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We investigate the generation of the baryon asymmetry within the framework of cosmological
gravitational particle production, employing the Bogoliubov approach. We examine two well-known
baryogenesis scenarios, namely baryogenesis in grand unified theories (GUT) and leptogenesis, while
considering reheating temperatures sufficiently low for thermal processes to be negligible. Considering
α–attractor T-models for the inflaton potential, we demonstrate that GUT baryogenesis from scalar decays
can be successful across a large range of conformal couplings with gravity, without necessitating
substantial levels of CP violation. In the case of leptogenesis, we find that the reheating temperature
should be TRH ≲ 106 GeV for right-handed neutrino massesM1 ≲ 6 × 1012 GeV to generate the observed
asymmetry.
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I. INTRODUCTION

The existence of a matter-antimatter asymmetry remains
an open question in particle physics and cosmology. This
asymmetry, which cannot be explained by the Standard
Model (SM) of particle physics, is one of the largest clues for
the necessity for physics beyond our current understanding.
Numerous popular extensions of the SM feature higher

dimensional operators which violate baryon or lepton
number. Constraints from Planck and the BICEP2/Keck
Array indicate that the scale of inflation was less
than 1.6 × 1016 GeV [1], which can be used to establish
an upper limit on the reheating temperature of T ≲
109–1013 GeV [1–3].1 At these temperatures, the aforemen-
tioned baryon—or lepton—number violating operators may
already be irrelevant. Therefore, the thermal production of
any heavy degrees of freedom which violate baryon number
and CP would always be exponentially suppressed.
Fortunately, gravity offers the opportunity for saving

these scenarios. As already established in the literature, light
primordial black holes (PBHs) will evaporate all degrees of
freedom which exist [6,7]. The heaviest particles will be
emitted in the later stages of a black hole’s lifetime, as the

Hawking temperature exceeds the energy scale of beyond
the SM physics. If the particles emitted via Hawking
radiation violate baryon or lepton number, as well as the
C and CP symmetries, then out of equilibrium decays can
lead to generation of a baryon asymmetry. This idea has
been explored in many well-motivated models, for example
see Refs. [8–20].
While PBHs provide one method for saving high-scale

baryogenesis scenarios, this framework is far from minimal.
In this paper, we will instead highlight a class of possible
baryogenesis scenarios which relay solely on gravity and
the cosmological inflationary paradigm. The rapid expan-
sion during the inflationary phase of the early Universe
results in the generation of particles through the process
known as cosmological gravitational particle production
(CGPP). Within the context of particle physics, one can
describe the generation of new particles as a result of
graviton-mediated inflaton annihilation, which results in the
generation of new particles. Alternatively, a nonperturbative
approach can be taken which instead relates particle gen-
eration to Bogoliubov transformations relating incoming,
early time vacuum states to outgoing late time vacuum
states. In this context, the generation of particles is analo-
gous to the development of excited states in the non-
adiabatic expansion of a one-dimensional square well in
quantum mechanics. CGPP can play a crucial role in the
evolution of the Universe, and offers a possible origin for
cold dark matter, e.g., [21–33].
Similar to PBH evaporation, CGPP will produce every

available degree of freedom, including heavy particles
which may be too massive for thermal production. As this
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1The reheating temperature could be even lower in super-
symmetric scenarios due to the gravitino problem [4,5].
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is the case, CGPP can lead to the generation of a baryon
asymmetry in an identical fashion to PBH evaporation.
This possibility has been investigated using the perturba-
tive approach to CGPP, with a particular focus on lepto-
genesis [34–38].
In this work we will establish a general framework for

calculating the baryon asymmetry generated through
CGPP. To do so, we will use the nonperturbative approach
to CGPP [26,27,33]. Our framework allows for the gen-
eration of a baryon asymmetry through the decay of any
heavy particle with the necessary properties. However, for
concreteness, we will focus on two specific, well-motivated
baryogenesis models, namely baryogenesis in grand uni-
fied theories (GUT) and leptogenesis. For these two
scenarios we have identified the regions of parameter space
which can account for the observed matter-antimatter
asymmetry.
In Sec. II we will review the aspects of the non-

perturbative CGPP formalism relevant for this work. In
Sec. III we will discuss the generation of a matter-
antimatter asymmetry in the context of CGPP. Lastly, in
Sec. IV we will summarize the major results and discuss
future directions. Throughout the work, we consider
natural units where ℏ ¼ c ¼ kB ¼ 1, and define the
Planck mass to be MP ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
, with G being the

gravitational constant.

II. CGPP FORMALISM

A. Single-field inflation

We will focus on single-field, slow-roll inflationary
scenario. In particular, we will use a single, real, scalar
field which is minimally coupled to gravity through the
action,

Sφ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∇μφ∇νφ − VðφÞ

�
: ð1Þ

For a flat Friedmann-Lemaître-Robertson-Walker (FLRW)
space-time,

ds2 ¼ −dt2 þ a2ðtÞd3x; ð2Þ

where a is the scale factor. The Hubble parameter is defined
as H ≡ ȧ=a where ·≡ d=dt. At many points, it is more
useful to express our equations in terms of the conformal
time η which is defined through

dη ¼ dt
aðtÞ : ð3Þ

The relevant equation of motion, informed by the action,
Eq. (1), is

φ̈þ 3Hφ̇þ dV
dφ

þ Γφφ̇ ¼ 0; ð4Þ

where, importantly, we manually have included a decay
term to parametrize reheating into radiation. The radiation
energy density is determined by the differential equation,

ρ̇rad þ 4Hρrad ¼ ð1þ wφÞΓφρφ ð5Þ

where as usual,

ρφ ¼ 1

2
φ̇2 þ VðφÞ; ð6Þ

and we included the possibility that the inflaton does not
behave as matter during reheating with the introduction of
the equation-of-state parameter wφ.
The evolution of the Hubble parameter is given by

3M2
PH

2 ¼ ρφ þ ρrad; ð7Þ

where M2
P ¼ 1=8πG is the reduced Planck mass. As is

typical, we will define the slow-roll parameter

ε≡ −
Ḣ
H2

: ð8Þ

The end of inflation will be defined as the moment when
ε ¼ 1. For the remainder of the paper, we will denote
quantities at this time with a subscript e. For example, ae,
He are the scale factor and the Hubble parameter at the end
of inflation. Given a scalar potential VðφÞ and decay
constant Γφ one can determine the evolution of the scale
factor aðηÞ. Following the end of inflation, the inflaton
oscillates around the minimum of its potential and decays
into radiation during a period known as “reheating.” Once
this phase concludes, the Universe is assumed to enter a
radiation-dominated era. We define the reheating temper-
ature TRH, related to the decay constant Γφ, as the radiation
temperature when the Universe becomes radiation domi-
nated. Once the background evolution is determined, aðηÞ
will act as an input into the calculations necessary for CGPP.

B. CGPP for spin-0 particles

Here we will briefly review the physics relevant for our
purposes. For a comprehensive review of CGPP, we point
the reader to Refs. [26,33]. Consider the action,

SΦ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∇μΦ∇νΦ−

1

2
m2Φ2þ1

2
ξΦ2R

�
: ð9Þ

The dimensionless parameter ξ is the coupling between the
scalar field Φ and the Ricci scalar R. We will focus on an
FLRW space-time and define Φðη;xÞ ¼ a−1ðηÞϕðη;xÞ.
Under these assumptions, the action SΦ becomes
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SFLRWΦ ¼
ZZ

dηd3x

�
1

2
ðϕ0Þ2 − 1

2
j∇ϕj2 ð10Þ

−
1

2
a2m2

effϕ
2 −

1

2
∂ηðaHϕ2Þ

�
ð11Þ

where 0≡ d=dη and

meff ¼ m2 þ
�
1

6
− ξ

�
RðηÞ: ð12Þ

From here we see that if ξ ¼ 1=6, the coupling term
between the scalar Φ and the Ricci scalar vanishes. In
this circumstance we say that the scalar field is conformally
coupled to gravity. On the other hand, when ξ ¼ 0, the
interaction term in Eq. (9) vanishes. In this circumstance we
say that the scalar field is minimally coupled to gravity.
The scalar field equation of motion is given by

ϕ00 −∇2ϕþ a2m2
effϕ ¼ 0: ð13Þ

We write the solutions to the above equation as

ϕðη;xÞ ¼
Z

d3k
ð2πÞ3

�
akχkðηÞeik·x þ a†kχ

�
kðηÞe−ik·x

�
: ð14Þ

The function, χkðηÞ is the mode function and will play a
crucial role in our calculations. Since we are in an FLRW
space-time, the mode functions will depend only on the
magnitude of the wave number k ¼ jkj. The mode func-
tions form an orthonormal basis which is illustrated by the
fact that they satisfy a Wronskian relation:

χkχ
0�
k − χ�kχ

0
k ¼ i: ð15Þ

The scalar field equation of motion leads to an equation
of motion for the mode functions

χ00kðηÞ þ ω2
kðηÞχkðηÞ ¼ 0 ð16Þ

where

ω2
kðηÞ ¼ k2 þ a2ðηÞm2 þ

�
1

6
− ξ

�
a2ðηÞRðηÞ: ð17Þ

Together with the mode functions, the associated ladder
operators ak and a†k define a vacuum state j0i such that
akj0i ¼ 0 for all k. In Minkowski space, it is possible to
decompose the mode functions into positive- and negative-
frequency components. Subsequently, these mode func-
tions and their associated ladder operators define unique
vacuum states. In an expanding space-time, this is generally
no longer the case. In principle, observers at early times
may decompose the mode function in one way, while later
observers may select a different decomposition. As a result,

the vacuum for one choice of basis may appear as an
excited state for another choice.
The two choices of basis functions are related to one

another through Bogoliubov transformations of the form

�
χ̃kðηÞ
χ̃�kðηÞ

�
¼
�
αk βk

β�k α�k

��
χkðηÞ
χ�kðηÞ

�
: ð18Þ

The ladder operators transform as

�
ãk
ã†−k

�
¼
�

α�k −β�k
−βk αk

��
ak
a†−k

�
: ð19Þ

Here the complex entries of the matrix above satisfy
jαkj2 � jβkj2 ¼ 1, with − for bosons andþ for fermions. In
particular, the early time or incoming mode functions can
be expressed in terms of the late time or outgoing mode
functions through

χINk ðηÞ ¼ αkχ
OUT
k ðηÞ þ βkχ

OUT�
k ðηÞ: ð20Þ

Using Eq. (15) we can find the Bogoliubov coefficients
which connect the incoming and outgoing mode functions

αk ¼ iðχOUT�k χ0k
IN − χ0k

OUT�χINk Þ;
βk ¼ iðχOUTk

0χINk − χOUTk χINk
0Þ: ð21Þ

Similarly,

aINk ¼ α�ka
OUT
k þ β�ka

OUT
−k

†: ð22Þ

As is traditionally the case in examinations of inflation,
we will associate the initial vacuum state as the Bunch-
Davies vacuum [39], j0iBD, such that aINk j0iBD ¼ 0 for all
k. For a system initially in the Bunch-Davies vacuum, the
number operator, as specified by the outgoing ladder
operators is given by

Nout ¼
Z

d3k
ð2πÞ3 a

OUT
k

†aOUTk : ð23Þ

The number of particles measured by the above operator in
the Bunch-Davies vacuum is

BDh0jNOUTj0iBD ¼ V
Z

d3k
ð2πÞ3 jβkj

2 ð24Þ

where V is the expected IR divergence V ¼ ð2πÞ3δðk − kÞ.
From here, we can deduce the comoving number density of
particles as measured in the outgoing basis:

a3n ¼
Z

d3k
ð2πÞ3 jβkj

2: ð25Þ
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The above equation can be rewritten as

a3n ¼
Z

dk
k
a3nk; with a3nk ¼

k3

2π2
jβkj2: ð26Þ

Here, a3nk is the comoving spectral number density and is
the key quantity determined within the framework of
CGPP.
In order to find a3nk we will adopt the parametrization of

Ref. [40],

χINk ðηÞ ¼ α̃kðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞ

p e−iΦkðηÞ þ β̃kðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞ

p eiΦkðηÞ ð27Þ

where Φ0
kðηÞ ¼ ωkðηÞ. Inserting the above parametrization

into the mode equation of motion leads to a set of three,
coupled first-order differential equations

∂ηα̃kðηÞ ¼ þ 1

2
AΦ
k ðηÞωkðηÞβ̃kðηÞeþ2iΦk ð28aÞ

∂ηβ̃kðηÞ ¼ þ 1

2
AΦ
k ðηÞωkðηÞα̃kðηÞe−2iΦk ð28bÞ

∂ηΦkðηÞ ¼ ωkðηÞ ð28cÞ

where

AΦ
k ðηÞ ¼

ω0
kðηÞ

ω2
kðηÞ

ð29Þ

is the adiabaticity in the context of scalar CGPP.
In FLRW space-times, the adiabaticity parameter vanishes
as η → �∞. This fact enables us establish initial con-
ditions for the above system of differential equations
(see Refs. [26,33])

α̃kðη → −∞Þ ¼ 1;

β̃kðη → −∞Þ ¼ 0;

Φkðη → −∞Þ ¼ 0: ð30Þ

Furthermore, one can establish that the Bogoliubov trans-
formation coefficient needed to determine the comoving
number density is simply, [26,33]

βk ¼ lim
η→∞

β̃kðηÞ: ð31Þ

In summary, in order to determine the comoving number
density of particles produced through CGPP one must first
determine the background evolution, i.e., aðηÞ. After doing
so, solving the system of differential equations, Eq. (30),
subject to the initial conditions, Eq. (30), will yield βk after
evaluating the solutions obtained at late conformal times.
We will offer an illustrative example of this procedure after

discussing the formalism required to describe the gener-
ation of spin-1=2 particles.

C. CGPP for spin-1=2 particles

Spiritually, the analysis for spin-1=2 particles is similar
to the scalar case. However, some subtitles arise due to the
fact that the spin-1=2 fields are represented by spinors. The
gravity-based generation of spin-1=2 particles has been
examined and reviewed in Refs. [22,27,33,41,42]. For
completeness, we will summarize the formalism required
to examine the implications of spin-1=2 CGPP for baryo/
leptogenesis.
The coupling of these particles to gravity is given by the

action

SΨ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
i
4
ðΨ̄γμ∇μΨ − Ψ̄∇⃖μγ

μΨÞ − 1

2
mΨ̄Ψ

�
:

ð32Þ

We will impose Ψ ¼ ΨC ≡ −iγ2Ψ� implying that Ψ is a
self-conjugate Majorana spinor. To accommodate particles
with half-integer spin within the framework of general
relativity, one must use the frame-field formalism. This
formalism extends field theory for spinors into general
curved space-times. For simplicity, we will point the reader
to Refs. [43,44] for further details on this topic.
For the particular case of an FLRW metric, the equation

of motion corresponding to the above action can be found
to be

ðiγaδμa∂μ − aðηÞmÞ½a3=2ðηÞΨðη;xÞ� ¼ 0: ð33Þ

Taking ψ ¼ a3=2Ψ recovers the Minkowski space-time
Dirac equation with a time-dependent mass aðηÞm. The
solution to the FLRW field equation of motion is given by

a3=2ðηÞΨðη;xÞ

¼
Z

d3k
ð2πÞ3

X
λ¼�1=2

�
ak;λUk;λðη;xÞ þ a†k;λVk;λðη;xÞ

� ð34Þ

where the mode functions Uk;λ are given by

Uk;λðη;xÞ ¼
�

uA;kðηÞ
�uB;kðηÞ

�
⊗ hk;�eik·x ð35Þ

and Vk;λ ¼ −iγ2U�
k;λ. Both the mode functions and the

ladder operators are labeled by comoving wave vector k
and helicity λ. The two component spinors, hk;λ are chosen
such that

1

2
ðk̂ · σÞhk;� ¼ � 1

2
hk;�; ð36Þ
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where σ represent the three Pauli matrices, and are
normalized such that

h†k;2λhk;2λ0 ¼ δλλ0 : ð37Þ

Using the solution Eq. (34) with the equation of motion
Eq. (33) leads to a coupled differential equation for the
time-dependent components uA;kðηÞ and uB;kðηÞ,

i∂η

�
uA;k
uB;k

�
¼
 
aðηÞm k

k −aðηÞm

!�
uA;k
uB;k

�
: ð38Þ

The time-dependent eigenvalues of the matrix above are
given by

ωkðηÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2ðηÞm2

q
: ð39Þ

In analogy with the scalar case, Eq. (27), we can para-
metrize the incoming spinor components uA;k and uB;k as

 
uINA;k
uINB;k

!
¼ M

 
α̃k

β̃k

!
ð40Þ

with

M ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkþaðηÞm

2ωk

q
e−iΦkðηÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk−aðηÞm

2ωk

q
eiΦkðηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωk−aðηÞm
2ωk

q
e−iΦkðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkþaðηÞm

2ωk

q
eiΦkðηÞ

1
CA; ð41Þ

where ΦkðηÞ is defined as before. This redefinition leads to
a system of three coupled differential equations:

∂ηα̃kðηÞ ¼ −
1

2
AΨ
k ðηÞωkðηÞβ̃kðηÞeþ2iΦk ð42aÞ

∂ηβ̃kðηÞ ¼ þ 1

2
AΨ
k ðηÞωkðηÞα̃kðηÞe−2iΦk ð42bÞ

∂ηΦkðηÞ ¼ ωkðηÞ ð42cÞ

where

AΨ
k ðηÞ ¼

a2Hmk
ω3
kðηÞ

ð43Þ

is the adiabaticity in the context of spin-1=2 CGPP and is,
importantly, different than that derived in the scalar case.
Also note that there is a difference in sign between
Eqs. (28) and (42). The mass dependence of the spin-
1=2 adiabaticity demonstrates that only massive spin-1=2
particles can be generated gravitationally.
From here we can see that, procedurally, determining the

fermion number density is identical to the scalar case up to

small differences in the mode equations and the spin-1=2
adiabaticity. Having reviewed the CGPP formalism, wewill
now proceed to use these tools for determining the number
densities relevant for baryogenesis.

D. Implementation with α-attractor T-model

We will now proceed with an explicit example, and
calculate particle number densities using the formalism
described above. As discussed previously, the two major
steps required are (i) determine the background evolution
and (ii) using this solution, solve the mode equations.
For our particular case, we will consider the α-attractor

T-model [45],

VðφÞ ¼ λM4
P

				 ffiffiffi6p
tanh

�
φffiffiffi
6

p
MP

�				κ: ð44Þ

A potential of this form appears within the context of no-
scale super gravity and is consistent with modern-day
observations of the cosmic microwave background [1].
The parameter λ can be related directly to the measured
amplitude of the curvature power spectrum through [36,46]

λ ¼ 18π2

6κ=2N2�
AS� ð45Þ

where is measured to be AS� ¼ 2.101 × 10−9 [1,47] and the
number of e-folds N� is taken to be N� ¼ 55 for the Planck
pivot scale k� ¼ 0.05 Mpc−1 [36,46]. Near the origin, the
above potential is approximately

VðφÞ ≈ λ
φκ

Mκ−4
P

: ð46Þ

Due to this behavior, the oscillation-averaged inflaton
energy density can scales as

hρφðaÞiosc ¼ ρe

�
ae
a

� 6κ
κþ2

: ð47Þ

The equation-of-state parameter during this oscillatory
phase is given by wφ ¼ ðκ − 2Þ=ðκ þ 2Þ [46]. As we will
discuss in the next section, changes in the parameter κ, and
therefore the evolution of the reheating period, have drastic
implications for the generation of a baryon asymmetry
through CGPP.
We present the results of the background solution

calculation and the CGPP calculation in Fig. 1 for various
values of κ. On the left panel of Fig. 1 we have plotted the
normalized comoving Hubble radius. From here, one can
see the different equations of states which result from
adjusting the value of κ. All of these phases end in a
radiation dominated era as is required for the standard
cosmological timeline. This occurs when ðaHÞ−1 changes
of slope at, for instance, Ne ≈ 15 for κ ¼ 2. Note that for
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simplicity we have chosen the same reheating temperature
TRH for all values of κ. The left panel features the comoving
number densities for minimally coupled scalars and fer-
mions. The large relative differences between the minimally
coupled scalar and the fermionic number densities will play
a significant role in our discussion of viable models of
baryogenesis.

III. GENERATION OF MATTER-ANTIMATTER
ASYMMETRY

A. Asymmetry evolution in α-attractor T-models
during reheating

Before we delve into the specifics of how a matter-
antimatter asymmetry is generated within the CGPP frame-
work, it is important to explore the general evolution of a
baryon number density produced during reheating within
α–attractor T-models of inflation. This will help us under-
stand the main features of our scenario once we determine
the nature of the decaying particle generated via CGPP.
Neglecting for the moment any other source of asymmetry
and possible washouts, and assuming late reheating, we
track the dynamics of the nB asymmetry number density
produced from the out-of-equilibrium decay of a non-
relativistic particle X using the following equations

dðnXa3Þ
dt

¼ −ΓXnX;
dðnBa3Þ

dt
¼ ϵCPΓXnX; ð48Þ

being ΓX the decay width of the X particle and ϵCP the CP
violation parameter associated to the decay of X into SM
degrees of freedom. Such equations are solved by

nX ¼ ninX

�
ain
a

�
3

expð−ΓXtÞ; ð49aÞ

nB ¼ ϵCPninX

�
ain
a

�
3

ð1 − expð−ΓXtÞÞ; ð49bÞ

with ninX the initial number density for the X particle at some
initial scale factor ain. At early times, t ≪ Γ−1

X , and
depending on the equation-of-state of the Universe wφ

during reheating, the redshift of nB can vary significantly
compared to the SM bath since

nB ≈ ϵCPninX

�
ain
a

�
3

ðΓXtÞ

≈ϵCPninXΓX

�
ain
a

�
6=ð2þκÞ

; ð50Þ

where we used that a ∝ t2=3ð1þwφÞ, and wφ ¼ ðκ − 2Þ=
ðκ þ 2Þ as discussed before. Utilizing the proportion of
nB to T3 as a proxy for the observed baryon-to-photon
ratio, and considering that T scales as a−3κ=ð4ð2þκÞÞ2 during
reheating [48], we have

nB−L
T3

∝ a3ð3κ−8Þ=ð4ð2þκÞÞ; for t ≪ Γ−1
X : ð51Þ

We illustrate this ratio in Fig. 2 for values of κ ¼ 2 (dark
red), κ ¼ 6 (light blue), and κ ¼ 16 (light orange) as

FIG. 1. Left: evolution of the comoving Hubble radius normalized by the value at the end of inflation. Right: comoving number
densities from CGPP for scalars with ξ ¼ 0 (full) and fermion (dot-dashed), as function of the mass particle normalized to Hubble at end
of inflation. We present the predicted abundances for κ ¼ 2 (red), κ ¼ 4 (green), κ ¼ 8 (light purple), and κ ¼ 16 (light orange).

2Note that this dependence is obtained assuming the inflaton
width to be constant.
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function of ΓXt, fixing ain ¼ ae, initial condition
a3inn

in
X ¼ 0.15a3eH3

e for all values of κ, ΓXtin ¼ 10−10,
and ϵCP ¼ 1, and for two values of the reheating temper-
ature of TRH ¼ 107 GeV (full) and 103 GeV (dashed). For
a fixed TRH, we observe that at early times the B number
density experiences a more rapid redshift compared to
photons for κ ≤ 8=3, resulting in a suppression of the final
asymmetry. Conversely, when κ ≥ 8=3, nB undergoes a
slower redshift than photons. Consequently, the ratio
nB−L=T3 increases as a function of the scale factor a.
Such growth ceases around t ∼ Γ−1

X , where the exponential
term begins to diminish, causing nB to redshift as matter,
nB−L ∝ a−3, while the photon density continues to
increase as nγ ∝ a−9κ=ð4ð2þκÞÞ due to ongoing inflaton
decay, leading to an entropy dilution of the preexisting
asymmetry. This implies that the ratio decreases as

nB−L
T3

∝ a−3ð8þκÞ=ð4ð2þκÞÞ; for t≳ Γ−1
X : ð52Þ

Post-reheating, both nB−L ∝ a−3 and nγ ∝ a−3, resulting in
a constant ratio, thereby leading the baryon asymmetry,
modulo a possible sphaleron factor, to converge toward its
final value. We can thus conclude that when κ ≤ 8=3,
generating the observed baryon asymmetry requires a
substantial initial number density ninX to counterbalance the

dual effects of the Universe’s rapid expansion and entropy
dilution. On the other hand, when κ exceeds such a
threshold, the entropy dilution at t≳ ΓX can be compen-
sated by the slower expansion of the Universe when
w > 0. Consequently, the initial number density of X
can be diminished, while still yielding the observed
asymmetry.
When considering a different reheating temperature, two

distinct effects come into play. First, for larger TRH, the
initial nB=T3 is smaller. This occurs because the maximum
plasma temperature is ∝ T1=2

RH [49]. Consequently, if the
asymmetry originates from a nonthermal source, the initial
asymmetry, nB=T3 is initially larger for smaller reheating
temperatures. However, if asymmetry production con-
cludes before the end of reheating, the entropy dilution
resulting from inflaton decay is much more pronounced for
lower TRH, leading to an additional reduction of the
asymmetry. To comprehend the dependence on κ, let us
explicitly estimate the photon-to-baryon ratio calculated at
reheating,

ηB ≡ a3nB
a3nγ

;

¼ π2

2ζð3Þ
�

π2g⋆
90M2

Pl

�2þκ
2κ

H
2ðκ−1Þ
2κ

e T
4−κ
κ
RH

�
a3nB
a3eH3

e

�
; ð53Þ

Therefore, we note that the interplay of all aforementioned
effects results in a decrease in asymmetry for κ < 4 with
smaller TRH, while the opposite occurs when κ > 4. When
κ ¼ 4, we find that the combined effects lead to the same
asymmetry.
However, there are additional effects that cannot be

neglected to correctly predict the final asymmetry. For
instance, inverse decays can washout part of the asymmetry
depending on the plasma temperature. Thus, in what
follows, we solve more general equations than those
presented in Eq. (48) containing washout processes and
the unavoidable production in the SM thermal bath. Such
equations are

aH
dNth

X

da
¼ −ðNth

X − Neq
X ÞΓT

X; ð54aÞ

aH
dNCGPP

X

da
¼ −ΓXNCGPP

X ; ð54bÞ

aH
dNB

da
¼ ϵCP½ðNth

X − Neq
X ÞΓT

X þ NCGPP
X ΓX�

− cXΓT
X
Neq

X

Neq
f

NB; ð54cÞ

where Nth
X ; N

CGPP
X ; Neq

X denote the comoving (NX ≡ a3nX)
number densities of X particle generated by the thermal
plasma, CGPP, and equilibrium abundance, respectively,

FIG. 2. Ratio nB=T3 as function of ΓXt for values of κ ¼ 2 (dark
red), κ ¼ 6 (light blue), and κ ¼ 16 (light orange) as function of
ΓXt, fixing ain ¼ ae, initial condition a3inn

in
X ¼ 0.15a3eH3

e for all
values of k, ΓXtin ¼ 10−10, ϵCP ¼ 1, for two diferent reheating
temperature values: 103 GeV (full lines), 107 GeV (dashed). We
assumed here the decay of an out-of-equilibrium particle X as
source of the baryon asymmetry during reheating of an α–attractor
T-model with potential given in Eq. (44).
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while NB represents the comoving number density of the B
asymmetry. ΓT

X refer to the thermally-averaged decay
widths. Note that we do not perform a thermal-like
averaging of the CGPP-produced particles with respect
to their energy spectrum. This is because the CGPP
primarily produces nonrelativistic particles [33], making
it a reasonable approximation to consider the decay width
in a vacuum. Nevertheless, we have numerically verified
that incorporating the full CGPP spectrum yields similar
results. In Eq. (54), cX is a factor dependent on the
coupling between the particle X to the SM degrees of
freedom, and Neq

f is the equilibrium abundance of the
particles in which X decays. It is important to note an
important caveat regarding the aforementioned Boltzmann
equations. We assume that there is a separation of time-
scales between CGPP and decay processes, so that CGPP
fully completes before a time t ∼ Γ−1

X .
In the scenario where the decay of theX particle produces

a B − L asymmetry instead, sphalerons are expected to
convert part of such asymmetry into a B asymmetry. Such a
conversion is made by including a sphaleron factor asph,
such that

nB ¼ asphnB−L ¼ 28

79
nB−L;

where nB−L is the B − L asymmetry number density and we
have taken the SM sphaleron factor to be asph ¼ 28=79 [50].
Hence, for the generation of baryon asymmetry through

CGPP, two main avenues emerge. First, within the α–
attractor model with κ ≤ 8=3, the decaying particle must be
a spin-0 field with a nonconformal coupling ξ ≠ 1=6, given
its enhanced CGPP production. Alternatively, one could
explore inflaton potentials characterized by κ > 8=3,
coupled with a decaying fermionic particle. The latter
possibility will be investigated further in the subsequent
section, particularly in the context of leptogenesis.

B. GUT baryogenesis

A first possibility for the genesis of the matter-antimatter
asymmetry within the framework of CGPP involves a
scenario wherein the X particles belong to a GUT multiplet.
In this scenario, their decays would violate baryon (B) or
baryon minus lepton number (B − L),3 C, and CP con-
servation. Baryon asymmetry generation in GUTs suffers
from several challenges, as, for instance, very massive
particles MH ∼Oð1013 GeVÞ would have a significantly
suppressed thermal production if the Universe reheated to a
temperature much lower than the GUT scale. As particle
generation in an expanding Universe is an irreducible

production channel, CGPP offers an alternative to revive
GUT baryogenesis in a minimal manner.
It is crucial to note that within GUTs, there could be a

large sector of scalar bosons whose decays produce a net
value of B − L [17,51]. Thus, we anticipate a viable
production of baryon asymmetry across various coupling
ξ values. For definiteness, we consider a simplified GUT
baryogenesis model where a color-antitriplet scalar S
decays violating B − L via S → qq; S̄ → q̄ q̄ [51]. The S
decay width is parametrized as

ΓS ¼
g2

4π
MS; ð55Þ

with MS the scalar mass, and g some unspecified but
perturbative coupling. To fulfill the time separation
condition between the CGPP and S decay, we require
the g≲ 10−2 couplings to be small enough to suppress the
decay width.
We solve numerically the system of equations in

Eq. (54) for scalar GUT baryogenesis using the infra-
structure of ULYSSES [52,53]. For this we take cX ¼ 4=3
and Neq

f to be the quark equilibrium abundance. As an
initial condition for Eq. (54b), we set NCGPP

S ðainÞ ¼ a3n,
where ain corresponds to the scale factor value when
H ¼ MS=1000. This choice ensures the completion of
CGPP, given ain ≫ a⋆, a⋆ the scale factor when H ¼ MS,
before the evolution of the Boltzmann equations commen-
ces. Subsequently, we evolve the equations until the
reheating process concludes, determining the baryon
asymmetry using entropy conservation.
Assuming a Universe reheating temperature of

TRH ¼ 105 GeV, sufficiently low to mitigate the contribu-
tion from thermal processes, we depict in Fig. 3 the degree
of CP violation ϵCP necessary to account for the observed
matter asymmetry arising from scalars produced by CGPP,
across different values of κ ¼ 4, 6, 8, 16 in the planeMS vs
ξ. The gray shaded region corresponds to nonphysical CP
asymmetry values where ϵCP > 1, while the red region
highlights values potentially excluded due to proton decay,
such that MS ≲ 3 × 1011 GeV, depending on the specific
characteristics of the GUT [17]. For values ξ≳ 70 (blue
region), additional effects such as inflaton condensate
fragmentation and backreaction on the scalar curvature
may occur, as discussed in Ref. [54], such that we would
need to use more sophisticated simulations to fully deter-
mine the number density of the decaying scalars, something
that lies beyond the scope of this work. Finally, the green
region in Fig. 3 indicates the region where the scalars could
dominate the evolution on the Universe before decaying.
The scenario for κ ¼ 2 is omitted, as our findings indicate
that our CGPP framework could only plausibly account for
the matter asymmetry at ξ≳ 40.
For the specific case of κ ¼ 4, we observe that scalar

masses MS ≲ 1012 GeV ∼ 0.18He require couplings ξ≳ 4

3We focus here on B − L violation instead of purely B
violation to avoid washout from sphalerons.
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or ξ≲ 10−2, along with ϵCP ≲ 10−2. The behavior for ξ ≫
1=6 can be elucidated by noting that for large couplings,
m2

eff ≈ 6ξðḢ þ 2H2Þ, resulting in a rapid mass change at
the end of inflation, thereby amplifying particle production.
On the other hand, for ξ → 0, ω2ðηÞ can become negative
leading to a tachyonic enhancement of the particle pro-
duction, see [33,54]. These effects lead to a large final
CGPP number density that will produce the observed

asymmetry for reasonable values of ϵCP. For larger values
of κ, there is the additional enhancement of the baryonic
yield due to the reduced redshift of the B − L asymmetry at
early times that counterbalances the entropy dilution
occurring after the scalar fully decayed, as explained in
detail before. As consequence, we would only require
values of ϵCP ≲ 10−1, in such a way that for κ ≥ 8 almost
all the parameter space becomes viable for GUT

FIG. 3. GUT baryogenesis from scalars generated via CGPP. We present the required CP violation parameter ϵCP to reproduce the
observed asymmetry in the plane spanned by the scalar conformal coupling ξ as function of their massMS for different values of κ ¼ 4
(top left), κ ¼ 6 (top right), κ ¼ 8 (bottom left) and κ ¼ 16 (bottom right). The gray regions indicate where values of ϵCP > 1 would be
needed. The light red region corresponds to values of the scalar mass that might be in conflict with proton decay. The green regions
display the parameters where the scalar dominates the Universe prior decay, and the blue regions point out values where backreaction
effects becomes relevant. Finally, the purple dashed line indicates the value ξ ¼ 1=6.
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baryogenesis, including the case where the scalar couples
conformally to gravity.

C. Leptogenesis

Leptogenesis is one of the most appealing frameworks for
explaining the surplus of matter in the early Universe,
particularly due to its connection with neutrino masses
[55–57]. In its vanilla form, heavy right-handed neutrinos
(RHNs) generated thermally decay asymmetrically into
leptons and Higgs particles, leading to the observed asym-
metry. To simultaneously account for neutrino masses and
achieve the required baryon-to-photon ratio, the masses of
the RHNs typically need to be above Oð1010 GeVÞ,
assuming reasonable values for the Yukawa couplings Yν

between the Higgs, lepton doublets, and the RHN, i.e.,
Yν ∼ 1. Consequently, if the Universe reheats to a temper-
ature significantly lower than the scale of RHN masses,
leptogenesis becomes unattainable. In this context, CGPP
offers a simple and feasible approach for RHN production in
a cooler Universe.
To reproduce the observed neutrino mass pattern, where

two nonzero neutrino quadratic mass splittings have been
measured, it is necessary to introduce a minimum of two
right-handed neutrinos Ni (i ¼ 1; 2;…) that couple to the
SM leptons and Higgs doublets through a Yukawa inter-
action,

L ⊃ −lαH�YαiNi −
1

2
MiNc

i Ni þ H:c:; ð56Þ

where Yαi complex Yukawa couplings. The second term in
the Lagrangian describes Majorana masses Mi for the
RHNs, allowed by the SM gauge group. In what follows,
we consider the case where the RHN masses are hierar-
chical, M1 ≪ M2 ≪ M3, such that leptogenesis is mainly
due to the out-of-equilibrium decay of N1. From this
Lagrangian, we can calculate the decay width for the
RHN N1, denoted as Γ1, which is relevant to our discussion
on the generation of the baryon asymmetry. Such decay
width is given by,

Γ1 ¼
1

8π
ðY†YÞ11M1: ð57Þ

Differently from the GUT baryogenesis scenario presented
above, the CP violation parameter ϵCP has an upper bound
due to the connection of the seesaw Lagrangian in Eq. (56)
to neutrino mass parameters [58]. Such a constraint, known
as the Davidson-Ibarra bound, jϵCPj is [58]

jϵCPj ≤ ϵDICP ≡ 3M1

16πv2
Δm2

31

m3 þm1

; ð58Þ

with Δm2
31 the atmospheric quadratic mass splitting mea-

sured in neutrino oscillations and m3ðm1Þ the heaviest

(lightest) light neutrino mass, respectively. For simplicity,
we have assumed the normal ordering of neutrino masses.
The results for the inverted ordering are anticipated to be
comparable to the ones presented below. The precise value
of the CP violation parameter can be determined by
employing the Casas-Ibarra parametrization [59], under
the assumption that Δm2

21 ≪ Δm2
31. These approximations

imply the presence of only one complex angle, denoted as
z≡ xþ iy, in the R-matrix [60]. As a result, the CP
parameter is given by

jϵCPj ¼
3M1

16πv2
Δm2

31

m3 þm1

j sinð2xÞ sinhð2yÞj
coshð2yÞ − f cosð2xÞ ; ð59Þ

being f ≡ ðm3 −m1Þ=ðm3 þm1Þ. It is clear then that the
Davidson-Ibarra bound is saturated when x ¼ �π=4 and
y → �∞. In thermal leptogenesis, however, a sizable y
results in significant washout due to inverse decays of N1.
Therefore, to mitigate this substantial washout while
simultaneously maximizing the level of CP violation,
leptogenesis would ideally take place when the washout
processes from inverse decays become negligible at
T ≪ M1. Next, we concentrate on this particular situation.
Let us now examine leptogenesis stemming from CGPP

within the framework of α–attractor T-models. Similar to the
methodology employed for GUT baryogenesis, we track the
evolution of comoving number densities for RHNs produced
thermally and via CGPP, alongside the B − L asymmetry.
This involves solving the system of equations in Eq. (54),
setting cX ¼ cN ¼ 1=2, and Neq

f representing the equilib-
rium number density for leptons, within the framework of
ULYSSES [52,53]. Since the reheating temperature might be
lower than the electroweak phase transition, we stop the
generation of the asymmetry when the SM plasma has a
temperature lower than Tsp ¼ 131.7 GeV, the sphaleron
freeze-out temperature [61].
In contrast to the preceding subsection, we set the CP

violation parameter to saturate the Davidson-Ibarra bound,
i.e., jϵCPj ¼ ϵDICP, and vary the reheating temperature. Our
results are presented in Fig. 4. In the left panel, we depict
the reheating temperature as a function of the RHN mass
required to reproduce the observed baryon-to-photon ratio
for different values of κ ¼ 6, 8, 10, 12, 16, 20, while the
dashed lines correspond to results obtained using the
perturbative approach of Ref. [36]. The right panel displays
contours for ηB=ηobsB for the case of κ ¼ 12. We observe that
to reproduce the observed asymmetry, lower reheating
temperatures are required for M1 ≲He, where, in our
scenario, He ¼ 5.7 × 1012 GeV for κ ¼ 6, and decreases
by about ∼1% for κ ¼ 20. This dependence arises from the
previously mentioned behavior of the asymmetry: since nγ
is at most ∝ T3

max ∝ T3=2
RH , smaller reheating temperatures

result in a reduced photon number density. In contrast, the
lepton asymmetry from CGPP remains independent of
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the plasma, causing the relative ratio to nγ to increase
for smaller TRH, thereby enhancing the asymmetry.
Consequently, to achieve the observed baryon-to-photon
ratio for lighter RHNs, smaller TRH are needed. Moreover,
for larger κ, the additional enhancement arises from the
distinct redshift dependence of the lepton abundance at
early times, as previously mentioned.
This behavior undergoes a change whenM1 ∼He. CGPP

experiences an exponential suppression for M1 ≳He, lead-
ing to a further decrease in the required reheating temper-
ature. Consistent with CGPP expectations, the highest
production occurs when M1 ∼He [33]. The allowed values
appearing at TRH ∼ 1010 GeV for M1 ∼ 1012 GeV are
solely attributed to thermal leptogenesis. These effects
are clearly seen on the right panel, where we observe that
the asymmetry increases for smaller TRH, while for
TRH ≳ 107 GeV, the effects of thermal leptogenesis become
apparent.
Finally, we compare our findings with the results obtained

from the perturbative approach outlined in Ref. [36]. We
observe that for RHN masses M1 ≲ 1012 GeV, both the
perturbative and CGPP approaches exhibit similar behavior.
However, for larger values, the perturbative approach begins
to deviate from the nonperturbative CGPP results. This is
due to the fact that the perturbative approach predicts RHN

number densities that scale proportionally to T2ð2þκÞ=κ
RH ,

extending up to the kinematic limit of M1 > mφ. As a
consequence of these differences, the case κ ¼ 6, which
would yield the observed asymmetry according to the
perturbative approach, does not yield viable values consis-
tent with observation in the CGPP approach.

IV. DISCUSSION

As a consequence of the Universe’s expansion post-big
bang, the vacuum expectation value of any field becomes
time-varying. This means that observers at distinct
moments may detect what was previously a vacuum state
as an excited state. This temporal evolution forms the core
of cosmological gravitational particle production, an
inherent phenomenon capable of generating heavy dark
matter, which may not interact with the Standard Model
sector.
In this paper, we have applied this framework for

particle production to investigate the genesis of the
observed matter-antimatter asymmetry in our Universe.
Taking α–attractor T-Models for the inflaton potential as a
benchmark for the inflationary period, we have identified
the required parameters for two well-known baryogenesis
models to account for the matter asymmetry, when the
thermal production is negligible. Initially, we examined the
development of a baryon-number imbalance generated
during reheating in α–attractor models. We observed that
for potentials V ∝ ϕκ with κ ≤ 8=3, the B number density
undergoes a swifter redshift relative to photons at early
times, resulting in a reduction of the final asymmetry.
Meanwhile, when κ > 8=3, the redshift of the baryon-
number is less pronounced compared to photons, con-
sequently amplifying the asymmetry. Ultimately, the inter-
play between the entropy introduced by inflaton decays
and the initial temperature of the Standard Model plasma,
along with the aforementioned dependence of baryon
asymmetry on redshift, can either amplify or diminish
the resulting baryon-to-photon ratio.

FIG. 4. Left: reheating temperature TRH as function the right-handed neutrino mass required to produce the observed baryon-to-
photon ratio for different values of κ. We compare with the results from the perturbative approach, depicted as dashed lines. Right: ratio
of baryon-to-photon to the observed for κ ¼ 12 in the same plane TRH vs MN .
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We found that for κ > 4, the combined effects of these
factors lead to a reduction in the asymmetry with higher
reheating temperatures, whereas the opposite trend is
observed for κ < 4. This general pattern is critical for
determining the necessary parameters in a given baryo-
genesis scenario to generate the observed asymmetry solely
from CGPP. As a result, we have found that baryogenesis
from CGPP encounters significant challenges in scenarios
where the Universe is matter-dominated (κ ¼ 2) during the
inflaton’s oscillatory phase. This tension arises from the
combined effects of the redshift dependence of the baryon
number and the entropy dilution resulting from inflaton
decays, irrespective of the reheating temperature.
In our initial scenario, we examined baryogenesis from

scalars associated with a grand unified theory (GUT) with
a free coupling to gravity ξ, which decay to generate a
B − L asymmetry subsequently converted to a B asym-
metry through sphalerons. We determined that for GUT
baryogenesis to be feasible when the reheating temperature
is significantly lower than the GUT scale, values of κ ≥ 4
and CP violation parameter ϵCP < 0.1 are necessary.
Additionally, for conformally coupled scalars with
ξ ¼ 1=6, we found that steeper potentials (κ > 6) are
required to yield a sufficient quantity of scalars for
generating the observed baryon-to-photon ratio. As ξ
approaches zero, we observed that a lesser degree of
CP violation is required, due to the tachyonic enhance-
ment of scalar particle production. Conversely, with larger
values of ξ, the rapid change of the scalar effective mass,
directly proportional to ξ, intensifies particle production,
thereby reducing the requisite CP violation.
The second scenario that we examined involves the

generation of heavy right-handed neutrinos through CGPP,
whose subsequent decay generates a B − L asymmetry in
leptogenesis models. Given that the level of CP violation in
this scenario is correlated with neutrino mass parameters,
we investigated how CGPP leptogenesis depends on the
reheating temperature. Assuming, for simplicity, that the

Yukawa parameters in the neutrino sector saturate the
Davidson-Ibarra bound, we found that, for a given κ, lower
reheating temperatures necessitate lighter right-handed
neutrino masses to generate sufficient asymmetry, provided
these masses are smaller than the Hubble scale at the end of
inflation, He. This behavior resembles what has been
previously reported in the literature, where leptogenesis
is examined through the perturbative approach involving
inflaton scatterings mediated by gravitons that generate
right-handed neutrinos. However, when the mass of the
right-handed neutrino is greater than He, the CGPP for
fermions becomes less effective, causing an exponential
drop in particle production, requiring lower reheating
temperatures. Additionally, we found that larger values
of κ would require higher reheating temperatures.
Our framework has the potential to encompass additional

baryogenesis scenarios that may encounter significant
Boltzmann suppression at low reheating temperatures.
Furthermore, exploring alternative types of inflationary
potentials that could substantially contribute to the gen-
eration of matter over antimatter would be of interest. This
is left for future work.
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