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We investigate the cosmological expansion of the 3D space in a 6D model compactified on
a sphere, beyond the 4D effective theory analysis. We focus on a case where the initial temperature
is higher than the compactification scale. In such a case, the pressure for the compact space
affects the moduli dynamics and induces the moduli oscillation even if they are stabilized at the
initial time. Under some plausible assumptions, we derive the explicit expressions for the 3D scale
factor and the moduli background in terms of analytic functions. Using them, we evaluate the transition
times between different cosmological eras as functions of the model parameters and the initial
temperature.
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I. INTRODUCTION

The existence of extra dimensions is predicted in string
theory. Since the experimental constraints on the size of
the extra dimensions that the gravity feels are much
weaker than those for the standard model particles, there
is a wide allowed parameter space for braneworld models
with relatively large extra dimensions [1–3]. These types
of models have been considered not only as a solution to
the large hierarchy problem, but also as a solution to the
cosmological constant problem [4]. Recently, it is also
pointed out that a micron-size large extra dimension may
be predicted by the swampland conjecture [5], which is
called the dark dimension scenario [6]. If a large extra
compact space exists, it affects the cosmological history at
early times. In particular, the temperature T tmp in the
radiation-dominated era can be higher than the compacti-
fication scalemKK since the latter has a small value in such
a case.
In our previous papers [7,8], we studied the time

evolution of the space and the background values of the
moduli in a six-dimensional (6D) model compactified on a

sphere S2 by solving the 6D field equations numerically.1

We found that when the initial temperature of the universe
is higher than mKK, the expansion rate for the three-
dimensional (3D) noncompact space deviates from that
of the usual 4D cosmology. In general, the 3D scale factor
eA evolves as t2=ð3ð1þwÞÞ, where t is the cosmological time
and w is the ratio of the pressure to the energy density. In
the radiation-dominated era, w−1 measures the dimensions
that the radiation feels. In fact, when T tmp > mKK, the
radiation feels the whole five-dimensional (5D) space and
eA ∝ t5=9. As the universe expands and the temperature
goes down, the radiation gradually ceases to feel the
compact space, and w−1 approaches to three after T tmp

gets lower than mKK. Then, the expansion rate slows down
to eA ∝ t1=2. We also found that even if the moduli are
stabilized at the initial time, the moduli oscillation is
induced by the pressure for the two-dimensional (2D)
compact space prad

2 . This effect cannot be discussed in
the conventional 4D effective theory approach since prad

2 is
absent in the 4D Einstein equation. When T tmp > mKK, the
effect of prad

2 on the moduli dynamics cannot be neglected.
If the lifetime of the moduli is long enough, the induced
moduli oscillation eventually dominates the energy density*otsuka.hajime@phys.kyushu-u.ac.jp
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1This model is basically based on a gauged 6D supergravity on
S2 [9], which has many interesting properties, e.g., a self-tuning
of the four-dimensional (4D) vacuum energy [4,10–12] and a
verification of swampland conjecture [13]. Its string realization is
also discussed in Ref. [14].
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and the 3D space expands as eA ∝ t2=3 at later times.
Therefore, there are the following eras in this setup.
(1) 6D radiation-dominated era (eA ∝ t5=9)
(2) 4D radiation-dominated era (eA ∝ t1=2)
(3) (Induced) moduli-oscillation-dominated era (eA∝t2=3)

The era 3 will end by the decay of the moduli, and
transition into the 4D radiation-dominated era again
[15]. After that, the universe behaves as the standard
cosmology. Let us denote the transition time from the
era 1 to the era 2 as trad, and that from 2 to 3 as tmod. In
principle, the spacetime evolution is determined once the
model parameters and the initial conditions are provided.
However, since these results are obtained by the numerical
computations in the previous works, we cannot directly see
how the transition times trad and tmod depend on the initial
parameters. Besides, it is difficult to pursue the whole
history of the universe due to the limitation of the
computational power.
In this paper, we derive approximate expressions for the

3D scale factor, the moduli background values and the
transition times in terms of analytic functions by solving
the 6D evolution equations under some approximations.
Since we can discriminate the eras by the power p, which
is defined as eA ∝ tp in each era, we will focus on the
change of p during the spacetime evolution. The expres-
sions derived in this paper enable us to pursue
the spacetime evolution until much later times than the
previous works, and to clarify the dependence of the
transition times trad and tmod on the model parameters and
the initial temperature. These results will help make
discussions transparent.
The paper is organized as follows. In Sec. II, we briefly

explain our setup and show the evolution equations. In
Sec. III, we derive analytic expressions for various quan-
tities by solving the evolution equations under some
plausible approximations. We then define the effective
power p and derive its explicit expression using the
functions we have defined. In Sec. IV, we discuss the time
evolution of p, and estimate the transition times. Section V
devoted to the summary. In Appendix A, brief derivations
of the energy density and the pressures for the radiation are
shown. In Appendix B, we derive the evolution equation
for the temperature from the conservation law of the
energy-momentum tensor. In Appendix C, we provide a
general solution to the inhomogeneous differential equation
that describes the moduli oscillation.

II. SETUP

We consider a 6D model used in our previous works
[7,8]. In this section, we briefly review the model and the
evolution equations for the universe. The spacetime is
compactified on a 2D sphere S2. As coordinates on S2, we
choose the spherical ones ðx4; x5Þ ¼ ðθ;ϕÞ, where θ and ϕ
are the polar and the azimuthal angles, respectively.

The action is given by2

S ¼
Z

d6x
ffiffiffiffiffiffiffiffiffiffi
−gð6Þ

q �
−
1

2
Rð6Þ −

1

2
∂
Mσ∂Mσ −

g2gceσ

4

× FMNFMN − VpotðσÞ
�
; ð2:1Þ

where M;N ¼ 0; 1;…; 5 denote the 6D indices, gð6Þ is the
determinant of the 6D metric tensor, Rð6Þ is the 6D Ricci
scalar, σ is a real scalar, FMN ≡ ∂MAN − ∂NAM is the field
strength of a U(1) gauge field AM, and ggc is the
gauge coupling constant. The scalar potential VpotðσÞ is
given by

VpotðσÞ ¼ 2e−σ þm2

2
ðσ − σ�Þ2; ð2:2Þ

where m and σ� are positive constants.
Except for the second term in (2.2), the action (2.1) can

be embedded into a gauged 6D N ¼ ð1; 0Þ supergravity
[9,16]. We add the second term in order to stabilize the
moduli completely.
In this paper, we neglect effects of the 3-branes, one of

which the standard model particles live,3 and assume that
the background spacetime has homogeneity and isotropy
for 3D noncompact space and a spherical symmetry for S2.
Thus, we take the following ansatz for the background
fields.

gMN ¼

0
BBB@

−1
e2AðtÞ13

e2BðtÞ

e2BðtÞ sin2 θ

1
CCCA;

Fμν ¼ Fμθ ¼ Fμϕ ¼ 0;

Fθϕ ¼ −Fϕθ ¼
sin θ
2ggc

; Fθθ ¼ Fϕϕ ¼ 0;

σ ¼ σðtÞ; ð2:3Þ

where μ, ν ¼ 0, 1, 2, 3 are the 4D indices.
In the absence of the radiation in the bulk, the model has

the following static solution.4

A ¼ 0; B ¼ B� ≡ σ�
2
− ln 2; σ ¼ σ�; ð2:4Þ

2Throughout the paper except for Secs. IV B and IV C, we
work in the 6D Planck unit M6 ¼ 1, where M6 is the 6D Planck
mass.

3See for more details about codimension-two branes [17–19].
4Throughout the paper, we normalize the 3D scale factor as

Aðt ¼ 0Þ ¼ 0.
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and the Kaluza-Klein (KK) mass scale is given by5

mKK ≡ e−B� ¼ 2e−σ�=2: ð2:5Þ

In addition to the above field content, we introduce the
radiation in the bulk. In 6D N ¼ 1 supergravity, the
number of hypermultiplets nH and that of vector multiplets
nV are constrained by the anomaly cancellation condition
nH − nV ¼ 244 [16,20,21].6 Therefore, at least 245 hyper-
multiplets exist in the bulk. Since each hypermultiplet has 4
bosonic and 4 fermionic degrees of freedom, we assume
that the degrees of freedom for the radiation is gdof ¼ 2000
in this paper. Due to the isometries of the spacetime, the
energy-momentum tensor for the radiation has the form of

ðTradÞNM ¼

0
BBB@
ρrad

−prad
3 13

−prad
2

−prad
2 sin2 θ

1
CCCA; ð2:6Þ

where ρrad, prad
3 , and prad

2 are the radiation energy density,
the pressures in the noncompact 3D space and in the
compact 2D space, respectively. Their explicit forms are
listed in Appendix A.
In the presence of the radiation, the static solution (2.4) is

no longer a solution of the field equations, and the universe
continues to expand. Substituting the background ansatz
(2.3) and (2.6) into the 6D Einstein equations and the
dilaton field equation, we obtain the evolution equations for
the background fields, which are summarized as

Ä¼−ð3Ȧþ2ḂÞȦþ
�
e−σ −

eσ−4B

16

�
þm2

4
ðσ−σ�Þ2þprad

3 ;

B̈¼−ð3Ȧþ2ḂÞḂþ
�
e−

σ
2−

e
σ
2
−2B

4

�

×

�
e−

σ
2−

3e
σ
2
−2B

4

�
þm2

4
ðσ−σ�Þ2þprad

2 ;

σ̈¼−ð3Ȧþ2ḂÞσ̇þ2

�
e−σ −

eσ−4B

16

�
−m2ðσ−σ�Þ; ð2:7Þ

with the constraint,

3Ȧ2 þ Ḃ2 þ 6Ȧ Ḃ−
1

2
σ̇2 ¼ 2

�
e−

σ
2 −

e
σ
2
−2B

4

�
2

þm2

2
ðσ − σ�Þ2 þ ρrad

≡ ρ̂tot: ð2:8Þ

We have used the relation (A11).
The energy density and the pressures are expressed as

(see Appendix A)7

ρrad ¼ gdofe−2B

8π3β4

�
π4

16
þ 3Q1 þQ2

�
;

prad
3 ¼ gdofe−2B

8π3β4

�
π4

48
þQ1

�
;

prad
2 ¼ gdofe−2B

16π3β4
Q2; ð2:9Þ

where β≡ 1=T tmp is the inverse temperature, the functions
Q1ðxÞ andQ2ðxÞ are defined in (A6) and (A8) respectively,
and their arguments are e−Bβ. The evolution equation for β
is obtained from the conservation law for the energy-
momentum tensor as

β̇

β
¼ 3Ȧðπ4

12
þ 4Q1 þQ2Þ þ Ḃð2Q2 þQ3Þ
π4

4
þ 12Q1 þ 5Q2 þQ3

; ð2:10Þ

where Q3ðxÞ is defined in (B6). (See Appendix B.) The
profiles of x2QiðxÞ (i ¼ 1, 2, 3) are shown in Fig. 16.
We consider a situation that the moduli B and σ have

already been stabilized at t ¼ 0. Hence, we choose the
initial conditions at t ¼ 0 as

Að0Þ¼ 0; Bð0Þ¼B�; σð0Þ¼ σ�; βð0Þ¼ βI;

Ȧð0Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂totð0Þ

3

r
; Ḃð0Þ¼ σ̇ð0Þ¼ 0; ð2:11Þ

where βI is a positive constant. The value of Ȧð0Þ is
determined by the constraint (2.8).

III. INDUCED MODULI OSCILLATION AND 3D
SCALE FACTOR

A. Moduli oscillation induced by prad2

As pointed out in our previous work [8], the pressure for
the compact space S2, prad

2 , pushes out the moduli from the
potential minimum, and induces an oscillation of the
moduli around the stabilized values in (2.4). Namely, even
in the case that the moduli have been settled at the stabilized

5The mass eigenvalues for the KK gravitons are expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

mKK, where l is a non-negative integer.
6The number of tensor multiplets is assumed to be one,

otherwise the theory cannot be described by the Lagrangian.

7To simplify the discussion, we assume that the chemical
potential μ is negligible, i.e., βμ ≪ 1, and the radiation consists of
bosons and fermions with the same degrees of freedom.
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point before the radiation-dominated era, they will start to
oscillate again. This effect cannot be neglected if the
temperature is high enough compared to mKK.
In order to see this behavior, wewill see the time evolution

of the moduli at early times. We assume that the radiation
dominates the energy density at t ¼ 0, and the initial
temperature is higher than mKK (i.e., β̂I ≡ e−B�βI ≪ 1).
Sincewe are interested in the oscillation around the stabilized
values in (2.4), we define B̃≡ B − B� and σ̃ ≡ σ − σ�. The
mass eigenstates are linear combinations of them, which are
defined as

φ1 ≡ e
3
2
Að2 cos θB̃þ sin θσ̃Þ;

φ2 ≡ e
3
2
Að−2 sin θB̃þ cos θσ̃Þ: ð3:1Þ

The evolution equations for them are derived from (2.7) as

�
φ̈1

φ̈2

�
¼−

�
λ1

λ2

��
φ1

φ2

�
þ 2e

3
2
Aprad

2

�
cosθ

− sinθ

�
þ�� � ;

ð3:2Þ

where the ellipsis denotes higher order terms inφ1 orφ2, and

λ1 ≡ 1

2

�
2m2

KK þm2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

KK þm4

q �
;

λ2 ≡ 1

2

�
2m2

KK þm2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

KK þm4

q �
;

θ≡ tan−1
2m2

KK

m2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m4

KK þm4
p ¼ tan−1

m2
KK

λ2 −m2
KK

: ð3:3Þ

We have neglected terms involving Ä, which are assumed to
be small at initial times. When m2 ≫ m2

KK, for example,
these become λ1 ≃m2

KK, λ2 ≃m2 and θ ≃ λ1=λ2.
In general, it is hard to solve (2.7) analytically because A,

B and σ are coupled to each other. However, due to the
assumption that the radiation is dominated at initial times,
the expansion of the 3D space is determined only by ρrad,
and is almost independent of the moduli. Hence we can
treat the 3D expansion and the moduli oscillation sepa-
rately. In fact, from (A13) and (B7), the energy density and
the pressure for the compact space S2 are approximately
written as

ρrad ≃
10gdof
π3β6

; prad
2 ≃

2gdof
π3β6

; ð3:4Þ

which are independent of the moduli. Notice that Ȧ ≫ jḂj
at the very early times because of the initial condition
(2.11). Then, from (2.10) and (B7), we obtain

β̇

β
≃
3

5
Ȧ; ð3:5Þ

which is immediately solved as β ≃ βIe
3
5
A. Thus, (3.4) is

rewritten as

ρrad ≃Drade−
18
5
A; prad

2 ≃
Drad

5
e−

18
5
A; ð3:6Þ

where Drad ≡ 10gdof=ðπ3β6I Þ.
From (2.8), we have

Ȧ ≃

ffiffiffiffiffiffiffi
ρrad

3

r
≃

ffiffiffiffiffiffiffiffiffi
Drad

3

r
e−

9
5
A; ð3:7Þ

which leads to

t ≃
Z

A

0

dx

ffiffiffiffiffiffiffiffiffi
3

Drad

s
e
9
5
x ¼ 5

3
ffiffiffiffiffiffiffiffiffiffiffi
3Drad

p ðe9
5
A − 1Þ: ð3:8Þ

Therefore, we have

eA≃ ð1þ
ffiffiffiffiffiffi
CA

p
tÞ5=9; β≃e

3
5
A≃ ð1þ

ffiffiffiffiffiffi
CA

p
tÞ1=3; ð3:9Þ

where CA ≡ ð27=25ÞDrad ¼ 54gdof=ð5π3β6I Þ. This approxi-
mation is valid when β̂≡ e−B�β < 1. This condition is
translated as

t < t1 ≡ 1ffiffiffiffiffiffi
CA

p
β̂3I

¼ e3B�

ffiffiffiffiffiffiffiffiffiffiffiffi
5π3

54gdof

s
¼ 0.038e3B� : ð3:10Þ

We have used that β̂I ≪ 1.
Using (3.9), (3.2) is rewritten as

�
φ̈1

φ̈2

�
≃−
�
λ1

λ2

��
φ1

φ2

�
þ2Drad

5
ð1þCAtÞ−7=6

�
cosθ

−sinθ

�
:

ð3:11Þ

From (2.11), the initial conditions at t ¼ 0 are read off as

φ1ð0Þ ¼ φ2ð0Þ ¼ φ̇1ð0Þ ¼ φ̇2ð0Þ ¼ 0: ð3:12Þ

The solution is expressed as

φ1ðtÞ ≃ −
2Drad cos θ

5λ1

�
λ1
CA

� 7
12

Imfe π
12
iU7=6ðt; λ1; CAÞg

¼ −
10 cos θ

27

�
CA

λ1

� 5
12

Imfe π
12
iU7=6ðt; λ1; CAÞg;

φ2ðtÞ ≃
2Drad sin θ

5λ2

�
λ2
CA

� 7
12

Imfe π
12
iU7=6ðt; λ2; CAÞg

¼ 10 sin θ
27

�
CA

λ2

� 5
12

Imfe π
12
iU7=6ðt; λ2; CAÞg: ð3:13Þ
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(See Appendix C.) The function Uqðt; λ; CÞ is defined by
the incomplete gamma function as (C7). From these and
(3.9), we obtain an approximate solution of the moduli
evolution equations at early times. We have checked that
this approximate solution well agrees with the solution of
the full evolution equation (2.7) obtained by the numerical
computation.
As we will see in the next subsection, it is convenient to

define

ĀðtÞ≡ AðtÞ þ B̃ðtÞ: ð3:14Þ

Since jB̃ðtÞj ≪ AðtÞ except for an early short period
0 ≤ t ≪ C−1=2

A , eĀ can be understood as a modified 3D
scale factor. The mixing term between Ȧ and Ḃ in the

constraint (2.8) is absorbed into ˙̄A2, and (2.8) is rewritten in
a similar form to the 4D Friedmann equation.8

3 ˙̄A2 ¼ ρmod þ ρrad; ð3:15Þ

where

ρmod ≡ 2Ḃ2 þ 1

2
σ̇2 þ 2

�
e−

σ
2 −

e
σ
2
−2B

4

�
2

þm2

2
ðσ − σ�Þ2;

ð3:16Þ

represents the energy density of the moduli oscillation. The
moduli energy density ρmod is expressed in terms of φ1 and
φ2 as

ρmod ¼ e−3Ā

2

��
φ̇1 −

3

2
˙̄Aφ1

�
2

þ
�
φ̇2 −

3

2
˙̄Aφ2

�
2

þ λ1φ
2
1 þ λ2φ

2
2

�
þ � � � ; ð3:17Þ

where the ellipsis denotes higher order terms in φ1 or φ2.
Using (3.13), we can plot e3ĀρmodðtÞ as Fig. 1. From this
plot, we can see that e3Āρmod is almost a constant for
t > tref , where

tref ≡ 100ffiffiffiffiffi
λ1

p ∼ 100max

� ffiffiffi
2

p

m
;

1

mKK

�
: ð3:18Þ

Noting that jΓð1 − q; ixÞj ≃ x−q for x ≫ 1, we find that

lim
t→∞

e3ĀðtÞρmodðtÞ ¼ 50C5=6
A

729

�
λ1=61 cos2θ

				Γ
�
−
1

6
; i

ffiffiffiffiffiffi
λ1
CA

s �				
2

þ λ1=62 sin2θ

				Γ
�
−
1

6
; i

ffiffiffiffiffiffi
λ2
CA

s �				
2�

≡ Cmod: ð3:19Þ

We have used (C8). Namely, ρmod decays as

ρmodðtÞ ≃ Cmode−3ĀðtÞ: ð3:20Þ

at late times (t > tref ).

FIG. 1. The profiles of e3Āρmod as a function of t=tref , where tref ≡ 100=
ffiffiffiffiffi
λ1

p
. In the left plot, we choose σ� ¼ 10, 12, 14 from bottom

to top withm ¼ 10−2 and βI ¼ 20. In the right plot, we choosem ¼ 10−2, 10−3, 10−4 from bottom to top with σ� ¼ 12 and βI ¼ 20. The
dashed lines denote the asymptotic values given by (3.19).

8Note that ˙̄A corresponds to the Hubble expansion rate.
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Here we comment on the validity of the above approximations. We have used that ρrad ≫ ρmod to obtain (3.9). When this
condition is satisfied, the ratio of ρmod to ρrad is

ρmod

ρrad
≃

27

25CA

��
φ̇1 −

3

2
˙̄Aφ1

�
2

þ
�
φ̇2 −

3

2
˙̄Aφ2

�
2

þ λ1φ
2
1 þ λ2φ

2
2

�
ð1þ

ffiffiffiffiffiffi
CA

p
tÞ13

≡ rm=rðtÞ; ð3:21Þ

where φ1ðtÞ and φ2ðtÞ are given by (3.13), and
˙̄AðtÞ ¼ 5

ffiffiffiffiffiffi
CA

p
=f9ð1þ ffiffiffiffiffiffi

CA
p

tÞg. Note that the function
rm=rðtÞ is determined when the model parameters m; σ�
and the initial condition βI are given. This ratio is plotted in
Fig. 2. We can see from the plots that the approximate
solution in (3.13) is no longer valid when t ≃ tref in the case
of βI ¼ 10, m ¼ 0.01 and σ� ¼ 14. As a general property,
the ratio ρmod=ρrad takes a larger value for higher initial
temperature or for shallower moduli potential (i.e., smaller
m or larger σ�). When ρmod approaches to ρrad, the
expansion rate for the 3D space becomes larger than
(3.7), and the inhomogeneous term in (3.2) decays more
rapidly than (3.11). After the inhomogeneous term
becomes negligible, the solution will reduce to a linear
combination of two simple harmonic oscillators, and
e3Aρmod becomes constant. Thus, the constant Cmod in
(3.20) takes a smaller value than (3.19) if rm=r is close to
one before t ¼ tref .

B. Smoothed 3D scale factor

In the usual 4D cosmology, the 3D scale factor evolves
as eAðtÞ ∝ t1=2 in the radiation-dominated era and as eAðtÞ ∝
t2=3 in the matter-dominated era. Thus, it is convenient to
define the effective power p as p≡ tȦ. Then, p ¼ 1=2
(2=3) in the radiation- (matter-) dominated era. However, as
we pointed out in Ref. [8], this quantity oscillates due to the
effect of the moduli oscillation (see Fig. 3). Thus we
modify the definition of p as

p≡ ðt − tcÞ ˙̄A; ð3:22Þ

where Ā is defined by (3.14). The constant tc is chosen so
that p is almost independent of t at early times. We will
show how to choose tc in Sec. III D. As we can see from
Fig. 3, this modification removes the effect of the moduli
oscillation [8].
For t ≥ tref, the radiation energy density in (2.9) is

approximated as

ρrad ≃ Crad
vρðβ̂Þ
β̂6

;

Crad ≡ gdofe−6B�

8π3
; ð3:23Þ

where β̂≡ e−B�β ¼ mKKβ is the inverse temperature in the
unit of the KK mass mKK, and

vρðxÞ≡ x2
�
π4

16
þ 3Q1ðxÞ þQ2ðxÞ

�
: ð3:24Þ

The evolution equation for β (2.10) is approximated as

β̇

β
≃ vβðβ̂Þ ˙̄A; ð3:25Þ

where

FIG. 2. The logarithm of the function rm=r in (3.21) as a function of t=tref . The lines corresponds βI ¼ 10, 20, 30, 40, 50 from top to
bottom. The other parameters are chosen as m ¼ 0.01, σ� ¼ 10 (left plot), and σ� ¼ 14 (right plot).
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vβðxÞ≡
π4

4
þ 12Q1ðxÞ þ 3Q2ðxÞ

π4

4
þ 12Q1ðxÞ þ 5Q2ðxÞ þQ3ðxÞ

: ð3:26Þ

The profiles of vβðxÞ and vρðxÞ are shown in Fig. 4.
Solving (3.25), the (smoothed) 3D scale factor Ā is

expressed as a function of β̂,

Āðβ̂Þ ≃ Āref þ
Z

β̂

β̂ref

dx
xvβðxÞ

¼ Āref þ F ðβ̂Þ − F ðβ̂refÞ; ð3:27Þ

where Āref and β̂ref denote the values at t ¼ tref , and

F ðxÞ≡
Z

x

1

dy
yvβðyÞ

: ð3:28Þ

The profile of F ðxÞ is shown in Fig. 5.

C. Expression of effective power p

Here we derive an explicit expression for the effective
power p. From (3.15) and (3.20), we have9

˙̄A ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ðCmode−3Ā þ ρradÞ

r
; ð3:29Þ

which leads to

t− tref ≃
Z

β̂

β̂ref

dx
dĀ

dβ̂
ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Cmode−3ĀðxÞ þρradðxÞ

s

¼
Z

β̂

β̂ref

dx
xvβðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Cmode−3ĀðxÞ þCradx−6vρðxÞ

s

¼
ffiffiffiffiffiffiffiffi
3

Crad

s Z
β̂

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p f1þRmod
rad RðxÞg−1=2;

ð3:30Þ
where

Rmod
rad ≡ Cmode−3Ārefþ3F ðβ̂refÞ

Crad
; RðxÞ≡ x6e−3F ðxÞ

vρðxÞ
:

ð3:31Þ
We have used (3.27) at the last step. As shown in Fig. 6,
RðxÞ is well approximated as a linear function.

RðxÞ ≃ 0.0135x: ð3:32Þ

Thus, the above expression can be approximated as

t ≃ tref þ
ffiffiffiffiffiffiffiffi
3

Crad

s Z
β̂

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p �
1þ x

β̂mod

�
−1=2

;

ð3:33Þ

where

β̂mod ≡ 1

0.0135Rmod
rad

≃
74.1
Rmod
rad

: ð3:34Þ

Using this expression, the effective power p defined in (3.22) is expressed as

pðβ̂Þ ¼ ðt − tcÞ
dĀ

dβ̂
ðβ̂Þ
�
dt

dβ̂
ðβ̂Þ
�

−1

≃

(
tref − tc þ

Z
β̂

β̂ref

dx
xvβðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

Cmode−3ĀðxÞ þ Cradx−6vρðxÞ

s ) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cmode−3Āðβ̂Þ þ Cradβ̂

−6vρðβ̂Þ
3

s

≃

(
tref − tc þ

ffiffiffiffiffiffiffiffi
3

Crad

s Z
β̂

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p �
1þ x

β̂mod

�
−1=2

) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cradvρðβ̂Þ

3β̂6

s �
1þ β̂

β̂mod

�1=2

: ð3:35Þ

FIG. 3. The profiles of ðt − tcÞȦðtÞ (solid line) and pðtÞ defined
in (3.22) (dashed line) in the case of m ¼ 0.1, σ� ¼ 10, βI ¼ 10,
and tc ¼ −125 in the unit of M6.

9We focus on the positive solution of ˙̄A since we are interested in an expanding 3D universe.
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D. Choice of tc
As we mentioned, the constant tc is determined so that p

is almost independent of t at early times t ≤ tref .
By assumption, ρmodðtrefÞ ≃ Cmode−3Āref ≪ ρradðtrefÞ≃
Cradβ̂

−6
refvρðβ̂refÞ, i.e., β̂ref ≪ β̂mod. Then, when t ∼ tref ,

(3.33) is approximated as

tðβ̂Þ ¼ tref þ
ffiffiffiffiffiffiffiffi
3

Crad

s Z
β̂

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p
×

�
1 −

x

2β̂mod

þ � � �
�

≃ tref þ
ffiffiffiffiffiffiffiffi
3

Crad

s 

GðxÞ − 1

2β̂mod

HðxÞ
�
β̂

β̂ref

; ð3:36Þ

where

GðxÞ≡
Z

x

0

dy
y2

vβðyÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðyÞ

p ;

HðxÞ≡
Z

x

0

dy
y3

vβðyÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðyÞ

p : ð3:37Þ

Figure 7 shows the profiles of GðxÞ=x2 and HðxÞ=x3.

Thus, when t ∼ tref , (3.35) is approximated as

pðβ̂Þ ≃
(
tref − tc þ

ffiffiffiffiffiffiffiffi
3

Crad

s h
GðxÞ − 1

2β̂mod

HðxÞ
iβ̂
β̂ref

)

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cradvρðβ̂Þ

3β̂6

s �
1þ β̂

2β̂mod

�
: ð3:38Þ

Here we choose tc as

tc ¼ tref −

ffiffiffiffiffiffiffiffi
3

Crad

s �
Gðβ̂refÞ −

1

2β̂mod

Hðβ̂refÞ
�
: ð3:39Þ

Then, (3.38) becomes

pðβ̂Þ ≃
�
Gðβ̂Þ − 1

2β̂mod

Hðβ̂Þ
� ffiffiffiffiffiffiffiffiffiffiffi

vρðβ̂Þ
q

β̂3

�
1þ β̂

2β̂mod

�
:

ð3:40Þ

For β̂ ≪ 1, the functions we have defined behave as

FIG. 4. The profiles of vβðxÞ and vρðxÞ.

FIG. 5. The profile of F ðxÞ. The dotted line represents
ln xþ 0.833.

FIG. 6. The profile of RðxÞ. The dotted represents 0.0135x.
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vβðβ̂Þ≃
3

5
; vρðβ̂Þ≃80;

F ðβ̂Þ≃5

3
lnβ̂; Gðβ̂Þ≃

ffiffiffi
5

p

36
β̂3; Hðβ̂Þ≃

ffiffiffi
5

p

48
β̂4: ð3:41Þ

By assumption, β̂ ≪ β̂mod. Thus, pðβ̂Þ behaves as10

pðβ̂Þ ≃ Gðβ̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
vρðβ̂Þ

q
β̂3

≃
5

9
; ð3:42Þ

which is independent of β̂ (or t). Hence the choice of t0 in
(3.39) is appropriate.
Using this choice of t0, (3.35) becomes

pðβ̂Þ ≃
�Z

β̂

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p �
1þ x

β̂mod

�
−1=2

þ Gðβ̂refÞ −
Hðβ̂refÞ
2β̂mod

�

×

ffiffiffiffiffiffiffiffiffiffiffi
vρðβ̂Þ

q
β̂3

�
1þ β̂

β̂mod

�1=2

: ð3:43Þ

Combining this with (3.33), we can plot p as a function of t.

IV. TIME EVOLUTION OF 3D SPACE

In this section, we discuss the expansion of the 3D space
by evaluating the time evolution of the effective power p.

A. Parameter dependence of effective power p

When β̂ ≪ β̂mod, (3.33) and (3.43) reduce to

tðβ̂Þ ≃ tref þ
ffiffiffiffiffiffiffiffi
3

Crad

s
fGðβ̂Þ − Gðβ̂refÞg;

pðβ̂Þ ≃ Gðβ̂Þ
ffiffiffiffiffiffiffiffiffiffiffi
vρðβ̂Þ

q
β̂3

: ð4:1Þ

From Fig. 8, we can see that the power p changes its value
from 9=5 to 1=2 during the period 2 < β̂ < 10. If
β̂mod ≫ 15, the 3D space expands as in the 4D radia-
tion-dominated era until β̂ approaches to β̂mod.
When β̂ ≫ β̂mod, on the other hand, the contribution of

the moduli oscillation dominates the energy density, and
pðβ̂Þ in (3.43) can be estimated as

tðβ̂Þ≃ tref þ
ffiffiffiffiffiffiffiffi
3

Crad

s Z
β̂

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p
ffiffiffiffiffiffiffiffiffi
β̂mod

x

s

≃ tref þ
ffiffiffiffiffiffiffiffiffiffiffiffi
3β̂mod

Crad

s Z
β̂

0

dx
x3=2

π2

4
x
¼ tref þ

8

3π2

ffiffiffiffiffiffiffiffiffiffiffiffi
3β̂mod

Crad

s
β̂3=2;

pðβ̂Þ≃
�Z

β̂

0

dx
x3=2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p � ffiffiffiffiffiffiffiffiffiffiffi
vρðβ̂Þ

q
β̂5=2

≃
�Z

β̂

0

dx
x3=2

π2

4
x

� π2

4
β̂

β̂5=2
¼ 2

3
; ð4:2Þ

where we have used that

vβðxÞ ≃ 1; vρðxÞ ≃
π4

16
x2; ð4:3Þ

for x ≫ 1.

FIG. 7. The profiles of F ðxÞ, GðxÞ=x2 and HðxÞ=x3.

FIG. 8. The profile of the function in (4.1).

10This value corresponds to the 6Dradiation-dominateduniverse,
which is also obtained from eA ∝ t2=ð3ð1þwÞÞ with w ¼ 1=5. Note
that w−1 measures the space dimensions that the radiation feels.
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Thus, if we define

trad ≡ tðβ̂ ¼ 10Þ; tmod ≡ tðβ̂modÞ; ð4:4Þ

the power p changes from 9=5 to 1=2 around t ¼ trad, and
from 1=2 to 2=3 around t ¼ tmod. We show a typical profile
of the function pðtÞ in Fig. 9. The parameters are chosen as
σ� ¼ 14, β̂ref ¼ 10−2, and Rmod

rad ¼ 10−5.
As we can see from (3.33) and (3.43), the function pðtÞ

depends on the parameters only through tref , Crad, β̂ref , and
Rmod
rad . Among them, we choose tref much smaller than the

second term of tðβ̂Þ in (3.33), and thus its dependence can
be neglected. Let us see the dependences on the other three
parameters, individually.
Crad-dependence
From (3.23), Crad is determined only by σ� (ormKK), and
it only affects the overall timescale if tref is negligible
[see (3.33)]. Figure 10 shows the profile of pðtÞ for
different values of σ�. The solid, dashed, and dotted lines
correspond σ� ¼ 10, 13 and 16, respectively. As this plot
shows, the value of σ� (i.e., Crad) just shift the profile to
the time direction without changing its shape.

β̂ref -dependence
The left plot in Fig. 11 shows the profile of pðtÞ for
various values of β̂ref . For β̂ref ≲ 1, the profile of pðtÞ is
almost independent of β̂ref , and the initial value of pðtÞ
for t ≪ trad is 9=5, which is the value of the 6D radiation-
dominated universe. For 2 < β̂ref < 20, the value of pðtÞ
at early times (t ≪ trad) decreases as β̂ref increases. This
can be understood from Fig. 8. A larger value of β̂ref in
this region indicates that the temperature is not high
enough for the radiation to feel the compact space S2

completely, and the 3D space expands less rapidly. For
β̂ref > 15, the radiation no longer feel the compact space,
and the expansion rate of the 3D space is almost the same
as the 4D radiation-dominated one.

FIG. 9. The effective power p as a function of t. The parameters
are chosen as σ� ¼ 14, β̂ref ¼ 10−2 and Rmod

rad ¼ 10−5. The left
and right vertical dashed lines denotes t ¼ trad and t ¼ tmod,
respectively.

FIG. 11. The profiles of pðtÞ (left) and tðβ̂Þ (right). The thick, thin, dashed, dotted, and dot-dashed lines correspond to β̂ref ¼ 1, 3, 5,
10, and 30, respectively. The other parameters are chosen as tref ¼ 104, σ� ¼ 14 (i.e., Crad ¼ 2.97 × 10−16), and Rmod

rad ¼ 10−5.

FIG. 10. The profile of pðtÞ for various values of σ�. The solid,
dashed, and dotted lines correspond to σ� ¼ 10, 13, and 16,
respectively. The other parameters are chosen as tref ¼ 104,
β̂ref ¼ 10−2, and Rmod

rad ¼ 10−5.
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The right plot in Fig. 11 shows that a small change of β̂
corresponds to a large change of t in early times. This
explains the plateau for t ≪ trad in the left plot.

Rmod
rad -dependence
Figure 12 shows the Rmod

rad -dependence of pðtÞ. Recall
that Rmod

rad defined in (3.31) parameterizes the ratio of the
energy density for the moduli-oscillation to that for the
radiation at t ¼ tref . Since the latter energy density
decreases faster than the former, the former eventually
dominates the total energy density at late times and p
will approach to 2=3. The parameter Rmod

rad determines
tmod, at which the moduli-oscillation contribution starts
to dominate. For a smaller value of Rmod

rad , it takes more
time to dominate the total energy density, and thus tmod

becomes larger. When Rmod
rad > 1, on the other hand, the

moduli oscillation will dominates the energy density
before the universe behaves as the 4D radiation-
dominated one.

B. Estimation of transition times

So far, we have worked in the 6D Planck unit. For
phenomenological discussions, however, it is more conven-
ient to translate the physical quantities in the 4Dunit. First, let
us restore the dependence of the 6D Planck mass M6.

t→
t
M6

; β→
β

M6

; mKK ¼ e−B� → e−B�M6: ð4:5Þ

The 4D Planck mass M4 is defined after the extra
dimensions are stabilized, and is related to the 6D
Planck mass M6 as

M4 ≡
ffiffiffiffiffiffiffi
V2�

p
M2

6 ¼
ffiffiffiffiffiffi
4π

p
eB�M6; ð4:6Þ

where V2� ≡ 4πðeB�l6Þ2 (l6 ≡M−1
6 : 6D Planck length) is

the volume of the compact space S2 after the moduli
stabilization. Thus, the quantities in (4.5) are expressed as

t ¼
ffiffiffiffiffiffi
4π

p
eB�

M4

tð6Þ ¼ 1.46 × 10−18eB�tð6Þ GeV−1 ¼ 8.61 × 10−42eB�tð6Þ sec;

β ¼
ffiffiffiffiffiffi
4π

p
eB�

M4

βð6Þ ¼ 1.46 × 10−18eB�βð6Þ GeV−1;

mKK ¼ M4ffiffiffiffiffiffi
4π

p
e2B�

¼ 6.87 × 1017e−2B� GeV; ð4:7Þ

where tð6Þ and βð6Þ are the values of the time and the inverse
temperature measured by M6.
Fig. 13 shows the transition times trad and tmod defined in

(4.4) as functions of the initial inverse temperature nor-
malized by the KK mass scale β̂I ≡mKKβI. The solid,

dashed, and dotted lines correspond to the case of σ� ¼ 10

(mKK ¼ 1.2 × 1014 GeV), 13 (6.2 × 1012 GeV) and 16
(3.1 × 1011 GeV). From this plot, we see that tmod increases
as the initial inverse temperature β̂I increases. This can be
understood by noting that the induced moduli oscillation

FIG. 12. The profile of pðtÞ. The thick, thin, dashed, dotted,
thick dot-dashed, and thin dot-dashed lines correspond to
Rmod
rad ¼ 10−6, 10−4, 10−2, 1, 5, and 20, respectively. The other

parameters are chosen as tref ¼ 104, β̂ref ¼ 0.01 and σ� ¼ 14

(i.e., Crad ¼ 2.97 × 10−16).

FIG. 13. The transition times tmod and trad defined in (4.4) as
functions of β̂I ≡mKKβI. The unit of the vertical axis is seconds.
The solid, dashed and dotted lines correspond to the case of
σ� ¼ 10, 13 and 16, respectively. The upper (lower) line
represents tmod (trad). The mass parameter m is chosen
as m ¼ 0.01.
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has a larger amplitude for high initial temperature. Namely,
for a large value of β̂I (i.e., low initial temperature), the
pressure prad

2 is small and the induced moduli oscillation
has a small amplitude, which leads to a small value of Rmod

rad .
As shown in Fig. 12, this means that the moduli oscillation
dominates the energy density at later time. In contrast, the
transition from the 6D to 4D radiation-dominated eras
occurs when the moduli-oscillation energy density is
negligible. Therefore, trad is almost independent of β̂I, as
can be seen from the plot.
Next we see the dependence of the mass parameter m in

the moduli potential (2.2). For a smaller value of m, the
potential becomes shallower and the moduli can move from
the potential minimum (2.4) by the pressure prad

2 more
easily. Therefore, the amplitude of the moduli oscillation
becomes larger, and the value of Rmod

rad increases. As a result,
we have a smaller value of tmod. This behavior can be seen
in Fig. 14, which shows the dependence of tmod on m.
From (4.1) and (3.23), the transition time trad in the M6

unit is approximated as

tð6Þrad ≃ tref þ
ffiffiffiffiffiffiffiffi
3

Crad

s
fGð10Þ − Gðβ̂refÞg

≃

ffiffiffiffiffiffiffiffi
3

Crad

s
Gð10Þ ¼

ffiffiffiffiffiffiffiffiffiffi
24π3

gdof

s
e3B�Gð10Þ: ð4:8Þ

Since Gð10Þ ≃ 20.6, trad in the unit of second is

trad ≃

ffiffiffiffiffiffiffiffiffiffi
24π3

gdof

s
e4B� ≃ 4.83 × 10−39 ×

e4B�ffiffiffiffiffiffiffiffi
gdof

p sec : ð4:9Þ

From (3.33) and (4.4), the transition time tmod in the M6

unit is approximated as

tð6Þmod≃

ffiffiffiffiffiffiffiffiffiffiffi
3

2Crad

s Z
β̂mod

β̂ref

dx
x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p
≃

1

π2

ffiffiffiffiffiffiffiffi
6

Crad

s
β̂2mod≃556

ffiffiffiffiffiffiffiffi
6

Crad

s
ðRmod

rad Þ−2

≃556
ffiffiffi
6

p �
gdofe−6B�

8π3

�
3=2

C̃−2
mod≃

0.35g3=2dof e
−9B�

C̃2
mod

; ð4:10Þ

where

C̃mod ≡ Cmode−3Ārefþ3F ðβ̂refÞ: ð4:11Þ

Here we have assumed that β̂mod ≫ β̂ref and used that

x2

vβðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
vρðxÞ

p ≃
4

π2
x; ð4:12Þ

for x ≫ 1.
Thus, tmod in the unit of second is

tmod ¼ 8.61 × 10−42eB�tð6Þmod sec

≃
3.0 × 10−42g3=2dof e

−8B�

Cmod
e3Āref−3F ðβ̂refÞ sec : ð4:13Þ

Since we are considering the case that β̂ref ≪ 1, we have

e3Āref ≃ð1þ
ffiffiffiffiffiffi
CA

p
trefÞ5=3; β̂ref≃e

3
5
Āref ¼ð1þ

ffiffiffiffiffiffi
CA

p
trefÞ1=3;

ð4:14Þ

from (3.9). Plugging these and (3.19) into (4.13), we can
estimate the value of tmod.

C. Moduli decay

The moduli-oscillation-domination era will end by the
decay of the moduli. After the lifetime of the moduli tdc, the
moduli oscillation is converted into the radiation. In this
subsection, we will see this effect.
From (3.23), (3.27), (3.31), and (3.32), the radiation

energy density is written as

ρrad ≃ Crad
vρðβ̂Þ
β̂6

¼ Crad
e−3F ðβ̂Þ

Rðβ̂Þ ≃Dref
e−3Āðβ̂Þ

β̂
; ð4:15Þ

where

Dref ≡ Crade3Āref−3F ðβ̂refÞ

0.0135
: ð4:16Þ

From this, we obtain

FIG. 14. The transition time tmod defined in (4.4) as functions of
β̂I ≡mKKβI in the case of σ� ¼ 12. The unit of the vertical axis is
seconds. The solid, dashed, and dotted lines correspond to the
case of m ¼ 10−2, 10−3, and 10−4, respectively.
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ρ̇rad ≃
�
−3 ˙̄A −

˙̂β

β̂

�
ρrad ≃ −f3þ vβðβ̂Þg ˙̄Aρrad; ð4:17Þ

where we have used (3.25).
If we introduce the effect of the moduli decay, and (3.20)

and (4.17) are modified as

ρmod ≃ Cmode−3Ā−Γmodt;

ρ̇rad ≃ −f3þ vβðβ̂Þg ˙̄Aρrad þ Γmodρ
mod; ð4:18Þ

where Γmod ≡ 1=tdc is the total decay rate of the moduli.
Recall that

tðβ̂Þ ¼ tref þ
Z

β̂

β̂ref

dx
xvβðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ρradðxÞ þ ρmodðxÞ

s
;

pðβ̂Þ ¼ ðt − tcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρradðβ̂Þ þ ρmodðβ̂Þ

3

s
; ð4:19Þ

where tc is given by (3.39). Now we numerically evaluate p
at each time. Denote the value of a quantity q at

β̂i ≡ β̂refeΔi; ði ¼ 0; 1; 2;…Þ ð4:20Þ

where Δ ≪ 1 is a small positive constant, as qi. Then, we
have the following recurrence relations.

tiþ1 ¼ ti þ δτi;

δτi ≡ Δ
vβðβ̂iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ρradi þ ρmod
i

s
;

ρradiþ1 ¼ ρradi þ δτi

"
−ð3þ vβðβ̂iÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρradi þ ρmod

i

3

r
ρradi þ Γmodρ

mod
i

#
;

ρmod
iþ1 ¼ Cmode−3Āiþ1−Γmodtiþ1

¼ ρmod
i exp

(
−

Δ
vβðβ̂iÞ

 
3þ Γmod

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ρradi þ ρmod
i

s !)
: ð4:21Þ

At the last equality, we have used that

Āiþ1 ¼ Āi þ
Δ

vβðβ̂iÞ
: ð4:22Þ

Using these quantities, the effective power p at t ¼ ti is
calculated as

pi ¼ ðti − tcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρradi þ ρmod

i

3

r
: ð4:23Þ

Figure 15 shows the effective power p as a function of t
in the unit of second. As expected, p rapidly decreases to
the radiation-dominated value 1=2 at t ¼ tdc.

V. SUMMARY

We investigated the cosmological expansion of the 3D
space in a model with two compact extra dimensions by
solving the 6D evolution equations. We assumed that the
whole 5D space is filled with the radiation and the moduli
have already been stabilized at the initial time. In contrast to
the conventional 4D effective theory (4D EFT) analysis, the
6D evolution equations involves the pressure for the
compact extra dimensions prad

2 . When the temperature of
the universe is higher than the compactification scale mKK,
the pressure prad

2 affects the moduli dynamics.
In our previous work [8], we found that prad

2 pushes out
the moduli from the potential minimum, and induces the
moduli oscillation. If the moduli lifetime is long enough,
the oscillation will eventually dominate the energy density

FIG. 15. The profile of pðtÞ including the moduli decay effect.
The solid, dashed, dotted, and dot-dashed lines correspond to the
case of tdc ¼ 10−10, 10−15, 10−20 and 10−25 (sec), respectively.
The parameters are chosen asm ¼ 0.01, σ� ¼ 10 and βI ¼ 100 in
the unit of M6. The vertical lines denote trad ¼ 9.5 × 10−30 sec
(left) and tmod ¼ 2.3 × 10−21 sec (right), respectively.
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at late times. In that case, the 3D space expands as
eA ∝ t2=3. If the temperature of the universe is higher than
mKK, the radiation feels the whole 5D space, and the 3D
space expands as eA ∝ t5=9. When the temperature goes
down below mKK, the radiation ceases to feel the extra
dimensions, and the expansion rate slows down as
eA ∝ t1=2, which is the expansion law of the 4D radia-
tion-dominated universe. In order to pursue these changes
of the expansion rate, we define the effective power p in
such a way that the 3D scale factor behaves as eA ∝ tp for
each era. The nontrivial expansion of the 3D space is
parametrized by two transition times trad and tmod. The
effective power p changes from 5=9 to 1=2 around t ¼ trad,
and from 1=2 to 2=3 around t ¼ trad.
In our previous works [7,8], we evaluated the 3D scale

factor by numerical computation. However, it is not easy to
see how the transition times trad and tmod depend on the
model parameters and the initial temperature in such a
numerical approach. Besides, we cannot pursue the whole
history of the universe in this method due to the limitation
of the computational power. In this paper, we derive
analytic expressions for the 3D scale factor, the inverse
temperature and the background moduli values by solving
the 6D evolution equations under appropriate approxima-
tions, and provide analytic expressions for the transition
times as functions of the model parameters m, σ� and the
initial (inverse) temperature βI. The expressions we
obtained enable us to pursue the cosmological evolution
until much later times.
The first transition time trad is determined solely by σ�

(or mKK), and is almost independent of the initial temper-
ature. The second transition time tmod, on the other hand,
depends on both the moduli potential scale m and the
temperature. This is because tmod is determined by the
oscillation amplitude induced by prad

2 . The amplitude
becomes larger for a shallower potential (i.e., a smaller
value of m or a larger value of σ�) or for higher initial
temperature (i.e., a smaller value of βI), and then the moduli
oscillation dominates the energy density earlier (a smaller
value of tmod).
As shown in Ref. [7], the modulus B continues to

increase for σ� ≳ 16, and the observed 4D universe cannot

be obtained. Therefore, there is an upper bound for the
stabilized value of the S2 radius in our model.
In our works, we have fixed the moduli by introducing

the dilaton mass term by hand. It should be noted that there
are other types of moduli stabilization mechanisms. For
example, it is shown that the moduli can be stabilized by
introducing 3-branes with the dilaton couplings in
Refs. [22–26]. This corresponds to a 6D extension of
the Goldberger-Wise mechanism [27] in the Randall-
Sundrum setup [28]. It is intriguing to study whether the
properties we found here will change in such models. From
the viewpoint of the 4D EFT, both stabilization mecha-
nisms just generate the moduli potential and thus it seems
that they lead to similar results. However, it is nontrivial
whether this is the case when the 4D EFT is not valid.
For more realistic discussions, we need to extend our

setup by including the inflaton sector. Our initial conditions
in (2.11) with the radiation-domination assumption should
be realized by the reheating process after the inflation. In
such setups, the effective power p will enter the expression
of the e-folding number for the 3D scale factor.
We will discuss the above issues in separate papers.

APPENDIX A: THERMODYNAMIC QUANTITIES

The dispersion relation of a 6D relativistic or massless
particle is

kMkM¼−k20þe−2Ak⃗2þe−2Bk2θþ
1

e2Bsin2θ
k2ϕ¼0: ðA1Þ

Thus the energy of the particle with the 3D momentum k⃗ ¼
ðk1; k2; k3Þ and the angular momentum l on S2 is given by

Ek;l ¼ k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2Ak2 þ e−2Blðlþ 1Þ

q
; ðA2Þ

where k≡
ffiffiffiffiffi
k⃗2

p
. Since each one-particle state is specified by

k⃗, l and the “magnetic quantum number” m ¼ −l;…; l, we
have (2lþ 1) degenerate energy eigenstates for each k⃗ and l.
Hence the grand potential is expressed as

Jðβ; μ;V3;V2Þ ¼ �
X∞
l¼0

gdofð2lþ 1Þ
2π2β

Z
∞

0

dkk2 lnð1 ∓ e−βðEk;l−μÞÞ

¼∓ gdofV3

π2β4
Li4ð�eβμÞ �

X∞
l¼1

gdofð2lþ 1ÞV3

2π2β4

Z
∞

0

dqq2 lnð1 ∓ e−
ffiffiffiffiffiffiffiffiffi
q2þc2l

p
þβμÞ; ðA3Þ

where gdof denotes the degrees of freedom for the 6D
relativistic particles, β is the inverse temperature, μ is the
chemical potential, and V3 ≡ e3A and V2 ≡ 4πe2B are the
comoving volume for the 3D space and the physical

volume of S2, respectively. The upper (lower) signs
correspond to the case of bosons (fermions). At the second
equality, we have rescaled the integration variable and the
KK masses as
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q≡ e−Aβk; cl ≡ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πlðlþ 1Þ

V2

s
¼ e−Bβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
:

ðA4Þ

The function Li4ðzÞ in the second line of (A3) is the
polylogarithmic function. In the following, we consider a
situation in which e−clþβμ ≪ 1 for l ≥ 1. Then the grand
potential can be approximated as

Jðβ; μ;V3;V2Þ

≃ −
gdofV3

2π2β4

�
�2Lið�eβμÞ þ eβμQ1

�
β

ffiffiffiffiffiffi
4π

V2

s ��
; ðA5Þ

where

Q1ðxÞ≡
X∞
l¼1

x2lðlþ 1Þð2lþ 1ÞK2ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Þ: ðA6Þ

Here K2ðzÞ is the modified Bessel function of the second
kind.
From (A3), various thermodynamic quantities are calcu-

lated as follows.
Radiation energy density

ρrad¼ 1

V3V2

�
∂β−

μ

β
∂μ

�
ðβJÞ

≃
gdof

2π2β4V2

f�6Li4ð�eβμÞþeβμð3Q1þQ2Þg; ðA7Þ

where

Q2ðxÞ≡ −xQ0
1ðxÞ ¼

X∞
l¼1

x3l3=2ðlþ 1Þ3=2ð2lþ 1Þ

× K1ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Þ: ðA8Þ

3D pressure

prad
3 ¼ −

1

V2

∂J
∂V3

≃
gdof

2π2β4V2

f�2Li4ð�eβμÞ þ eβμQ1g:

ðA9Þ

2D pressure

prad
2 ¼ −

1

V3

∂J
∂V2

≃
gdofeβμ

4π2β4V2

Q2: ðA10Þ

The arguments of the functions Q1 and Q2 are understood
as β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=V2

p ¼ e−Bβ.
We should note that

ρrad ¼ 3prad
3 þ 2prad

2 : ðA11Þ

In this paper, we assume that βμ ≪ 1 and neglect the
chemical potential μ. Note that

Li4ð1Þ ¼ ζð4Þ ¼ π4

90
; Li4ð−1Þ ¼ −

7

8
ζð4Þ: ðA12Þ

If we have the same degrees of freedom for bosons and
fermions, the total energy density and pressures are
expressed as

ρrad ≃
gdof

2π2β4V2

�
π4

16
þ 3Q1ðe−BβÞ þQ2ðe−BβÞ

�
;

prad
3 ≃

gdof
2π2β4V2

�
π4

48
þQ1ðe−BβÞ

�
;

prad
2 ≃

gdof
4π2V2

Q2ðe−BβÞ; ðA13Þ

where gdof is the total degrees of freedom for the radiation.

APPENDIX B: CONSERVATION LAW

Including the radiation contribution, the energy-momen-
tum conservation law is

∇MTM
N ≡ ∂MTM

N þ ΓM
MLT

L
N − ΓL

MNT
M
L ¼ 0; ðB1Þ

where

Tt
t ¼

1

2
σ̇2 þ eσ

8b4
þ VðσÞ þ ρrad ≡ ρtot;

Ti
j ¼ δij

�
−
1

2
σ̇2 þ eσ

8b4
þ VðσÞ − prad

3

�
≡ −δijptot

3 ;

T4
4 ¼ T5

5 ¼ −
1

2
σ̇2 −

eσ

8b4
þ VðσÞ − prad

2 ≡ −ptot
2 : ðB2Þ

From (B1) with N ¼ t, we have

ρ̇tot þ 3Ȧðρtot þ ptot
3 Þ þ 2Ḃðρtot þ ptot

2 Þ ¼ 0; ðB3Þ

where the dot denotes the time derivative. The other
components hold trivially. By using the dilaton field
equation, the conservation law (B3) is reduced to

ρ̇rad þ ð3Ȧþ 2ḂÞρrad þ 3Ȧprad
3 þ 2Ḃprad

2 ¼ 0: ðB4Þ

Plugging (A13) into this, we obtain
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β̇

β

�
π4

4
þ 12Q1 þ 5Q2 þQ3

�

¼ 3Ȧ

�
π4

12
þ 4Q1 þQ2

�
þ Ḃð2Q2 þQ3Þ; ðB5Þ

where

Q3ðxÞ≡ 2Q2ðxÞ − xQ0
2ðxÞ

¼
X∞
l¼1

x4l2ðlþ 1Þ2ð2lþ 1ÞK0ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
Þ: ðB6Þ

The arguments of Q1;2;3 are understood as e−Bβ.
Figure 16 shows the profiles of Q1;2;3ðxÞ. For x ≪ 1,

they are approximated as

Q1ðxÞ ≃
16

x2
; Q2ðxÞ ≃

32

x2
; Q3ðxÞ ≃

128

x2
: ðB7Þ

APPENDIX C: INDUCED OSCILLATION
SOLUTION

Here we provide a solution of the following equation for
a real function φðtÞ.

φ̈ ¼ −λφþ α

ð1þ ffiffiffiffi
C

p
tÞq ; ðC1Þ

where λ > 0, C > 0, α and q are real constants. The
solution is expressed as

φðtÞ ¼ c1 cosð
ffiffiffi
λ

p
tÞ þ c2 sinð

ffiffiffi
λ

p
tÞ

−
α

λ

�
λ

C

�q
2

S
� ffiffiffiffi

λ

C

r
ð1þ

ffiffiffiffi
C

p
tÞ
�
; ðC2Þ

where c1 and c2 are integration constants, and

SðxÞ≡ Imfeðq−1Þπ2iEqðixÞg;

EqðxÞ≡ ez
EqðzÞ
zq−1

¼ ezΓð1 − q; zÞ: ðC3Þ

The function EqðzÞ≡ R∞1 dwe−zw=wq is the (generalized)
exponential integral, and Γðs; zÞ is the upper incomplete
gamma function. The derivatives of the real function SðxÞ
are

S0ðxÞ ¼ Refeðq−1Þπ2iE0
qðixÞg ¼ Refeðq−1Þπ2iEqðixÞg;

S00ðxÞ ¼ −Imfeðq−1Þπ2iE0
qðixÞg ¼ −

1

xq
− SðxÞ: ðC4Þ

We have used that

E0
qðzÞ ¼

−1þ ezzEqðzÞ
zq

¼ −
1

zq
þ ezΓð1 − q; zÞ

¼ −
1

zq
þ EqðzÞ: ðC5Þ

When the initial condition is that φð0Þ ¼ φ̇ð0Þ ¼ 0, the
solution becomes

φðtÞ ¼ −
α

λ

�
λ

C

�q
2

(
S

 ffiffiffiffi
λ

C

r
ð1þ

ffiffiffiffi
C

p
tÞ
!

− S
� ffiffiffiffi

λ

C

r �
cosð

ffiffiffi
λ

p
tÞ − S0

� ffiffiffiffi
λ

C

r �
sinð

ffiffiffi
λ

p
tÞ
)

¼ −
α

λ

�
λ

C

�q
2

Imfeðq−1Þπ2iUqðt; λ; CÞg; ðC6Þ

where

FIG. 16. The profile of x2Q1ðxÞ, x2Q2ðxÞ, and x2Q3ðxÞ.
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Uqðt; λ; CÞ≡ Eq

�
i

ffiffiffiffi
λ

C

r
ð1þ

ffiffiffiffi
C

p
tÞ
�
− Eq

�
i

ffiffiffiffi
λ

C

r �
ei
ffiffi
λ

p
t

¼ ei
ffiffi
λ
C

p
ð1þ ffiffiffi

C
p

tÞ
�
Γ
�
1 − q; i

ffiffiffiffi
λ

C

r
ð1þ

ffiffiffiffi
C

p
tÞ
�
− Γ
�
1 − q; i

ffiffiffiffi
λ

C

r ��
: ðC7Þ

The derivative of (C6) is expressed as

φ̇ ¼ −α
�
λ

C

�q
2

Refeðq−1Þπ2iUqðt; λ; CÞg: ðC8Þ
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