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Previous work has shown that optomechanical force sensing can be used for efficient detection of
ultralight (sub-eV) dark matter candidates. We propose to extend the reach of this method to the search for
ultralight dark matter in gravitationally bound configurations in the Milky Way. We consider three
scenarios, each strongly motivated by previous studies: boson stars traveling in the galaxy with virial
velocity; a bosonic halo centered around the Sun (a “solar halo”); and a bosonic halo centered around the
Earth. For each case, we consider bound states composed of either scalar particles with a Yukawa coupling,
or vector particles coupled to baryon minus lepton number charge. Accounting for all experimental
constraints on coupling strength, we estimate the sensitivity reach of an optomechanical sensor search. We
conclude that, although boson star encounters with Earth would be too infrequent to be detected in the
relevant parameter space, current optomechanical force sensing technologies provide promising search
capabilities for solar or Earth-bound halos.
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I. INTRODUCTION

There is currently abundant astrophysical evidence for
the existence of dark matter (DM), though at present no
specific particle has been detected which has the required
characteristics to account for it [1–5]. In recent years, the
search for “ultralight” DM (ULDM) candidates, with mass
below the eV scale, has intensified due to heavier candi-
dates not being detected, despite significant efforts in a
wide-ranging experimental program (see e.g. [6] for a
recent review). There are several classes of theoretically
well-motivated ULDM candidates, such as axions and
axion-like particles (ALPs) (see [7–9] for recent reviews).

Specifically, both relatively heavy ULDM candidates (e.g.
QCD axions [10–21]) and extremely light candidates (e.g.
fuzzy dark matter [22–24]) have been sought via both direct
and indirect detection methods, which have yet to make an
unambiguous detection of DM; for recent reviews of the
experimental status see [25,26].
Given the negative results for dark matter searches

above, one might hope to use density fluctuations in the
dark matter field to increase the interaction rate, and
thereby probe a wider range of possible DM couplings
to matter. In a widely studied example, DM which consists
primarily of such ultralight bosonic fields can condense
into “dark stars.” In particular, electrically neutral scalar
particles can occupy gravitationally bound Bose-Einstein-
condensed states, called “boson stars” [27–30], which can
form on astrophysical timescales in galaxies [31–36].
Vector (spin-1) dark matter candidates may also form
gravitationally self-bound condensates in the galaxy, which
are called “Proca stars”; these states have many of the same
properties as scalar boson stars, as demonstrated in [37,38],
and may be produced with cosmologically relevant abun-
dances as well [39].
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Recently, it was proposed that bosonic particles can be
captured to bound states around external astrophysical
bodies, such as the Sun or the Earth, [40,41]; the resulting
configurations are akin to “gravitational atoms” due to the
1=r Newtonian trapping potential.1 Indeed, ULDM self-
interactions can be sufficient to stimulate capture around
the Sun and lead to overdensities (relative to the DM
background) as large as 104 in the vicinity of Earth [49]; the
overdensity can be even larger nearer to the Sun, motivating
space-based direct detection experiments [50–52]. Other
mechanisms may lead to capture around the Earth, where
other novel signals have been explored (see e.g. [53,54]).
In the presence of such overdensities, the sensitivity of

searches for DM on Earth can be significantly modified.
The most important effect is that the DM energy density
in the experiment, which is typically estimated to be
ρDM ¼ 0.4 GeV=cm3, can be much higher in the presence
of a bound state in the solar system or during an encounter
with a boson star. The coherent oscillations of the scalar
fields in a bound state may also provide additional
sensitivity compared to the background DM search; see
e.g. [40,41,55,56].
The use of macroscopic force sensors to search for long-

range interactions between DM and the Standard Model
(SM) have received increased interest in recent years.
Previous works have shown that existing and upcoming
force-sensing technologies could offer significant detection
reach across the ULDM parameter space [57–61]. In this
work, we combine the two observations above, exploring
the search potential for ongoing and future ULDM experi-
ments with optomechanical sensors, focusing on scenarios
with bosonic overdensities (boson stars and gravita-
tional atoms).
This paper is organized as follows. In Sec. II, we describe

the overdensities (boson stars and gravitational atoms)
considered in this work, focusing on their density and
size. We describe the induced force on optomechanical
sensing experiments in Sec. III, including a derivation from
the Dirac equation, for scalar and vector DM candidates.
We detail the results in Sec. IV and conclude in Sec. V.
We work in natural units, where ℏ ¼ c ¼ 1.

II. BOSONIC OVERDENSITIES

Consider a scalar DM field ϕ. Generically the leading
term of the self-interaction potential can be written as

Vðϕϕ�Þ ¼ −
λ

4
ðϕϕ�Þ2; ð1Þ

where λ is the self-coupling constant of the bosons; we will
assume λ > 0, which corresponds to an attractive self-
interaction; taking a repulsive self-interaction λ < 0 would
leave our results essentially unchanged.2 In the nonrela-
tivistic limit, the dark matter field can be expanded in terms
of a nonrelativistic wave function Ψ as

ϕðr⃗; tÞ ¼ 1ffiffiffiffiffiffiffi
2m

p ½Ψðr⃗; tÞ expð−imtÞ þ H:c:�: ð2Þ

As long as Ψ̇ ≪ mΨ, relativistic effects are suppres-
sed [62,63], and we may determine the macroscopic
parameters of the star using the Gross-Pitaevskii equation

iΨ̇ ¼
�
−
∇2

2m
þΦðΨÞ − λ

8m2
jΨj2

�
Ψ; ð3Þ

where the gravitational potential Φ ¼ Φself þΦext is
the sum of an external gravitational potential Φext and
the potential Φself from the self-gravity of the bosons. The
latter satisfies the Poisson equation

∇2Φself ¼
4πm2

M2
Pl

jΨj2; ð4Þ

where MPl ¼ 1.2 × 1019 GeV is the Planck mass.
Equations (3) and (4) are collectively known as the
Gross-Pitaevskiiþ Poisson (GPP) equations.
Bosonic DM can form gravitationally bound structures,

which are BEC-like states at low temperatures [27–30]. The
most widely studied case is that of spin-zero fields in self-
gravitating configurations, which are generically known as
(scalar) boson stars [63–66], or axion stars [67–69] when
they are composed of pseudoscalar fields such as ALPs.
Important properties of these states, including their for-
mation [31–36] and accretion rate [33,70–72], have been
widely studied in recent literature. For our purposes, we
will merely assume that such states can form with some
total abundance, and see how one might search for them in
such scenarios.
Vector (spin-1) dark matter particles may also form self-

gravitating condensates, called vector boson stars or Proca
stars [37–39,73–75]. As noted in [37], there are different
classes of self-gravitating vector solitons, including spheri-
cal, cylindrical, and planar vector boson stars. However, in
the ground state, the spatial components of vector dark
matter condensates have the behavior of separate, non-
interacting scalar fields. Therefore, in some sense a vector
boson star is equivalent to a superposition of three scalar
boson stars with equal particle mass m. As such, we may1These bound states from direct DM capture should be

distinguished from another atomlike state, which forms by a
process known as superradiance. Superradiance produces scalar
fields directly from vacuum by sapping the angular momentum of
rapidly rotating black holes [42–47] or stars [48].

2A self-interaction proportional to ϕ3 is also possible, but its
effect is negligible in the nonrelativistic limit relevant to this
work.
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model both scalar and vector boson star using the same
formalism, e.g. both must satisfy the GPP equations.
As noted in [63], variational techniques are widely used

as a highly precise substitute for the full solution of the GPP
equation. For a bound state of eigenenergy ω, one can write
Ψðr⃗; tÞ ¼ expðiωtÞψðr⃗Þ, and the resulting configuration
can be approximately determined by minimizing the energy
functional derived from Eq. (3),

E½ψ � ¼
Z

d3r

�j∇ψ j2
2m

þm
2
Φself jψ j2

þmΦextjψ j2 −
jλj

16m2
jψ j4

�
; ð5Þ

with regard to some ansatz for the wave function ψ .
Holding the number of particles N in the star fixed, the
function ψ must be normalized asZ

d3rjψ j2 ¼ N: ð6Þ

Extrema of E½ψ � correspond to (meta)stable configurations,
which we analyze below. In what follows, we also assume
spherical symmetry, which is appropriate for the ground-
state configurations of interest here.

A. Boson stars

For self-gravitating stateswith attractive self-interactions,
an ansatz of the form

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5.4Þ3N
7πR3

99

s �
1þ 5.4r

R99

�
e−5.4r=R99 ð7Þ

provides an excellent approximation for the wave function
of the star [63],whereR99 is the radius containing 99%of the
mass of the star. In particular, this profile is cored at small r,
and goes exponentially to 0 as r → ∞, matching the
behavior of the exact solutions. Assuming Φself ≫ Φext
(i.e. far from any external potential), the mass of the star
M ¼ mN is inversely related to the radius R99 as

3

R99 ¼
5.4M2

Pl

m2M

2
41þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
M
Mc

�s 3
5; ð8Þ

where the critical (maximum)mass induced by the attractive
self-interactions is

Mc ¼ 10.15
MPlffiffiffi
λ

p : ð9Þ

During a boson star transit, an experiment will be subject
to an increased DM flux which changes with time, but
for an order-one fraction of the transit the energy
density roughly equal to the central density of the boson
star,

ρð0Þ≡mjψð0Þj2 ¼ ð5.4Þ3M
7πR3

99

≃ 104ρDM

�
μeV
m

�
2
�
108 km
R99

�
4

: ð10Þ

A very similar calculation leads to the central density
for vector boson stars as well, though the final answer
will be larger by a factor of three since the vector
boson stars have three polarization components. In what
follows, we focus on the scalar case but use this simple
argument to determine the density of vector boson stars
as well.

B. Solar halos and Earth halos

Near an astrophysical body, the bound configuration
may instead satisfy Φself ≪ Φext, and in this case we
consider a bosonic configuration bound around an exter-
nal gravitational source, e.g. the Sun, another star, or a
planet such as Earth. As long as R99 ≫ Rext, the potential
is well-approximated by Φext ¼ GMext=r, where Mext and
Rext are the mass and radius of the external source
(respectively). The resulting configuration then resembles
a gravitational Hydrogen atom, with ground-state wave
function proportional to an exponential [40,41], and can
be captured from the DM background directly via self-
interactions [49].
Given the normalization of Eq. (6), the approximate

solutions are of the form [63]

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4.2Þ3N
πR3

99

s
e−4.2r=R99 ; ð11Þ

where R99 ¼ 4.2a0 is proportional to the gravitational
“Bohr radius” a0 ≡ ðm2Mext=M2

PlÞ−1. This profile is a
good approximate solution of Eq. (3) for r ≫ Rext.
When R99 ≲ Rext, the gravitational potential is (at leading
order) proportional to r2 rather than 1=r, and the ground
state instead has a Gaussian form

ψðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4.2Þ3N
π3=2R3

99

s
e−ð4.2Þ

2r2=ð2R2
99
Þ: ð12Þ

To minimize errors from one approximation or the other, in
particular as R99 approaches Rext, we employ the procedure
outlined in [40] to stitch the two solutions together

3Note the difference in the definition of the size of the boson
star used here compared to Ref. [40]; the latter chose a radius
parameter R which is related to R99 by R ¼ R99=5.4.
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continuously across r ¼ Rext.
4 In this way we capture the

underlying physics inside and outside the object, and the
errors introduced are Oð1Þ at most.
Unlike the case of boson stars, for gravitational atoms

one would not need to wait for a rare transient encounter, as
the bound state would be present at all times after it forms.
The density relevant to experimental searches is

ρðRÞ≡mjψðRÞj2: ð13Þ

If the halo is bound to the Sun, thenR is identified with the
distance between the Earth and the Sun; the maximum dark
matter density in this case is constrained by solar system
ephemerides [76–78]. On the other hand, if the halo is
bound to the Earth, then we instead identify R as the
distance from the center of the Earth, and the strongest
constraints on the DM density arise from objects in orbit
around the Earth [79]. These constraints have been trans-
lated to the case of solar or Earth-bound halos in Ref. [40].
Importantly, ρ can be much larger than the ambient DM
density ρDM ≃ 0.4 GeV=cm3, allowing the possibility of
enhanced sensitivity in the presence of these bound states.
At present, we are not aware of any previous work on

vector bosons forming gravitational-atomlike configura-
tions bound to the Sun or Earth. However, the constraints
described above should translate directly to this case,
because they are derived from gravity-only observations.
We will therefore treat the density of vector bound states as
equivalent to the scalar case, though this may only be
correct up to factors of Oð1Þ. Note that the formation of
vector bound states, possibly via self-interactions as in the
scalar case considered in [49], is worthy of detailed study.

III. BOSONIC FORCES ON
OPTOMECHANICAL SENSORS

Previous works have shown that optomechanical sensing
could be used to search for ultralight DM [57–61]. One
implementation of an optomechanical force sensing device
(see e.g. [57]) consists of an optical cavity with an
interferometer, where one of the mirrors is suspended from
a pendulum. This pendulum acts as the force sensor
because its position can be determined by measuring the
fringe shifts on the interferometer. If a DM wave interacts
with the sensor, it changes the position of the sensor and
consequently alters the fringe shift pattern on the interfer-
ometer. This detection scheme offers many advantages in
terms of noise reduction, especially when scaled into an
array of sensors [57]. In this paper, we consider the
observable coupling which could be measured with a

single sensor, though the results can be scaled up to an
arbitrary number of sensors.
We consider three benchmark DM cases below: scalars

coupled to the SM through a Yukawa coupling to neutrons;
axion-like particles with a parity-odd coupling to neutrons;
and vector particles coupling to baryon minus lepton
number (i.e. vector B − L bosons). In each case, we
consider the sensitivity reach in the presence of a boson
star, a solar halo, and an Earth-bound halo.
Below, we begin with a pedagogical derivation of the

force on an optomechanical sensor resulting from the three
bosonic DM models above. Our treatment will character-
ize the system in (first-quantized) relativistic quantum
mechanics rather than (second-quantized) quantum field
theory, and therefore neglects quantum fluctuations of the
ϕ field.

A. Force from scalar or pseudoscalar couplings

Consider an interaction Lagrangian of the form

Lint ¼ y1ϕn̄nþ y2ϕn̄γ5n; ð14Þ

which includes a scalar Yukawa interaction ∝ y1 as well as
a pseudoscalar interaction ∝ y2 between ϕ and the nucleon
field n. These nucleons, which make up detector apparatus
(e.g. a mirror), are represented by the Dirac spinor field

n ¼
�
U

V

�
: ð15Þ

with 2-component spinors U and V. This field must satisfy
the Dirac equation,

γ0En ¼ ½γ⃗ · p⃗þ ðmþ y1ϕÞ1þ y2γ5ϕ�n; ð16Þ

whereE (p⃗) is the quantum-mechanical energy (momentum)
operator, 1 is the identity matrix, and γμ (μ ¼ 0, 1, 2, 3) are
the usual Dirac Gamma matrices. Since γ5 ¼ iγ0γ1γ2γ3, we
may rewrite the above equation as

E

�
1 0

0 −1

��
U

V

�
¼

�
0 σ⃗ · p⃗

−σ⃗ · p⃗ 0

��
U

V

�

þ
�
y1ϕU

y1ϕV

�
þm

�
U

V

�
þ y2ϕ

�
V

U

�
;

ð17Þ

where σ⃗ is the Pauli vector. Therefore the following pair of
equations must be simultaneously satisfied:

EU ¼ ðσ⃗ · p⃗ÞV þmU þ y1ϕU þ y2ϕV; ð18Þ

−EV ¼ −ðσ⃗ · p⃗ÞU þmV þ y1ϕV þ y2ϕU: ð19Þ

4Briefly, we assume the form of Eq. (12) for r < Rext and
match it onto Eq. (11) for r ≥ Rext, while fixing the total captured
mass M ¼ mN and enforcing continuity at the boundary
r ¼ Rext.
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Solving the above equations for U and V yields

V ¼ 1

2mþ y1ϕ
ðσ⃗ · p⃗ − y2ϕÞU; ð20Þ

ðE −m − y1ϕÞU ¼ 1

2mþ y1ϕ
½ðσ⃗ · p⃗Þ2 þ ðy2ϕÞðσ⃗ · p⃗Þ

− ðσ⃗ · p⃗Þðy2ϕÞ − y22ϕ
2�U: ð21Þ

We will consider the effect of the two couplings y1 and y2
separately below.

(i) Case 1 (scalar, y2 ¼ 0): Taking K ≡ E −m, the
preceding equation becomes

KU ¼ y1ϕU þ ðσ⃗ · p⃗Þ2
2mþ y1ϕ

U: ð22Þ

Expanding the denominator to first order in powers
of y1ϕ=m, we have5

KU ≃ y1ϕU þ ðσ⃗ · p⃗Þ2
2m

�
1 −

y1ϕ
2m

�
U

≃
�
y1ϕþ p2

2m

�
U; ð23Þ

where we used ðσ⃗ · p⃗Þ2 ¼ p2. Identifying p2=2m as
the kinetic energy of a free particle, the force on a
particle in the mirror during an interaction with DM
is therefore

F1 ≡ −∇
�
K −

p2

2m

�
¼ −y1∇ϕ: ð24Þ

If the number of SM fermions in the mirror isNg, the
total force on the mirror will be F ¼ NgF1 with

F ¼ y1Ngv
ffiffiffiffiffi
2ρ

p
sinðωϕtÞ; ð25Þ

where we used ϕ ¼
ffiffiffiffi
2ρ

p
m cosðp⃗ϕ · x⃗ − ωϕtÞ with ωϕ

and p⃗ϕ the energy and momentum of the scalar
wave, respectively. Note that we dropped the
x-dependence because in what follows, the wave-
length of ϕ will always be much larger than the size
of the experiment. Note that Eq. (24) can be easily
derived from the Dirac Hamiltonian by treating the
interaction in Eq. (14) as an external potential, as
was done in Ref. [57].

(ii) Case 2 (pseudoscalar, y1 ¼ 0): In this case, Eqs. (20)
and (21) simplify to

V ¼ 1

2m
ðσ⃗ · p⃗ − y2ϕÞU; ð26Þ

ðE −mÞU ¼ 1

2m
½ðσ⃗ · p⃗Þ2 þ ðy2ϕÞðσ⃗ · p⃗Þ

− ðσ⃗ · p⃗Þðy2ϕÞ − y22ϕ
2�U: ð27Þ

Since the Pauli spin matrices commute with the
momentum operator and since ½ϕ; pi� ¼ i∂iϕ, we
may rewrite the preceding equation as

ðE−mÞU¼ 1

2m
½p2þy2iðσ⃗ · ∇⃗ϕÞ−y22ϕ

2�U: ð28Þ

As before, we define K≡E−m and find the asso-
ciated (spin-dependent) force −∇ðK−p2=2mÞ,
evaluated to

F̂ ¼ −∇
�
−

y22
2m

ϕ2 þ i
y2
2m

ðσ⃗ ·∇ϕÞ
�
: ð29Þ

Dropping the (small) y22 term, we obtain

F̂ ≃ −
iy2
2m

∇⃗��
σ⃗ · ∇⃗ϕ	
; ð30Þ

Note that unlike the case in Eq. (25), F̂ here (denoted
here with a “hat”) should be thought of as an operator
acting on the nucleon spin.

Awell-motivated example which is classified under Case
2 is a derivative coupling between an axion field ϕ and a
nucleon field ξ of the form ðg=fÞ∂μϕðξ̄γμγ5ξÞ, where g is a
dimensionless coupling and f is the axion decay constant.
The corresponding action is given by

S¼
Z

d4x
g
f
∂μϕðξ̄γμγ5ξÞ¼−

g
f

Z
d4xϕ∂μðξ̄γμγ5ξÞ; ð31Þ

where the right-hand side of the above equation was
obtained by integrating by parts and enforcing that ϕ must
vanish at infinity. The integrand of S then simplifies to

ϕ∂μðξ̄γμγ5ξÞ ¼ ϕðξ̄γμγ5∂μξþ ∂μξ̄γ
μγ5ξÞ

¼ −ϕξ̄γ5γμ∂μξ

¼ −2ϕξ̄γ5
�
mξ

i
ξ

�
¼ 2imξϕξ̄γ

5ξ: ð32Þ
Combining the two previous equations yields

S ¼ −
2mξg
f

Z
d4xϕiξ̄γ5ξ; ð33Þ

which corresponds to the second term of Eq. (14) with
y2 ¼ 2mξg=f. Since the prefactor is proportional to

5Given the smallness of the couplings we consider, this
approximation works extremely well.
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mξ=f ≪ 1, this force is strongly suppressed; we will
therefore focus on the other two cases (scalar Yukawa
and vector B − L forces) in what follows.

B. Force from coupling to vector B−L bosons

We consider a spin-1 particle which couples to baryon
minus lepton number, B − L. Writing the equation of
motion of the nucleon field n in the nonrelativistic limit,
we may determine the (dark) electric force associated with
this coupling, which is analogous to the Coulomb force on
an electron coupling to photons (see [80] for details).
Vector particles can also couple to ordinary electric charge,
but optomechanical sensors in our chosen detection scheme
(see above) are charge-neutral, and therefore would not be
sensitive to a direct charge coupling.
Following the discussion in [57], a good target for a spin-1

field A0
μ is an interaction of the form

L ⊃ igB−LA0
μn̄γμn; ð34Þ

where gB−L is the coupling strength. After a very similar
derivation that we saw in Sec. III A, one obtains the force on
the sensor as

F ¼ NB−LgB−L
ffiffiffiffiffi
2ρ

p
sinðωϕtÞ ð35Þ

where NB−L is the B − L charge of the sensor; note that for
charge-neutral materials, this reduces to the number of
neutrons in the sensor. Relative to the scalar Yukawa case
in Eq. (25), themain difference is that the force from a vector
is not suppressed by v ≃ 10−3. This is because the vector
force is proportional to the (dark) electric field, so the result
does not depend on the derivative of the vector field.

IV. RESULTS

A. Previous constraints

There are strong constraints on ultralight scalar cou-
plings to the SM arising from searches for violations of the
equivalence principle (EP) [81–85]. Other direct searches,
including those using atomic clocks and interferometry, are
summarized in Ref. [25] (see references therein); for
nucleon couplings, these searches are most sensitive at
low massesm≲ 10−18 eV and are therefore complimentary
to those considered here.
One can also constrain the presence of DM coupling to

neutrons through its effect on the production of primordial
nuclei predicted by big bang nucleosynthesis (BBN) [86].
In particular, the observed helium abundance places a tight
constraint on the Yukawa coupling. At the BBN epoch, the
ratio of neutron to proton abundances is given by

Nn

Np
¼ e−Q=TF ; ð36Þ

where Q≡mn −mp ≃ 1.293 MeV is the neutron-proton
mass difference and TF ¼ 0.8 MeV is the average temper-
ature of the universe at freeze-out. The mass fraction of
Helium is related to Nn=Np as

Yp ≈
2ðNn=NpÞ

1þ ðNn=NpÞ
: ð37Þ

The presence of a Yukawa coupling y1 to a nucleon shifts
its mass proportionally to y1; see Eq. (14). If the coupling to
protons and neutrons is asymmetric, it therefore contributes
to the mass difference Q. In the extreme case, where ϕ
couples only to neutrons, the resulting shift isQ → Qþ δQ
with δQ ¼ y1hϕi, with hϕi the vacuum expectation value
(vev) of ϕ. Through Eq. (36), this leads to a modification of
the neutron-proton ratio, which at leading order is given by

δðNn=NpÞ
Nn=Np

≃ 1 −
δQ
TF

: ð38Þ

The resulting fractional change in Yp is

δYp

Yp
≃
�

2δðNn=NpÞ
½1þ ðNn=NpÞ�2

��
1þ Nn=Np

2Nn=Np

�

¼ δðNn=npÞ
Nn=Npð1þ Nn=NpÞ

≃
1 − δQ=TF

1þ e−Q=TF
: ð39Þ

Since the observed helium abundance is known within
10% accuracy [87], we take δYp=Yp < 0.1 as a conservative
constraint. Taking hϕi ≃ ffiffiffiffiffiffiffiffiffiffiffiffi

2ρBBN
p

=m, with ρBBN the dark
matter energy density during BBN, this implies a constraint
y1 ≲ 4 × 10−4ðm=eVÞ. Explicitly, we use

ρBBN ¼ ρMRE

�
5 × 109

3400

�
4

¼ ρtoday

�
3400

1

�
3
�
5 × 109

3400

�
4

: ð40Þ

with ρtoday ¼ 10−6 GeV=cm3 [88].

B. Transient signals from boson star encounters

We now turn to the signals in optomechanical sensors
from boson stars.
As noted in [66], scalar DM candidates with attractive

self-interactions give rise to objects with lower compact-
ness ratios C ¼ M=R99 than those with repulsive (or no)
self-interactions. Such stars would have a greater proba-
bility of passing through the Earth, giving an increased
likelihood that an optomechanical sensing search will
“see” a boson star encounter. On the other hand, lower
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compactness also implies a weaker signal in the event of an
encounter, since the strength of the signal is proportional to
ϕ ∝ ψ ∼

ffiffiffiffiffiffiffiffiffiffiffi
2ρ=m

p
, where ρ is the mass density of the star

(see Sec. III). This tradeoff implies a potentially limited
range of viable boson star parameters for such a search; see
e.g. [40].
We estimate the encounter rate by calculating the cross-

section between the detector and a boson star as

σ ≈ πR2
99; ð41Þ

where we have assumed the boson star radius R99 is much
larger than the detector (this is always the case in the
parameter space we explore here). The mean free path is
L ¼ ðnσÞ−1 where n is the number density of boson stars.
Under the assumption that dark matter consists of a fraction
f of boson stars of massM, their number density is given by

n ¼ fρDM
M

≈ 10−16f R−3
E

�
1015 kg

M

�
; ð42Þ

where RE ¼ 6371 km is the radius of the Earth. The
resulting frequency of encounters between Earth and boson
stars is

Γ ¼ v
L
≈ 0.2f yr−1

�
μeV
m

��
R99

108 km

�
3

; ð43Þ

where we assumed the virial velocity v ≃ 10−3 for the
boson stars.
Reference [66] determined along these lines that for

m ≃ 10−8–10−4 eV and λ ≃ 10−46–10−42, the encounter
rate can be greater than 1/year, allowing (in principle)
for direct searches for transient signals. However, this
range of masses correspond to signals in the sensor with
frequencies on the order of GHz or larger. In general,
optomechanical sensors of the kind considered here have
limited sensitivity to such high frequencies, in part due to
measurement-added (e.g. back-action) noise; see [57] for
details. We therefore conclude that, for optomechanical
sensors, signals from transient boson stars are likely to be
either rare or too weak to detect.

C. Detection reach in the presence
of solar and Earth halos

Finally, we turn to the case of gravitational atoms bound
to the Sun or Earth. If such states form, their density can be
much larger than the DM background and they would be
expected to remain approximately static on astrophysical
timescales (see e.g. [49] for details). Therefore it is a prime
target for direct searches, e.g. in optomechanical sensors.
For a scalar particle, the force on an optomechanical

sensor is proportional to the relative velocity between the
dark matter field (taken to be v ≃ 10−3), as well as the

square root of the dark matter density ρ, as in Eq. (25).
Therefore to estimate the sensitivity, we use the scaling
relationship

ðy1Þlimit ∝
1

F
∝

1

v
ffiffiffi
ρ

p : ð44Þ

The sensitivity for a vector particle is similar, but without
the factor of 1=v; see Eq. (35). In this case one has

ðgB−LÞlimit ∝
1

F
∝

1ffiffiffi
ρ

p : ð45Þ

Importantly, the velocity dispersion in a bound halo is
much smaller than vdm ¼ 10−3, which is typical of the DM
background; see discussion in [41]. There are two compo-
nents to the velocity dispersion in a bound halo: a radial
component, vrad ≡∇rϕ=ðmϕÞ ≃ ðmR⋆Þ−1 arising from the
gradient of the wave function; and a tangential component,
vtan ≡ vrel arising from the relative velocity vrel of the
detector through the halo. We will assume a static halo for
simplicity; then, for a solar halo, vrel is of order v⊙ ≃ 10−4

(the speed of the Earth around the Sun), and for an Earth
halo it is of order v⊕ ≃ 10−6 (the rotation speed of Earth at
the Equator). In our sensitivity estimates for the scalar field,
we will use v ¼ max ½ðmR⋆Þ−1; vrel�, which captures the
size of the effect but ignores the difference in the direction
of the force [which is in the direction of v⃗, as shown
by Eq. (25)].
For simplicity, in deriving the sensitivity we assume that

the sensor has the characteristics described in [57,89]. More
precisely, we assume a resonant search method utilizing a
single sensor of mass ∼1 mg and mechanical frequency
∼1 Hz, in a ∼1 cm optical cavity. We assume a laser power
of PL ≃ 1 Watt which has been optimized to achieve the
minimum of shot noise and backaction noise (what is called
the standard quantum limit, or SQL) at each frequency, as
outlined in [89]. Using the maximal dark matter density
allowed by astronomical data, as discussed in [40], we
reinterpret the sensitivity estimates of [57] in the case of
background DM density to the case of a solar or Earth halo,
following Eqs. (44) and (45).
The resulting sensitivity estimates are shown in Fig. 1,

for scalars (left) and vectors (right). The blue and red lines
correspond to a captured mass which saturates the current
upper limits [40,76–79], and the gray dashed contours
indicate smaller masses as labeled, in units of the solar mass
M⊙ or Earth mass M⊕ (respectively). We observe the
expected increase in sensitivity at small couplings in both
cases, though importantly for the scalar case, the enhance-
ment is sufficient to probe novel parameter space beyond
what is tested by EP tests (light gray regions [81–85]). For
vectors, even a very small captured mass, a fraction of
10−15 or even smaller in units of the solar or Earth mass,
can be sufficient for optomechanical sensing experiments
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to probe new parameter space. We also show for compari-
son the BBN constraint on scalar Yukawa interactions in
the top-left corner of the left panel (dark gray).
Note that the sensitivity has been estimated using

the maximum DM density allowed by current constraints
(see [40]), as well as smaller densities indicated by the gray
dashed lines. Such large densities can, in fact, be captured
dynamically, as has been demonstrated e.g. in [49], which
shows that densities up to ρ=ρDM ∼ 104 are achievable for
solar halos with scalar masses near 10−15–10−13 eV,
through capture by self-scattering of scalar particles; in
this case, the precise prediction of the overdensity for a
given coupling implies that a nondetection can be used to
set a precise constraint on the underlying physical model.
Though it is conventional to convey sensitivity to a value of
the coupling constant g at fixed density ρ (typically the
local DM density ρDM), in practice an experimental search
can be thought of as being sensitive to the product of
gϕ ∝ g

ffiffiffi
ρ

p
. Therefore, in the case of a precise model

prediction for the coupling value, one could also interpret
a null result as a constraint on the density of DM near the
Earth. An example of such an analysis can be found in [41],
which studies the prediction of a QCD axion forming an
Earth-bound halo and finds that a strong constraint on the
density around the Earth can be set in such a scenario.
Note also that this sensitivity estimates neglect self-

interactions of the ULDM, which affect the stability of the
bound state and could ultimately lead to smaller bound
densities. As discussed above, in this work we remain
agnostic as to the source of the overdensity around the Sun
or Earth, and focus on the phenomenology of the bound state
and its impact on future optomechanical sensing searches.
This experimental search described here is constrained

by the noise profile, as described in [57]; for completeness
we briefly summarize below. The noise in this experiment
comes from thermal effects and measurement-added

sources. Measurement-added noise is a quantum mechani-
cal consequence of the measurement itself, arising from
both “shot noise” and “back-action” noise. Shot noise
refers to random fluctuations in laser phase, leading to
noise in the interferometer readout; while back-action noise
refers arises from random fluctuations in laser amplitude
which causes random forces to be exerted on the sensor. In
addition, the specific sensor protocol used also impacts
detection reach. Since the magnitude of both shot noise and
back-action noise are dependent on laser power, the target
dark matter frequency, and the mechanical damping of the
sensor, scanning over a range of laser powers and mechani-
cal frequencies allows one to achieve the fundamental limit
on detection reach. For each case, we assume sensor
characteristics as described in [89] and a sensor protocol
where both the laser power and the mechanical frequency
are scanned over a wide range to achieve sensitivities at the
standard quantum limit.
The dark matter oscillates with a frequency ωϕ ≃m,

which is coherent on a timescale Tcoh ∼ 2πðmv2Þ−1; in the
presence of a halo, this coherence time should be much
longer (see discussion in [41]). This coherence time is
critical to the sensitivity of the experiment: If the experi-
ment is operating for longer than the coherence time, then
the direction of the force on the sensor may change
direction during the measurement. Since the timescale of
this experiment is constrained by technical factors such as
laser stability, it will be operated for up to several hours. For
high frequency dark matter candidates, one run of this
experiment will obtain a coherent signal; for lower fre-
quency candidates, the data will have to be taken in bins
which are summed in quadrature.

D. Optimizing the search for a gravitational atom

In this work, we estimated the sensitivity of an experi-
ment to the presence of a ULDM bound state on the

FIG. 1. Sensitivity estimate for optomechanical sensor searches for ultralight scalars (left) and vectors (right). The black lines represent
the estimate of Carney et al. [57] using the local DM density ρDM ¼ 0.4 GeV=cm3. The blue and red regions are estimations for a similar
experimental search in the presence of a bound state around the Sun or Earth (respectively) assuming the mass captured saturates current
upper bounds, whereas the gray dashed contours indicate captured masses M < Mmax as labeled (see [40] for a derivation of Mmax for
both a solar and Earth halo). The light gray regions represent existing limits from tests of the equivalence principle (EP) [81–85], and the
dark gray in the left panel represents the constraint from big bang nucleosynthesis (BBN) (see Sec. IVA).
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conservative assumption that there were no changes to the
planned experimental search procedure. However, there are
a number of ways to optimize the search for a gravitational
atom in optomechanical sensing experiments, which we
outline below.
We have pointed out that the coherence time for a bound

halo is much longer than that of the background DM; their
ratio scales as Tcoh;halo=Tcoh;dm ≃ ðvhalo=vdmÞ2, where vhalo is
of order v⊙ ≃ 10−4 for the solar halo and v⊕ ≃ 10−6 for the
Earth halo (or even smaller, as explained above). Future
experiments can make use of the extended coherence time in
the halo by optimizing their scanning procedure in frequency
space to search for the bound halos. As a first approximation,
an experiment which grows in sensitivity as

ffiffi
t

p
, which is

typical of ULDM searches (see e.g. [55]), could be expected
to see a further gain in sensitivity proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tcoh;halo

Tcoh;dm

s
≃
�
vdm
vhalo

�
≳
�
10; solar halo

103; Earth halo
: ð46Þ

As the inequality suggests, the sensitivity gain is even larger
than this estimate, particularly at smallm where the gradient
is dominated by its radial component vrad ≃ ðmR⋆Þ−1. An
optimized scanning procedure of this kind can therefore
further enhance the signal relative towhat we estimated here,
e.g. in Fig. 1, by several orders of magnitude.
For the case of scalars, there is another important way to

distinguish the signal from background DM from the
presence of a halo, namely to make use of the geometric
properties of the ULDM gradient in the halo. As we have
shown (see also [57]), the force on the optomechanical
sensor is proportional to ∇ϕ; see Eq. (25). In the case of
background DM, the ULDM gradient is roughly isotropic,
with an Oð1Þ component in the so-called “wind.” On the
other hand, the halo gradients are highly nonisotropic. For
example, for an Earth halo there is a radial gradient pointed
radially, and a tangential gradient pointed in the direction of
Earth’s rotation, but the gradient pointed along the direction
orthogonal to both (along lines of longitude) is zero; see
discussion in [41]. An experiment with control over its
sensitive axis, or a network of experiments pointed in
different directions, could map of these gradients and
thereby provide strong evidence of the presence of a bound
halo of ultralight dark matter.
The primary signal of ULDM in these experiments is a

peak in the Fourier spectrum above the expected noise at a
frequency of order m. However, the motion of the Earth
around the Sun, and its rotation on its axis, give rise to
significant modulation effects in the signal from
a bound ULDM gravitational atom, with frequency of
order day−1 or year−1, corresponding to energy of 10−19 eV
or 10−22 eV, respectively. Such low-frequency oscillations
are beyond the reach of current proposals, but it would be
intriguing to investigate modifications of the experimental
apparatus to push the sensitivity to this range.

V. CONCLUSION

We have studied the phenomenology of bound states of
bosonic DM candidates in optomechanical sensing experi-
ments. The most promising coupling types considered were
a scalar Yukawa interaction and a vector B − L coupling to
nucleons. Pseudoscalar couplings do, in principle, also give
rise to novel forces on these systems as well, but the signal
is expected to be very suppressed.
We focused on three classes of bound states: boson stars,

solar-bound halos, and Earth-bound halos. Boson stars
could pass through an experiment with a large density,
boosting its sensitivity for a finite time. However, we find
that such transits are very rare except for relatively large
m≳ 10−8 eV, where optomechanical sensors have dimin-
ished sensitivity.
However, we find that bound states of bosonic particles

around the Earth or Sun are a good target for future
searches. The main advantages in the presence of a bound
halo are that the density in such bound state can be orders of
magnitude higher than the ambient DM density, and that
the bosons oscillate coherently over very long timescales,
leading to enhanced sensitivity for searches over long
integration times. Importantly, in the presence of such a
bound state, optomechanical sensing searches can probe
novel parameter space for both vector B − L interactions as
well as scalar Yukawa interactions, in both cases reaching
below existing limits from EP tests.

ACKNOWLEDGMENTS

We thank Daniel Carney for helpful discussions. K. S.
thanks the University of Cincinnati Physics Department
and the WISE program for funding. The work of J. E. was
supported by the World Premier International Research
Center Initiative (WPI), MEXT, Japan and by the JSPS
KAKENHI Grants No. 21H05451 and No. 21K20366, as
well as by the Swedish Research Council (VR) under
Grants No. 2018-03641 and No. 2019-02337. L. S. was
supported by the U.S. Department of Energy (DOE), Office
of Science, Office of Workforce Development for Teachers
and Scientists, Office of Science Graduate Student
Research (SCGSR) program. The SCGSR program is
administered by the Oak Ridge Institute for Science and
Education (ORISE) for the DOE. ORISE is managed by
ORAU under Contract No. DE-SC0014664. Research of
L. C. R.W. is partially supported by the US. Department of
Energy Grant No. DE-SC1019775. This article is based
upon work from COST Action COSMIC WISPers
CA21106, supported by COST (European Cooperation
in Science and Technology).

All opinions expressed in this paper are the authors’ and
do not necessarily reflect the policies and views of DOE,
ORAU, or ORISE.

PROBING BOSONIC OVERDENSITIES WITH OPTOMECHANICAL … PHYS. REV. D 109, 115012 (2024)

115012-9



[1] Yoshiaki Sofue and Vera Rubin, Rotation curves of spiral
galaxies, Annu. Rev. Astron. Astrophys. 39, 137 (2001).

[2] M. Tanabashi et al., Review of particle physics, Phys. Rev.
D 98, 030001 (2018).

[3] Richard Massey, Thomas Kitching, and Johan Richard, The
dark matter of gravitational lensing, Rep. Prog. Phys. 73,
086901 (2010).

[4] Joel R. Primack, Cosmological structure formation, in
Philosophy of Cosmology UK/US Conference, Tenerife,
Spain (2014), pp. 136–160, https://arxiv.org/abs/1505
.02821.

[5] N. Aghanim et al., Planck 2018 results. VI. Cosmological
parameters, Astron. Astrophys. 641, A6 (2020); 652, C4(E)
(2021).

[6] Marc Schumann, Direct detection of WIMP dark matter:
Concepts and status, J. Phys. G 46, 103003 (2019).

[7] Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, and Edward
Witten, Ultralight scalars as cosmological dark matter, Phys.
Rev. D 95, 043541 (2017).

[8] Luca Di Luzio, Maurizio Giannotti, Enrico Nardi, and Luca
Visinelli, The landscape of QCD axion models, Phys. Rep.
870, 1 (2020).

[9] Elisa G. M. Ferreira, Ultra-light dark matter, Astron. As-
trophys. Rev. 29, 7 (2021).

[10] R. D. Peccei and Helen R. Quinn, CP conservation in the
presence of instantons, Phys. Rev. Lett. 38, 1440 (1977).

[11] Steven Weinberg, A new light boson?, Phys. Rev. Lett. 40,
223 (1978).

[12] Frank Wilczek, Problem of strong P and T invariance in the
presence of instantons, Phys. Rev. Lett. 40, 279 (1978).

[13] Jihn E. Kim, Weak interaction singlet and strong CP
invariance, Phys. Rev. Lett. 43, 103 (1979).

[14] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I.
Zakharov, Can confinement ensure natural CP invariance
of strong interactions?, Nucl. Phys. B166, 493 (1980).

[15] P. Di Vecchia and G. Veneziano, Chiral dynamics in the
large N limit, Nucl. Phys. B171, 253 (1980).

[16] A. R. Zhitnitsky, On possible suppression of the axion
hadron interactions (In Russian), Sov. J. Nucl. Phys. 31,
260 (1980).

[17] Michael Dine, Willy Fischler, and Mark Srednicki, A simple
solution to the strong CP problem with a harmless axion,
Phys. Lett. 104B, 199 (1981).

[18] John Preskill, Mark B. Wise, and Frank Wilczek, Cosmol-
ogy of the invisible axion, Phys. Lett. 120B, 127 (1983).

[19] L. F. Abbott and P. Sikivie, A cosmological bound on the
invisible axion, Phys. Lett. 120B, 133 (1983).

[20] Michael Dine andWilly Fischler, The not so harmless axion,
Phys. Lett. 120B, 137 (1983).

[21] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo
Vega, and Giovanni Villadoro, The QCD axion, precisely, J.
High Energy Phys. 01 (2016) 034.

[22] Wayne Hu, Rennan Barkana, and Andrei Gruzinov, Cold
and fuzzy dark matter, Phys. Rev. Lett. 85, 1158 (2000).

[23] Peter Svrcek and Edward Witten, Axions in string theory, J.
High Energy Phys. 06 (2006) 051.

[24] Asimina Arvanitaki, Savas Dimopoulos, Sergei Dubovsky,
Nemanja Kaloper, and John March-Russell, String axiverse,
Phys. Rev. D 81, 123530 (2010).

[25] D. Antypas et al., New horizons: Scalar and vector ultralight
dark matter, in Snowmass 2021 (2022), https://arxiv.org/
abs/2203.14915.

[26] C. B. Adams et al., Axion dark matter. in Snowmass 2021
(2022), https://arxiv.org/abs/2203.14923.

[27] David J. Kaup and Klein-Gordon Geon, Klein-Gordon
Geon, Phys. Rev. 172, 1331 (1968).

[28] Remo Ruffini and Silvano Bonazzola, Systems of self-
gravitating particles in general relativity and the concept of
an equation of state, Phys. Rev. 187, 1767 (1969).

[29] J. D. Breit, S. Gupta, and A. Zaks, Cold bose stars, Phys.
Lett. 140B, 329 (1984).

[30] M. Colpi, S. L. Shapiro, and I. Wasserman, Boson stars:
Gravitational equilibria of self-interacting scalar fields,
Phys. Rev. Lett. 57, 2485 (1986).

[31] Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst,
Cosmic structure as the quantum interference of a coherent
dark wave, Nat. Phys. 10, 496 (2014).

[32] D. G. Levkov, A. G. Panin, and I. I. Tkachev, Gravitational
Bose-Einstein condensation in the kinetic regime, Phys.
Rev. Lett. 121, 151301 (2018).

[33] Jiajun Chen, Xiaolong Du, Erik W. Lentz, David J. E.
Marsh, and Jens C. Niemeyer, New insights into the
formation and growth of boson stars in dark matter halos,
Phys. Rev. D 104, 083022 (2021).

[34] Kay Kirkpatrick, Anthony E. Mirasola, and Chanda
Prescod-Weinstein, Relaxation times for Bose-Einstein
condensation in axion miniclusters, Phys. Rev. D 102,
103012 (2020).

[35] Jiajun Chen, Xiaolong Du, Erik W. Lentz, and David J. E.
Marsh, Relaxation times for Bose-Einstein condensation by
self-interaction and gravity, Phys. Rev. D 106, 023009
(2022).

[36] Kay Kirkpatrick, Anthony E. Mirasola, and Chanda
Prescod-Weinstein, Analysis of Bose-Einstein condensation
times for self-interacting scalar dark matter, Phys. Rev. D
106, 043512 (2022).

[37] Peter Adshead and Kaloian D. Lozanov, Self-gravitating
vector dark matter, Phys. Rev. D 103, 103501 (2021).

[38] Mudit Jain and Mustafa A. Amin, Polarized solitons in
higher-spin wave dark matter, Phys. Rev. D 105, 056019
(2022).

[39] Marco Gorghetto, Edward Hardy, John March-Russell,
Ningqiang Song, and Stephen M. West, Dark photon stars:
Formation and role as dark matter substructure, J. Cosmol.
Astropart. Phys. 08 (2022) 018.

[40] Abhishek Banerjee, Dmitry Budker, Joshua Eby, Hyungjin
Kim, and Gilad Perez, Relaxion stars and their detection via
atomic physics, Commun. Phys. 3, 1 (2020).

[41] Abhishek Banerjee, Dmitry Budker, Joshua Eby, Victor V.
Flambaum, Hyungjin Kim, Oleksii Matsedonskyi, and
Gilad Perez, Searching for Earth/solar axion halos, J. High
Energy Phys. 09 (2020) 004.

[42] Asimina Arvanitaki and Sergei Dubovsky, Exploring the
string axiverse with precision black hole physics, Phys. Rev.
D 83, 044026 (2011).

[43] Asimina Arvanitaki, Masha Baryakhtar, and Xinlu Huang,
Discovering the QCD axion with black holes and gravita-
tional waves, Phys. Rev. D 91, 084011 (2015).

SLATTERY, WIJEWARDHANA, EBY, and STREET PHYS. REV. D 109, 115012 (2024)

115012-10

https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1088/0034-4885/73/8/086901
https://doi.org/10.1088/0034-4885/73/8/086901
https://arxiv.org/abs/1505.02821
https://arxiv.org/abs/1505.02821
https://arxiv.org/abs/1505.02821
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1088/1361-6471/ab2ea5
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1007/s00159-021-00135-6
https://doi.org/10.1007/s00159-021-00135-6
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.43.103
https://doi.org/10.1016/0550-3213(80)90209-6
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1007/JHEP01(2016)034
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1088/1126-6708/2006/06/051
https://doi.org/10.1103/PhysRevD.81.123530
https://arxiv.org/abs/2203.14915
https://arxiv.org/abs/2203.14915
https://arxiv.org/abs/2203.14915
https://arxiv.org/abs/2203.14915
https://arxiv.org/abs/2203.14923
https://arxiv.org/abs/2203.14923
https://arxiv.org/abs/2203.14923
https://doi.org/10.1103/PhysRev.172.1331
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1016/0370-2693(84)90764-0
https://doi.org/10.1016/0370-2693(84)90764-0
https://doi.org/10.1103/PhysRevLett.57.2485
https://doi.org/10.1038/nphys2996
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1103/PhysRevD.104.083022
https://doi.org/10.1103/PhysRevD.102.103012
https://doi.org/10.1103/PhysRevD.102.103012
https://doi.org/10.1103/PhysRevD.106.023009
https://doi.org/10.1103/PhysRevD.106.023009
https://doi.org/10.1103/PhysRevD.106.043512
https://doi.org/10.1103/PhysRevD.106.043512
https://doi.org/10.1103/PhysRevD.103.103501
https://doi.org/10.1103/PhysRevD.105.056019
https://doi.org/10.1103/PhysRevD.105.056019
https://doi.org/10.1088/1475-7516/2022/08/018
https://doi.org/10.1088/1475-7516/2022/08/018
https://doi.org/10.1038/s42005-019-0260-3
https://doi.org/10.1007/JHEP09(2020)004
https://doi.org/10.1007/JHEP09(2020)004
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.83.044026
https://doi.org/10.1103/PhysRevD.91.084011


[44] Asimina Arvanitaki, Masha Baryakhtar, Savas Dimopoulos,
Sergei Dubovsky, and Robert Lasenby, Black hole mergers
and the QCD axion at Advanced LIGO, Phys. Rev. D 95,
043001 (2017).

[45] Masha Baryakhtar, Marios Galanis, Robert Lasenby, and
Olivier Simon, Black hole superradiance of self-interacting
scalar fields, Phys. Rev. D 103, 095019 (2021).

[46] Caner Ünal, Fabio Pacucci, and Abraham Loeb, Properties
of ultralight bosons from heavy quasar spins via super-
radiance, J. Cosmol. Astropart. Phys. 05 (2021) 007.

[47] Nuno P. Branco, Ricardo Z. Ferreira, and João G. Rosa,
Superradiant axion clouds around asteroid-mass primor-
dial black holes, J. Cosmol. Astropart. Phys. 04 (2023)
003.

[48] Francesca Chadha-Day, Björn Garbrecht, and Jamie
McDonald, Superradiance in stars: Non-equilibrium ap-
proach to damping of fields in stellar media, J. Cosmol.
Astropart. Phys. 12 (2022) 008.

[49] Dmitry Budker, Joshua Eby, Marco Gorghetto, Minyuan
Jiang, and Gilad Perez, A generic formation mechanism of
ultralight dark matter solar halos, J. Cosmol. Astropart.
Phys. 12 (2023) 021.

[50] Yu-Dai Tsai, Joshua Eby, and Marianna S. Safronova,
Direct detection of ultralight dark matter bound to the
Sun with space quantum sensors, Nat. Astron. 7, 113
(2023).

[51] Andrei Derevianko, Kurt Gibble, Leo Hollberg, Nathan R.
Newbury, Chris Oates, Marianna S. Safronova, Laura C.
Sinclair, and Nan Yu, Fundamental physics with a state-of-
the-art optical clock in space, Quantum Sci. Technol. 7,
044002 (2022).

[52] Vladimir Schkolnik et al., Optical atomic clock aboard an
Earth-orbiting space station (OACESS): Enhancing
searches for physics beyond the standard model in space,
Quantum Sci. Technol. 8, 014003 (2023).

[53] Chris Kouvaris, Eleftherios Papantonopoulos, Lauren
Street, and L. C. R. Wijewardhana, Using atomic clocks
to detect local dark matter halos, Phys. Rev. D 104, 103025
(2021).

[54] Tony Gherghetta and Andrey Shkerin, Probing the local
dark matter halo with neutrino oscillations, Phys. Rev. D
108, 095009 (2023).

[55] Dmitry Budker, Peter W. Graham, Micah Ledbetter, Surjeet
Rajendran, and Alex Sushkov, Proposal for a cosmic axion
spin precession experiment (CASPEr), Phys. Rev. X 4,
021030 (2014).

[56] Peter W. Graham and Surjeet Rajendran, New observables
for direct detection of axion dark matter, Phys. Rev. D 88,
035023 (2013).

[57] Daniel Carney, Anson Hook, Zhen Liu, Jacob M. Taylor,
and Yue Zhao, Ultralight dark matter detection with
mechanical quantum sensors, New J. Phys. 23, 023041
(2021).

[58] D. Carney et al., Mechanical quantum sensing in the
search for dark matter, Quantum Sci. Technol. 6, 024002
(2021).

[59] Jack Manley, Mitul Dey Chowdhury, Daniel Grin, Swati
Singh, and Dalziel J. Wilson, Searching for vector dark
matter with an optomechanical accelerometer, Phys. Rev.
Lett. 126, 061301 (2021).

[60] Anthony J. Brady et al., Entanglement-enhanced optome-
chanical sensor array with application to dark matter
searches, Commun. Phys. 6, 237 (2023).

[61] ChristopherG.Baker,WarwickP.Bowen,PeterCox,Matthew
J. Dolan, Maxim Goryachev, and Glen Harris, Optomechan-
ical dark matter direct detection, arXiv:2306.09726.

[62] Alan H. Guth, Mark P. Hertzberg, and C. Prescod-
Weinstein, Do dark matter axions form a condensate
with long-range correlation?, Phys. Rev. D 92, 103513
(2015).

[63] Joshua Eby, Madelyn Leembruggen, Lauren Street, Peter
Suranyi, and L. C. R. Wijewardhana, Approximation meth-
ods in the study of boson stars, Phys. Rev. D 98, 123013
(2018).

[64] Pierre-Henri Chavanis, Mass-radius relation of Newtonian
self-gravitating Bose-Einstein condensates with short-range
interactions: I. Analytical results, Phys. Rev. D 84, 043531
(2011).

[65] P. H. Chavanis and L. Delfini, Mass-radius relation of
Newtonian self-gravitating Bose-Einstein condensates with
short-range interactions: II. Numerical results, Phys. Rev. D
84, 043532 (2011).

[66] Chris Kouvaris, Eleftherios Papantonopoulos, Lauren
Street, and L. C. R. Wijewardhana, Probing bosonic stars
with atomic clocks, Phys. Rev. D 102, 063014 (2020).

[67] J. Barranco and A. Bernal, Self-gravitating system made of
axions, Phys. Rev. D 83, 043525 (2011).

[68] Joshua Eby, Peter Suranyi, Cenalo Vaz, and L. C. R.
Wijewardhana, Axion stars in the infrared limit, J. High
Energy Phys. 03 (2015) 080; 11 (2016) 134(E).

[69] Enrico D. Schiappacasse and Mark P. Hertzberg, Analysis
of dark matter axion clumps with spherical symmetry,
J. Cosmol. Astropart. Phys. 01 (2018) 037; 03 (2018)
E01.

[70] Benedikt Eggemeier and Jens C. Niemeyer, Formation and
mass growth of axion stars in axion miniclusters, Phys. Rev.
D 100, 063528 (2019).

[71] James Hung-Hsu Chan, Sergey Sibiryakov, and Wei Xue,
Condensation and evaporation of boson stars, J. High
Energy Phys. 01 (2024) 071.

[72] A. S. Dmitriev, D. G. Levkov, A. G. Panin, and I. I. Tkachev,
Self-similar growth of Bose stars, Phys. Rev. Lett. 132,
091001 (2024).

[73] Richard Brito, Vitor Cardoso, Carlos A. R. Herdeiro, and
Eugen Radu, Proca stars: Gravitating Bose–Einstein con-
densates of massive spin 1 particles, Phys. Lett. B 752, 291
(2016).

[74] Masato Minamitsuji, Vector boson star solutions with a
quartic order self-interaction, Phys. Rev. D 97, 104023
(2018).

[75] Mustafa A. Amin and Philip Mocz, Formation, gravitational
clustering, and interactions of nonrelativistic solitons in an
expanding universe, Phys. Rev. D 100, 063507 (2019).

[76] John D. Anderson, Eunice L. Lau, Timothy P. Krisher,
Duane A. Dicus, Doris C. Rosenbaum, and Vigdor L.
Teplitz, Improved bounds on nonluminous matter in solar
orbit, Astrophys. J. 448, 885 (1995).

[77] Oyvind Gron and Harald H. Soleng, Experimental limits to
the density of dark matter in the solar system, Astrophys. J.
456, 445 (1996).

PROBING BOSONIC OVERDENSITIES WITH OPTOMECHANICAL … PHYS. REV. D 109, 115012 (2024)

115012-11

https://doi.org/10.1103/PhysRevD.95.043001
https://doi.org/10.1103/PhysRevD.95.043001
https://doi.org/10.1103/PhysRevD.103.095019
https://doi.org/10.1088/1475-7516/2021/05/007
https://doi.org/10.1088/1475-7516/2023/04/003
https://doi.org/10.1088/1475-7516/2023/04/003
https://doi.org/10.1088/1475-7516/2022/12/008
https://doi.org/10.1088/1475-7516/2022/12/008
https://doi.org/10.1088/1475-7516/2023/12/021
https://doi.org/10.1088/1475-7516/2023/12/021
https://doi.org/10.1038/s41550-022-01833-6
https://doi.org/10.1038/s41550-022-01833-6
https://doi.org/10.1088/2058-9565/ac7df9
https://doi.org/10.1088/2058-9565/ac7df9
https://doi.org/10.1088/2058-9565/ac9f2b
https://doi.org/10.1103/PhysRevD.104.103025
https://doi.org/10.1103/PhysRevD.104.103025
https://doi.org/10.1103/PhysRevD.108.095009
https://doi.org/10.1103/PhysRevD.108.095009
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1088/1367-2630/abd9e7
https://doi.org/10.1088/1367-2630/abd9e7
https://doi.org/10.1088/2058-9565/abcfcd
https://doi.org/10.1088/2058-9565/abcfcd
https://doi.org/10.1103/PhysRevLett.126.061301
https://doi.org/10.1103/PhysRevLett.126.061301
https://doi.org/10.1038/s42005-023-01357-z
https://arXiv.org/abs/2306.09726
https://doi.org/10.1103/PhysRevD.92.103513
https://doi.org/10.1103/PhysRevD.92.103513
https://doi.org/10.1103/PhysRevD.98.123013
https://doi.org/10.1103/PhysRevD.98.123013
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1103/PhysRevD.102.063014
https://doi.org/10.1103/PhysRevD.83.043525
https://doi.org/10.1007/JHEP03(2015)080
https://doi.org/10.1007/JHEP03(2015)080
https://doi.org/10.1007/JHEP11(2016)134
https://doi.org/10.1088/1475-7516/2018/01/037
https://doi.org/10.1088/1475-7516/2018/03/E01
https://doi.org/10.1088/1475-7516/2018/03/E01
https://doi.org/10.1103/PhysRevD.100.063528
https://doi.org/10.1103/PhysRevD.100.063528
https://doi.org/10.1007/JHEP01(2024)071
https://doi.org/10.1007/JHEP01(2024)071
https://doi.org/10.1103/PhysRevLett.132.091001
https://doi.org/10.1103/PhysRevLett.132.091001
https://doi.org/10.1016/j.physletb.2015.11.051
https://doi.org/10.1016/j.physletb.2015.11.051
https://doi.org/10.1103/PhysRevD.97.104023
https://doi.org/10.1103/PhysRevD.97.104023
https://doi.org/10.1103/PhysRevD.100.063507
https://doi.org/10.1086/176017
https://doi.org/10.1086/176669
https://doi.org/10.1086/176669


[78] N. P. Pitjev and E. V. Pitjeva, Constraints on dark matter in
the solar system, Astron. Lett. 39, 141 (2013).

[79] Stephen L. Adler, Placing direct limits on the mass
of Earth-bound dark matter, J. Phys. A 41, 412002
(2008).

[80] L. H. Ryder, Quantum Field Theory (Cambridge University
Press, Cambridge, England, 1996).
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