ¼ 1, 2,
and 3. Because of their crude approximation, the states
labeled by the same n but different l are degenerate in
eigenenergies. We take the positive eigenenergy En from
Eq. (28) of [33], extract the binding energy Eb

n ¼ En −
mb0=2 with mb0=2 being the reduced mass of the b̄0b0

system, and derive the bound-state mass mS ¼ 2mb0 þ Eb
n.

It is trivial to get the ground-state mass 3.23 TeV, the mass
of the first excited state 4.45 TeV for n ¼ 2, and the mass of
the second excited state ≲5.40 TeV for n ¼ 3. The last
value, differing from the nonrelativistic one 5.28 TeV
by only 2%, confirms that this state is loosely bound.
The masses of the first two states from the relativistic

DISPERSIVE DETERMINATION OF FOURTH GENERATION … PHYS. REV. D 109, 115024 (2024)

115024-9



framework look more reasonable. We mention that a recent
study of the oblique parameters S and T has permitted
heavy resonances to be heavier than 3 TeV [37].
Equations (23) and (27) hint that the widths of these bound
states are of the same order of magnitude, so Eq. (25)
indicates a tiny contribution from the n ¼ 2 state at 10−3

level to the Higgs boson production via gluon fusion. We
conclude that the S contributions are negligible compared
with the SM one. It is thus likely that a fourth generation
quark as heavy as 2.7 TeV bypasses the constraint of the
measured gg → H cross section at the scale s ∼m2

H.
The same observation holds for the constraint on the

fourth generation quarks from the data of the Higgs decay
into photon pairs. The reasoning related to the H → γγ
decay proceeds in a similar way. One just replaces the
effective coupling gggS in Eq. (24) by gγγS and the constant
3=2 on the right-hand side of Eq. (24) by 1=2, which takes
into account the color factor for the quark loop and the
electric charge of a top quark. We then estimate the
suppression factor on the S contribution relative to
the top-quark one,�

2
mHΓS

m2
S

�
2

≈ 10−2: ð29Þ

That is, the contribution from the b̄0b0 bound state to the
H → γγ decay is also negligible.
It is impossible to detect a t0 quark with a mass as high as

200 TeV in the foreseeable future. To detect a b0 quark, the
gluon fusion into a b̄0b0 resonance of mass about 3.2 TeV
may not be efficient owing to the small gluon distribution
functions at large parton momenta. Instead, the fusion
process qq → WW;ZZ → S [38] is more promising,
whose cross section is enhanced by the quark distribution
functions. Another promising channel is the W-boson
mediated single b0-quark production associated with a
top quark and a light quark, such as dg → ut̄b0. It gains
the power enhancement with one fewer virtual weak boson
by paying the price of having a smaller gluon distribution
function. Presuming that b0 decays into tW dominantly, one
can search for an excess of tt̄W final states [39,40]. The
analysis is analogous to the search of vectorlike heavy
quarks [41], and the currently available strategies work.
Another simpler single b0-quark production from the ug →
Wþb0 process may be attempted, which, however, suffers
the uncertain suppression of the diminishing 4 × 4 CKM
matrix element Vub0 .

V. CONCLUSION

After accumulating sufficient clues in our previous
studies that the scalar sector of the SM can be stringently
constrained and there might be only three fundamental
parameters from the gauge groups, we delved into the
sequential fourth generation model as a natural extension of

the SM. It has been demonstrated that the fourth generation
quark masses can be predicted in the dispersive analyses of
neutral quark state mixing involving a heavy quark. The
idea is to treat the dispersion relations obeyed by the mixing
observables as inverse problems with the initial conditions
from the box-diagram contributions in the interval between
the quark-level and hadronic thresholds. A heavy quark
must take a specific mass in order to ensure a physical
solution for the mixing observable to be invariant under the
arbitrary scaling of the heavy-quark mass in the dispersive
integrals. We first worked on the mixing mediated by the
db, sb, and bb channels and showed that the roots of the
heavy-quark mass mQ corresponding to the first (second,
third) peaks of the bb (sb, db) contributions, with the
inputs of the typical strange- and bottom-quark masses,
coincide around mQ ≈ 173 GeV. This outcome, highly
nontrivial from the three independent channels and in
agreement with the measured top-quark mass, affirms
our claim that the scalar interaction introduced to couple
different generations in the SM is not discretionary.
Encouraged by the successful explanation of the top-

quark mass, we applied the formalism to the predictions for
the fourth generation quark masses. The perturbative inputs
to the dispersion relations come from the same box
diagrams involving multiple intermediate channels, i.e.,
the ut and ct channels in the b0 case and the db0, sb0, and
bb0 ones in the t0 case. As expected, we solved for the
common masses mb0 ¼ ð2.7� 0.1Þ and mt0 ≈ 200 TeV
from the above channels, which should be solid and
convincing. Such superheavy quarks with the huge
Yukawa couplings form bound states. The contributions
from the b̄0b0 scalars to Higgs boson production via gluon
fusion were assessed in an effective approach. Employing
the eigenfunctions for scalar bound states in a Yukawa
potential available in the literature, we calculated the widths
appearing in the Breit-Wigner propagator associated with
the scalars. We further fixed the relevant effective couplings
for the gluon-gluon-scalar vertices and for the new scalar
transition to a Higgs boson. The new scalar contributions at
the scale of the Higgs boson mass turned out to be of
Oð10−3Þ of the top-quark one in the SM at most and is
negligible. This estimate illustrated why these superheavy
quarks could bypass the current experimental constraints
from Higgs boson production via gluon fusion and decay to
photon pairs and why one should continue the search for
fourth generation b0 quarks or their resonances at the (high-
luminosity) Large Hadron Collider.
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APPENDIX: DERIVATION OF THE DISPERSION
RELATION AND ITS SOLUTION

We recapture the derivation of the dispersion relation in
Eq. (5) and of its solution in Eq. (6) for a self-contained
presentation. Express the mixing amplitude for the neutral
states Qū and Q̄u as

AðmQÞ ¼
X
i;j

λiλj½ðMijðmQÞ þ iΓijðmQÞÞv̄ūγμð1 − γ5Þ

× uQūuγμð1 − γ5ÞvQ̄ þ ðM0
ijðmQÞ

þ iΓ0
ijðmQÞÞv̄ūð1 − γ5ÞuQūuð1 − γ5ÞvQ̄�; ðA1Þ

where mQ is the mass of the heavy quarkQ, the light quark
u is assumed to be massless for simplicity, λi ≡ V�

QiVui are
the products of the CKM matrix elements, uQ; vQ̄;…
represent the quark spinors, the first (second) term
on the right-hand side denotes the ðV − AÞðV − AÞ
[ðS − PÞðS − PÞ] structure, and Mð0Þ

ij (Γð0Þ
ij ) collects the real

(imaginary) piece of the amplitude.
Since the last line in Eq. (3) contains an odd power of

1=mQ, the construction of a dispersion relation should
begin with the contour integration in the complex m plane,
instead of the m2 plane, which possesses different branch-
ing cuts. The designated contour has been described in
Sec. II and depicted in Fig. 1. As stated in Sec. II, we focus
on the ðV − AÞðV − AÞ contribution, and consider the
contour integrations of the modified amplitudes

ΠijðmÞ≡ FijðmÞ½MijðmÞ þ iΓijðmÞ�; ðA2Þ

where the functions FijðmÞ have been defined in Eq. (4),

FdbðmÞ ¼ m4

ðm2 −m2
bÞ2

;

FsbðmÞ ¼ m4

½m2 − ðmb þmsÞ2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ðmb −msÞ2

p
3
;

FbbðmÞ ¼ m
m2 − 4m2

b

: ðA3Þ

The analytical properties of the above amplitudes in the m
plane have been discussed in Sec. II.
We have the identity

1

2πi

I ΠijðmÞ
m −mQ

dm ¼ 0; ðA4Þ

which vanishes, for the contour encloses unphysical
regions and residues of potential poles at low m have been
suppressed by FijðmÞ in Eq. (A3). The contribution along
the small clockwise circle in Fig. 1 yields ReΠijðmQÞ, and
those from the four horizontal sections lead to the dis-
persive integrals of ImΠijðmÞ. Equation (A4) is rewritten as

ReΠijðmQÞ¼
1

π

Z
R

Mij

ImΠijðmÞ
m−mQ

dm−
1

π

Z
−Mij

−R

ImΠijðmÞ
m−mQ

dm

þ 1

2πi

Z
CR

Πbox
ij ðmÞ

m−mQ
dm; ðA5Þ

with the hadronic threshold Mij. The unknown function
ImΠijðmÞ acquires nonperturbative contributions from the
small m region. The integrand ΠijðmÞ, taking values along
the large counterclockwise circle CR, can be reliably
replaced by the perturbative one Πbox

ij ðmÞ.
The real part ReΠbox

ij and the imaginary part ImΠbox
ij

of the box-diagram contribution respect the dispersion
relation

ReΠbox
ij ðmQÞ ¼

1

π

Z
R

mij

ImΠbox
ij ðmÞ

m −mQ
dm −

1

π

Z
−mij

−R

×
ImΠbox

ij ðmÞ
m −mQ

dmþ 1

2πi

Z
CR

Πbox
ij ðmÞ

m −mQ
dm;

ðA6Þ

because of the analyticity, mij in the first two integrals on
the right-hand side being the quark-level threshold. We
equate ReΠijðmQÞ and ReΠbox

ij ðmQÞ, i.e., Eqs. (A5) and
(A6) at large enough mQ ≫ Mij, where perturbative
evaluations are reliable, arriving at

Z
R

Mij

ImΠijðmÞ
m −mQ

dm −
Z

−Mij

−R

ImΠijðmÞ
m −mQ

dm

¼
Z

R

mij

ImΠbox
ij ðmÞ

m −mQ
dm −

Z
−mij

−R

ImΠbox
ij ðmÞ

m −mQ
dm: ðA7Þ

The contributions from the large circle CR on the two sides
have been canceled. The modified amplitudes ImΠijðmÞ
and ImΠbox

ij ðmÞ are even functions of m. Hence, we apply
the variable change m → −m to the second integrals on
both sides of Eq. (A7), which then reduces to Eq. (1) in the
standard form with the integration variable m2.
The variable changes m2

Q −m2
ij ¼ uΛ and m2 −m2

ij ¼
vΛ, with Λ being an arbitrary scale, turn Eq. (5) into

Z
∞

0

dv
ΔρijðvÞ
u − v

¼ 0: ðA8Þ

Since ΔρijðvÞ diminishes at large v, namely, the major
contribution to Eq. (A8) comes from the region with finite
v, we expand Eq. (A8) into a power series in 1=u for
sufficiently large but still arbitrary u by inserting
1=ðu − vÞ ¼ P∞

i¼k v
k−1=uk. Equation (A8) thus demands

a vanishing coefficient for every power of 1=u. We start
with the case with N vanishing coefficients,
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Z
∞

0

dvvk−1ΔρijðvÞ ¼ 0; k ¼ 1; 2; 3 � � � ; N; ðA9Þ

where N will be extended to infinity eventually. The first N

generalized Laguerre polynomials LðαÞ
0 ðvÞ; LðαÞ

1 ðvÞ;…;

LðαÞ
N−1ðvÞ are composed of the terms 1, v;…; vN−1 appearing

in the above expressions. Therefore, Eq. (A9) implies an

expansion of ΔρijðvÞ in terms of LðαÞ
k ðvÞ with degrees k not

lower than N,

ΔρijðvÞ ¼
XNij

k¼N

aðkÞij v
αije−vL

ðαijÞ
k ðvÞ; Nij > N; ðA10Þ

owing to the orthogonality of the polynomials, in which

aðkÞij represent a set of unknown coefficients. The index αij
describes the behavior of ΔρijðvÞ around v ∼ 0. The
highest degree Nij can be fixed, in principle, by the initial
condition −ImΠbox

ij ðvÞ of ΔρijðvÞ in the interval ð0; ðM2
ij −

m2
ijÞ=ΛÞ of v. Because −ImΠbox

ij ðvÞ is a smooth function,
Nij needs not be infinite.
A generalized Laguerre polynomial takes the approxi-

mate form for large k, LðαÞ
k ðvÞ ≈ kα=2v−α=2ev=2Jαð2

ffiffiffiffiffi
kv

p Þ
[42], up to corrections of 1=

ffiffiffi
k

p
. Equation (A10) becomes

ΔρijðmÞ ≈
XNij

k¼N

aðkÞij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðm2 −m2

ijÞ
Λ

s
αij

e−ðm
2−m2

ijÞ=ð2ΛÞ

× Jαij

0
@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðm2 −m2

ijÞ
Λ

s 1
A; ðA11Þ

where v ¼ ðm2 −m2
ijÞ=Λ has been inserted. Defining the

scaling variable ω≡ ffiffiffiffiffiffiffiffiffiffi
N=Λ

p
, we have the approximation

Nij=Λ ¼ ω2½1þ ðNij − NÞ=N� ≈ ω2 for finite Nij − N.

The common Bessel functions Jαijð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðm2 −m2

ijÞ=Λ
q

Þ ≈
Jαijð2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

ij

q
Þ for k ¼ N;N þ 1;…; Nij can be fac-

tored out, such that the unknown coefficients are summed

into a single parameter yij ¼
PNij

k¼N aðkÞij . We are allowed to
treat ω as a finite variable, though both N and Λ can be
arbitrarily large. The arbitrariness of Λ, which traces back
to that of the large circle radius R, goes into the variable ω.

The exponential suppression factor e−ðm
2−m2

ijÞ=ð2ΛÞ ¼
e−ω

2ðm2−m2
ijÞ=ð2NÞ is further replaced by unity for finite ω

and large N. Equation (A11) then gives the solution
in Eq. (6).
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