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The flavor structure of quarks and leptons is not yet fully understood, but it hints a more fundamental
theory of nonuniversal generations. We therefore propose a simple extension of the Standard Model by
flipping (i.e., enlarging) the hypercharge Uð1ÞY to Uð1ÞX ⊗ Uð1ÞN for which both X and N depend on
generations of both quark and lepton. By anomaly cancellation, this extension not only explains the
existence of just three fermion generations as observed but also requires the presence of a right-handed
neutrino per generation, which motivates seesaw neutrino mass generation. Furthermore, in its minimal
version with a scalar doublet and two scalar singlets, the model naturally generates the measured fermion-
mixing matrices while it successfully accommodates several flavor anomalies observed in the neutral
meson mixings, B-meson decays, lepton-flavor-violating processes of charged leptons, as well as satisfying
constraints from particle colliders.
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I. INTRODUCTION

Although the Standard Model (SM) has been highly
successful in describing observed phenomena, it leaves
many striking features of the physics of our world unex-
plained. This work focuses on the issues relating to the
number of fermion generations, the generation of neutrino
masses, fermion mass hierarchies, and flavor mixing
profiles [1].
In the SM, the electroweak symmetry reveals a partial

unification of weak and electromagnetic interactions, which
is based upon the non-Abelian gauge group SUð2ÞL ⊗
Uð1ÞY , where Y is an Abelian charge, well known as
hypercharge [2–5]. The electric charge operator takes the
form Q ¼ T3 þ Y, in which T3 is the third component of
the SUð2ÞLweak isospin. The value ofT3 is quantized due to

the non-Abelian nature of SUð2ÞL. In contrast, the value ofY
is entirely arbitrary on the theoretical ground because the
Abelian Uð1ÞY algebra is trivial. Indeed, the hypercharge is
often chosen to describe observed electric charges, while it
does not explain them. An interesting question relating to the
nature of the SM hypercharge is whether the conventional
choice of generation-universal hypercharge causes the SM to
be unable to address the issues. The present work does not
directly answer this question. Instead of that, we look for an
extension ofUð1ÞY to generation-dependentAbelian factors,
in general, which naturally solves the issues.
For this aim, we embed Uð1ÞY in Uð1ÞX ⊗ Uð1ÞN for

which both X and N are generation dependent but deter-
mining Y ¼ X þ N, as observed. It is clear that X, N may
be an intermediate new physics phase resulting from a GUT
and/or string breaking. Additionally, anomaly cancellation
fixes both the number of fermion generations and values of
X, N. Interestingly, we find for the first time that both quark
and lepton generations are not universal under a gauge
charge as of X, N. We investigate the model with a minimal
scalar content in detail, which is responsible for the small,
nonzero neutrino masses [6,7], the measured fermion-
mixing matrices [1,8], and several flavor-physics anoma-
lies, such as mass splittings in K- and B-meson systems
[1,9], B-meson decays [9,10], and lepton-flavor-violating
(LFV) processes of charged leptons [1,11–14].
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A few recent studies have attempted to explain the
observed fermion mass and mixing hierarchies by decom-
posing the SM hypercharge to family hypercharges, say
Uð1ÞY → Uð1ÞY1

⊗ Uð1ÞY2
⊗ Uð1ÞY3

[15] or Uð1ÞY →
Uð1ÞY1;2

⊗ Uð1ÞY3
[16], similar to baryon and lepton

numbers that can be decomposed to family baryon and
lepton numbers, respectively. The new observation of this
proposal is that each family hypercharge identifies a
relevant fermion family; hence, the number of family
hypercharges present in the theory explains the number
of the observed fermion families. The compelling feature
of this approach is that if the Higgs doublet(s) carry the
only third family hypercharge, then the only third family
Yukawa couplings are allowed at the renormalizable level;
by contrast, the remaining Yukawa couplings are sup-
pressed, arising only from nonrenormalizable operators.
Consequently, both the models successfully describe
charged fermion mass and mixing hierarchies. However,
the reason for the existence of the observed fermion
families is not convincing yet. This is because, in both
models, every anomaly is canceled separately within each
family, as in the SM. Therefore, there is no reason why each
family hypercharge contains only a fermion family (since
various repeated fermion families may be allowed and
assigned to the same family hypercharge); thus, the number
of fermion families is arbitrary. Below, we present a novel
model in which each fermion family is anomalous, and
the anomaly cancellation restricts the number of fermion
families to three.
Let us emphasize the two features of the present work.

First, we argue that the number of fermion generations
is precisely three, as observed, which comes only from
anomaly cancellation. This is quite different from the 3-3-1
model [17–25] as well as our previous proposals [26–29], in
which anomaly cancellation implies that the fermion gen-
eration number is an integer multiple of three, and then it is
necessary to add the QCD asymptotic freedom condition to
get the number of fermion generations equal to three. Second,
in the present work, we consider the possibility that the first
lepton generation (the third quark generation) carriesAbelian
charges different from the remaining lepton (quark) gener-
ations under the new gauge groups, Uð1ÞX ⊗ Uð1ÞN .
Consequently, the fermion-mixing matrices are recovered,
appropriate to experiment [1,8], because necessary small
mixings arise only from nonrenormalizable operators.
Interestingly enough, flavor-changing neutral currents
(FCNCs) appear at the tree level in both the quark and
lepton sectors.
The rest of this work is organized as follows. We present

the new model in Sec. II. We investigate the fermion mass
spectra in Sec. III. We diagonalize the gauge and scalar
sectors in Sec. IV to identify physical fields. We determine
the interactions of fermions and gauge bosons in Sec. V. We
examine flavor physics observables and compare them to
experimental results in Sec. VI. We discuss the collider

bounds in Sec. VII. Finally, we summarize our results and
conclude this work in Sec. VIII.

II. THE MODEL

A. Anomaly cancellation and generation number

As mentioned, the model under consideration is based on
gauge symmetry,

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN; ð1Þ

in which the first two factors are exactly those of the SM,
whereas the last two factors are flipped (i.e., extended) from
the weak hypercharge symmetry Uð1ÞY. The new gauge
charges depend on flavors of both quarks and leptons as

X ¼ 3z½Bir2ðr−1Þ þ Lirðr−1Þ�; ð2Þ

N ¼ Y − X; ð3Þ

where BðLÞ denotes normal baryon (lepton) number, Y
labels the hypercharge, z is an arbitrary nonzero para-
meter, i is the imaginary unit, and r is a flavor index,

r ¼ 1; 2;…; Nf. Notice that X is Hermitian, since irðr−1Þ ¼
ð−1Þrðr−1Þ2 is always real. Additionally, the charges X’s of
quark and lepton generations determined by Eq. (2) are
either the same or opposite in sign, leading to reduced
degrees of freedom in the model. The electric charge
operator is embedded in the gauge symmetry as

Q ¼ T3 þ X þ N ð4Þ

with Tn (n ¼ 1; 2; 3) as the SUð2ÞL generators. The SM
fermions transform under the gauge symmetry as follows:

lrL ¼ ðνrL; erLÞT ∼ ð1; 2; 3zirðr−1Þ;−1=2 − 3zirðr−1ÞÞ; ð5Þ

erR ∼ ð1; 1; 3zirðr−1Þ;−1 − 3zirðr−1ÞÞ; ð6Þ

qrL ¼ ðurL; drLÞT ∼ ð3; 2; zir2ðr−1Þ; 1=6 − zir
2ðr−1ÞÞ; ð7Þ

urR ∼ ð3; 1; zir2ðr−1Þ; 2=3 − zir
2ðr−1ÞÞ; ð8Þ

drR ∼ ð3; 1; zir2ðr−1Þ;−1=3 − zir
2ðr−1ÞÞ: ð9Þ

It is interesting that the charge X defined by Eq. (2) is
periodic in r with period 4, i.e., with r ¼ 1; 2; 3; 4; 5;
6; 7; 8;…, then

X ¼ z; z;−z; z; z; z;−z; z; � � � ð10Þ

for the quark generations and

X ¼ 3z;−3z;−3z; 3z; 3z;−3z;−3z; 3z; � � � ð11Þ
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for the lepton generations. Hence, we express the number
of fermion generations as Nf ¼ 4x − y with x ¼ 1; 2; 3;…
and y ¼ 0; 1; 2; 3. Take an example,Nf ¼ 5 then x ¼ 2 and
y ¼ 3. Considering the anomaly ½SUð2ÞL�2Uð1ÞX, we get

½SUð2ÞL�2Uð1ÞX ∼
X

doublets

XfL ¼
�
6zðx− 1Þ if y¼ 1

6zx if y¼ 0;2;3
;

ð12Þ

which implies that this anomaly is canceled if and only
if x ¼ y ¼ 1, or equivalently Nf ¼ 3 as observed.1

Because of lepton and quark generation discrepancies,
we conveniently use two kinds of generation indices, such
as α; β ¼ 1; 2 for the first two quark generations, while
a; b ¼ 2; 3 for the last two lepton generations; generically,
n;m ¼ 1; 2; 3 run over Nf ¼ 3.
With Nf ¼ 3 and the fermion content as in Eqs. (5)–(9),

two anomalies ½Gravity�2Uð1ÞX and ½Uð1ÞX�3 are not
canceled yet, namely

½Gravity�2Uð1ÞX ∼
X

fermions

ðXfL − XfRÞ ¼ −3z; ð13Þ

½Uð1ÞX�3 ∼
X

fermions

ðX3
fL

− X3
fR
Þ ¼ −27z3: ð14Þ

To cancel these anomalies, we introduce right-handed
neutrinos νpR ∼ ð1; 1; XνpR ;−XνpRÞ for p ¼ 1; 2;…; NR

into the theory as fundamental constituents, satisfying

XNR

p¼1

XνpR ¼ −3z;
XNR

p¼1

X3
νpR ¼ −27z3: ð15Þ

Solving the equations in Eq. (15), as well as requiring that
at least two right-handed neutrinos be identically respon-
sible for neutrino mass generation, we obtain a unique
nontrivial solution, such as

Xν1R ¼ 3z; XνaR ¼ −3z; ð16Þ

which implies that the resulting right-handed neutrinos
have the lepton number as usual.2

With presence of the three right-handed neutrinos,
whose X charges obey Eq. (16), it is easily checked
that the remaining anomalies, including ½SUð3ÞC�2Uð1ÞX,
½SUð3ÞC�2Uð1ÞN , ½SUð2ÞL�2Uð1ÞN , ½Gravity�2Uð1ÞN ,

½Uð1ÞN �3, ½Uð1ÞX�2Uð1ÞN , and Uð1ÞX½Uð1ÞN �2, are all
canceled, independent of arbitrary z.

B. Minimal particle content and symmetry breaking

The particle content of the model, including fermions
and scalars, as well as their quantum numbers under the
gauge symmetry, are listed in Table I. In addition to the SM
fermions, three right-handed neutrinos must be included as
fundamental fermions to suppress the anomalies, as shown
in the previous subsection. Concerning the scalar sector, we
introduce two singlets χ1;2 and a doublet ϕ under SUð2ÞL.
The singlets χ1;2 are necessarily presented to break
Uð1ÞX ⊗ Uð1ÞN down to the weak hypercharge symmetry
Uð1ÞY , provide the Majorana masses for right-handed
neutrinos, and recover the mixing matrices in quark and
lepton sectors. Of course, the scalar doublet ϕ that is
identified to the SM-Higgs doublet must be used to break
SUð2ÞL ⊗ Uð1ÞY down to the electromagnetic symmetry
Uð1ÞQ and generate the masses for ordinary charged
fermions, as well as Dirac masses for neutrinos.
The scheme of symmetry breaking is given by

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞX ⊗ Uð1ÞN
↓Λ1;2

SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY
↓v

SUð3ÞC ⊗ Uð1ÞQ:

Here, the scalar fields develop the vacuum expectation
values (VEVs), such as

TABLE I. Matter content in the model, where α ¼ 1; 2 and
a ¼ 2; 3 are generation indices, while z is an arbitrarily nonzero
parameter.

Multiplets SUð3ÞC SUð2ÞL Uð1ÞX Uð1ÞN
l1L ¼ ðν1L; e1LÞT 1 2 3z −1=2 − 3z
ν1R 1 1 3z −3z
e1R 1 1 3z −1 − 3z
laL ¼ ðνaL; eaLÞT 1 2 −3z −1=2þ 3z
νaR 1 1 −3z 3z
eaR 1 1 −3z −1þ 3z
qαL ¼ ðuαL; dαLÞT 3 2 z 1=6 − z
uαR 3 1 z 2=3 − z
dαR 3 1 z −1=3 − z
q3L ¼ ðu3L; d3LÞT 3 2 −z 1=6þ z
u3R 3 1 −z 2=3þ z
d3R 3 1 −z −1=3þ z
ϕ ¼ ðϕþ

1 ;ϕ
0
2ÞT 1 2 0 1=2

χ1 1 1 2z −2z
χ2 1 1 6z −6z

1The result Nf ¼ 3 is unique and independent of the QCD
asymptotic freedom condition. This is quite different from the
3-3-1 model [17–25] as well as our previous works [26–29].

2The solution as obtained differs from that in the conven-
tional Uð1ÞB−L extension whose ðB − LÞνnR ¼ ð−1;−1;−1Þ or
ðB − LÞνnR ¼ ð−4;−4; 5Þ [30,31].
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hϕi ¼
�

0

vffiffi
2

p

�
; hχ1i ¼

Λ1ffiffiffi
2

p ; hχ2i ¼
Λ2ffiffiffi
2

p ; ð17Þ

satisfying v ¼ 246 GeV and Λ1;2 ≫ v for consistency with
the SM.
Notice that the scalar content introduced above is

minimal. Alternatively, a generic model can be constructed
by introducing two new scalar doublets, namely ϕ0 ∼
ð1; 2; 2z; 1=2 − 2zÞ and ϕ00 ∼ ð1; 2; 6z; 1=2 − 6zÞ, in addi-
tion to the usual doublet ϕ, while the scalar singlet χ2
must be retained for breaking Uð1ÞX ⊗ Uð1ÞN → Yð1ÞY as
well as providing Majorana right-handed neutrino masses

(note that χ1 can be omitted). This would produce renor-
malizable Yukawa couplings by ϕ0;ϕ00 instead of the
nonrenormalizable ones (see below), which recover a
complete mixing in the quark and lepton sectors at tree
level. Additionally, such a model presents phenomenologi-
cal aspects of interest that differ from the current model and
should be published elsewhere.

III. FERMION MASS

The Yukawa Lagrangian for quarks and leptons in the
current model is given by

LYukawa ¼ ydαβq̄αLϕdβR þ yd33q̄3Lϕd3R þ ydα3
M

q̄αLϕχ1d3R þ yd3β
M

q̄3Lϕχ�1dβR

þ yuαβq̄αLϕ̃uβR þ yu33q̄3Lϕ̃u3R þ yuα3
M

q̄αLϕ̃χ1u3R þ yu3β
M

q̄3Lϕ̃χ�1uβR

þ ye11l̄1Lϕe1R þ yeabl̄aLϕebR þ ye1b
M

l̄1Lϕχ2ebR þ yea1
M

l̄aLϕχ�2e1R

þ yν11l̄1Lϕ̃ν1R þ yνabl̄aLϕ̃νbR þ yν1b
M

l̄1Lϕ̃χ2νbR þ yνa1
M

l̄aLϕ̃χ�2ν1R

þ 1

2
fν11ν̄

c
1Rχ

�
2ν1R þ 1

2
fνabν̄

c
aRχ2νbR þ Fν

1bν̄
c
1RνbR þ H:c:; ð18Þ

where ϕ̃ ¼ iσ2ϕ� with σ2 is the second Pauli matrix,M is a
new physics scale that defines the effective interactions,
and the couplings y and f are dimensionless. The bare mass
F connects ν1R and ν2;3R, possibly obtaining a value
ranging from zero to M.

A. Charged fermion mass

From terms in the first three lines of Eq. (18), we obtain
the mass matrices for charged fermions, which are given by

½Mq�αβ ¼ −yqαβ
vffiffiffi
2

p ; ½Mq�33 ¼ −yq33
vffiffiffi
2

p ; ð19Þ

½Mq�α3 ¼ −yqα3
vΛ1

2M
; ½Mq�3β ¼ −yq3β

vΛ1

2M
; ð20Þ

½Me�11 ¼ −ye11
vffiffiffi
2

p ; ½Me�ab ¼ −yeab
vffiffiffi
2

p ; ð21Þ

½Me�1b ¼ −ye1b
vΛ2

2M
; ½Me�a1 ¼ −yea1

vΛ2

2M
; ð22Þ

where q ¼ u; d. Notice that the small mixing between the
first two quark generations and the third quark generation
can be induced by either yqα3; y

q
3β < yqαβ; y

q
33 or Λ1 < M,

while between the first and last two lepton generations can
be understood by either ye1b; y

e
a1 < yq11; y

e
ab or Λ2 < M. By

applying biunitary transformations, we can diagonalize

these mass matrices separately, and then get the realistic
masses of the up quarks u; c; t, the down quarks d; s; b, as
well as the charged leptons e; μ; τ, such as

V†
uLMuVuR ¼ MD

u ¼ diagðmu;mc;mtÞ; ð23Þ

V†
dL
MdVdR ¼ MD

d ¼ diagðmd;ms;mbÞ; ð24Þ

V†
eLMeVeR ¼ MD

e ¼ diagðme;mμ; mτÞ; ð25Þ

where VuL;R , VdL;R , and VeL;R are unitary matrices, linking
gauge states, u ¼ ðu1; u2; u3ÞT , d ¼ ðd1; d2; d3ÞT , and
e ¼ ðe1; e2; e3ÞT , to mass eigenstates, u0 ¼ ðu; c; tÞT ,
d0 ¼ ðd; s; bÞT , and e0 ¼ ðe; μ; τÞT , respectively,

uL;R ¼ VuL;Ru
0
L;R; dL;R ¼ VdL;Rd

0
L;R; eL;R ¼ VeL;Re

0
L;R:

ð26Þ

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is then
given by V ¼ V†

uLVdL.

B. Neutrino mass

In the current model, neutrinos have both Dirac and
Majorana mass terms, and their total mass matrix takes a
specific form,
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LYukawa ⊃ −
1

2
ð ν̄cL ν̄R Þ

�
0 MD

MT
D MM

��
νL

νcR

�
þ H:c:;

ð27Þ

where νL;R ¼ ðν1; ν2; ν3ÞTL;R are related to gauge states,
and MD and MM are respectively the Dirac and Majorana
mass matrices,

½MD�11 ¼ −yν11
vffiffiffi
2

p ; ½MD�ab ¼ −yνab
vffiffiffi
2

p ; ð28Þ

½MD�1b ¼ −yν1b
vΛ2

2M
; ½MD�a1 ¼ −yνa1

vΛ2

2M
; ð29Þ

½MM�11 ¼ −fν11
Λ2ffiffiffi
2

p ; ½MM�ab ¼ −fνab
Λ2ffiffiffi
2

p ; ð30Þ

½MM�1b ¼ −Fν
1b; ½MM�a1 ¼ −Fν

1a: ð31Þ

SupposingM > Λ2 ≫ v, i.e.,MM ≫ MD, the total mass
matrix of neutrinos in Eq. (27) can be diagonalized via a
transformation as

�
νL

νcR

�
≃
�

1 κ�

−κT 1

��
VνL 0

0 V�
νR

��
ν0L
ν0cR

�
; ð32Þ

where κ is the νL-νR mixing element, κ ¼ MDM−1
M ∼

v=ðΛ2;MÞ, while ν0L;R ¼ ðν01; ν02; ν03ÞTL;R are related to mass
eigenstates, connecting to νL;R via unitary matrices VνL;R as

νL ≃ VνLν
0
L; νR ≃ VνRν

0
R: ð33Þ

Then, the mass eigenvalues are approximately given by

diagðm1; m2; m3Þ ≃ −VT
νLMDM−1

M MT
DVνL ; ð34Þ

diagðM1;M2;M3Þ ≃ V†
νRMMV�

νR ; ð35Þ

in which m1;2;3 ∼ v2=Λ2 are appropriately small, identified
with the observed neutrino masses, whereasM1;2;3 ∼ Λ2 are
the sterile neutrino masses, being at the new physics scale.
Note that the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix can be written asU ¼ V†

eLVνL . Note also that F only
contributes to right-handed neutrino mixing but does not
set the seesaw scale.

IV. GAUGE AND SCALAR SECTORS

A. Gauge sector

The gauge bosons acquire masses via the scalar kinetic
term

P
S¼ϕ;χ1;χ2ðDμhSiÞ†ðDμhSiÞ when the gauge sym-

metry breaking occurs. The covariant derivative takes
the form

Dμ ¼ ∂μ þ igstpGpμ þ igTnAnμ þ igXXBμ þ igNNCμ;

ð36Þ

where ðgs; g; gX; gNÞ, ðtp; Tn; X; NÞ, and ðGp; An; B; CÞ
are coupling constants, generators, and gauge bosons
of the (SUð3ÞC, SUð2ÞL, Uð1ÞX, Uð1ÞN) groups, respec-
tively. Identifying the charged gauge bosons as W�

μ ¼
ðA1μ ∓ iA2μÞ=

ffiffiffi
2

p
, we obtain

L ⊃
g2v2

4
WμþW−

μ þ 1

2
ðAμ

3B
μCμÞM2

0ðA3μBμCμÞT; ð37Þ

where

M2
0 ¼

0
BB@

1
4
g2v2 0 − 1

4
ggNv2

0 4g2Xz
2ðΛ2

1 þ 9Λ2
2Þ −4gXgNz2ðΛ2

1 þ 9Λ2
2Þ

− 1
4
ggNv2 −4gXgNz2ðΛ2

1 þ 9Λ2
2Þ 1

4
g2N ½16z2ðΛ2

1 þ 9Λ2
2Þ þ v2�

1
CCA: ð38Þ

Hence, the boson W is a physical field by itself with mass
m2

W ¼ g2v2=4, which is identified to the SMW boson, thus
v ¼ 246 GeV, as expected.
Concerning the neutral gauge bosons, the mass-

squared matrix M2
0 always has a zero eigenvalue (i.e.,

photon mass) with corresponding eigenstate (i.e., photon
field),

A ¼ gXgNA3 þ ggNBþ ggXCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Xg

2
N þ g2g2N þ g2g2X

p : ð39Þ

From here, the interaction of the photon with fermions
can be calculated [32]. Identifying the coefficient of
these interaction vertices with the electromagnetic coupling
constant, we get the sine of the Weinberg’s angle as
sW ¼ gXgN=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Xg

2
N þ g2g2N þ g2g2X

p
, and thus the hyper-

charge coupling to be gY ¼ gXgN=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2X þ g2N

p
¼ gXsθ ¼

gNcθ, where the angle θ is defined by tθ ¼ gN=gX. We
rewrite the photon field,

A ¼ sW A3 þ cWðsθBþ cθCÞ: ð40Þ

QUESTIONS OF FLAVOR PHYSICS AND NEUTRINO MASS … PHYS. REV. D 109, 115022 (2024)

115022-5



Hence, we define the SM Z boson orthogonal to the photon
A and a new gauge boson Z0 orthogonal to both A and Z,
such as

Z ¼ cWA3 − sWðsθBþ cθCÞ; ð41Þ

Z0 ¼ cθB − sθC: ð42Þ

In the new basis (A; Z; Z0), the photon A is decoupled as a
physical field, whereas two states Z and Z0 still mix by
themselves via a 2 × 2 symmetric submatrix with the
elements

m2
Z ¼ g2v2

4c2W
; m2

ZZ0 ¼ g2v2

4c2W
sWtθ; ð43Þ

m2
Z0 ¼ g2t2W

s22θ
½16z2ðΛ2

1 þ 9Λ2
2Þ þ s4θv

2�: ð44Þ

Diagonalizing this submatrix, we get two physical fields,

Z1 ¼ cφZ − sφZ0; Z2 ¼ sφZ þ cφZ0; ð45Þ

and two corresponding masses,

m2
Z1

¼ 1

2

h
m2

Z þm2
Z0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Z −m2
Z0 Þ2 þ 4m4

ZZ0

q i

≃m2
Z −

m4
ZZ0

m2
Z0

; ð46Þ

m2
Z2

¼ 1

2

h
m2

Z þm2
Z0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Z −m2
Z0 Þ2 þ 4m4

ZZ0

q i
≃m2

Z0 ;

ð47Þ

where the approximations apply due to v ≪ Λ1;2. Also, the
mixing angle φ in Eq. (45) is given by

t2φ ¼ 2m2
ZZ0

m2
Z0 −m2

Z
≃

s3θcθv
2

8sWz2ðΛ2
1 þ 9Λ2

2Þ
: ð48Þ

It is easy to see that the Z-Z0 mixing is small as suppressed
by v2=Λ2

1;2. Additionally, the field Z1 has a mass approxi-
mating that of the SM, and thus, it is called the SM Z-like
boson, whereas the field Z2 is a new heavy gauge boson
with mass at Λ1;2 scale.
It is noteworthy that the present model contains two

Abelian gauge groups Uð1ÞX;N , in which the SM fermions
have both nonzero Uð1ÞX and Uð1ÞN charges. Con-
sequently, a nonzero gauge kinetic mixing between two
relevant gauge bosons, i.e., L ⊃ − 1

2
ϵ0BμνCμν, can arise at

the one-loop level, given that this mixing vanishes at
a high-energy scale due to some grand unification.
Therefore, the Z-Z0 mixing is not only given by the mass
mixing discussed above but also induced by the gauge

kinetic mixing. Additionally, this kinetic mixing is
easily computed by generalizing the result in [33] to
be ϵ0 ¼ gXgN

24π2
P

f XfðNfL þ NfRÞ ln mr
mf
, where f runs over

every fermion of the SM with mass mf, and mr is a

renormalization scale. Thus, we estimate ϵ0∼ 10−4

24π2
×

ðgX
0.1ÞðgN0.1Þð z

0.01Þ ln ½1014ð mr
1016 GeV

Þð102 GeVmf
Þ�∼ 10−5. This kinetic

mixing effect is radically smaller than that from the tree-
level mass mixing, since φ ∼ 10−3 ≫ ϵ0 ∼ 10−5, taking
Λ1;2 ≳Oð10Þ TeV (see below). Hence, the gauge kinetic
mixing is negligible and suppressed.

B. Scalar sector

The current model’s scalar sector contains a doublet ϕ
and two singlets χ1;2 under SUð2ÞL. Thus, the scalar
potential has a simple form as

V ¼ μ21ϕ
†ϕþ μ22χ

�
1χ1 þ μ23χ

�
2χ2 þ ðλχ31χ�2 þ H:c:Þ

þ λ1ðϕ†ϕÞ2 þ λ2ðχ�1χ1Þ2 þ λ3ðχ�2χ2Þ2
þ λ4ðϕ†ϕÞðχ�1χ1Þ þ λ5ðϕ†ϕÞðχ�2χ2Þ þ λ6ðχ�1χ1Þðχ�2χ2Þ;

ð49Þ
where the couplings λ’s are dimensionless, whereas μ’s
have a mass dimension. The necessary conditions for this
scalar potential to be bounded from below and yielding a
desirable vacuum structure are

μ21;2;3 < 0; jμ1j ≪ jμ2;3j; λ1;2;3 > 0; ð50Þ

λ4 > −2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; λ5 > −2

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; λ6 > −2

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
:

ð51Þ

To obtain the physical scalar spectrum, we expand the
scalar fields around their VEVs, such as

ϕ ¼
� ϕþ

1

1ffiffi
2

p ðvþ S1 þ iA1Þ
�
; ð52Þ

χ1 ¼
1ffiffiffi
2

p ðΛ1 þ S2 þ iA2Þ; χ2 ¼
1ffiffiffi
2

p ðΛ2 þ S3 þ iA3Þ;

ð53Þ
and then substitute them into the scalar potential. By using
the potential minimum conditions given by

2λ1v2 þ λ4Λ2
1 þ λ5Λ2

2 þ 2μ21 ¼ 0; ð54Þ

2λ2Λ2
1 þ λ4v2 þ λ6Λ2

2 þ 3λΛ1Λ2 þ 2μ22 ¼ 0; ð55Þ

λΛ3
1 þ ð2λ3Λ2

2 þ λ5v2 þ λ6Λ2
1 þ 2μ23ÞΛ2 ¼ 0; ð56Þ

we get the mass-squared matrix for CP-even scalar
sector as
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M2
S¼

0
B@

2λ1v2 λ4vΛ1 λ5vΛ2

λ4vΛ1
1
2
ð4λ2Λ1þ3λΛ2ÞΛ1

1
2
ð2λ6Λ1Λ2þ3λΛ2

1Þ
λ5vΛ2

1
2
ð2λ6Λ1Λ2þ3λΛ2

1Þ 1
2Λ2

ð4λ3Λ3
2−λΛ3

1Þ

1
CA:

ð57Þ

Because of the condition, v ≪ Λ1;2, the first row and
first column of M2

S consist of elements much smaller than
those of the rest. Therefore, the matrix M2

S can be
diagonalized by using the seesaw approximation to sepa-
rate the light state (S1) from the heavy states (S2;3).
Labeling the new basis as (H;H1; H2), for which H is
decoupled as a physical field, we have

H ≃ S1 − ϵ1S2 − ϵ2S3 ð58Þ

with a corresponding mass

m2
H ≃ 2λ1v2 − ðϵ1λ4Λ1 þ ϵ2λ5Λ2Þv; ð59Þ

while the remaining states H1 ≃ ϵ1S1 þ S2 and H2 ≃
ϵ2S1 þ S3 mix by themselves via a submatrix as

M2≃
1

2

� ð4λ2Λ1þ 3λΛ2ÞΛ1 ð2λ6Λ2þ 3λΛ1ÞΛ1

ð2λ6Λ2þ 3λΛ1ÞΛ1
1
Λ2
ð4λ3Λ3

2 − λΛ3
1Þ

�
: ð60Þ

Above, the mixing parameters are given by

ϵ1 ¼
½λðλ4Λ3

1 þ 3λ5Λ1Λ2
2Þ − 2ð2λ3λ4 − λ5λ6ÞΛ3

2�v
2½3λ2Λ3

1Λ2 þ λðλ2Λ4
1 − 3λ3Λ4

2 þ 3λ6Λ2
1Λ2

2Þ − ð4λ2λ3 − λ26ÞΛ1Λ3
2�
; ð61Þ

ϵ2 ¼
½3λðλ4Λ2

1 − λ5Λ2
2Þ − 2ð2λ2λ5 − λ4λ6ÞΛ1Λ2�vΛ2

2½3λ2Λ3
1Λ2 þ λðλ2Λ4

1 − 3λ3Λ4
2 þ 3λ6Λ2

1Λ2
2Þ − ð4λ2λ3 − λ26ÞΛ1Λ3

2�
; ð62Þ

which are small as suppressed by v=Λ1;2.
Diagonalizing the submatrix M2, we get two physical fields,

H1 ¼ cξH1 − sξH2; H2 ¼ sξH1 þ cξH2; ð63Þ

with corresponding masses

m2
H1;2

¼ 1

4Λ2

n
4λ3Λ3

2 − λΛ3
1 þ ð4λ2Λ1 þ 3λΛ2ÞΛ1Λ2

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½4λ3Λ3

2 − λΛ3
1 − ð4λ2Λ1 þ 3λΛ2ÞΛ1Λ2�2 þ 4ð2λ6Λ2 þ 3λΛ1Þ2Λ2

1Λ2
2

q o
; ð64Þ

where the mixing angle ξ is given by

t2ξ ¼
2ð2λ6Λ2 þ 3λΛ1ÞΛ1Λ2

4λ3Λ3
2 − λΛ3

1 − ð4λ2Λ1 þ 3λΛ2ÞΛ1Λ2

: ð65Þ

The Higgs boson H has a mass in weak scale like the SM
Higgs boson, so H is called the SM-like Higgs boson,
whereas H1;2 are the new Higgs bosons, heavy in Λ1;2

scale.
The CP-odd scalars, A1;2;3, mix by themselves via a

mass-squared matrix

M2
A ¼ λ

2

0
B@

0 0 0

0 −9Λ1Λ2 3Λ2
1

0 3Λ2
1 −Λ3

1=Λ2

1
CA: ð66Þ

This matrix has exactly two zero eigenvalues correspond-
ing to two eigenstates,

GZ1
¼ A1; GZ2

¼ Λ1A2 þ 3Λ2A3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
1 þ 9Λ2

2

p ; ð67Þ

which are the Goldstone bosons associated with the neutral
gauge bosons, Z1 and Z2, respectively. The remaining
eigenstate labeled A is a physical pseudoscalar orthogonal
to GZ2

, heavy at the Λ1;2 scale, namely

A ¼ 3Λ2A2 − Λ1A3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
1 þ 9Λ2

2

p ; m2
A ¼ −

λðΛ2
1 þ 9Λ2

2ÞΛ1

2Λ2

: ð68Þ

Here, the requirement of positive squared mass implies the
parameter λ to be negative.
Concerning the charged scalars, we obtain a massless

eigenstate, G�
W ≡ ϕ�

1 , identical to the Goldstone boson
eaten by the SM W boson.
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V. FERMION-GAUGE BOSON INTERACTION

We now consider the interaction of gauge bosons with
fermions, which results from the fermion kinetic term, i.e.,P

F F̄iγ
μDμF, where F runs over fermion multiplets in the

model. For convenience, we rewrite the covariant derivative
in Eq. (36) in the new form of

Dμ ¼ ∂μþ igstpGpμþ igsWQAμþ igðTþWþ
μ þH:c:Þ

þ ig
cW

�
cφðT3− s2WQÞ− sφ

sW
sθcθ

ðX− s2θYÞ
�
Z1μ

þ ig
cW

�
sφðT3 − s2WQÞþ cφ

sW
sθcθ

ðX− s2θYÞ
�
Z2μ; ð69Þ

where T� ¼ ðT1 � iT2Þ=
ffiffiffi
2

p
are the weight-raising and

lowering operators of the SUð2ÞL group. Notice that Q, T3,
and Y are universal for every flavor of neutrinos, charged
leptons, up-type quarks, and down-type quarks, but X is
not. Consequently, both Z1 and Z2 flavor-change when
interacting with fermions, in which the flavor-changing
effect associated with Z1 results from the Z–Z0 mixing to be
small, whereas the flavor change associated with Z2 is
dominant, even for φ ¼ 0.
It is easily checked that the interaction of gluons and

photon with fermions is similar to the SM, while the
interaction of theW boson with fermions is modified by the
PMNS matrix,

L ⊃ −
gffiffiffi
2

p ðν̄iLγμU†
ijejL þ ūiLγμVijdjLÞWþ

μ þ H:c:; ð70Þ

where i; j ¼ 1; 2; 3 are mass eigenstate indexes, i.e.,
νiL ¼ fν01L; ν02L; ν03Lg, ei ¼ fe; μ; τg, ui ¼ fu; c; tg, and
di ¼ fd; s; bg.
For the interaction of Z1;2 with fermions, using the

unitary condition of mixing matrices,

V†
νL;RVνL;R ¼V†

eL;RVeL;R ¼V†
uL;RVuL;R ¼V†

dL;R
VdL;R ¼ 1; ð71Þ

we obtain a flavor-conserving part, given in the form of

L ⊃ −
g

2cW
fCZI

1Lν̄
0
1Lγ

μν01L þ CZI
2Lðν̄02Lγμν02L þ ν̄03Lγ

μν03LÞ

þ CZI
R ðν̄01Rγμν01R − ν̄02Rγ

μν02R − ν̄03Rγ
μν03RÞ

þ f̄γμ½gZI
V ðfÞ − gZI

A ðfÞγ5�fgZIμ; ð72Þ

where I ¼ 1; 2, and f denotes the physical charged
fermions in the model. Additionally, the flavor-conserving
couplings are given by

CZ1

1L ¼ cφ − sφ
sW
sθcθ

ð6zþ s2θÞ;

CZ1

2L ¼ cφ þ sφ
sW
sθcθ

ð6z − s2θÞ; ð73Þ

CZ1

R ¼ −sφ
6sWz
sθcθ

; ð74Þ

gZ1

V ðfÞ ¼ cφ½T3ðfLÞ − 2QðfÞs2W �
− sφ

sW
sθcθ

f½T3ðfLÞ − 2QðfÞ�s2θ þ 2XðfÞg; ð75Þ

gZ1

A ðfÞ ¼ T3ðfLÞðcφ − sφsWtθÞ; ð76Þ

CZ2

1L;2L ¼ CZ1

1L;2Ljcφ→sφ;sφ→−cφ ; CZ2

R ¼ CZ1

R jsφ→−cφ ; ð77Þ

gZ2

V;AðfÞ ¼ gZ1

V;AðfÞjcφ→sφ;sφ→−cφ : ð78Þ

More specifically, we show the flavor-conserving couplings
of Z1;2 with the charged fermions in Tables II and III,
respectively. It is easy to see that the Z1 couplings with the
fermions are identical to those of the SM Z boson in the
limit φ → 0.
To obtain flavor-changing part, we look at fermion-Z1;2

interactions induced by X-charge, namely

L ⊃
zgtW
sθcθ

ðl̄L;RγμTllL;R þ q̄L;RγμTqqL;RÞðsφZ1μ − cφZ2μÞ;

ð79Þ

where we have denoted Tl ¼ diagð3;−3;−3Þ, Tq ¼
diagð1; 1;−1Þ, and l ¼ ν; e, while q ¼ u; d. Changing to

TABLE III. Flavor-conserving couplings of Z2 with the
charged fermions.

f gZ2

V ðfÞ gZ2

A ðfÞ
e sφð2s2W − 1

2
Þ þ 3cφsWð12 tθ þ 2z

sθcθ
Þ − 1

2
ðcφsWtθ þ sφÞ

μ, τ sφð2s2W − 1
2
Þ þ 3cφsWð12 tθ − 2z

sθcθ
Þ − 1

2
ðcφsWtθ þ sφÞ

u, c sφð12 − 4
3
s2WÞ − cφsWð56 tθ − 2z

sθcθ
Þ 1

2
ðcφsWtθ þ sφÞ

t sφð12 − 4
3
s2WÞ − cφsWð56 tθ þ 2z

sθcθ
Þ 1

2
ðcφsWtθ þ sφÞ

d, s sφð23 s2W − 1
2
Þ þ cφsWð16 tθ þ 2z

sθcθ
Þ − 1

2
ðcφsWtθ þ sφÞ

b sφð23 s2W − 1
2
Þ þ cφsWð16 tθ − 2z

sθcθ
Þ − 1

2
ðcφsWtθ þ sφÞ

TABLE II. Flavor-conserving couplings of Z1 with the charged
fermions.

f gZ1

V ðfÞ gZ1

A ðfÞ
e cφð2s2W − 1

2
Þ − 3sφsWð12 tθ þ 2z

sθcθ
Þ 1

2
ðsφsWtθ − cφÞ

μ, τ cφð2s2W − 1
2
Þ − 3sφsWð12 tθ − 2z

sθcθ
Þ 1

2
ðsφsWtθ − cφÞ

u, c cφð12 − 4
3
s2WÞ þ sφsWð56 tθ − 2z

sθcθ
Þ 1

2
ðcφ − sφsWtθÞ

t cφð12 − 4
3
s2WÞ þ sφsWð56 tθ þ 2z

sθcθ
Þ 1

2
ðcφ − sφsWtθÞ

d, s cφð23 s2W − 1
2
Þ − sφsWð16 tθ þ 2z

sθcθ
Þ 1

2
ðsφsWtθ − cφÞ

b cφð23 s2W − 1
2
Þ − sφsWð16 tθ − 2z

sθcθ
Þ 1

2
ðsφsWtθ − cφÞ
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the mass basis via transformations lL;R ¼ VlL;R l
0
L;R and

qL;R ¼ VqL;Rq
0
L;R, we obtain

L⊃
zgtW
sθcθ

ðl̄0L;RγμV†
lL;R

TlVlL;R l
0
L;Rþ q̄0L;Rγ

μV†
qL;RTqVqL;Rq

0
L;RÞ

× ðsφZ1μ− cφZ2μÞ

⊃
2zgtW
sθcθ

ð3½V�
lL
�1i½VlL �1jl̄iLγμljL− ½V�

qL �3i½VqL �3jq̄iLγμqjLÞ

× ðsφZ1μ− cφZ2μÞþ ðL→RÞ
≡ ðΓlL

ij l̄iLγ
μljLþΓqL

ij q̄iLγ
μqjLÞðsφZ1μ− cφZ2μÞ

þ ðL→RÞ; ð80Þ

which give rise to flavor-changing interactions for i ≠ j.
Here, we have labeled

ΓlL
ij ¼

6gztW
sθcθ

½V�
lL
�1i½VlL �1j; ΓqL

ij ¼ −
2gztW
sθcθ

½V�
qL �3i½VqL �3j:

ð81Þ

VI. FLAVOR PHENOMENOLOGIES

To explain some flavor anomalies based on flavor-
changing interactions in the current model, we first perform
some assumptions for related parameters. It has been
previously mentioned that the CKM and PMNS matrices
are determined as V ¼ V†

uLVdL and U ¼ V†
eLVνL , respec-

tively. For the sake of simplicity, in this section, we align
the lepton mixing to the charged lepton sector, i.e., VνL ¼ 1

and U ¼ V†
eL . Similarly, for the quark sector, we align

the quark mixing to the down quark sector, i.e., VuL ¼ 1

and V ¼ VdL . That said, we focus solely on studying the
flavor-changing of down quarks. It is noted that VuR;dR are
completely arbitrary on the experimental side, i.e., they
are not fixed by the current experiment, similar to those of
the SM. Therefore, we choose VuR ¼ 1, while we para-
metrize the right-handed down-type quark mixing matrix
VdR through three Euler’s angles θdRij and a CP-violating
phase δdR in the same way that we do so for the CKM and
PMNS matrices, namely

VdR ¼

0
BB@

cdR12c
dR
13 sdR12c

dR
13 sdR13e

−iδdR

−sdR12c
dR
23 − cdR12s

dR
13s

dR
23e

iδdR cdR12c
dR
23 − sdR12s

dR
13s

dR
23e

iδdR cdR13s
dR
23

sdR12s
dR
23 − cdR12s

dR
13c

dR
23e

iδdR −cdR12s
dR
23 − sdR12s

dR
13c

dR
23e

iδdR cdR13c
dR
23

1
CCA; ð82Þ

where cdRij ≡ cos θdRij and sdRij ≡ sin θdRij . Since VdR has not
been determined, as mentioned, the mixing angles θdRij and
the CP phase δdR are free. To reduce the degrees of
freedom, we assume that there is a relation among θdRij
following the Euler’s angles of CKM matrix θCKMij accord-
ing to one of the following four scenarios,

sdR13
sdR12

¼ sCKM13

sCKM12

;
sdR23
sdR12

¼ sCKM23

sCKM12

ðNormal relation−QNRÞ;

ð83Þ

sdR13
sdR12

¼ sCKM12

sCKM13

;
sdR23
sdR12

¼ sCKM12

sCKM23

ðInverted relation−QIRÞ;

ð84Þ

sdR13
sdR12

¼ sCKM13

sCKM12

;
sdR23
sdR12

¼ sCKM12

sCKM23

ðMixed relation−QMR1Þ;

ð85Þ

sdR13
sdR12

¼ sCKM12

sCKM13

;
sdR23
sdR12

¼ sCKM23

sCKM12

ðMixed relation−QMR2Þ;

ð86Þ

in which sCKMij ≡ sin θCKMij [34]. Hence, for each the
assumed relation, the matrix VdR contains only two free

parameters, sdR12 and δdR . Notice that the Euler’s angles of
the CKM matrix can be defined via the Wolfenstein
parameters λ; A; ρ̄; η̄ [35–37], i.e.,

sCKM12 ¼ λ; sCKM23 ¼ Aλ2;

sCKM13 ¼ Aλ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̄2 þ η̄2

q
=ð1 − λ2=2Þ: ð87Þ

Similarly, although we have imposed U ¼ V†
eL , the right-

handed charged lepton mixing matrix VeR is still arbitrary
on the experimental side. Thus, we can parametrize it via
three Euler’s angles θeRij and aCP phase δeR in the sameway
above and assume that there are four different scenarios of
relation among θeRij following the mixing angles of PMNS
matrix θPMNS

ij , such as

seR12
seR23

¼ sPMNS
12

sPMNS
23

;
seR13
seR23

¼ sPMNS
13

sPMNS
23

ðNormal relation−LNRÞ;

ð88Þ
seR12
seR23

¼ sPMNS
23

sPMNS
12

;
seR13
seR23

¼ sPMNS
23

sPMNS
13

ðInverted relation−LIRÞ;

ð89Þ
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seR12
seR23

¼ sPMNS
23

sPMNS
12

;
seR13
seR23

¼ sPMNS
13

sPMNS
23

ðMixed relation−LMR1Þ;

ð90Þ
seR12
seR23

¼ sPMNS
12

sPMNS
23

;
seR13
seR23

¼ sPMNS
23

sPMNS
13

ðMixed relation − LMR2Þ;

ð91Þ

where seRij ≡ sin θeRij and sPMNS
ij ≡ sin θPMNS

ij . In this work,
we take the best-fit values of neutrino oscillation data
with normal ordering hierarchy, given in Ref. [8]. There-
fore, for each the above relation, the matrix VeR contains
only seR23 and δeR as free parameters. Furthermore, in the
limit v ≪ Λ1;2, we have t2φ ∼ v2=Λ2

1;2 ≪ 1, hence we
can neglect the Z–Z0 mixing. For the VEVs Λ1;2, we
assume that Λ1 ¼ kΛ2 where k is a dimensionless coef-
ficient. Consequently, our model leaves six free parameters:

z, k;Λ2, s
dR
12 ; s

eR
23, and θ. Numerical values of the relevant

common SM parameters are listed in Table IV, while those
of known input parameters associated with quark and
lepton flavors are listed in Tables V and VI, respectively.
We would like to note that the new scalars H1;2 and A

also induce flavor-violating interactions, in addition to the
new gauge boson Z0. However, these flavor-violating
interactions are proportional to mu;d;e=Λ1;2 ≪ 1, and thus,
significantly smaller compared to those caused by the
Z0 gauge boson. Therefore, the following analysis will
only focus on flavor phenomenologies from the Z0
gauge boson.

A. Quark flavor phenomenologies

This subsection focuses on flavor phenomenologies
in the quark sector with controllable theoretical uncertain-
ties. Because the quark generations are not universal
under Uð1ÞX ⊗ Uð1ÞN, the model predicts flavor-changing
processes in the quark sector associated with the new
gauge boson Z0. These processes occur at the tree
level for K;Bs, and Bd meson oscillations or at both
tree and loop levels for the quark transitions b → seþI e

−
I

with eI ¼ fe1; e2g ¼ fe; μg, such as branching ratio
of Bs → μþμ−, branching ratio of inclusive decay
BRðB̄→XsγÞ, and ratios RK;K� ¼BRðBþ;0→Kþ;0�μþμ−Þ=
BRðBþ;0→Kþ;0�eþe−Þ.
The effective Hamiltonian relevant for the above proc-

esses can be written as [44]

TABLE IV. Common SM parameters.

Parameters Values

αem 1=137 [1]
mW 80.377 GeV [1]
mZ 91.1876 GeV [1]
GF 1.1663788 × 10−5 GeV−2 [1]
s2W 0.23121 [1]

TABLE V. Numerical values of known input parameters for quark flavors.

Parameters Values Parameters Values

fK 155.7(3) MeV [38] mK 497.611(13) MeV [1]
fBs

230.3(1.3) MeV [38] mBs
5366.88(11) MeV [1]

fBd
190.0(1.3) MeV [38] mBd

5279.65(12) MeV [1]
mu 2.14(8) MeV [38] md 4.70(5) MeV [38]
m̄cð3 GeVÞ 0.988(11) GeV [38] ms 93.40(57) MeV [38]
mt 172.69(30) GeV [1] m̄bðm̄bÞ 4.196(14) GeV [39]
NðEγÞ 3.3 × 10−3 [40] CSM

7 ðμb ¼ 2.0 GeVÞ −0.3636 [40–42]
CSM
9 ðμb ¼ 5.0 GeVÞ 4.344 [43] CSM

10 ðμb ¼ 5.0 GeVÞ −4.198 [43]
ys 0.0645(3) [9] λ 0.22519(83) [39]
A 0.828(11) [39] ρ̄ 0.1609(95) [39]
η̄ 0.347(10) [39]

TABLE VI. Numerical values of known input parameters for lepton flavors.

Parameters Values Parameters Values

me 5 × 10−4 GeV [1] ðsPMNS
12 Þ2 0.304þ0.012

−0.012 [8]
mμ 0.105 GeV [1] ðsPMNS

23 Þ2 0.450þ0.019
−0.016 [8]

mτ 1.776 GeV [38] ðsPMNS
13 Þ2 0.02246þ0.00062

−0.00062 [8]
Γμ 3 × 10−19 GeV [1] δPMNS

CP ð°Þ 230þ36
−25 [8]

Γτ 2.27 × 10−12 GeV [1]
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Hquark
eff ¼

X
X¼K;Bs;Bd

ðC2
XO

2
X þ C02

XO
02
X þ 2CXC0

XOXO0
XÞ

−
4GFffiffiffi

2
p V�

tsVtb

X
Y¼7;8;9;10

ðCYOY þ C0
YO

0
YÞ; ð92Þ

where GF is the Fermi constant and Vts;tb are the CKM
matrix elements. The first summation contains contribu-
tions to meson mixing systems d̄idj → djd̄j with di;j ¼
fd1; d2; d3g ¼ fd; s; bg and di ≠ dj, while the second
summation relevant to the b → seþI e

−
I observables. The

primed operators O0
X;Y are chirally flipped counterparts

PL ↔ PR of unprimed operators OX;Y , defined as

Oð0Þ
K ¼ sγμPLðRÞd; Oð0Þ

Bs
¼ s̄γμPLðRÞb;

Oð0Þ
Bd

¼ d̄γμPLðRÞb; ð93Þ
Oð0Þ

7 ¼ e
16π2

mbðs̄σμνPRðLÞbÞFμν;

Oð0Þ
8 ¼ gs

16π2
mbðs̄σμνTaPRðLÞbÞGa

μν; ð94Þ

Oð0Þ
9 ¼ e2

16π2
ðs̄γμPLðRÞbÞðēIγμeIÞ;

Oð0Þ
10 ¼

e2

16π2
ðs̄γμPLðRÞbÞðēIγμγ5eIÞ; ð95Þ

where PL;R ¼ 1
2
ð1 ∓ γ5Þ. The operators Oð0Þ

7;8 contribute

mainly to BRðB̄ → XsγÞ, whereas Oð0Þ
9;10 dominate the

BRðBs → eþI e
−
I Þ and the ratios RK;K� . The new physics

contributions to the Wilson coefficients (WCs) Cð0ÞNP
X;Y can

come from either the tree level or the quantum level
(loop, penguin, and box diagrams), or from both.
Generally, we can decompose the new physics contribu-

tions as Cð0ÞNP
X;Y ¼ Cð0Þtree

X;Y þ Cð0Þloop
X;Y þ Cð0Þpenguin

X;Y þ Cð0Þbox
X;Y ,

where the contribution of each style of diagrams is indicted
by the superscripts. For the tree-level contributions as
described by Feynman diagrams in Fig. 1, we obtain

Ctree
K ¼ −

2gztW
sθcθmZ0

½V�
dL
�31½VdL �32;

C0tree
K ¼ −

2gztW
sθcθmZ0

½V�
dR
�31½VdR �32; ð96Þ

Ctree
Bs

¼ −
2gztW
sθcθmZ0

½V�
dL
�32½VdL �33;

C0tree
Bs

¼ −
2gztW
sθcθmZ0

½V�
dR
�32½VdR �33; ð97Þ

Ctree
Bd

¼ −
2gztW
sθcθmZ0

½V�
dL
�31½VdL �33;

C0tree
Bd

¼ −
2gztW
sθcθmZ0

½V�
dR
�31½VdR �33; ð98Þ

Ctree;eI
9 ¼ ΓdL

23

m2
W

cWV�
tsVtb

1

g
ð4πÞ2
e2

gZ2

V ðeIÞ
m2

Z0
;

C
0tree;eI
9 ¼ ΓdR

23

m2
W

cWV�
tsVtb

1

g
ð4πÞ2
e2

gZ2

V ðeIÞ
m2

Z0
; ð99Þ

Ctree;eI
10 ¼ −ΓdL

23

m2
W

cWV�
tsVtb

1

g
ð4πÞ2
e2

gZ2

A ðeIÞ
m2

Z0
;

C
0tree;eI
10 ¼ −ΓdR

23

m2
W

cWV�
tsVtb

1

g
ð4πÞ2
e2

gZ2

A ðeIÞ
m2

Z0
: ð100Þ

For the quantum-level contributions, they are obtained from
the one-loop, penguin, and box diagrams that contain
gauge boson Z0, down quarks f ¼ d, s, b, and charged
leptons k ¼ e, μ, τ to be internal lines, given in Fig. 2. We
use ’t Hooft gauge ζ ¼ 1 for calculating these diagrams.
With the diagrams (a) and (b), we calculate on shell, i.e.,
q2 ¼ 0, p2

s ¼ m2
s , and p2

b ¼ m2
b. Because ms ≪ mb, we set

the s quark mass to be zero, ms ¼ 0, and keep the mass
of b quark at the linear order, i.e., m2

b ¼ 0. Additionally,
we calculate in the limit m2

f=m
2
Z0 ; m2

k=m
2
Z0 ≪ 1 since

mf;k ∼Oð1Þ GeV ≪ mZ0 ∼Oð1Þ TeV, for simplicity. It
is important to note that under this limit other loop
diagrams with unphysical Goldstone boson ϕZ0 are sup-
pressed by factors m2

f=m
2
Z0 ; m2

k=m
2
Z0 ≪ 1, hence we can

safely ignore the box diagrams with the Goldstone boson
ϕZ0 and keep only the ones with physical gauge boson Z0.
We have the expressions for these contributions at the scale
μZ0 ¼ mZ0 as

Cloop
7 ðμZ0 Þ ≃ −

2m2
W

9m2
Z0V�

tsVtb

1

g2

×
X

i¼1;2;3

�
Γ�dL
i2 ΓdL

i3 − 3
mdi

mb
Γ�dL
i2 ΓdR

i3

�
; ð101Þ

C0loop
7 ðμZ0 Þ ≃ −

2m2
W

9m2
Z0V�

tsVtb

1

g2

×
X

i¼1;2;3

�
Γ�dR
i2 ΓdR

i3 − 3
mdi

mb
Γ�dR
i2 ΓdL

i3

�
; ð102Þ

FIG. 1. Tree-level diagrams induced by new gauge boson Z0 for
meson mixings (left) and b → seþI e

−
I transitions (right), where

di;j ¼ fd; s; bg and di ≠ dj, eI ¼ fe; μg.
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Cloop
8 ðμZ0 Þ ≃ −3Cloop

7 ðμZ0 Þ; C0loop
8 ðμZ0 Þ ≃ −3C0loop

7 ðμZ0 Þ;
ð103Þ

Cpenguin;eI ;γ
9 ðμZ0 Þ≃−

m2
W

m2
Z0

1

g2
X

i¼1;2;3

Γ�dL
i2 ΓdL

i3

V�
tsVtb

�
−

1

27
þ2

9
ln
m2

di

m2
Z0

�
;

ð104Þ

C0penguin;eI ;γ
9 ðμZ0 Þ≃−

m2
W

m2
Z0

1

g2
X

i¼1;2;3

Γ�dR
i2 ΓdR

i3

V�
tsVtb

�
−

1

27
þ2

9
ln
m2

di

m2
Z0

�
;

ð105Þ

Cbox;eI
9 ðμZ0 Þ ≃ −

m2
W

4s2Wm
2
Z0

1

g4
X

i¼1;2;3

X
j¼1;2;3

×
Γ�dL
i2 ΓdL

i3 ðjΓeL
jI j2 þ jΓeR

jI j2Þ
V�
tsVtb

; ð106Þ

C0box;eI
9 ðμZ0 Þ ≃ −

m2
W

4s2Wm
2
Z0

1

g4
X

i¼1;2;3

X
j¼1;2;3

×
Γ�dR
i2 ΓdR

i3 ðjΓeL
jI j2 þ jΓeR

jI j2Þ
V�
tsVtb

; ð107Þ

Cbox;eI
10 ðμZ0 Þ ≃ −

m2
W

4s2Wm
2
Z0

1

g4
X

i¼1;2;3

X
j¼1;2;3

×
Γ�dL
i2 ΓdL

i3 ðjΓeL
jI j2 − jΓeR

jI j2Þ
V�
tsVtb

; ð108Þ

C0box;eI
10 ðμZ0 Þ ≃ −

m2
W

4s2Wm
2
Z0

1

g4
X

i¼1;2;3

X
j¼1;2;3

×
Γ�dR
i2 ΓdR

i3 ðjΓeL
jI j2 − jΓeR

jI j2Þ
V�
tsVtb

: ð109Þ

It should be noted that the penguin diagrams with off-shell
SM Z-like boson do not give the contributions to WCs in
the limit m2

di
=m2

Z0 → 0; thus, we do not include these
diagrams in our calculation.
Next, we determine the new physics contributions to

each observable in terms of WCs. Firstly, for the meson
mixings, we can decompose the contributions to meson
mass differences as ΔmK;Bs;Bd

¼ ΔmSM
K;Bs;Bd

þ ΔmNP
K;Bs;Bd

,
where the SM contributions ΔmSM

K;Bs;Bd
are shown in the

second column in Table VII, and the new physics con-
tributions ΔmNP

K;Bs;Bd
are estimated by [45,46]

FIG. 2. Radiative contributions to Cð0Þ
7;8;9;10, where k ¼ e; μ; τ and f ¼ d; s; b.
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ΔmNP
K ≃

2

3
Re

�
ðCtree

K Þ2 −
�
3

2
þ
�

mK

md þms

�
2
�
Ctree
K C0tree

K þ ðC0tree
K Þ2

�
mKf2K; ð110Þ

ΔmNP
Bs

≃
2

3
Re

�
ðCtree

Bs
Þ2 −

�
3

2
þ
�

mBs

ms þmb

�
2
�
Ctree
Bs

C0tree
Bs

þ ðC0tree
Bs

Þ2
�
mBs

f2Bs
; ð111Þ

ΔmNP
Bd

≃
2

3
Re

�
ðCtree

Bd
Þ2 −

�
3

2
þ
�

mBd

md þmb

�
2
�
Ctree
Bd

C0tree
Bd

þ ðC0tree
Bd

Þ2
�
mBd

f2Bd
: ð112Þ

Note that the SM Z-like boson also contributes to meson mass differences due to the mixing of Z–Z0. However, these
contributions are proportional with s4φ, so we ignore them.
For the branching ratio BRðBs → μþμ−Þ, we have the following formula [50],

BRðBs → μþμ−Þ ¼ τBs

16π3
α2emG2

Ff
2
Bs
jVtbV�

tsj2mBs
m2

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
μ

m2
Bs

s
jCμ

10 − C0μ
10j2; ð113Þ

where τBs
is the lifetime of Bs meson, αem is the fine-

structure constant, and the WCs are defined as Cμ
10 ¼

CSM
10 þ CNP;μ

10 , C0μ
10 ¼ C0NP;μ

10 with CSM
10 being the SM WC,

given in Table V and Cð0ÞNP;μ
10 ¼ Cð0Þtree;μ

10 þ Cð0Þbox;μ
10 . Due to

the effect of Bs–B̄s oscillations, the available experimental
value relates to theoretical prediction as [51]

BRðBs → μþμ−Þexp ≃
1

1 − ys
BRðBs → μþμ−Þ; ð114Þ

where ys ¼ ΔΓBs
2ΓBs

and the value of ys is presented in Table V.

The branching ratio for the decay B̄ → Xsγ is given
as [52,53]

BRðB̄ → XsγÞ ¼
6αem
πC

				V�
tsVtb

Vcb

				2½jC7ðμbÞj2 þ jC0
7ðμbÞj2

þ NðEγÞ�BRðB̄ → Xceν̄Þ; ð115Þ

where NðEγÞ is a nonperturbative contribution which
amounts to around 4% of the branching ratio. We com-
pute the leading order contribution to NðEγÞ followed
Eq. (3.8) in Ref. [40] and then obtain NðEγÞ ≃ 3.3 × 10−3.

Additionally, C is the semileptonic phase-space factor,
C ¼ jVub=Vcbj2ΓðB̄ → Xceν̄eÞ=ΓðB̄ → Xueν̄eÞ, and
BRðB̄ → Xceν̄Þ is the branching ratio for semileptonic
decay. It is necessary to consider the QCD corrections to
complete the calculation for this branching ratio. The WCs

Cð0Þ
7 ðμbÞ are evaluated at the matching scale μb ¼ 2 GeV by

running down from the higher scale μZ0 via the renormal-
ization group equations. Its expression can be split as

C7ðμbÞ ¼ CSM
7 ðμbÞ þ CNP

7 ðμbÞ; C0
7ðμbÞ ¼ C0NP

7 ðμbÞ;
ð116Þ

where CSM
7 ðμbÞ is the SM WC and has been calculated up

to next-to-next-leading order of QCD corrections with the
result shown in Table V. Otherwise, for new physics (NP)
contribution, we have the result at leading order [53] as

Cð0ÞNP
7 ðμbÞ ¼ κ7C

ð0Þloop
7 ðμZ0 Þ þ κ8C

ð0Þloop
8 ðμZ0 Þ

þ Δð0Þcurrent
Z0 ðμbÞ; ð117Þ

where the last term stems from the mixing of neutral
current-current operators generated by Z0 and the dipole

TABLE VII. The SM predictions and experimental values for flavor-changing observables related to quark
sectors.

Observables SM predictions Experimental values

ΔmK 0.467 × 10−2 ps−1 [1] 0.5293ð9Þ × 10−2 ps−1 [1]
ΔmBs 18.77ð86Þ ps−1 [47] 17.765ð6Þ ps−1 [9]
ΔmBd 0.543ð29Þ ps−1 [47] 0.5065ð19Þ ps−1 [9]
BRðBs → μþμ−Þ ð3.66� 0.14Þ × 10−9 [48] ð3.45� 0.29Þ × 10−9 [10]
BRðB̄ → XsγÞ ð3.40� 0.17Þ × 10−4 [40] ð3.49� 0.19Þ × 10−4 [9]
RK 1.00� 0.01 [49] 0.949þ0.042

−0.041 � 0.022 [10]
RK� 1.00� 0.01 [49] 1.027þ0.072þ0.027

−0.068−0.026 [10]
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operators O7;8. Besides, the coefficients κ7;8 are called NP
magic numbers, and their numerical values are given
in Ref. [53].
Lepton flavor universality violating (LFUV) obser-

vables RK;K� in the range of squared dilepton mass q2 ¼
½1.1; 6.0� GeV2 are defined in terms of new physics WCs

Cð0ÞNP;eI
9;10 , given in [54],

RK

RSM
K

¼ f1þ 0.24Re½CNP;μ
9 þ C0NP;μ

9 �

− 0.26Re½CNP;μ
10 þ C0NP;μ

10 � þ 0.03ðjCNP;μ
9 þ C0NP;μ

9 j2
þ jCNP;μ

10 þ C0NP;μ
10 j2Þgf1þ 0.24Re½CNP;e

9 þ C0NP;e
9 �

− 0.26Re½CNP;e
10 þ C0NP;e

10 � þ 0.03ðjCNP;e
9 þ C0NP;e

9 j2
þ jCNP;e

10 þ C0NP;e
10 j2Þg−1; ð118Þ

RK�

RSM
K�

¼ f1þ 0.18Re½CNP;μ
9 − C0NP;μ

9 �

− 0.29Re½CNP;μ
10 − C0NP;μ

10 � þ 0.03ðjCNP;μ
9 − C0NP;μ

9 j2
þ jCNP;μ

10 − C0NP;μ
10 j2Þgf1þ 0.18Re½CNP;e

9 − C0NP;e
9 �

− 0.29Re½CNP;e
10 − C0NP;e

10 � þ 0.03ðjCNP;e
9 − C0NP;e

9 j2
þ jCNP;e

10 − C0NP;e
10 j2Þg−1: ð119Þ

We also need to take into account QCD corrections here.

At the leading order, the Cð0Þ;eI
9;10 are shifted by ϵ ≃

αs
4π ln ðmZ0=mbÞ where αs is the strong coupling at scale
mZ0 . This effect of QCD corrections modifies the value of
WCs by around a few percent withmZ0 ∼Oð1Þ TeV ≫ mb.
However, the effect of QCD correction is insignificant in
the ratios RK;K� because they are small and canceled
between the numerator and the denominator of these ratios.
Therefore, in this work, we ignore the effect of QCD
corrections in RK;K� and BRðBs → μþμ−Þ.
All observables mentioned above should be compared

with the experimental values in the last column in
Table VII. It is important to note that the central values
of SM prediction and the measurement results of these
observables are very close. However, the uncertainties in
SM prediction are quite large, especially in meson mass
differences, compared to experimental ones. Therefore, it is
better to consider the ratio between SM and respective
experimental values on each observable since the uncer-
tainties can be canceled via the numerator and the denom-
inator of these ratios. Hence, we obtain constraints for
B0
s;d–B̄

0
s;d meson systems as

ðΔmBd
ÞSM

ðΔmBd
Þexp

¼ 1.0721ð1� 0.0535Þ;

ðΔmBs
ÞSM

ðΔmBs
Þexp

¼ 1.0566ð1� 0.0458Þ; ð120Þ

which are equivalent

ðΔmBd
ÞNP

ðΔmBd
Þexp

∈ ½−0.1295;−0.0147�;

ðΔmBs
ÞNP

ðΔmBs
Þexp

∈ ½−0.105;−0.0082�: ð121Þ

However, in the K0–K̄0 meson system, the lattice QCD
calculations for long-distance effect are not well controlled.
Therefore, we assume the present theory contributes about
30% to ΔmK , which reads

ðΔmKÞSM
ðΔmKÞexp

¼ 1ð1� 0.3Þ; ð122Þ

and then translates to the following constraint

ðΔmKÞNP
ðΔmKÞexp

∈ ½−0.3; 0.3�; ð123Þ

in agreement with [55]. For the branching ratios BRðBs →
μþμ−Þ and BRðB̄ → XsγÞ, we have constraints as

BRðBs → μþμ−Þexp
BRðBs → μþμ−ÞSM

¼ 1

1 − ys

jCμ
10 − C0μ

10j2
jCSM

10 j2
¼ 0.9426ð1� 0.0924Þ; ð124Þ

BRðB̄ → XsγÞexp
BRðB̄ → XsγÞSM

¼ 1þ jCNP
7 j2 þ jC0NP

7 j2 þ 2CSM
7 Re½CNP

7 �
jCSM

7 j2 þ NðEγÞ
¼ 1.0265ð1� 0.0739Þ: ð125Þ

B. Lepton flavor phenomenologies

For the lepton flavor violating (LFV) decays ej → eiγ
with ei;j ¼ fe1; e2; e3g ¼ fe; μ; τg and ei ≠ ej, we have
the following the effective Hamiltonian contributing by
new neutral gauge boson Z0 at the one-loop level

Hlepton
eff ¼ Cij

L ēiσμνPLejFμν þ ðL → RÞ; ð126Þ

where the coefficientsCij
L;R are obtained by calculating one-

loop diagrams containing the SM charged leptons ek ¼
fe1; e2; e3g ¼ fe; μ; τg and new neutral gauge boson Z0 as
internal lines; see subfigure (b) of Fig. 3. Here we calculate
these diagrams in the limit m2

ek=m
2
Z0 ≪ 1 and keep the

masses of external leptons mei;j , similar to the quark flavor
section. We obtain the expressions for these coefficients as

Cij
L ¼ e

3ð4πÞ2m2
Z0

X3
k¼1

ðmejΓ
�eR
ki ΓeR

kj − 3mekΓ
�eR
ki ΓeL

kj

þmeiΓ
�eL
ki ΓeL

kj Þ; ð127Þ
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Cij
R ¼ e

3ð4πÞ2m2
Z0

X3
k¼1

ðmejΓ
�eL
ki ΓeL

kj − 3mekΓ
�eL
ki ΓeR

kj

þmeiΓ
�eR
ki ΓeR

kj Þ; ð128Þ

where ΓeL;R
ij are the LFV couplings given in Eq. (81). The

branching ratios of the LFV decays are determined by [56]

BRðej → ejγÞ ¼
ðm2

ej −m2
eiÞ3

4πm3
ejΓej

ðjCij
L j2 þ jCij

R j2Þ; ð129Þ

where Γej is the total decay width of decaying lepton ej.
Besides, the effective Hamiltonian in Eq. (126) also

contributes to branching ratios of three-body leptonic
decays such as τ → 3μð3eÞ, τ → eμμðeeμÞ, and μ → 3e.
There are three contributions to these observables, includ-
ing the tree-level shown in subfigure (a) of Fig. 3 with the
following operators

OLðRÞLðRÞ
ab;αβ ¼ ðēiγμPLðRÞejÞðēργμPLðRÞeδÞ; ð130Þ

where ei;j ¼ fe2; e3g ¼ fμ; τg, i ≠ j, and eρ;δ ¼ fe1; e2g ¼
fe; μg. Note that these operators are also generated by the
SM Z-like boson but suppressed due to small Z–Z0 mixing.
This setup also does not allow the LFV decays of Z boson,
namely Z → eiej. Besides the tree level, the dipole operators
in Eq. (126) also generate the three-body decays via penguin
diagrams, as shown in subfigures (c) and (d) of Fig. 3.
Furthermore, there are one-loop contributions that arise from
the mixing of tree-level operators defined in Eq. (130) with
“hidden” operators that do not trigger flavor violating decays
at the tree level but do so in QED penguin diagrams, such as

OLðRÞ;LðRÞ
eμ;μμðττÞ ;O

LðRÞ;LðRÞ
eτ;τμðττÞ ;OLðRÞ;LðRÞ

μτ;ττ [57]. The branching ratios

of three-body leptonic decays, including all mentioned
contributions, were explicitly given in Ref. [57].
On the other hand, for the lepton flavor conversing

(LFC) observables including the electron and muon anoma-
lous magnetic moments Δae;μ and the electric dipole
moments de;μ, we have the following formulas [56],

ΔaeI ¼ −
4meI

e
Re½CII

R �; ð131Þ

FIG. 3. Feynman diagrams for three-body leptonic and LFV decays.
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deI ¼ −2Im½CII
R �; I ¼ 1; 2: ð132Þ

The LFV couplings of Z0 also cause a transition of
muonium (Mu: μþe−) into antimuonium (Mu: μ−eþ),
which resembles the K0-K̄0 mixing in the quark sector.
The effective Lagrangian for this process can be written as

LMu−Mu ¼ −
X3
i¼1

Giffiffiffi
2

p Qi; ð133Þ

where the coefficients and corresponding operators are
given by

Q1 ¼ ðμ̄γμð1 − γ5ÞeÞðμ̄γμð1 − γ5ÞeÞ; G1 ¼
jΓlL

μej2
4

ffiffiffi
2

p
m2

Z0
;

Q2 ¼ ðμ̄γμð1þ γ5ÞeÞðμ̄γμð1þ γ5ÞeÞ; G2 ¼
jΓlR

μej2
4

ffiffiffi
2

p
m2

Z0
;

Q3 ¼ ðμ̄γμð1þ γ5ÞeÞðμ̄γμð1 − γ5ÞeÞ; G3 ¼
ΓlL
μeΓlR;�

μe

2
ffiffiffi
2

p
m2

Z0
:

ð134Þ
Additionally, there are operators Q4;5 ¼ ðμ̄ð1 ∓ γ5ÞeÞ ×
ðμ̄ð1 ∓ γ5ÞeÞ contributing by neutral Higgs bosons, how-
ever these contributions are negligible, compared to the
ones of Z0. In the presence of an external magnetic field B,
the time-integrated probability of the Mu-to-Mu transition
is given by [58]

PðMu → MuÞ ¼ 2τ2
�
jc0;0j2jMB

0;0j2 þ jc1;0j2jMB
1;0j2

þ
X
m¼�1

jc1;mj2
jM1;mj2

1þ ðτΔEÞ2
�
; ð135Þ

where τ ≃ 2.2 × 10−6 s is the Mu lifetime, jcF;mj2 denotes
the population of MuðF;mÞ state, and MB

F;m is the
amplitude of the MuðF;mÞ → MuðF;mÞ transition.3

Additionally, ΔE is the energy splitting between (1,1)
and ð1;−1Þ states. Notice that the transition probability for
ð1;�1Þ states is suppressed for B≳Oð10−6Þ Tesla. In this
case, the total transition probability reads

PðMu → MuÞ

≃
2.572 × 10−5

G2
F

�
jc0;0j2jG3 −

G1 þ G2 − 0.5G3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

p
				2

þ jc1;0j2jG3 þ
G1 þ G2 − 0.5G3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ X2
p

				2
�
; ð136Þ

whereX denotes themagnetic flux density. The experimental
result reported by the PSI experiment for the Mu-to-Mu
transition underB ¼ 0.1 Tesla isPðMu→MuÞ<8.3×10−11

[14]. Taking X¼6.31×B=Tesla, jc0;0j2 ¼ 0.32, and
jc1;0j2 ¼ 0.18, the experimental result is decoded as

0.64jG1 þ G2 − 1.68G3j2 þ 0.36jG1 þ G2 þ 0.68G3j2
< 9 × 10−6G2

F: ð137Þ

The LFV couplings of Z0 also contribute to the muon-
to-electron conversion in a muonic atom. Specifically,
we focus on the coherent conversion processes in which
the nucleus’s initial and final states are the same and the
nonphotonic processes at the tree level mediated by Z0,
which are described by the following effective Lagrangian
[59–61]

Lμ→e ¼ −
X
q¼u;d

ðCq
VLēγνPLμþ Cq

VRēγνPRμÞq̄γνqþ H:c:;

ð138Þ

where the coefficients Cq
VL;VR are

Cq
VL ¼ ggZ

0
V ðqÞΓlL

eμ

2cWm2
Z0

; Cq
VR ¼ ggZ

0
V ðqÞΓlR

eμ

2cWm2
Z0

: ð139Þ

Here, the operators involving q̄γνγ5q are omitted since they
do not contribute to the coherent conversion processes. To
evaluate the conversion rate, it is appropriate to use the
effective Lagrangian at the nucleon level, such as

Lμ→e¼−
X

N¼p;n

ðCN
VLēγνPLμþCN

VRēγνPRμÞψ̄Nγ
νψNþH:c:

ð140Þ

with ψN as the nucleon fields, and

Cp
VL ¼ 2Cu

VL þ Cd
VL; Cp

VR ¼ 2Cu
VR þ Cd

VR; ð141Þ

Cn
VL ¼ Cu

VL þ 2Cd
VL; Cn

VR ¼ Cu
VR þ 2Cd

VR: ð142Þ

The μ → e conversion branching ratio in a target of atomic
nuclei N can then be written as [60,61]

BRðμN → eNÞ ¼ 4m5
μ½jCp

VLV
p
N þ Cn

VLV
n
N j2

þ jCp
VRV

p
N þ Cn

VRV
n
N j2�=ΓN

capt; ð143Þ

where ΓN
capt is the total capture rate, and Vp;n

N are related to
the overlap integrals between the lepton wave functions
and the nucleon densities, depending on the nature of the
target N. For instance, we consider the μ → e conversion
captured by Au nuclei, as we have Vp

Au ¼ 0.0974 and

3In practice, the state of the produced Mu is a mixture of four
states labeled by the magnitude of total angular momentum F and
the z-component of total angular momentum m, i.e., ðF;mÞ ¼
ð0; 0Þ; ð1; 0Þ and ð1;�1Þ.
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Vn
Au ¼ 0.146 [60], ΓAu

capt ≃ 8.7 × 10−18 GeV [62], and
the current experimental limit BRðμAu → eAuÞ ≤ 7.0 ×
10−13 [11].
All predicted observables above should be compared

with experimental results listed in Table VIII. It is straight-
forward to recognize that the contribution of the Z0 gauge
boson with a mass at several TeVs implied by the collider
searches (discussed below) to the anomalous magnetic
moments, especially for Δaμ, be quite suppressed in

comparison with other leptonic observables. Indeed, from
Eqs. (128) and (131), it is easy to see that Δaμ is propor-

tional with a factor, − 4mμ

e
e

48π2m2

Z0
∼Oð10−11–10−10Þ, while

the internal terms, Re½mekΓ
eLðRÞ
k2 Γ�eLðRÞ

k2 � ∼Oð10−1 − 100Þ.
Therefore, our model predicts Δaμ ∼Oð10−12–10−11Þ,
remarkably smaller than experimental result Δaexpμ ∼
Oð10−9Þ [63]. In the following numerical analysis, we will
investigate the branching ratios of LFV, the three-body

TABLE VIII. Experimental results for leptonic flavor observables.

LFV Observables Experimental limits LFC Observables Experimental limits

BRðμ → eγÞ ≤4.2 × 10−13 [11–13] ΔaCse −0.88ð36Þ × 10−12 [1]
BRðτ → eγÞ ≤3.3 × 10−8 [11–13] ΔaRbe 0.48ð30Þ × 10−12 [1]
BRðτ → μγÞ ≤4.4 × 10−8 [11–13] Δaμ 249ð48Þ × 10−11 [63]
BRðμ− → e−eþe−Þ ≤1.0 × 10−12 [1] jdej <1.1 × 10−29 e cm [64]
BRðτ− → e−eþe−Þ ≤1.4 × 10−8 [1] jdμj <1.9 × 10−19 e cm [65]
BRðτ− → e−μþμ−Þ ≤1.6 × 10−8 [1]
BRðτ− → μ−eþμ−Þ ≤9.8 × 10−9 [1]
BRðτ− → e−μþe−Þ ≤8.4 × 10−9 [1]
BRðτ− → μ−μþμ−Þ ≤1.1 × 10−8 [1]
BRðμAu → eAuÞ ≤7.0 × 10−13 [11]
PðMu → MuÞ <8.3 × 10−11 [14]

FIG. 4. The correlations between mixing angle seR23 with charge parameter z in four relation scenarios of lepton mixing angles.
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leptonic decays, the electric dipole moments, the muonium-
to-antimuonium transition, and the muon-to-electron
conversion.

C. Numerical results

In this subsection, we will use the values of known input
parameters from Tables IV–VI for our numerical study. For
the lepton flavor phenomenologies, we randomly seed the
free parameters z; seR23; k, Λ2, and θ in ranges as

z∈ ½−1; 1�; seR23 ∈ ½0; 1�; θ∈ ½0; π=2�;
k∈ ½1; 10�; Λ2 ∈ ½1; 50� TeV: ð144Þ

Besides, we also compare the results of four relation
scenarios of lepton mixing angles shown in Eqs. (88)–(91).
We first obtain the correlation between mixing angle seR23

and charge parameter z satisfying all constraints of leptonic
observables within four relation scenarios of lepton mixing
angles as in Fig. 4. It is noteworthy that all the relation
scenarios potentially fulfill the constraints, and the viable
range of z is 2.41ð6.55Þ × 10−4 ≲ z≲ 0.175 for the
LNR and LMR1 (LIR and LMR2) scenarios. In addition,
the whole range seR23 pleases the constraints in the LNR

scenario. In contrast, the remaining scenarios accept only a
partial range of seR23, namely, 0≲ seR23 ≲ 0.82 for the LMR1
scenario and 0≲ seR23 ≲ 0.22 for the LIR and LMR2
scenarios. Notice that the LIR and LMR2 scenarios have
seR13 ¼ seR23s

PMNS
23 =sPMNS

13 ≃ 4.476seR23 [8], and therefore seR23 in
these two scenarios is constrained by an additional con-
dition of seR13 ≤ 1. Furthermore, the LIR and LMR2 scenar-
ios have an inverse relationship between seR12 and seR23.
Therefore, the nearly identical panels of these scenarios
also illustrate that the leptonic observables do not signifi-
cantly rely on seR12, but primarily on seR23. This behavior is
also applied to the LNR and LMR1 scenarios since they
have the same seR13 whereas s

eR
12 is changed, but the result is

not modified remarkably.
Furthermore, we obtain the correlation between the ratio

k ¼ Λ1=Λ2 and VEV Λ2 within four relation scenarios of
lepton mixing angles, as respectively shown in four panels
of Fig. 5. We see that the viable points in the four panels
are distributed in the regions with high k and Λ2 values,
namely k≳ 7.42 and Λ2 ≳ 39.77 TeV for the LNR sce-
nario, k≳ 6.87ð6.79Þ and Λ2 ≳ 34.21 TeV for the LIR
(LMR2) scenario, and k≳ 6.73 and Λ2 ≳ 36.16 TeV for
the LMR1 scenario. Besides, the panels of LIR and LMR2
scenarios are almost similar. This result also occurred in

FIG. 5. The correlations between the ratio k ¼ Λ1=Λ2 with VEV Λ2 for the four relation scenarios of lepton mixing angles.
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Fig. 4. Hence, we comment that the LIR and LMR2
scenarios give the same results, while the LNR and
LMR1 scenarios do not change considerably. Therefore,
in the following, we consider the model under only the
LNR and LIR scenarios that satisfy the constraints from the
lepton flavor violation process.
Now, we turn to the quark flavor phenomenologies. We

randomly generate the free parameters z, k, Λ2, and θ
similarly in the studies of leptonic flavor phenomenologies.
Besides, the parameters sdR12 and δ

dR are randomly extracted
from ranges as

sdR12 ∈ ½0; 1�; δdR ∈ ½0; 2π�; ð145Þ

whereas the lepton mixing angles θeRij are chosen in the
LNR and LIR scenarios.
In Fig. 6, we show the correlation points between the k

and Λ2 in four relation scenarios of quark mixing angles
determined by Eqs. (83)–(86), while the lepton mixing

angle is taken in the LNR scenario. All these points fulfill
the constraints of ΔmK , BRðBs → μþμ−Þ, and BRðB̄ →
XsγÞ respectively expressed in Eqs. (123), (124), and (125).
In addition, the red, green, and blue points satisfy the
latest experimental limits of ΔmBs

and ΔmBd
within 1σ,

1.25σ, and 1.5σ, respectively [9]. From here, we comment
that the blue points that are distributed in the regions with
high k and Λ2 values not only satisfy the present constraints
but also the constraints from the lepton flavor violation
processes (see Fig. 5). Such points appear in the QNR and
QMR1 scenarios but do not appear in the QIR and QMR2
scenarios. A similar result is also shown in Fig. 7 plotted
with the LIR scenario. These two figures imply that the
model under QNR and LNR scenarios is preferred.
Therefore, the following numerical studies will focus on
these relation scenarios.
Now, we focus particularly on three correlations, sdR12 − z,

sdR12 − seR23, and sdR12 − δdR , which are respectively shown in
three panels of Fig. 8. For the upper left panel, we see that

FIG. 6. The correlations between the ratio k ¼ Λ1=Λ2 with VEV Λ2 for four relation scenarios of quark mixing angles with the LNR
scenario of lepton mixing angles.
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the mixing angle sdR12 is limited in a range 0≲ sdR12 ≲ 0.2 for
jzj∈ ½0.1; 1�. However, when jzj decreases to less than 0.1,
there are many points distributed in a wider range of sdR12 ,
i.e., 0≲ sdR12 ≲ 0.4. This can be interpreted by the following
reason: when jzj ∼ 1, the electroweak term proportional v
in mZ0 will be much smaller than one relevant to the new
physics contribution and can be ignored. As a result, mZ0

now depends linearly on z, and then, several of the WCs are
free of z since it is canceled between numerator and
denominator, such as the WCs in Eqs. (96)–(98) and
(101)–(105). Therefore, the quark flavor observable is
approximately independent of z. On the other hand, when
jzj is sufficiently small, the electroweak term significantly
affects quark flavor processes. We would like to note that
the upper limit of sdR12 ∼ 0.4 is larger than the center value of
sCKM12 ¼ λ given in the Table V. The upper right panel

demonstrates that the mixing parameter sdR12 of VdR is
independent of mixing parameter seR23 of VeR . The range

of seR23 is not constrained as tightly as the sdR12 and whole
range of seR23 satisfying the mentioned constraints. The
correlation between sdR12 with CP violation phase δdR is
displayed in the bottom panel. Here, the total range of δdR
fulfills the constraints from Eqs. (121) and (123)–(125).
This also implies that the effect of δdR on the quark flavor
observables is negligible and can be ignored.
In Fig. 9, we show two correlations, mZ0 − z (left panel)

and mZ0 − θ (right panel). From here, we comment that the
viable range of z is −0.5≲ z≲ 0.1, whereas the whole
range of θ is available. However, if 5π=16≲ θ ≲ π=2 then
mZ0 ≳ 6 TeV. This is consistent with the collider bounds
(see below). Comparing with the results in Figs. 4, 5, and 8,
we obtain the viable ranges for several parameters as

FIG. 7. The correlations between the ratio k ¼ Λ1=Λ2 with VEV Λ2 for four relation scenarios of quark mixing angles with the LIR
scenario of lepton mixing angles.
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0.1≳ z≳ 2.41 × 10−4; k≳ 7.42; Λ2 ≳ 39.77 TeV;

ð146Þ

0.4≳ sdR12 ≳ 0.2; π=2≳ θ≳ 5π=16; 1≳ seR23 ≳ 0; ð147Þ

while the effect of δdR is insignificant and it can be chosen
arbitrarily.

Last but not least, we consider the LFUV ratios RK and
RK� ; their results are shown in Fig. 10. The blue points are
plotted in which parameters satisfy all constraints given in
Eqs. (121) and (123)–(125). We realize that the figure
shows points concurrently meeting the measured results of
both RK and RK� given in the last column in Table VII.
Therefore, the model with the QNR scenario can explain
several of quark flavor observables, including the meson

FIG. 8. The correlation between parameter pairs, sdR12 − z, sdR12 − seR23 , and sdR12 − δdR .

FIG. 9. The correlation between the mass of new gauge bosonmZ0 with the charge parameter z (left panel), and with the mixing angle θ
(right panel).
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oscillations ΔmK;Bs;Bd
, BRðB̄ → XsγÞ, BRðBs → μþμ−Þ,

and RKð�Þ .

VII. COLLIDER BOUNDS

The Z0 gauge boson in our model directly interacts with
both ordinary quarks (q) and charged leptons (l), so it can
be produced at the large electron-positron (LEP) experi-
ments even the large hadron collider (LHC). In this section,
we take the current negative search results reported by these
experiments to impose a lower bound on the mass of Z0
boson [66–71].

A. LEP

One of the processes searched at the LEP experiments is
eþe− → ff̄, which generates a pair of ordinary charged
leptons (f ¼ e; μ; τ) through the exchange of Z0 boson.
This process can be described by the following effective
Lagrangian,

Leff ¼
1

1þδef

g2

c2Wm
2
Z0

X
i;j¼L;R

CZ0
i ðeÞCZ0

j ðfÞðēγμPieÞðf̄γμPjfÞ;

ð148Þ
where δef ¼ 1ð0Þ for f ¼ eð≠ eÞ, and the chiral gauge

couplings are given by CZ0
L;RðfÞ ¼ 1

2
½gZ2

V ðfÞ � gZ2

A ðfÞ�.
LEP-II has probed all such effective contact interactions,
and no significant evidence has been found for the existence
of a Z0 boson. LEP-II also provided the lower limits of the
scale of the contact interactions, Λ, for all possible chiral
structures and for various combinations of fermions [68].
Consequently, the mass of Z0 boson is bounded by

m2
Z0 ≳ g2

4πc2W
jCZ0

i ðeÞCZ0
j ðfÞj½Λ�

ijðfÞ�2; ð149Þ

where Λþ for CZ0
i ðeÞCZ0

j ðfÞ > 0 and Λ− for CZ0
i ðeÞ×

CZ0
j ðfÞ < 0.
The strongest constraint for our model comes from

the eþe− → μþμ−; τþτ− channel with Λþ
VV ¼ 24.6 TeV.

It results in mZ0 ≳ 5.9 TeV for z ≃ 0.05 and θ ≃ 3π=8.

B. LHC

At the LHC experiment, the Z0 neutral gauge boson
can be resonantly produced in the new physics processes
pp → Z0 → ff̄ for f ¼ q; l. Additionally, the most sig-
nificant decay channel of Z0 is given by Z0 → ll̄ because of
well-understood backgrounds [69,71] and that it signifies a
boson Z0 having both couplings to lepton and quark like
ours. The cross section for the relevant process, in the
narrow width approximation, takes the form [72]

σðpp → Z0 → ll̄Þ ≃ 1

3

X
q

dLqq̄

dm2
Z0
σ̂ðqq̄ → Z0ÞBRðZ0 → ll̄Þ;

ð150Þ

where the parton luminosities dLqq̄

dm2

Z0
can be found in

Ref. [73], while the peak cross section is given by

σ̂ðqq̄ → Z0Þ ≃ πg2

12c2W
½ðgZ2

V ðqÞÞ2 þ ðgZ2

A ðqÞÞ2�: ð151Þ

The branching ratio of Z0 decaying into the lepton pairs is
BRðZ0 → ll̄Þ ¼ ΓðZ0 → ll̄Þ=ΓZ0 , where the partial and total
decay widths are respectively given by

ΓðZ0 → ll̄Þ ≃ g2mZ0

48πc2W
½ðgZ2

V ðlÞÞ2 þ ðgZ2

A ðlÞÞ2�; ð152Þ

ΓZ0 ≃
g2mZ0

48πc2W

�X
f

NCðfÞ½ðgZ2

V ðfÞÞ2 þ ðgZ2

A ðfÞÞ2�

þ ðCZ2

1LÞ2
2

þ ðCZ2

2LÞ2
�

þ g2mZ0

96πc2W
ðCZ2

R Þ2
X3
i¼1

�
1 −

4M2
i

m2
Z0

�
3=2

Θ
�
mZ0

2
−Mi

�
;

ð153Þ

assuming that Z0 is lighter than new Higgs bosonsH1;2 and
A. Here, f denotes the SM charged fermions, NCðfÞ is the
color number of the fermion f, and Θ is the step function.
Setting center-of-mass energy of

ffiffiffi
s

p ¼ 13 TeV and
assuming M1;2;3 ¼ mZ0=3, in Fig. 11, we plot the cross
section for the relevant processes as a function of the Z0
boson mass, given that z ¼ 0.05 and θ ¼ 3π=8. Here,
we also include the upper limits on the cross section of
these processes reported by ATLAS [69] and CMS [71]

FIG. 10. The correlation between the predicted RK and RK� .
The dot-dashed red and green lines are correspondingly the
current experimental limits of Rexp

K and Rexp
K� [10].
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experiments. We obtain a lower bound on the Z0 boson
mass of 6 TeV under the μμðττÞ channel, while the ee
channel even implies a more strict constraint. Significantly,
these signal strengths are separated, which can be used to
approve or rule out the model under consideration.
We would like to note that the dijet signals also can

provide a lower bound for the Z0 boson mass [70].
However, in the present model, the coupling strengths
between Z0 and the charged leptons are approximately
equal to those of Z0 with the quarks, while the current
bound on dijet signals is less sensitive than the lepton one,
so the lower bounds implied by the dijet search are quite

smaller than those resulting from the dilepton. In other
words, in the present model, the dijet bounds for the Z0
boson mass are not significant.

VIII. CONCLUSION

In this work, we have proposed a model that is based on
the gauge symmetry SUð3ÞC⊗SUð2ÞL⊗Uð1ÞX⊗Uð1ÞN.
This model is general and flavor dependent but constructed
minimally. The new charges X and N of the light fermions
differ from those of the remaining fermions but determine
the hypercharge Y as Y ¼ X þ N, which conforms to the
observables. We have shown that our model can provide a
possible solution to several puzzles of the SM, including
the observed number of fermion generations, the neutrino
mass generation mechanism, and the flavor anomalies in
both the quark and lepton sectors. The new physics effects
at the LEP and LHC experiments have also been examined.
With the relevant assumptions, the model leaves only six

free parameters, including the charge parameter z, the
new physics scale Λ2, the ratio k ¼ Λ1=Λ2, the mixing
angles θdR12 , θ

eR
23, and θ. We have identified the allowed

parameter space of the model, which is consistent with
the experimental constraints, namely 0.1≳ z≳ 2.41×
10−4, k≳ 7.42, Λ2 ≳ 39.77 TeV, 0.4≳ sin θdR12 ≳ 0.2,
1≳ sin θeR23 ≳ 0, and π=2≳ θ ≳ 5π=16.
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