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We calculate target-material responses for dark matter–electron scattering at the ab initio all-electron
level using atom-centered Gaussian basis sets. The all-electron effects enhance the material response at
high momentum transfers from dark matter to electrons, q ≳Oð10αmeÞ, compared to calculations using
conventional plane wave methods, including those used in QEDARK; this enhances the expected event rates
at energy transfers E≳ 10 eV, especially when scattering through heavy mediators. We carefully test a
range of systematic uncertainties in the theory calculation, including those arising from the choice of basis
set, exchange-correlation functional, number of unit cells in the Bloch sum, k-mesh, and neglect of scatters
with very high momentum transfers. We provide state-of-the-art crystal form factors, focusing on silicon
and germanium. Our code and results are made publicly available as a new tool, called quantum chemistry
dark (“QCDARK”).
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I. INTRODUCTION

There has been rapid progress in direct-detection
searches of sub-GeV dark matter (DM) by looking for elec-
tron recoils from DM-electron scattering in noble liquids
and crystals (see, e.g., [1–26]). A theoretical description of
such DM–electron scattering processes requires a quanti-
tative description of the electronic structure of the detector
material. This can be achieved by utilizing methods from
condensed-matter physics and quantum chemistry. In
particular, density functional theory (DFT) has been dem-
onstrated to be a powerful tool for determining the ground-
state electronic structure in a wide variety of materials from
first principles, as well their response to various perturba-
tions [27]. Also, DFT is the necessary first step to performing
calculations using more advanced methods to treat systems
with, e.g., stronger electron-electron correlations [28].
Several choices need to be made when calculating the

electronic structure and DM–electron scattering rate from
DFT. This includes choosing the type of basis functions to
describe the electronic wavefunctions; whether to separate

the core electrons in the material from the valence electrons
by, e.g., pseudopotentials [27] or the projector-augmented
wave (PAW) method [29]; and the exchange-correlation
(XC) functional, which incorporates the many body effects
of the electron–electron interactions [27,30]. These choices
often represent trade-offs between accuracy and computa-
tional efficiency [31], which differ for different types
of materials. Moreover, once these choices are made, the
relevant properties must be tested for convergence with
respect to the numerical parameters of the calculation.
DFT-based techniques have been applied to calculating

DM–electron scattering in a variety of materials relevant
for detectors including semiconductors [5,32–35], semi-
metals [36], superconducting nanowire single-photon
detectors [37,38], quantum dots [39], etc. For the most
part, studies of electron recoils in semiconductors have
taken the approach of a plane wave basis set, core electrons
frozen in pseudopotentials of PAW potentials, and either
local/semilocal XC functionals based on the local density
approximation (LDA), the generalized gradient approxi-
mation (GGA), or hybrid functionals that include a fraction
of exact electron-electron exchange interaction [40]. DFT
using plane wave basis sets are the one most commonly
used for studying solids in condensed-matter physics and
materials science.
However, there are motivations for choosing an alter-

native approach. First, it was recently shown that explicit
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treatment of the core electrons significantly affects the
DM–electron scattering rates [34,35,41]. While sub-GeV
DM does not typically excite an electron from a core orbital
to the conduction band, the inclusion of the rapidly
oscillating part of the valence all-electron wavefunction
near the atomic cores (where it must be orthogonal to the
core electron wave functions [42]) is necessary to capture
DM–electron scattering events with high momentum trans-
fer. For a calculation with a plane wave basis to be tractable,
these oscillations must be smoothed through the use of
pseudopotentials, though the all-electron wavefunction can
be reconstructed if PAWs are used [34,35].
A basis set made up of localized functions, e.g., atom-

centered Gaussians, can treat core and valence electrons on
the same footing without significant increase in computa-
tional cost. In addition, such basis sets can be used either
with periodic boundary conditions for solids [43] or for
finite systems, such as molecules or nanostructures [43],
increasing the flexibility to explore different DM detector
materials. Finally, using localized basis sets allows the use
of quantum chemistry methods, which allows many-body
correlations to be included when calculating the wave
functions for atoms, molecules, liquids, and solids.
In this work, we develop the computational methodology

to perform all-electron calculations of DM–electron scat-
tering based on localized Gaussian basis sets. The resulting
code, which we call quantum chemistry dark (QCDARK), is
based on the python-based simulations of chemistry frame-
work (PySCF) [43–45] package, which allows for DFT and
quantum chemistry methods to be used on both finite
and extended systems.1 Via benchmark calculations on
silicon and germanium, we show that the basis sets can be
converged. PySCF has previously been employed in the
context of DM–electron scattering in isolated atoms and
molecules in [46]. We compare our results for DM-electron
scattering with previous work, and find good agreement
with EXCEED-DM [34,35], which reconstructs all–
electron effects with PAW reconstruction. We also explore
uncertainties related to the choice of XC functional and
numerical convergence parameters. Though a quantitative
determination of such errors in general is not possible
for DFT methods, we demonstrate the potential situa-
tions where different parameters may result in significant
changes.
The rest of the paper is organized as follows. In Sec. II,

we describe electronic structure calculations, include a
comparison between plane-wave and atomic-centered
bases, discuss how to include all-electron effects, and
describe the DM–electron scattering rate calculations with
quantum chemistry basis sets. In Sec. III, we describe the
results for Si and Ge, including the systematic uncertainties
and the effects of the secondary ionization modeling; we
also calculate the annual modulation rates, and compare our

results with those of previous works.We conclude in Sec. IV.
Two appendices contain technical information, including
the properties of Cartesian Gaussians (Appendix A) and a
derivation of the scattering rate formulas (Appendix C).

II. CALCULATING DARK MATTER-ELECTRON
SCATTERING RATES

In this section, we introduce the computational approach
that underlies QCDARK, comparing the all-electron local-
ized basis set approach used in this work with previous
implementations based on plane waves and pseudo-
potentials.

A. Electronic structure

The electronic structure of the material is described by
Kohn-Sham (KS) [30] DFT, in which the equations that
describe the system of many interacting electrons are
mapped onto a set of single-particle equations in an
effective potential constructed to reproduce the ground-
state electron density and total energy. The energy func-
tional of the density n is given by (Gaussian units are
assumed throughout)

E½n� ¼ TS½n� þ
Z

drvextðrÞnðrÞ

þ 1

2

Z
dr

Z
dr0

nðrÞnðr0Þ
jr − r0j þ Exc½n�; ð1Þ

where TS is the sum of the kinetic energies of the non-
interacting orbitals; vext is the external potential given by,
e.g., the atomic nuclei in an all-electron calculation or the
ions if pseudopotentials are used; and Exc is the so-called
exchange-correlation energy, which accounts for the many-
body and quantum effects that are neglected in TS and
the Hartree electron-electron interaction [third term in
Eq. (1)] [27]. Writing the density as a sum over auxiliary
single-particle orbitals, i.e., nðrÞ ¼ P

i jψ iðrÞj2, and min-
imizing Eq. (1) with respect to variations in ψ results in the
KS equations,

�
−
1

2
∇2 þ veffðrÞ

�
ψ iðrÞ ¼ ϵiψ iðrÞ; ð2Þ

where veff ¼ vext þ
R
dr0 nðr

0Þ
jr−r0j þ δExc½n�=δnðrÞ, with the

last term being the functional derivative of the exchange-
correlation energy with respect to the density, which results
in the XC potential vxcðrÞ. The KS equations in Eq. (2)
must be solved self-consistently, since the effective poten-
tial depends on the density.
Several choices exist in the above calculation, which we

discuss in subsequent sections. First, the KS wave func-
tions ψ must be expressed in terms of some basis functions
(Sec. II A 1); the choice of these basis functions has a
significant impact on many other aspects of the calculation,1The code is available at https://github.com/asingal14/QCDark.
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including the possible choices for the boundary conditions
and the treatment of core electrons (Sec. II A 2). Also, the
exact form for the exchange-correlation potential is not
known, and the choice of approximate vxcðrÞ can result in
qualitatively different results for the electronic structure of
the material (Sec. II A 3).

1. Basis sets

Previous works [5,32–35] used plane waves as basis
function (PW-basis), together with periodic boundary
conditions. Then the KS wave functions for a given wave
vector k in the first Brillouin Zone can be written as

ψ ikðrÞ ¼
ffiffiffiffi
1

V

r X
K

uiðkþKÞeiðkþKÞ·r; ð3Þ

whereK is a reciprocal lattice vector, eiðkþKÞ·r are the basis
functions, uiðkþKÞ are the coefficients, and V is the
volume of the crystal. The accuracy of the PW-basis for
describing ψ is governed by the number of reciprocal lattice
vectors included in the basis, which is usually specified as
a kinetic energy cutoff of the plane waves. The PW-basis
is good at describing relatively delocalized states, e.g., the
states near and above the Fermi level in most solids; how-
ever, as we will discuss in Sec. II A 2, it is computationally
expensive to capture the core electrons with a PW basis,
since their localized nature requires the inclusion of very
high energy plane waves and hence a large PW-basis size.
In this work, we use atom-centered Cartesian Gaussian

basis sets. These basis sets are efficient at treating localized
states, including the core electrons, and may be used for
periodic or finite systems. The building blocks of this basis
are primitive Gaussians,

Gijkðr; ξμ;AÞ ¼ ðx − AxÞiðy − AyÞjðz − AzÞk
× exp

�
−ξμðr −AÞ2�; ð4Þ

where A is the atomic position, ξμ is an adjustable
parameter, and the Cartesian exponents i, j, and k are
all integers that satisfy the condition iþ jþ k ¼ l, with l
being the angular quantum number of the shell. Then, the
basis functions are given by contracted Gaussians, i.e.,
weighted sums of Nprim primitive Gaussians:

G̃αðrÞ ¼
XNprim

μ¼1

NμcμGijkðr; ξμ;AÞ; ð5Þ

where α ¼ fκ; ijkg is a composite index that runs over all
nuclei κ in the system (or unit cells for periodic boundary
conditions) as well as the Cartesian exponents, Nμ is the
normalization of the primitive Gaussian, and cμ is the
coefficient of the primitive Gaussian. Note that Nμ and cμ
are fixed throughout the DFT calculation, as they are
defined by the basis set.

For periodic calculations, the atomic orbitals in the unit
cell are then

ϕαkðrÞ ¼
X
R

eik·RG̃αðr −RÞ; ð6Þ

where R are the real-space lattice vectors. Upon self-
consistently solving the DFT Hamiltonian, we obtain a
coefficient matrix for each k, CiαðkÞ, so that the Kohn-
Sham wavefunctions (often referred to as molecular orbi-
tals) are

ψ ikðrÞ ¼
1ffiffiffiffiffiffiffiffiffi
Ncell

p
X
α

CiαðkÞϕαkðrÞ; ð7Þ

where Ncell is the number of unit cells in the crystal.
Gaussian basis sets have been tested for use in crystalline

solids [43–45]. There is also a broad use of numerical
atomic orbital (NAO) basis sets, which follow a very
similar size-dependent nomenclature as Gaussian basis
sets. They are employed in, for example, the SIESTA

package [47]. We compare the band structures obtained
using Gaussian basis sets to the ones obtained using a plane
wave code such as QUANTUM ESPRESSO [48], previously
employed in QEDARK [5] in appendix B.
Compared to plane waves, Gaussian basis sets are

significantly more complex. First of all, Gaussian basis
sets are element-specific and the total basis set will be
the sum of those from the individual atoms. For a given
element, the construction of the basis set requires defining
cμ, Nμ, and ξμ for each atomic shell n and angular
momentum l ¼ iþ jþ k. The choice of basis presents a
source of systematic uncertainty in our calculation, which
we estimate by varying the basis sets for each system.
The size of the basis set determines the number of

orbitals, with multiple important parameters to consider.
Moreover, there are several naming conventions that are
widely used. In this paper, we use several basis sets, all
taken from [49]. The number of “zetas” in a basis set refers
to the number of orbitals as a function of the number of
occupied orbitals. An N-zeta (NZ) basis set would have N
basis functions for each fully or partly occupied orbital in
an atomic species. Si has an electronic configuration of
1s22s22p63s23p2 (where the 3s23p2 are valence electrons),
and so has 3 s-orbitals and 2 × 3 p-orbitals, and so a DZ
(double zeta) basis set would have 6 s- and 4 × 3 p-orbitals.
The treatment of l ≥ 2 orbitals differs between spherical
and cartesian Gaussians. This is because there exists a
linear combination of, for example, three d-orbitals in
Cartesian Gaussians ðijkÞ ¼ ð200Þ; ð020Þ, and (002) orbi-
tals, which mimics (in this case) an s-orbital. In addition,
certain basis sets contain N zeta only for the valence
orbitals, with one atomic orbital for core states. This is
called a NZ-valence or NZV basis set. One can further
add polarization functions on the valence orbitals, which
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adds new orbitals. For example, for Si, a DZP (double-zeta
polarized) basis set would add a d-orbital to allow for the
electrons to be polarized in the atoms. In general, addition of
extra orbitals and polarization functions improves conver-
gence, though diffuse components in basis sets may become
pseudolinearly dependent in periodic calculations [43,45].
It should be noted that the aforementioned details

represent a very brief overview of the very complex field
of quantum chemical basis sets [50], and different basis
sets, especially with different naming conventions can add
complexities to these considerations.
We employ the TZP and the def2-TZVP basis set for Si

and Ge respectively, and show the uncertainties associated
with the choice of basis set in Sec. III C 1.

2. Treatment of core electrons in DFT

The treatment of core electrons, i.e., those tightly bound
to the nuclei, is closely connected to the choice of basis
set. For atom-centered Gaussians, it is straightforward to
include all of the electrons in the DFT calculation, since
localized basis functions can just as easily describe core
electrons as those near and above the Fermi level. However,
for plane waves, describing such localized wave func-
tions would require a prohibitively large energy cutoff. In
addition, including core orbitals would require the wave
functions of the valence electrons to be orthogonalized
to the wave functions of the core electrons; this would
introduce rapid oscillations in the region around the atomic
nuclei, which would also require too many plane waves
to be computationally tractable. Therefore, plane-wave
calculations usually freeze the core orbitals via pseudopo-
tentials, effective core potentials (ECPs), or the projector-
augmented wave (PAW) method. This has three main
effects. First, the core orbitals do not participate in hybridi-
zation and bonding in the crystal; this is usually an
excellent approximation, since such orbitals are so tightly
localized around the atoms, so that there is negligible
overlap between atoms. Second, since they are not explic-
itly included, DM–electron scattering transitions between
core orbitals and the conduction band are neglected; this
is also not usually an issue, since the energies of such
transitions is often beyond the scope of light DM searches.
Third, and most crucially, the “pseudowave functions” are
smooth in the core region, since they no longer must be
explicitly orthogonalized to the core orbitals.
As was shown in [34,41] (see also Sec. IV), all-electron

effects are crucial for describing DM–electron scattering

events with high momentum transfer, since such events
couple high-frequency modes, which are only present in the
all-electron valence and conduction bands due to the rapid
oscillations near the core. In [34], the all-electron wave
functions were recovered after a plane-wave calculation via
the PAWs. In Sec. III, we benchmark this methodology
against the full all-electron calculation allowed by our
Gaussian basis set.

3. Exchange-correlation functional

In practice, the exact form of the exchange and correlation
energy in Eq. (1) is not known; however, there are many
well-motivated approximations (see Ref. [51]). The choice
of exchange and correlation functionals presents a major
source of systematic uncertainty in the calculation. This
systematic uncertainty can be estimated by calculating the
electronic structure with different functionals, and compar-
ing the results. The broad categories of functionals are
(1) Local density approximation (LDA)—Exc is a func-

tional of only n, Exc → Exc½n�.
(2) Generalized gradient approximation (GGA)—Exc is

a functional of n and ∇n, Exc → Exc½n;∇n�.
(3) Meta-GGAs (mGGA) contain higher order deriva-

tives of n, including terms like ∂ · ∂n and ∇2n.
(4) Hybrid functional are GGA and mGGA functionals

with added exact Hartree-Fock exchange.
(5) Double hybrid functionals add Møller-Plesset per-

turbation theory at second order (“MP2 level”) to
hybrid functionals in an effort to better model
correlations.

We use the well tested PBE0 hybrid exchange-correlation
functional. We further test several GGAs, mGGAs, and other
hybrid functionals to show the dependence of DM–electron
scattering rates on the choice of exchange-correlation func-
tionals. Moreover, the choice of Exc affects the calculated
band gap Egap of the material, and so we apply a scissor
correction to match the experimental band gap.

B. Excitation rates in atom-centered bases

1. Theory

As described in Sec. II A, we self-consistently solve the
Kohn-Sham equations to obtain the coefficients CiαðkÞ in
Eq. (7). The key quantity required from the DFT calcu-
lation for calculating DM–electron scattering is the crystal
form factor (equivalent to Eq. (3.17) of [5]),

jfcrystalðq; EeÞj2 ¼
2π2

Ee

1

αm2
eVcell

X
ij

Z
BZ

Vcelld3k
ð2πÞ3

Vcelld3k0

ð2πÞ3 EeδðEe − ðEjk0 − EikÞÞ

×
X
K0

qδðq − jk0 þK0 − kjÞjf½jk0;ik�ðqÞj2
���
θq¼θU;ϕq¼ϕU

; ð8Þ
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where Eik is the energy of the ith orbital from ground
state at k in the reciprocal cell and U ¼ k0 þK0 − k. Here,
Ee and q are the energy and momentum transferred from the
DM particle to the electron, and θv and ϕv refer to the polar
and azimuthal angles of v, respectively. Indices i and j run
over occupied and unoccupied orbitals, respectively, and

f½jk0;ik�ðqÞ ¼
X
R

e−ik
0·R

Z
d3rC†

jβðk0ÞG̃�
βðr −RÞ

× eiq·rG̃αðrÞCαiðkÞ: ð9Þ

The DM–electron scattering rate for a DM particle of mass
mχ and local density ρχ is

dRcrystal

d lnEe
¼ ρχ

mχ
Ncellσ̄eα

m2
e

μ2χe

Z
d ln q

Ee

q
ηðvminðq; EeÞÞ

× jFχðqÞ2jjfcrystalðq; EeÞj2jfe=f0ej2; ð10Þ

where

σeðqÞ ¼ σ̄ejFχðqÞj2 ¼ σ̄e

�ðαmeÞ2 þm2
V

q2 þm2
V

	
2

is the DM–electron interaction cross section assuming
a bosonic mediator with mass mV . In general, we assume
two limits, mV ≫ q (called the heavy-mediator limit)
and mV ≪ q (called the light-mediator limit). The factor
jfe=f0ej2 is a screening factor discussed next (see also [34]),
while ηðvminðq; EeÞÞ is the average inverse speed of DM in
the galaxy (for more details, see Ref. [5] or Appendix C) and
μ−1χe ¼ m−1

χ þm−1
e . We describe the calculation of the matrix

elements, Eq. (9), in Appendix A.
If the DM–electron interaction is mediated by a dark

photon or scalar, the interaction is screened due to the
in-medium effects [36,52]. Recent works [32,53] have
emphasized the importance of this electrostatic screening,
especially for recoils at low energy transfer. In the results
shown below, we follow the prescription of [34,35], and
multiply the crystal form factor, jfcrystalj2 by a factor of
jfe=f0ej2, with fe=f0e ¼ ðq̂ · ϵ · q̂Þ−1. Here ϵ is the dielectric
function, which is modeled as [54]

ϵðq;EeÞ ¼ 1þ
�

1

ϵ0 − 1
þ τ

�
q
qTF

	
2

þ q4

4m2
eω

2
p
−
�
Ee

ωp

	
2
�
−1
;

ð11Þ

where ϵ0 ≡ ϵð0; 0Þ is the empirically measured static di-
electric constant, τ is a fitting parameter (we use the results
from [54], which fit their dielectric function to the results
of [55]), ωp is the plasma frequency, and qTF is the
Thomas-Fermi momentum, with values listed in Table I.
This equation ignores the tensorial nature of ϵ, since the
crystals we consider here are cubic. This equation only
estimates the real part of the dielectric function, and we do
not account for the imaginary part in our screening.
Ref. [35] compares the differences in the expected

DM–electron scattering rates using the analytical model in
Eq. (11) for the dielectric function with an RPA calculation
of the dielectric function. We expect an Oð10%Þ correction
for creating 3 or fewer electrons-hole pairs (Q ≤ 3e−) with
a numerically calculated dielectric function using a pre-
liminary RPA dielectric function calculation, andOð1%Þ or
less for creating more than 3 electron-hole pairs.

2. Numerical implementation

In practice, the numerical integration in k-space requires
the replacement

Z
BZ

Vcelld3k
ð2πÞ3 ð…Þ → 1

Nk

X
k

ð…Þ; ð12Þ

where Nk is the number of k-points in the chosen k-grid.
Moreover, to discretize jfcrystalðq; EeÞj2 in q and Ee, we

define bins with width Δq and ΔEe and bin centers fqng
and fEm

e g, respectively. Then, the discretization procedure
follows as

jfcrystalðqn;Em
e Þj2≡

Z
qnþ1

2
Δq

qn−1
2
Δq

dq
Δq

×
Z

Em
e þ1

2
ΔEe

Em
e −1

2
ΔEe

dEe

ΔEe
jfcrystalðq;EeÞj2: ð13Þ

Consequently, the numerical crystal form factor is

jfcrystalðqn; Em
e Þj2 ¼

2π2

Em
e

1

αm2
eVcell

1

N2
k

X
ij

X
k;k0

X
K0

Em
e

ΔEe

qn
Δq

jf½jk0;ik�ðk0 þK0 − kÞ2

× Θ
�
1 −

jEjk0 − Eik − Em
e j

1
2
ΔEe

	
Θ
�
1 −

jjk0 þK0 − kj − qnj
1
2
Δq

	
: ð14Þ

TABLE I. Parameters used in the dielectric function calculation
in Eq. (11) for Si and Ge from [54].

Target ϵ0 τ ωp (eV) qTFðKeVÞ
Si 11.3 1.563 16.6 4.13
Ge 14.0 1.563 15.2 3.99
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Here, as for Eq. (8), the recoil electron is assumed to be
transferred from occupied molecular orbital ji;ki to un-
occupied orbital jj;k0 þK0i.
In principle, there should be nk ¼ NT points modeled

in the calculation, where NT is the number of unit cells in
this crystal, with NT ≳Oð1023Þ for a 10 g crystal. How-
ever, such a dense mesh is impractical. Since we need to
calculate rates for transition from each k to each k0, the
computational complexity scales as n2k, and the calculation
quickly becomes unfeasible.
We generally model the grid in reciprocal space as a

Γ-centered Monkhorst-Pack grid, with nk;i points along the
bi reciprocal lattice vector. We use the shorthand nk;1×
nk;2 × nk;3 to denote the mesh in the reciprocal space,
which has nk ¼

Q
3
i¼1 nk;ik-points. Because both Si and Ge

crystallize in FCC cells, it is reasonable to set nk;1 ¼
nk;2 ¼ nk;3. We choose nk;i ¼ 4 and 6 for Si and Ge,
respectively, but check the dependence of DM–electron
scattering rates on our choice of k-grid in Sec. III C 3.
In addition, it becomes computationally expensive to

include a large number ofK vectors, and so in practice, we
must limit the vectors to some qmax. The choice of qmax is
another source of systematic error. We choose qmax ¼
25αme and qmax ¼ 20αme for Si and Ge, respectively, and
further show the dependence of DM–electron scattering
rates on qmax in Sec. III C 5.

III. RESULTS AND DISCUSSION

In this section, we describe the results from our calcu-
lation of the crystal form factors [Eq. (14)] and the
DM–electron scattering rates [Eq. (10)] for Si and Ge
performed with QCDARK. We evaluate the various system-
atic uncertainties, and compare our results to those from
other available codes. Finally, we look at the annual
modulation rate as a function of the DM mass, mχ and
the DM form factor, Fχ .

Table II lists the values of crystal parameters used for our
calculation of DM–electron scattering rates in both Si and
Ge, including the experimental band gap used for the
scissor correction procedure.

A. Crystal form factor

The calculated crystal form factors using Eq. (14) are
shown in Fig. 1, for silicon and germanium crystals in the
left and right panels respectively. The region below the
black lines are kinematically inaccessible for halo DM, i.e.,
the halo DM, irrespective of the mass of the fermion, is
unable to transfer energy Ee with a momentum trans-
fer q < Ee=ðvEscape þ vEarthÞ.
Both panels show an enhancement of the crystal form

factor at q≳ 4αme compared to Fig. 5 of [5], which is a
consequence of including all-electron effects in our calcu-
lation. The enhancement in the crystal form factor for
germanium crystals at Ee ≳ 30 eV corresponds to the
transitions from the semicore 3d-shell to the conduction
bands, which has an energy of −28.6 eV relative to the top
of the valence bands in our calculation.

B. Dark matter–electron scattering rates

Figure 2 shows the DM–electron scattering rates expected
in silicon and germanium crystals for mχ ¼ 10 MeV,
100 MeV, and 1 GeV for both heavy and light mediators,
assuming the crystal form factors shown in Fig. 1. In this and

TABLE II. Parameters used for DFT calculation of electronic
structure of Si and Ge crystals. Egap refers to the scissor corrected
band gap we employ for the materials.

Target Crystal structure Lattice constant (Å) Egap (eV)

Si FCC 5.43 1.11
Ge FCC 5.65 0.67

FIG. 1. Panels (a) and (b) show the calculated crystal form factor jfcrystalðq; EeÞj2 [see Eq. (14)] for silicon and germanium,
respectively. The details of the calculation are described in §III A. The region beneath the black line is kinematically inaccessible for
halo DM, as it would require vminðq; EeÞ > vEscape þ vEarth (see Appendix C for more details).
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subsequent figures, we plot

ΔRQ ¼
Z

dEe
dR
dEe

pðQ;EeÞ; ð15Þ

where pðQ;EeÞ is the probability that a transition with
recoil energy Ee excites Q electrons (for more details, see
Sec. III D). We use the ionization model at 100 K from [56]
for Si. For Ge, we use an electron-hole-pair creation model,

Q ¼
X∞
n¼0

Θ


Ee − n × Epp − Egap

�
; ð16Þ

where ΘðxÞ is the Heaviside step function, Epp is the
electron-hole-pair creation energy (Epp ¼ 2.9 eV for Ge),
and Egap is the band gap of the material.
Panels (a) and (b) of Fig. 2 show DM–electron scattering

rates in a silicon crystal mediated by a heavy and a light
mediator, respectively. For Si, we use a TZP basis set with a
PBE0 exchange–correlation functional, 4 × 4 × 4 k-grid
and qmax ¼ 25αme.

Panels (c) and (d) of Fig. 2 show DM–electron scattering
rates in a germanium crystal mediated by a heavy and a
light mediator, respectively, calculated using a def2-TZVP
basis set with a PBE0 exchange–correlation functional,
6 × 6 × 6 k-grid and qmax ¼ 20αme.
Because the 3d-dominated bands in Ge are flat in

k-space (i.e., they are highly localized in real space), we
need a denser k-grid to reduce the numerical noise in the
(unbinned) rate spectra dR=dEe. An ionization model for
Ge akin to the model in [56] for Si (which includes a Fano
factor) remains unavailable, which would smooth out the
numerical noise while calculating ΔRQ (see Sec. III D).
In principle, increasing the density of the k-grid would

reduce the noise, at the expense of computation time.
However the rates, barring ∼10% systematics coming from
the numerical noise at high Q, are robust (see Sec. III C 3
and Fig. 6 for more details), and indicate that for mχ ≳
Oð100 MeVÞ the rates are higher for Q ≥ 11e− than for
lower Q (for lower masses, interactions with high q
transfers are kinematically suppressed). This would imply
that germanium-based detectors with relatively high thresh-
olds can still probe significant regions of DM parameter
space, assuming mχ ≳ 100 MeV and a heavy mediator.

FIG. 2. Panels (a) and (b) show the DM–electron scattering rates in a silicon crystal for heavy and light mediators respectively. These
values are calculated using a TZP basis set with PBE0 exchange and correlation functionals, 4 × 4 × 4 k-grid, and qmax ¼ 25αme.
Panels (c) and (d) show the DM–electron scattering rates in a germanium crystal with interaction mediated by a heavy and a light
mediator respectively calculated using a def2-TZVP basis set with PBE0 exchange–correlation functional, 6 × 6 × 6 k-grid,
and qmax ¼ 20αme.
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The effects of all–electron modes are visible for heavy
mediators, and not as much for light mediators. This is
because of an effective jFχ j2 ∝ 1=q4 suppression in the
DM–electron scattering cross-section in the case of light
mediators.

C. Evaluation of systematic uncertainties

There are multiple sources of theoretical uncertainties as
well as several convergence parameters (i.e., parameters
that can be improved with more computational time) in our
calculation of DM–electron scattering rates. The choice of
the exchange–correlation functional, Exc½n�, in Eq. (1) is
a source of theoretical uncertainty. The real-space cut-off
for constructing our Bloch atomic orbitals, the size of the
k-grid, and the choice of qmax are convergence parameters.
The choice of the atomic centered Gaussian basis set is both
a convergence parameter (since increasing the number of
basis functions allows us to model the conduction states
better) and a theoretical uncertainty (since different basis
sets are optimized for different types of calculations, be it
molecular or periodic boundary conditions). In this section,
we go through each of these choices and determine their
effects on our DM–electron scattering rate calculation.
Note that it is computationally intractable to perform
all of the tests of numerical convergence/uncertainty at
the fully converged qmax we will finally adopt. Therefore,
we perform such tests at somewhat lower values, men-
tioned in each section. In appendix D we explore the effects
of the lower qmax on our conclusions about systematic
uncertainty.

1. Choice of basis set

There are many choices of atom-centered Gaussian basis
sets available for use [49]. However, most of these basis
sets are optimized for molecular calculations, and we have

to choose among the few optimized for periodic boundary
conditions. In addition, the size of the basis sets determines
the number of conduction bands.
Figure 3 shows the DM–electron scattering rates calcu-

lated for various basis sets. While the DM–electron
scattering rates are consistent across all the basis sets we
test, the cc-pVQZ (correlation-consistent polarized valence
quadruple zeta) and cc-pVTZ (correlation-consistent polar-
ized valence triple zeta) are the best optimized basis sets
that we test for Si and Ge, respectively (these are also
computationally very expensive). For Si, DM–electron
scattering rates calculated using TZP (shown in Fig. 2)
differ by only ∼5% from those derived using cc-pVQZ.
Similarly for Ge, DM–electron scattering rates calculated
using def2-TZVP (shown in Fig. 2) differ by only ∼5% on
average from those derived using cc-pVTZ. Both of the
TZP and def2-TZVP basis sets provide a good balance of
computational efficiency and accuracy, and we use these in
further analyses.
Figure 3 also shows that DM–electron scattering rates in

Ge are heavily dependent on the choice of basis set,
especially for large Q≳ 9e−. This is because basis sets
like 3-21G and DZP are unable to capture conduc-
tion bands well, while the energy of the semicore 3d
electrons is highly dependent on accurate modeling of core
shells.
Note that we use a qmax ¼ 10αme in Fig. 3, which is

lower than the fully converged value. We show in
appendix D that for low charge ionization Q≲ 5e−, the
basis sets converge at the same rate with as a function of
qmax for qmax ≳ 9αme, and hence we can safely compare
them at qmax ¼ 10αme. For higher charge ionizations,
the basis sets differ in their qmax convergence, since they
differ in their treatment of high-lying conduction bands.
Therefore, the comparison between basis sets at Q≳ 6e−

should be taken with caution.

FIG. 3. Panels (a) and (b) show the DM–electron scattering rates for Si and Ge respectively, calculated with a 4 × 4 × 4 k-grid, with
DM parameters noted in the figures. The plots use qmax ¼ 10αme and PBE exchange-correlation. cc-pVQZ is the most accurate basis
set we test for Si, while cc-pVTZ is the same for Ge. Moving further, we use TZP and def2-TZVP for Si and Ge respectively, which
mimic the most accurate bases at lower computational costs.
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2. Real space cutoff

Our atomic orbitals are Bloch sums in real space as in
Eq. (6); in principle, one must sum over an infinite number
of Gaussians displaced by real-space lattice vectors R to
form each atomic orbital. In practice, however, Gaussians
are rapidly decaying functions, and so it suffices to include
a finite number of neighbors depending on the exponents in
the contracted Gaussians. This is generally accomplished
by setting a real space cutoff, which we call Rcut.
While PySCF is capable of choosing a dynamic real space

cut off for each orbital, which lowers the computational
cost to calculating the matrix elements [see Eq. (9)], this
complicates our analytical approach to calculating the
matrix elements (see Appendix A for more details on an
analytical calculation). Hence, we choose a constant Rcut
for all orbitals, the value of which is chosen via the
following procedure. We first calculate the electron loss
function, i.e., the imaginary part of the inverse dielectric
function Im½−ϵðω;qÞ−1�. For this, we assume that the real
part of the dielectric function is modeled by Eq. (11), and
calculate the imaginary part of the RPA dielectric function
using Eq. (16) of [57]. We then integrate ωIm½−ϵðω;qÞ−1�
over energy for a given magnitude of q; by the f-sum rule,

Z
∞

0

dEeEeIm

�
−

1

ϵðEe; qÞ


¼ π

2
ω2
p ð17Þ

the result should equal π=2ω2
p, where ωp is the plasma

frequency of the material. The f-sum rule is only achieved
in limit of a complete basis set, however we have found that
the convergence of this quantity is a useful diagnostic as
to whether a given Rcut is sufficient for the relevant range
of q [53]. We show the electron loss function integrated
over Ee up to 50 eV for Si (using the TZP basis set) and Ge
(using the def2-TZVP basis set) in Fig. 4.

The high momentum transfer modes q≳ 3αme are
captured well even by low Rcut, except Rcut ¼ 1 cell for
Si. Hence, for Si, we disregard this result. Moreover, for Ge
we observe that Rcut ¼ 1 and 2 cells match with Rcut ¼ 4
cells for q≳ 2αme and 1αme respectively.
One may understand this in the real space from the

viewpoint of our KS wave functions—the high frequency
modes of the molecular orbitals, resulting from orthogon-
alization with inner orbitals, are more localized near the
nuclei, and hence have smaller overlaps in real space with
counterparts from more distant atoms. The low qmodes, on
the other hand, correspond to long distance behavior of the
matrix elements, and so necessitate the usage of larger Rcut
in order to satisfy the f-sum rule. The curves going to zero
at very low q≲ 0.3αme is an artifact of our choice of a
sparse k-grid, and is not the true behavior of f sum rule.
Motivated by these results, our final calculations use a

hybrid real space cutoff. For Si (Ge), we use Rcut ¼ 4ð3Þ
cells for q ≤ 3αme and Rcut ¼ 2ð1Þ cells otherwise.
Figure 5 shows that this is also cautious, as the low
momenta deviation only occurs in a prohibited region of
the parameter space (vminðq; EeÞ > vEscape þ vEarth) for
DM–electron scattering (see Appendix C for more details).

3. Convergence of k-mesh in reciprocal space

A potential source of systematic error in the rate
calculation comes from the density of k-points in the first
Brillouin zone (1BZ). As discussed above, because the
computational cost scales as the square of the number of
k-points, it is infeasible to include NT k-points, where
NT ≳Oð1023Þ is the number of unit cells in the crystal. In
this section, we discuss the effects of modeling the 1BZ
with an N × N × N k-grid, with a total of N3 k-points.
Figure 6 shows the convergence of our calculations with

k-grid for both Si and Ge. Note that Si is already converged
at a 4 × 4 × 4 k-grid. One reason for this is that the

FIG. 4. Panels (a) and (b) show the electron loss functions integrated over electron recoil energy, Ee, for Si and Ge, respectively, with
the dash-dotted line showing the theoretical upper bound from the f-sum rule. For Si, we use here a TZP basis set, at 4 × 4 × 4 k-grid
and PBE functional to calculate these results. For Ge, we use here a def2-TZVP basis set, with the same k-grid and PBE functional. Note
that a good description of high momentum transfer q≳ 3αme does not require a large Rcut for either element.
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numerical uncertainties are smoothed out from applying
the ionization model (see Sec. III D for more details).
For Ge, the dispersionless 3d-derived band at Ee ∼ 29 eV
below the Fermi level results in less distinct energies
sampled, thus requiring a finer k-grid for convergence.
We find that a 6 × 6 × 6 grid performs adequately, with
errors of ≲15% compared to 8 × 8 × 8 in each bin. A
probabilistic ionization modeling for Ge, akin to 56 for Si,
will aid in smoothing out the recoil spectrum.
Given a basis set and an exchange–correlation func-

tional, a choice of k-grid is a convergence parameter, and
therefore is converged independently of qmax.

4. Exchange-correlation functional

Figure 7 shows DM–electron scattering rates in Si and
Ge crystals for various exchange-correlation functionals.
We test the commonly used PBE GGA functional, along
with SCAN and TPSS mGGAs. For Si, we test multiple
hybrids—PBE0, SCAN0 and TPSS0, along with a hybrid
semiempirical functional optimized for molecules rather

than crystals (B3LYP). For Ge, we test PBE, SCAN, TPSS,
and PBE0.
It is important to note that a scissor correction has been

applied to the band gaps of Si and Ge, so DM–electron
scattering calculations have the same gap regardless of
functional. For materials where the experimental gap is not
known, the differences in gaps predicted by different
functionals is expected to lead to a significant source of
variation in the scattering rates. A related issue observed for
Ge (right panel of Fig. 7) is the dependence of the energy of
the 3d shell. This results in significant differences in the
DM–electron scattering rates in the 8–11 electron-hole-pair
bins. It is apparent that PBE, TPSS, and SCAN under-
estimate the electron binding energy for the 3d-shell
electrons, with values ∼25 eV from the top of the valence
band. The PBE0 functional results in values between 28.6
and 29.0 eV, which are much closer to the experimental
values of ∼29.5 eV of 3d-shell electrons, respectively [58].
For Si, we scissor correct the band gap, and core orbitals do
not get involved until energies of ∼99.2 eV [58].

FIG. 5. Panels (a) and (b) show the DM–electron scattering rates in Si and Ge, respectively, for various values of the real space cut-off
Rcut, assuming an exposure of 1 kg − year. We use a 4 × 4 × 4 k-grid, set qmax ¼ 6αme, and use the PBE functional.

FIG. 6. Panels (a) and (b) show DM–electron scattering rates for Si and Ge, respectively, for various k-grid densities, assuming an
exposure of 1 kg − year. We use the PBE exchange–correlation functional and set qmax ¼ 10αme. It is evident that the Si calculation is
converged, even at the sparse 4 × 4 × 4 k-grid level, while Ge only converges at higher k-grid densities.
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We use qmax ¼ 10αme in Fig. 7 rather than the higher
reference value mentioned in Sec. III A. In appendix D we
show that this value is sufficient such that all exchange-
correlation functions converge at the same rate as a function
of qmax, and thus can be directly compared.

5. Maximum momentum transfer

The implementation of atom-centered basis sets without
using an effective core potential has one direct effect—we
are able to capture the high-momentum transfer regime
of the crystal form factor. These high-q contributions
come from orthogonalizing the valence and conduction
bands against the core orbitals, which introduces high
wave number modes to the valence and conduction wave
functions. This allows the wave functions to be modeled to
arbitrarily high wavenumbers, and allows us to fully
capture the crystal form factor. Figure 8 shows the impact
of adding high q modes on the rates of 1 GeV DM particle
interacting with Si (left panels) or Ge (right panels) via a
heavy (top row) or light (bottom row) mediator.
As expected, DM–electron scattering mediated by a light

mediator is not significantly influenced by the high-q contri-
butions in silicon. This is due to the jFχðqÞj2 ∝ q−4

dependence of the rate in the integrand of Eq. (10). Ge,
on the other hand, is sensitive to qmax even for scattering
through a light mediator, since the 3d-shell in germanium
dominates the high q regime.
For interactions mediated by a heavy boson, however,

there are important high-q contributions even for relatively
small charge bins. Moreover, when including the high-q
contributions, we see that DM with mχ ≳ 50 MeV and
scattering through a heavy mediator (Fχ ≈ 1), the rates from
Q ≥ 11e− bins dominate over the 1e− ≤ Q ≤ 10e− bins.
Similarly, for Si with a heavy mediator, high q contributions
are important, with, e.g., a ∼75% increase in rates if we go
from qmax ¼ 8αme to qmax ¼ 25αme for the 10e− bin.

D. Effects of the secondary ionization
model for silicon

Our results for the DM-electron scattering rates in silicon
are shown using the ionization modeling from [56]. In
Fig. 9, we compare these rates with those from a simple
step function model from Eq. (16) for Si. For the latter,
we use Egap ¼ 1.1 eV and Epp ¼ 3.8 eV (see, e.g., [59]).
We see significant differences between the two ionization
models for the 1 e− and 2 e−-bin, although the rates are
similar for the bins with Q ≥ 3. As we observed for Ge, for
which only a step-function model is available, the prob-
abilistic model from [56] smoothes out the numerical
fluctuations introduced by the sparse k-grid.

E. Annual modulation

The DM–electron scattering rates are dependent on the
DM flux incident on the target material, which in turn
depends on the velocity of the detector in the galactocentric
frame. For table-top experiments, there are three major
contributions to this velocity. First, there is the local
circular velocity, which we take to be v0 ¼ 230 km s−1.
The second contribution comes from the Sun’s peculiar
velocity, v⊙ − v0. We use the recommended value, v⊙ ¼
250.2 km s−1 [60]. Finally, the earth revolves around the
sun with an average speed hv⊕i ¼ 29.8 km s−1. This
revolution causes an annual modulation in DM–electron
scattering rates, as the total velocity, vEarth ¼ jv⊙ þ v⊕j,
varies from 220.4 km s−1 on December 2 to 280 km s−1

on June 2.
We calculate the modulation amplitude following [5],

fQmod ¼
ΔRQ;Jun 2 − ΔRQ;Dec 2

2ΔRQ;0
; ð18Þ

where ΔRQ;0 ¼ ΔRQ;Sept 2 ¼ ΔRQ;Mar 2. Even in the pres-
ence of backgrounds, a measurement of fmod could allow

FIG. 7. Panels (a) and (b) show DM–electron scattering rates for Si and Ge, respectively, calculated with various exchange-correlation
functionals, assuming an exposure of 1 kg − year. We use a 4 × 4 × 4 k-grid for Si and 6 × 6 × 6 k-grid for Ge, and set qmax ¼ 6αme.
We favor the well-tested PBE0 functional for our calculations. Note the dependence of the energy of the 3d-shell of Ge on the
choice of Exc.
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for the detection of DM in such an experiment. We plot
fmod as a function of the DM mass, the mediator form
factor, and the charge ionized in the target material Q for
both Si and Ge in Fig. 10.

Comparing to Fig. 8 of [5], the difference in rates from
the inclusion of high wave number modes in the crystal
form factor allows the electron to scatter into a larger
parameter space, which reduces fmod, especially for the
mχ ¼ 1 GeV case. The same is visible for Ge, and is in fact
even more pronounced for the 3d-shells, which dominate
the rate.
A measurement of the annual modulation signal will be

an important step in confirming a potential DM signal. We
calculate the 5σ-sensitivity by requiring

ΔSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Stot þ B

p ≥ 5; ð19Þ

where ΔS ¼ fmodStot is the modulation amplitude, Stot is
the total number of signal events, and B is the number of
background events. Here fmod is calculated using Eq. (18),
except we sum the rates over 1e− ≤ Q ≤ 10e− for Si, and
1e− ≤ Q ≤ 15e− for Ge. Assuming no background events,
we show the 5σ discovery reach in Fig. 11 with dash-dotted
lines for Si (black) and Ge (blue). The left panel shows the
reach for heavy mediators, while the right panel corre-
sponds to light mediators.

FIG. 8. Panels (a) and (b) shows DM–electron scattering rates for Si with DM–electron interaction mediated by a heavy and a light
mediator, respectively, with different qmax cutoffs, assuming an exposure of 1 kg − year. Panels (c) and (d) show the same for a Ge
crystal. We use a 4 × 4 × 4 k-grid for Si and a 6 × 6 × 6 k-grid for Ge, and the PBE0 exchange correlation funtional.

FIG. 9. The effects on the DM-electron scattering rates in
silicon of using the secondary ionization modeling from [56]
(“R&K”) versus the step-function model from Eq. (16). We use
the PBE exchange-correlation functional and qmax ¼ 10αme.
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F. Comparison with other codes

QUANTUM ESPRESSO was used in the first numerical
calculation of the crystal form factor for Ge in [1]. It was
also used in [5], which presented a detailed calculation of
the crystal form factor for both Ge and Si, and made the
resulting code, QEDARK, publicly available. In Fig. 12, the
crystal form factor is recalculated with QEDARK with
improved computational parameters, including a higher
energy cutoff for plane wave calculations, a denser k-grid
for both Si and Ge, and the analytical screening described
in Sec. II B 1. We use the PBE functional, which, as shown
above, underestimates the energy of the 3d-shell in Ge, and
also excludes the effects of high frequency modes that are
visible in both Si and Ge, especially for heavy mediators.
DarkELF [32] emphasized the need for better screening,

especially for low energy excitations. Here we use GPAW
RPA dielectric function with local field effects (LFE) for
both Si and Ge. However, it also does not include the high

frequency modes, which dominate the rates at high energy,
and the Ge 3d-shell is frozen in the pseudopotential, which
otherwise dominate the DM–electron scattering rates at
Ee ≳ 30 eV.
EXCEED-DM [35] is able to reconstruct the high-

frequency modes, and is also able to capture the dielectric
screening with an RPA dielectric function. It also employs
the well-tested and commonly employed HSE06 func-
tional. However, it reconstructs the semi-core and core
orbitals after a pseudopotential calculation. We find good
agreement between the rates calculated with EXCEED-DM
and QCDark, showing that the PAW method is accurate in
these materials.
QCDark implements ab-initio calculation of the crystal

form factor, along with an analytical approximation to the
dielectric function. However, as [35] recently showed, the
analytic screening only approximates the true screening,
and does not capture all the effects completely. On the other

FIG. 10. The modulation amplitude, fmod from Eq. (18), versusQ for Si (left) and Ge (middle), formχ ¼ 10 MeV and 1 GeV, for both
heavy and light mediator-mediated scattering. The right panel shows fmod versusmχ , forQ ¼ 1e− andQ ¼ 5e−, for both Si and Ge. We
use the PBE0 exchange-correlation functional, along with qmax ¼ 25αmeð20αmeÞ and a 4 × 4 × 4ð6 × 6 × 6Þ k-grid for Si (Ge).

FIG. 11. This plot shows the reach for both, obtaining 2.3 events for 1 kg · yr exposure of our target material (solid line), as well as the
threshold for a 5-σ discovery by annual modulation with the same exposure (dash-dotted line). Panel (a) shows the upper bounds on
cross-section that can be placed for heavy mediators, while panel (b) shows the same for light mediators. We assume no background for
either panel, and include 1 ≤ Q ≤ 10 e− for Si (black) and 1 ≤ Q ≤ 15e− for Ge (blue).
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hand, QCDARK allows for a much better handle on sys-
tematics by giving users control over the theory parameters,
as discussed in Sec. III C.

IV. CONCLUSION

In this paper, we present DM–electron scattering rates in
silicon and germanium crystals calculated using a new
code, which we make public as QCDARK. We use a novel
approach that naturally includes all core electrons, and
treats them on the same level as valence electrons of
the crystal. This implies that all-electron effects are
automatically included from the beginning. Moreover,
we present the theoretical uncertainties associated with
the calculation, including those associated with DFT (basis
set, exchange–correlation functional, and k-grid), along
with uncertainties associated with the transition matrix
elements (real space cutoff and the maximum momentum
transfer modeled, qmax).
The major sources of systematic error include the choice

of basis set and exchange–correlation functional, even after
we apply the scissor correction, and the choice of qmax,
though the rates converge quickly in the Ee ∈ ½0; 50 eV�
range for both Si and Ge. The rates also converge quickly as

finer k-grids are chosen, assuming the secondary ionization
model in [56] for Si. The rates also converge quickly for
small values of the real-space cutoff, Rcut.
We find that modeling high momentum transfers by

including all-electron effects is necessary for accurately
modeling DM–electron scattering rates, especially at high
recoil energies, in line with the findings in [34,35]. This is
especially important for Ge crystals, in which the transition
rates from the 3D-shell (when kinematically accessible)
dominate the rates if the high momentum transfer modes
are modeled accurately.
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APPENDIX A: PROPERTIES OF CARTESIAN
GAUSSIANS

In this section we discuss the properties of Cartesian
Gaussians, including the calculation of the matrix elements
in Eq. (9). Our Cartesian Gaussian basis sets contain
primitive Gaussians as building blocks [see Eq. (4)],

Gijkðr; ξ;AÞ ¼ ðx − AxÞiðy − AyÞjðz − AzÞk
× expf−ξðr −AÞ2g; ðA1Þ

which we separate into three independent Gaussians,

Gijkðr; ξ;AÞ ¼ Giðx; ξ; AxÞGjðy; ξ; AyÞ
×Gkðz; ξ; AzÞ; ðA2Þ

where Giðx; ξ; AxÞ ¼ ðx − AxÞi expf−ξðx − AxÞ2g. This
separation will be instrumental in obtaining an analytical
form for calculation of atomic orbital overlaps.
It is useful to define Hermite Gaussian functions (see

Ref. [61] for more details),

Λtðx; ξ; AxÞ ¼
�

∂

∂Ax

	
t
expf−ξðx − AxÞ2g: ðA3Þ

These Hermite Gaussians will appear below and are related
to Hermite polynomials HtðxÞ as

Λtðx; ξ; AxÞ ¼
ffiffiffi
ξ

p
Ht


 ffiffiffi
ξ

p
ðx − AxÞ

�
exp f−ξðx − AxÞ2g:

ðA4Þ

We now discuss the overlap between two orbitals,

Ωijðx; a; b; Ax; BxÞ≡Giðx; a; AxÞGjðx; b; BxÞ
¼ xiAx

j
B expf−ax2Ag expf−bx2Bg; ðA5Þ

where xA ≡ x − Ax. Now,

expf−ax2Ag expf−bx2Bg ¼ expf−qQ2
xg expf−px2Pg; ðA6Þ

where

pPx ¼ aAx þ bBx;

Qx ¼ Ax − Bx;

p ¼ aþ b;

and q ¼ ab
aþ b

: ðA7Þ

Note that the x-dependence in Eq. (A6) only comes from
expf−px2Pg, and so we can define the constant KAB ≡
fexp−qQ2

xg. Thus we can write (see Eqs. (49)–(53), (59),
(60), and (70)–(75) in [61])

Ωijðx; a; b; Ax; BxÞ ¼
Xiþj

t¼0

Eij
t Λtðx; p; PxÞ; ðA8Þ

where the expansion coefficients have the recurrence
relations,

E00
0 ¼ KAB;

Eiþ1;j
t ¼ 1

2p
Eij
t−1 −

qQx

a
Eij
t þ ðtþ 1ÞEij

tþ1;

Eiþ1;j
t ¼ 1

2p
Eij
t−1 þ

qQx

b
Eij
t þ ðtþ 1ÞEij

tþ1: ðA9Þ

We can now finally calculate integrals of the form

hGiðx; a; AxÞj expfikxxCgjGjðx; b; BxÞi

¼
Z

∞

−∞
dxΩijðx; a; b; Ax; BxÞ expfikxxCg

¼
Xiþj

t¼0

Eij
t

Z
∞

−∞
dxΛtðx; p; PxÞ expfikxxCg

¼
Xiþj

t¼0

Eij
t Kx

t ; ðA10Þ

where Kx
t ≡ R

∞
−∞ dxΛtðx; p; PxÞ expfikxxCg. Expanding

the Hermite Gaussian, we get

Kx
t ¼

�
∂

∂Px

	
t
Z

∞

−∞
dx expfikxxC − px2Pg

¼
�

∂

∂Px

	
t
expfikxXPCg

Z
∞

−∞
dx expfikxxP − px2Pg;

ðA11Þ
with XPC ≡ Px − Cx. The integral term is now independent
of Px, and so the differential only applies to expfikxXPCg,
giving

Kx
t ¼

ffiffiffiffi
π

p

r
exp

�
ikxXPC −

k2x
4p


ðikxÞt: ðA12Þ
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This gives us the analytical solution to the matrix element
between two primitive Gaussians,

hGiðx; a; AxÞexpfikxxCgjGjðx; b; BxÞi

¼
ffiffiffiffi
π

p

r
exp

�
ikxXPC −

k2x
4p

Xiþj

t¼0

Eij
t ðikxÞt; ðA13Þ

which can be plugged into Eq. (9),

f½jk0;ik�ðqÞ
¼

X
R

eik
0·R
X
α

X
β

C†
βiðkÞCjαðk0Þ

X
μ∈ β

X
ν∈ α

NμcμNνcν

× hGx
μðx; ξμ; AμxÞjexpfiqxxgjGx

νðx; ξν; AνxÞi
× hGy

μðy; ξμ; AμyÞjexpfiqyygjGy
νðy; ξν; AνyÞi

× hGz
μðz; ξμ; AμzÞjexpfiqzzgjGz

νðz; ξν; AνzÞi: ðA14Þ

APPENDIX B: BAND STRUCTURE
CALCULATION WITH PYSCF

Gaussian basis sets have been widely used in DFT
calculations involving crystalline solids [43–45]. In this
section, we use Cartesian Gaussians in PySCF to calculate
the band structure of Si and Ge. For both calculations, we
use a cc-pVTZ basis set.
We compare the obtained band structure to that obtained

using plane wave basis set, calculated using QUANTUM

ESPRESSO [62,63] using pseudopotentials from Ref. [64], in
Fig. 13. The band structures have been scissor corrected
to experimental band gaps listed in table II. We use an
8 × 8 × 8 k-grid and a PBE exchange-correlation func-
tional for these calculations.
The band structure for Si in panel (a) of Fig. 13 shows

that Cartesian Gaussians are consistent with established
PW method in the valence and conduction band regimes,
while incorporating ab initio all-electron effects. Indeed,
the discrepancy in panel (b) around energies ∼5 eV are a
result of plane wave methods underestimating the band gap
for Ge and the conduction bands being raised to higher
energies due to the scissor correction.

APPENDIX C: DERIVATION OF SCATTERING
RATE FORMULA

In this section, we will briefly review derivation of the
scattering rate formulas, mostly following Appendix A
of [5]. If a DM particle scatters with an electron in a
stationary bound state, such as in a crystal, it can excite the
electron from some initial energy Ee;1 to some final energy
Ee;2 by transferring four-momentum ðEe; q⃗Þ. We describe
the derivation in the context of field theory, treating the
electron as being bound in a static background potential—
in other words, treating it nonrelativistically during the
interaction. This is a valid approximation because the
momentum transfers are q ∼Oðseveral keVÞ ≪ me.

FIG. 13. Panels (a) and (b) show the band structure of Si and Ge respectively, obtained with PySCF [43–45] using a cc-pVTZ basis set
and PBE functional (in red). These band structure are compared to those computed using plane wave basis sets with QUANTUM ESPRESSO

[62,63] using pseudopotentials from Ref. [64] (in blue).
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1. General formula for DM induced transitions

The cross section for free 2 → 2 scattering is given by

σvfree ¼
1

4E0
χE0

e

Z
d3q
ð2πÞ3

d3k0

ð2πÞ3
1

4EχEe
jMfreeðqÞj2

× ð2πÞ4δðEi − EfÞδ3ðk − q − k0Þ; ðC1Þ

whereMfree is the field-theory matrix element and jMfreej2
is its absolute squared averaged over initial spins and
summed over final spins.
For bound electron initial and final states, say ψ1 and ψ2,

respectively, the cross section is modified as

Vð2πÞ3δ3ðk − q − k0ÞjMfreej2 → V2jMfreej2jf1→2ðqÞj2;
ðC2Þ

where

f1→2ðqÞ≡
Z

d3xψ�
2ðxÞeiq·xψ1ðxÞ: ðC3Þ

Moreover, because there is only one electron final state
being considered, we can make the replacement
V
R

d3k0
ð2πÞ3 → 1.

Combining these observations, we obtain

σv1→2 ¼
1

4E0
χE0

e

Z
d3q
ð2πÞ3

1

4EχEe
2πδðEi − EfÞ

× jMfreeðqÞj2jf1→2ðqÞj2: ðC4Þ

For nonrelativistic scattering,

Ei ¼ mχ þme þ
1

2
mχv2 þ Ee;1; and

Ef ¼ mχ þme þ
jmχv − q2

2mχ
þ Ee;2: ðC5Þ

Moreover, we can parametrize

jMfreeðqÞj2 ¼ jMfreeðαmeÞj2 × jFχðqÞj2;

and σ̄e ≡ μ2χejMfreeðαmeÞj2
16πm2

χm2
e

; ðC6Þ

so the cross section simplifies to

σv1→2 ¼
σ̄e
μ2χe

Z
d3q
4π

δ

�
Ee þ

q2

2mχ
− q · v

	

× jFχðqÞj2jf1→2ðqÞj2: ðC7Þ

2. Average rate in a DM halo

The rate of the specific transitions induced by DM hitting
a target electron is then

R1→2 ¼ nχ

Z
d3vgχðvÞσv1→2; ðC8Þ

where nχ and gχðvÞ are the DM number density and
velocity distribution, respectively. In this work, we use
the parameters recommended by [60].
Note that the velocity distribution of DM in the

standard halo model implies that the speed of the DM
wind we observe must follow vχ < vEscape þ v⊙ þ v⊕ ¼
vEscape þ vEarth, where vEscape is the escape velocity at the
Sun’s location in the galactic gravitational potential well,
v⊙ is the sun’s galactocentric speed, v⊕ is the Earth’s
heliocentric speed, and vEarth is the Earth’s galactocen-
tric speed.
In this paper, we assume both DM velocity distribution

and electron wave functions to be spherically symmetric,
which is not true in general. We then use the integral over
DM velocity to eliminate the δ–function in Eq. (C7),
obtaining

R1→2 ¼
nχ σ̄e
μ2χe

Z
d3q
4π

Z
v2dvdϕv

qv
gχðvÞ

× Θðv − vminðq; EeÞÞjFχðqÞj2jf1→2ðqÞj2: ðC9Þ

Here vmin is the minimum velocity of the DM particle
required for an energy-momentum transfer of ðEe;qÞ to be
feasible,

vminðq; EeÞ ¼
Ee

q
þ q
2mχ

: ðC10Þ

We define

ηðvminðq; EeÞÞ≡
Z

d3v
v

gχðvÞΘðv − vminðq; EeÞÞ; ðC11Þ

and obtain

R1→2 ¼
nχ σ̄e
8πμ2χe

Z
d3q

1

q
ηðvminðq; EeÞÞjFχðqÞj2jf1→2ðqÞj2:

ðC12Þ

3. Excitation rates in crystals

So far, we have not discussed the initial and final states
of the electron being acted upon. In a crystal system, an
electron may transition from an occupied orbital (core
or valence) to an unoccupied state (conduction or free).
Since we treat both core and valence shells equivalently,
we simply call these occupied orbitals. Using the setup
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discussed in Sec. II A, we describe now the transition form
factors, f1→2ðqÞ.
The electron is excited from an occupied state jψ iki to a

conduction state jψ i0k0 i, and so f1→2ðqÞ → fik→i0k0 , with

fik→i0k0 ¼ hψ i0k0 exp fiq · rgjψ iki

¼ 1

Ncell
C†
i0βðk0Þhϕβk0 jeiq·rjϕαkiCαiðkÞ; ðC13Þ

where we have maintained the PySCF normalization, and
Einstein summation over α and β indices is implied. We
shall invoke the orthogonality relation

Vcell

ð2πÞ3
X
R

eiq·R ¼
X
G

δ3ðq −GÞ: ðC14Þ

The matrix element is then given by

fik→i0k0 ðqÞ ¼ 1

Ncell
C†
i0βðk0Þ

X
R

X
R0

e−ik
0·R0

eik·R
Z

d3rG̃�
βðr −R0Þeiq·rG̃αðr −RÞCαiðkÞ

¼ 1

Ncell
C†
i0βðk0Þ

X
R

eiðkþq−k0Þ·RX
R0

e−ik
0·R0

Z
d3rG̃�

βðr −R0Þeiq·rG̃αðrÞCαiðkÞ

¼ ð2πÞ3
V

X
G

δ3ðkþ q − k0 −GÞ
X
R

e−ik
0·R

Z
d3rC†

i0βðk0ÞG̃�
βðr −RÞeiq·rG̃αðrÞCαiðkÞ

¼ ð2πÞ3
V

f½i0k0;ik�ðqÞ
X
G

δ3ðkþ q − k0 −GÞ; ðC15Þ

where we have used the definition of f½i0k0;ik�ðqÞ from
Eq. (9). We can now plug this into Eq. (C12) to obtain

Rik→i0k0 ¼ π2nχσ̄e
Vμ2χe

X
G

1

q
ηðvminðq; Ei0k0 − EikÞÞ

× jFχðqÞj2jfik→i0k0 ðqÞj2jq¼k0þG−k: ðC16Þ

To calculate the total event rate, we must sum over
occupied orbitals i and unoccupied orbitals i0, and integrate
over both k and k0. Moreover, we must also consider the
spin of the electrons in the occupied bands, giving

Rcrystal ¼ 2
Xocc
i

Xunocc
i0

Z
BZ

Vd3k
ð2πÞ3

Z
BZ

Vd3k0

ð2πÞ3 Rik→i0k0 : ðC17Þ

Expanding this, and inserting the relevant δ-distributions in
q and Ee,

Rcrystal ¼
2π2nχσ̄e

μχe
V
Z

∞

−∞
d lnEeEe

×
Z

d3q
1

q
ηðvminðq; EeÞÞjFχðqÞj2

×
X
ii0

Z
BZ

d3kd3k0

ð2πÞ6 δ


Ee − ðEi0k0 − EikÞ

�

× f½i0k0;ik�ðqÞ
X
G

δ3ðkþ q − k0 −GÞ: ðC18Þ

To simplify this form, we take two steps. First, we define
U≡ k0 þG − k, and so δ3ðkþ q−k0 −GÞ ¼ δ3ðq−UÞ,
which can be further expanded as

δ3ðq − UÞ ¼ 1

q2 sin θq
δðq −UÞδðθq − θUÞδðϕq − ϕUÞ:

ðC19Þ
Here θU and ϕU have the usual definitions as the inclination
and azimuthal angles, respectively. From here, we can
integrate overΩq. Second, we differentiate the rate equation
with respect to lnEe, and obtain Eqs. (8) and (10),

dRcrystal

d lnEe
¼ nχNcellσ̄eα

m2
e

μ2χe

Z
d ln q

Ee

q
ηðvminðq; EeÞÞjFχðqÞj2jfcrystalðq; EeÞj2; where ðC20Þ

jfcrystalðq; EeÞj2 ≡ 2π2

Ee

1

αm2
eVcell

X
ii0

Z
BZ

Vcelld3k
ð2πÞ3

Vcelld3k0

ð2πÞ3 EeδðEe − ðEjk0 − EikÞÞ

×
X
G0

qδðq − jk0 þG0 − kjÞjf½i0k0;ik�ðqÞj2
���
θq¼θU;ϕq¼ϕU

: ðC21Þ
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APPENDIX D: CROSS CORRELATION
OF SYSTEMATIC UNCERTAINTIES

AND qmax CONVERGENCE

In Sec. III C, we discussed multiple systematic uncer-
tainties and convergence parameters in our calculation. In
this section, we show the dependence of systematic
uncertainties on the chosen qmax for a calculation. Note
that the k-grid and Rcut are convergence parameters, where
both a denser k-grid and a higher Rcut are objectively better.
In fact, the k-grid only affects the energies sampled for a
calculation and are hence orthogonal to qmax, while, as
discussed above, Rcut effects low-momentum transfers and
has no effect at high q.
Therefore in this section we focus only on basis sets,

which is both a systematic uncertainty and a convergence
parameter, and exchange–correlation functionals. We find
that the effect are converged for low charge ionization
(Q≲ 4e−) for the basis sets, while the effect of exchange-
correlation functional remains consistent through 1e− ≤
Q ≤ 10e− for all qmax ≳ 8αme.

1. Basis sets

The choice of basis set presents a major source of
systematic uncertainty in our calculations, which we
previously discussed in Sec. III C 1. However, to reduce
computational complexity, we limit the discussion to a
maximum momentum transfer of qmax ¼ 10αme compared
to the model qmax ¼ 25αme for Si or qmax ¼ 20αme for Ge
(see Sec. III C 5 for more details). Hence, it is important to
discuss the convergence of the rates with respect to qmax
when choosing an alternate basis set.
To accomplish this, we calculate the fractional change in

the expected rates for a DM particle with massmχ ¼ 1 GeV,
where the DM–electron interaction is mediated by a heavy
mediator. Note that this model is more sensitive to changes in
the crystal form factor, jfcrystalðq; EeÞj2, at high momentum
transfers q than models with lower mχ, or where the
interactions are mediated by a low mass mediator [with
mass ≲Oð1αmeÞ].

We define the fractional change in rates upon going from
TZP to another basis set BS as

fðBSjTZPÞQ;qmax
≡ ΔRQjqmax;BS − ΔRQjqmax;TZP

ΔRQjqmax;TZP
; ðD1Þ

where ΔRQjqmax;BS are the DM–electron scattering rates for
the aforementioned DM model given a maximum momen-
tum transfer qmax and a basis set BS. We plot the fractional
change for a Si target in Fig. 14, where we limit ourselves to
the more reliable cc-pvtz and cc-pvqz basis sets (see
discussion in Sec. III C 1). Similarly, we plot the results
for a Ge target in Fig. 16 where we use the more reliable
Sapporo-DZP-2012 and cc-pvtz basis sets. The title of each
subplot corresponds to the chosen basis set BS.

For a given Q, we would like to see that fðBSjTZPÞQ;qmax

converges to a constant value with increasing qmax. This
means that BS (the chosen basis set) and TZP (the reference
basis set) converge at the same rate with qmax, and thus we
can faithfully compare the results of the two basis sets at the
given qmax. In Fig. 14 (and in Figs. 15–17 which we discuss
below), this is demonstrated by the color becoming con-
stant with increasing qmax.
In Si, for large charge ionization Q ≥ 6e−, we find that

the uncertainties are not converged for qmax ¼ 10αme,
since the uncertainties stem from the basis sets providing
different descriptions of the conduction bands at higher
energies. However, at low charge ionizations Q≲ 5e−,
which in any case dominate the DM scattering rates (see
Sec. III B and Fig. 2), we find that the systematic
uncertainties are converged for each basis set BS, and
are hence reliable to higher qmax.
Similarly, in Ge, we find that the basis sets are converged

for both low and high charge ionizations, Q≲ 4e− and
Q ≥ 11e−, again due to differences in modeling of the
higher energy conduction bands. However, we again find
that the systematic uncertainties are converged in the region
where the rates dominate.

FIG. 14. The plot shows the convergence of the systematic uncertainty sourced from the choice of basis set as a function of charge
ionization Q and maximum momentum transfer modeled qmax by showing the fractional change in rates observed for a DM–electron
scattering (mχ ¼ 1 GeV, Fχ ¼ 1 in Si target) upon going from a TZP functional to a new functional BS [see Eq. (D1)]. Note that
for all BS tested, we observe that the fractional change becomes constant as a function of qmax by qmax ≤ 10αme at low charge
ionization Q≲ 5e−.
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2. Exchange–correlation functionals

In Sec. III C 4, we discuss the effect of exchange–
correlation functional on systematic uncertainties. In a
similar vein to the discussion above, we must ensure that
the calculations are converged with respect to the other
parameters (in particular, qmax) while we vary the
exchange–correlation functional.

We follow the procedure outlined above for the basis set
uncertainty by calculating the fractional change upon going
from a PBE0 functional to a new functional XC as

fðXCjPBE0ÞQ;qmax
≡ ΔRQjqmax;XC − ΔRQjqmax;PBE0

ΔRQjqmax;PBE0
; ðD2Þ

FIG. 15. The plot shows the convergence of the systematic uncertainty sourced from the choice of exchange–correlation functional as
a function of charge ionization Q and maximum momentum transfer modeled qmax by showing the fractional change in rates observed
for a DM–electron scattering (mχ ¼ 1 GeV, Fχ ¼ 1 in Si target) upon going from PBE0 functional to a new functional XC [see
Eq. (D2)]. Note that for all XC tested, we observe that the fractional change becomes constant as a function of qmax by qmax ≤ 8αme.

FIG. 16. The plot shows the same as Fig. 14, except for Ge instead of Si, calculated using a PBE functional. Note that the basis set is
converged for large Q ≥ 11e−, and also for low Q ≲ 4e−.

FIG. 17. The plot shows the equivalent of Fig. 15, except for Ge instead of Si. Note that we test to a much lower qmax ¼ 6αme, as
in Fig. 7, however we find that the we attain convergence for low Q≲ 8e−.
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and plot the same for a Si target in Fig. 15, and Ge target in Fig. 17. The title of each subplot corresponds to the functional
XC chosen. Note that the fractional change remains consistent while we increase our qmax, especially at qmax ≳ 8αme in Si.
In Ge, we find convergence for Q≲ 8e− even to qmax ¼ 6αme.
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