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Cosmological and astrophysical observations suggest that both energy densities of baryon and dark
matter take the same order values in the present Universe. We propose a scenario to give an answer for this
problem in a scotogenic model and its extension. The model naturally provides dark matter candidates as its
crucial ingredients to explain the small neutrino mass. If a neutral component of an inert doublet scalar
plays a role of dark matter and leptogenesis occurs at TeV scales, both dark matter abundance and baryon
number asymmetry could be explained with a same mother particle. Coincidence between the order of their
energy densities might be understood through such a background.
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I. INTRODUCTION

Existence of dark matter (DM) suggested through
various astrophysical and cosmological observations is
one of unsolved problems in the standard model (SM) [1].
Since there is no corresponding particle in the SM, it can
be a crucial clue to study new physics beyond the SM.
A promising candidate is a weakly interacting massive
particle called a WIMP. If it is in the thermal equilibrium in
the early Universe and is frozen out at a certain stage, it is
known that the expected DM abundance could be naturally
realized as its relic. However, such a particle has not yet
been discovered in various kind of experiments but a lot of
proposed models for it have been ruled out or constrained
by them [2,3].
Another mysterious point on DM is cosmological

coincidence of its abundance with baryon number asym-
metry, that is, why their energy densities take the same
order values in the present Universe. The WIMP scenario
cannot answer this problem since its abundance is usually
considered to be explained through physics irrelevant to the
baryon number asymmetry. Asymmetric DMmodel [4] is a
promising scenario which is motivated to give an answer
for it. In this scenario, the DM abundance is explained as
asymmetry of a certain conserved charge like the baryon
number asymmetry. If we consider an alternative possibility
to explain it, a scenario may be constructed by assuming
that both the baryon number asymmetry and the DM are

caused from a same mother particle. In that case, the same
physics could be relevant to them and then it could give an
answer for the problem. As such we study a class of model
for the neutrino mass here.
The scotogenic model [5] has been proposed to explain

the small neutrino mass and the existence of DM, simulta-
neously. In this model, the DM abundance is usually
explained following the WIMP scenario. The model
includes DM candidates as its important ingredients to
generate the small neutrino mass. They are a lightest neutral
component of an inert doublet scalar η and a lightest right-
handed neutrino. If we choose the right-handed neutrino
as the DM, a serious lepton-flavor violating problem
appears [6]. On the other hand, if we adopt a neutral
component of the η as the DM, any serious phenomeno-
logical problem occurs, and then it can be considered as a
promising DM candidate in the model. Its relic abundance
and various features have been extensively studied in a lot
of papers [7,8].
In this paper, we reconsider the DM abundance in this

model from a view point of its relation to the baryon
number asymmetry. In the scotogenic model, leptogenesis
is known to generate baryon number asymmetry success-
fully [9,10]. Since model parameters relevant to DM
and leptogenesis could be almost independent in usually
supposed cases, they have been studied separately.
However, there could be an exceptional situation where
they are closely related; this situation seems not to have
been noticed and has not been studied. In the present study,
we focus our attention on a case where the model allows
successful leptogenesis at TeV scales as such a situation.
There, we find that the usual estimation of the relic
abundance of the DM should be modified. The DM
abundance is considered to be explained as a cosmological
relic which is neither a pure thermal relic nor an asymmetry
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of any conserved charge. It might give a new viewpoint
for the cosmological coincidence between the DM and the
baryon number asymmetry.
Following parts are organized as follows. In Sec. II

we briefly review some features of the scotogenic model
relevant to the present study. In Sec. III, after we overview
leptogenesis and the DM physics in the model, we discuss
a scenario in which the baryon number asymmetry and
the DM abundance can be closely correlated. We show
its realization in the model which can give the origin of
the CP phases in the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [11]. We summarize the paper in Sec. IV.
In the Appendix, we present a rough sketch of the
derivation of the CP phases in the PMNS matrix in
the model.

II. SCOTOGENIC MODEL

The scotogenic model [5] is a simple extension of the
SM with three right-handed neutrinos Nj and an inert
doublet scalar η. These new ingredients are assumed to have
an odd parity under imposed Z2 symmetry although all the
SM contents have even parity. Relevant parts to these new
ingredients in Lagrangian are given as

L ⊃
X3
j¼1

�X3
i¼1

hνijlLi
ηNj þMNj

N̄jNc
j þ H:c:

�
þ V; ð1Þ

V ¼ m2
ϕϕ

†ϕþm2
ηη

†ηþ λ1ðϕ†ϕÞ2 þ λ2ðη†ηÞ2
þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðϕ†ηÞðη†ϕÞ

þ
�
λ5
2
ðη†ϕÞ2 þ H:c:

�
; ð2Þ

where lLi
and ϕ stand for SM doublet leptons and a

doublet Higgs scalar, respectively. The model can have a
stable vacuum only if the potential V in Eq. (2) satisfies the
condition,

λ1; λ2 > 0; λþ > −2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
; ð3Þ

where λþ is defined as λþ ¼ λ3 þ λ4 þ λ5.
Since η is assumed to have no vacuum expectation

value (VEV), neutrino mass is forbidden at tree level but it
can be generated by a VEVof the SM Higgs scalar through
a one-loop diagram whose internal lines are composed
ofNj and η. Additionally, since η gets no VEV, the imposed
Z2 symmetry remains as an exact symmetry and it
guarantees the stability of the lightest Z2 odd particle,
which could be a cold DM candidate as long as it is neutral.
If λ4 < 0 is satisfied, a lightest neutral component of η can
be such a candidate. In the following study, λ5 < 0 is
assumed and then its real part η0R is supposed to be DM. Its
mass mη0R

has to satisfy mη0R
< MN1

where MN1
is mass of

the lightest right-handed neutrino N1. In that case, N1 can
decay to the lepton through the Yukawa coupling in
Eq. (1). This decay could generate lepton number asym-
metry, which can be transformed to baryon number
asymmetry through a sphaleron process [12,13]. It should
be also noted that η is also produced in this decay. Thus, the
lightest right-handed neutrinos could be a common mother
particle of both the baryon number asymmetry and the DM
in this model.
The neutrino mass formula derived from the one-loop

diagram is given as

Mνij ¼
X3
k¼1

hνikh
ν
jkΛk;

Λk ¼
λ5hϕi2
8π2MNk

�
M2

Nk

M2
η −M2

Nk

�
1þ M2

Nk

M2
η −M2

Nk

ln
M2

Nk

M2
η

��
;

ð4Þ

whereM2
η ¼ m2

η þ ðλ3 þ λ4Þhϕi2. This formula can explain
the small neutrino mass required by neutrino oscillation
data [2] even for Nj with the mass of TeV scales as long as
jλ5j takes a sufficiently small value.1 Moreover, if we note
that only two right-handed neutrinos are necessary to derive
two mass differences required to explain the neutrino
oscillation data, we find that the N1 could be irrelevant
to the small neutrino mass generation. This suggests that
the neutrino Yukawa coupling hνi1 can take a much smaller
value than others hνij (j ¼ 2, 3), which should be fixed so as
to satisfy the neutrino oscillation data through Eq. (4).
Neutrino oscillation data suggest that the PMNS

matrix which characterizes lepton flavor mixing could
be described approximately through tribimaximal mixing
[14]. Although it cannot cause nonzero mixing angle θ13, it
can be modified by a mixing matrix for charged leptons
even if the tribimaximal mixing matrix is assumed for
the neutrino sector.2 Tribimaximal mixing in the neutrino
sector can be easily realized simply by assuming the
neutrino Yukawa couplings in Eq. (1) to satisfy [16],

hek ¼ 0; hμk ¼ hτk ¼ hk ðk ¼ 1; 2Þ;
he3 ¼ hμ3 ¼ −hτ3 ¼ h3: ð5Þ

Using this assumption, we can present examples which
explain the neutrino oscillation data well. Here, we take h1
to be sufficiently small likeOð10−8Þ so that N1 is irrelevant
to the neutrino mass determination as mentioned above.

1A lower bound on jλ5j can be derived through a possible in-
elastic scattering of η0R with a nucleon in DM direct search experi-
ments [10].

2A concrete example of it is presented in [15] and also in the
Appendix of this article. In the following study, parameters given
there are used.
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Taking account of this, if we apply to Eq. (4) the
parameters,3

ðaÞ λ5 ¼ −10−5; mη0R
¼ 2 × 103 GeV;

MN2
¼ 6 × 104 GeV; MN3

¼ 7 × 104 GeV;

ðbÞ λ5 ¼ −10−5; mη0R
¼ 2 × 103 GeV;

MN2
¼ 6 × 103 GeV; MN3

¼ 7 × 103 GeV; ð6Þ
the mass differences required to explain the neutrino
oscillation data are found to be realized for the couplings

ðaÞ h2 ¼ 1.16 × 10−2; h3 ¼ 4.15 × 10−3;

ðbÞ h2 ¼ 6.87 × 10−3; h3 ¼ 2.37 × 10−3: ð7Þ
We use them in the following study.

III. LEPTOGENESIS AND DARK MATTER
ABUNDANCE

A. Low-scale leptogenesis

This model makes leptogenesis [13] work well to
generate the baryon number asymmetry in the same way
as the type-I seesaw model [17]. Sufficient lepton number
asymmetry could be produced as a seed of the baryon
number asymmetry through the out-of-equilibrium decay
of N1 [10]. Moreover, it could happen at much lower
scales than the type-I seesaw model if N1 is in the thermal
equilibrium [18]. However, it is difficult to make it in the
thermal equilibrium only by the neutrino Yukawa coupling
hνi1 in Eq. (1) in a consistent way with successful lepto-
genesis as suggested in [10]. To overcome this difficulty,
interactions, which can produce a sufficient amount
of N1 to reach its equilibrium value, are proposed in some
extended frameworks of the scotogenic model in connec-
tion with various problems of the SM, for example,
inflation [19,20], right-handed neutrino mass [21,22],
and CP violation [15,23]. For a while, we assume that
N1 is in the thermal equilibrium through certain inter-
actions. Study of the coincidence problem based on a
concrete interaction is given later.
The CP asymmetry ε in the decay N1 → lLi

η† is
expressed as [24]

ε≡
P

i½ΓðN1 → lLi
η†Þ − ΓðNc

1 → lLi
ηÞ�P

iΓðN1 → lLi
η†Þ

¼ 1

8π

X
j¼2;3

Im

�ðPih
ν
i1h

ν
ijÞ2P

ih
ν2
i1

�
F

�M2
Nj

M2
N1

�
; ð8Þ

where FðxÞ ¼ ffiffiffi
x

p ½1 − ð1þ xÞ ln 1þx
x �. Since the depend-

ence on hνi1 in this asymmetry ε can be suppressed under a

suitable flavor structure, hνi1 can be assigned a much smaller
value compared with hνi2 and h

ν
i3 keeping a value of ε to be a

magnitude required for successful leptogenesis. On the
other hand, a small value of hνi1 makes the decay of N1

delay so that the washout of generated lepton number
asymmetry could be ineffective when its substantial
decay starts. These could make successful leptogenesis
possible for the N1 with the TeV scale mass in the
scotogenic model [15,18,20,22,23].
The decay of N1 is expected to start around the temper-

ature TL, which satisfies a condition ΓD
N1

¼ HðTLÞ, where
ΓD
N1

and HðTÞ are the decay width of N1 and the Hubble
parameter at the temperature T, respectively. They are
expressed as

ΓD
N1

¼
X3
i¼1

hν2i1
8π

MN1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

M2
η

M2
N1

s
; HðTÞ¼

�
π2

90
g�

�
1=2 T2

Mpl
;

ð9Þ

where g� is relativistic degrees of freedom at T and Mpl

is a reduced Planck mass. If we use the tribimaximal
assumption given in Eq. (5) for the neutrino Yukawa
couplings, the temperature TL can be estimated as

TL

MN1

¼ 5.1 ×

�
h1
10−8

��
104 GeV
MN1

�
1=2

; ð10Þ

where g� ¼ 116 is used.
Here, we define Yi as Yi ≡ ni

s by using the number
density ni of a particle species i and the entropy density s.
Lepton number asymmetry is expressed by YL ≡ nl−nl

s ,
where nl and nl are the number density of leptons and
antileptons, respectively. If washout processes of the lepton
number asymmetry YL decouple at a temperature TF and
TL < TF is satisfied, the YL generated through the N1

decay is not affected by the washout effect which is caused
by the inverse decay of the right-handed neutrinos and 2-2
scatterings mediated by N2;3.

4 In such a case, the lepton
number asymmetry at TL can be roughly estimated by
using ε in Eq. (8) as YL ¼ εYeq

N1
ðTLÞ where Yeq

N1
ðTLÞ takes

the equilibrium number density of the relativistic particle as
Yeq
N1
ðTLÞ ¼ Oð10−3Þ. Since TL < MN1

has to be satisfied at
least, Eq. (10) shows

h1 < 6.1 × 10−7
�

MN1

104 GeV

�
1=2

: ð11Þ

3We note that mη0R
≃Mη is satisfied for this small jλ5j.

4If the lepton asymmetry is generated at the temperature lower
than the ηmass as a result of a small h1, it can escape the washout
by these processes since they could be sufficiently suppressed
by the Boltzmann factor. It is confirmed through the numerical
study shown in Fig. 3 which shows that TL and TF satisfy
TL < TF ≲mη0R

=10 as expected.
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The required baryon number asymmetry can be generated
for YL ¼ Oð10−10Þ and then ε should have a value of
Oð10−7Þ. Equation (8) shows that such an ε is consistent
with the values of h2;3 given in Eq. (7) as long as a maximal
CP violation is assumed.
The generated lepton number asymmetry is converted

to the baryon number asymmetry through the sphaleron
process which is considered to be in the thermal equilib-
rium at temperature higher than 100 GeV [12]. Since the
lepton number violating N1 decay has to occur at a higher
temperature than it, this imposes that ΓD

N1
> HðTÞ should

be satisfied at T ¼ 100 GeV. This condition can be
expressed as

h1 > 6.1 × 10−9
�
104 GeV
MN1

�
1=2

: ð12Þ

If we impose that leptogenesis occurs successfully at
TeV regions, we find from Eqs. (11) and (12) that h1
should take a value ofOð10−8Þ forMN1

which is larger than
mη0R

assumed in Eq. (6).
To examine these qualitative arguments, we solve the

Boltzmann equations for YL and YN1
given in [10] numeri-

cally by assuming that N1 is initially in the thermal
equilibrium and using the parameters given in Eqs. (6)
and (7). The results for both cases (a) and (b) are given in
the left and right panels of Fig. 1, respectively. Both panels
show that the N1 decay delays and YN1

keeps its relativistic
value until the temperature T reaches the value which
satisfies T ≪ MN1

. Since YL is found to be realized as
εYeq

N1
ðTLÞ from it, the above discussion can be justified

quantitatively. The sufficient lepton number is found to be
produced in both cases.

B. DM abundance

We consider the η0R abundance as DM in this model.
The relic abundance of η0R is determined by solving
Boltzmann equation for it. If we define a dimensionless
parameter x as x≡mη0R

=T, Boltzmann equations for Yη0R
and YN1

can be written as

dYη0R

dx
¼ −

sðmη0R
Þ

Hðmη0R
Þx2 hσvi

�
Y2
η0R
− Yeq2

η0R

�

þ 2x
Hðmη0R

ÞΓ
D
N1

�
YN1

− Yeq
N1

�
; ð13Þ

dYN1

dx
¼ −

x
Hðmη0R

ÞΓ
D
N1

�
YN1

− Yeq
N1

�
; ð14Þ

where Hðmη0R
Þ and sðmη0R

Þ represent the Hubble parameter
and the entropy density at T ¼ mη0R

, respectively. hσvi is a
thermally averaged annihilation cross section of η0R and ΓD

N1

is the decay width of N1 given in Eq. (9). We take account
of an effect of the N1 decay to η as the second term in the

right-hand side of Eq. (13). Here, we define YðnÞ
η0R

and YðoÞ
η0R

as

the solution of Eq. (13) with the second term and the
one without it, respectively. Since this term can be
safely neglected for the case MN1

≫ mη0R
, we can expect

YðnÞ
η0R

¼ YðoÞ
η0R

there and DM is considered as thermal relic.

We consider such a case first.
In that case, the present abundance of η0R is fixed through

its equilibrium density at temperature TD where its anni-
hilation processes are frozen out [25,26]. We can estimate
TD by using its thermally averaged annihilation cross

FIG. 1. Evolution of the lepton number asymmetry YL, the lightest right-handed neutrino number density YN1
and the η0R number

density Yη0R
is displayed as a function of a dimensionless parameter xð≡mη0R

=TÞ.N1 contribution is not taken into account in Y
ðoÞ
η0R

but it is

taken into account in YðnÞ
η0R
. Yi with superscript “eq” stands for its equilibrium value. In the left panel for the case (a), h1 ¼ 2.0 × 10−8 and

MN1
¼ 3.1 × 104 GeV are used. In the right panel for the case (b), h1 ¼ 5.4 × 10−8 and MN1

¼ 3.1 × 103 GeV are used. Horizontal
lines represent values of YL (dotted) and Yη0R

(solid) which are required to explain the abundance of the baryon number asymmetry and
the DM abundance in the present universe, respectively.
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section hσvi and Hubble parameter HðTÞ through a
condition 2neq

η0R
ðTDÞhσvi ¼ HðTDÞxD as found from

Eq. (13). Using HðTÞ given in Eq. (9), xD can be
determined by solving the above mentioned condition as

xD ¼ ln
0.384gMplhσvimη0R

ðg�xDÞ1=2
; ð15Þ

where g is an internal degree of freedom of η0R. Since Yη0R
converges to a constant value Y∞

η0R
at x > xD, the present

DM abundance can be expressed as Ωη0R
¼ mη0R

Y∞
η0R
s0=ρ0

where ρ0 and s0 are the energy density and the entropy
density in the present Universe. They are given as ρ0 ¼
3M2

plH
2
0 and s0 ¼ 2.27 × 10−38 GeV3. If we solve Eq. (13)

by taking account of Yη0R
> Yeq

η0R
at x ≫ xD and also

Y∞
η0R

< Yη0R
ðxDÞ, we find that Ωη0R

can be approximately

expressed as

Ωη0R
h2 ¼

Y∞
η0R
mη0R

s0

3M2
plH

2
0=h

2
¼ 2.13 × 108 GeVffiffiffiffiffi

g�
p

Mpl

R∞
xD

hσvi
x2 dx

; ð16Þ

where we useH0 ¼ 2.13 × 10−42h GeV. Applying it to the
present observational result ΩDMh2 ¼ 0.12, we find that
Y∞
η0R

¼ 2.13 × 10−13ð2000 GeV=mη0R
Þ should be satisfied. It

constrains the parameters λþ and λ3 in the potential (2)
which determine the annihilation cross section hσvi. Since
the masses of the components of η are almost degenerate,
coannihilation [26] among them should be taken into
account to estimate hσvi [8,10].
In Fig. 2, we draw contours of Ωη0R

h2 ¼ 0.12 for typical
values of mη0R

in the ðλþ; λ3Þ plane. In this plane, we have
to take account of both the stability condition given in
Eq. (3) and λ4 ¼ λþ − λ3 − λ5 < 0 which is a necessary
condition for η0R to be lighter than the charged components.
Combining them, we find that only points on the contours
included in a triangle region of the upper-right quadrant in
the ðλþ; λ3Þ plane are allowed.
On the other hand, the same parameters are also con-

strained by the present results of DM direct search experi-
ments. In this model, η0R-nucleon elastic scattering is caused
by the t-channel Higgs exchange. Its cross section can be
expressed as

σN ¼ λ2þ
8π

f̄2N
m2

η0R

m4
N

m4
h

; ð17Þ

where f̄N is a coupling between the Higgs scalar and a
nucleon. Masses of the nucleon and the Higgs boson are
represented by mN and mh, respectively. A present most
stringent bound on σN through the direct search experiment

is given by the XENONnT experiment [27]. Since it gives
an upper bound on jλþj, as found from Eq. (17), a region
included in a band sandwiched with dotted vertical lines
fixed for each mη0R

is allowed. These suggest that only
restricted points in the ðλþ; λ3Þ plane can be consistent with
the present data for the DM abundance. Future direct
detection experiments and collider experiments might find
a η0R signature in this parameter region.

C. Coincidence of DM and baryon number asymmetry

We reconsider realization of the DM abundance in
relation to the baryon number asymmetry generated
through leptogenesis. Since the required relic abundance
is known to be realized for xD ∼ 25 in the WIMP scenario,
TD < 100 GeV < TL can be satisfied for η0R whose mass is
less than 3 TeV. If MN1

≫ mη0R
is satisfied, Yeq

η0R
ðxDÞ ≫

Yeq
N1
ðxDÞ is expected and then YðnÞ

η0R
¼ YðoÞ

η0R
is guaranteed.

So that the estimation of the relic abundance of η0R in the
previous section can be justified.
The solution of the Boltzmann equation for Yη0R

added in
the left panel of Fig. 1 proves it. In this calculation, λþ and

FIG. 2. Contours of the η0R relic density Ωη0R
h2 ¼ 0.12 are

plotted by colored solid lines in the ðλþ; λ3Þ plane. Each contour
corresponds to the one with mη0R

¼ 2200 GeV (blue), 2000 GeV
(red), and 1800 GeV (green), respectively. An upper bound on
jλþj based on the direct search of XENONnT is represented by
vertical dashed lines with the same color as the one of the relic
density for each mass. A diagonal black solid line and a vertical
black dash-dotted line represent the condition λ4 ¼ 0 and λþ ¼
−2

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
with λ2 ¼ 0.1, respectively. The allowed region is

restricted into an upper-triangle region surrounded by these lines.
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λ3 are fixed to 0.66 and 1.56, which are the consistent
values with the contour for mη0R

¼ 2 TeV shown in Fig. 2.
There is no contribution to Yη0R

from the N1 decay and then

YðoÞ
η0R

is found to be equal to YðnÞ
η0R
. The annihilation processes

of η0R are frozen out at xD ∼ 26 where YN1
becomes much

smaller than Yeq
η0R
. After that, Yη0R

converges to a constant

value which gives Ωη0R
h2 ¼ 0.12. It suggests that Yη0R

is
determined irrelevantly from the determination of YL.
It is generally expected for the case where N1 is much
heavier than η0R.
Next, we consider a case where Y∞

η0R
is determined

through a different way from the above case. It can happen
in a situation where h1 takes a small value and also N1 has
the similar mass to η0R. The condition for h1 required by the
leptogenesis is given by Eqs. (11) and (12). If the Yukawa
coupling h1 takes a value such as HðTDÞ≳ ΓD

N1
, the N1

abundance could be larger than Yeq
η0R
ðxDÞwhich saturates the

required DM abundance. To escape such a disastrous
situation, h1 has to satisfy,

h1 > 4.9 × 10−9
�
104 GeV
MN1

�
1=2

: ð18Þ

This is consistent with Eq. (12). If these conditions are
satisfied and Yeq

η0R
ðxDÞ is smaller than the value required by

the DM abundance, the decay of N1 could give a crucial
contribution to the relic density of η0R since YN1

ðxDÞ ≳
Yeq
η0R
ðxDÞ could occur.

We can estimate YN1
ðxDÞ by solving Eq. (14) as

YN1
ðxDÞ ¼ YN1

ðxiÞ exp
�
−

ΓD
N1

2Hðmη0R
Þ ðx

2
D − x2i Þ

�
: ð19Þ

Since YN1
ðxiÞ is of Oð10−3Þ at Ti ¼ MN1

which stands for
xi ¼ mη0r

=MN1
ð< 1Þ, the exponential factor in Eq. (19) can

be rewritten as

exp

�
−

ΓD
N1

2Hðmη0R
Þ x

2
D

�

¼ exp

"
−4.3 × 1012

�
xD
25

�
2

h21MN1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�mη0R

MN1

�
2

s #
;

ð20Þ

where we use mη0R
¼ 2000 GeV. The required DM abun-

dance can be realized for Yη0R
ðxDÞ ¼ Oð10−12Þ as found

from the left panel of Fig. 1. If we impose YN1
ðxDÞ ¼

Oð10−12Þ, Eqs. (19) and (20) suggest that the η0R produced

by theN1 decay at x > xD could supply a substantial part of
the DM abundance for

h21MN1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2000

MN1

�
2

s
¼ Oð10−12Þ: ð21Þ

This relation is consistent with conditions (11) and (12).
If h1 and MN1

take values following the condition (21),
YN1

ðxDÞ≳ Yη0R
ðxDÞ can be realized although N1 is heavier

than η0R. The N1 decay which causes the lepton number
asymmetry could also generate a dominant part of the relic
η0R for parameters λþ and λ3 which are ruled out in the
ordinary estimation of the relic η0R. The present abundance
of η0R should be estimated based on

Yη0R
ðxDÞ ¼ Yeq

η0R
ðxDÞ þ 2YN1

ðxDÞ; ð22Þ

since all components of η produced through the N1 decay
finally come to η0R. As the Boltzmann equation for Yη0R

,
we have to use Eq. (13) which takes account of the N1

decay to η.
To examine the above observation quantitatively,

we solve Boltzmann equations (13) and (14) numerically
assuming that N1 is initially in the thermal equilibrium.
Although the mass difference between η0R and N1 is small,
their coannihilation can be neglected in hσvi because their
coupling h1 is small enough. In the right panel of Fig. 1, the

evolution of both YðnÞ
η0R

and YðoÞ
η0R

obtained as the solutions of

the Boltzmann equations in the case (b) is plotted. In this
calculation, λþ and λ3 are fixed to 0.66 and 2.14, respec-

tively. These make YðoÞ
η0R

coming from the thermal η0R smaller

than the required value Ωη0R
h2 ¼ 0.12. It occupies about

50% of the total and a remaining part is supplied through
the N1 decay. The figure shows that both the sufficient
baryon number asymmetry and the DM abundance are
simultaneously realized through the N1 decay.
Comparison of both panels in Fig. 1 clarifies features of

the present case. In the left panel which corresponds to the
usually supposed case, the η0R abundance is realized by the
freeze-out of the thermal η0R and the yields from the N1

decay is irrelevant. The baryon number asymmetry and the
DM abundance is explained based on irrelevant physics.
On the other hand, we can find that the N1 decay plays a
crucial role to determine the η0R abundance in the right
panel. In this example, the contribution from the thermal η0R
is only 50% and the remaining one is caused by the N1

decay. It suggests that the η0R yielded through the N1 decay
could supply the substantial part of the η0R abundance. The
coincidence of the baryon number density and the dark
matter density in the present Universe could be explained
naturally there since common parameters relevant to the N1

decay control them simultaneously.
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D. A feasible model for the scenario

Finally, in order to show that this scenario works in a
realistic way, we adopt a well motivated model with
possible interactions which can generate N1 in the thermal
equilibrium even if the Yukawa coupling h1 is too small to
produce it effectively. The model has been proposed to give
a prospect to the CP issues in the SM [15]. It can solve the
strong CP problem [28] through the Nelson-Barr mecha-
nism [29,30] and give the origin of CP phases in the PMNS
and CKM matrices [11,31].
This model is an extension of the scotogenic model with

a singlet scalar S and vectorlike fermions DL;R and EL;R,
where DL;R and EL;R are down-type singlet quarks and
charged leptons, respectively. Their Yukawa couplings are
given as

X3
k¼1

½ðydkSþ ỹdkS
†ÞD̄LdRk

þ ðyekSþ ỹekS
†ÞĒLeRk

þ ðyNk
Sþ ỹNk

S†ÞN̄kNc
k� þ ðyESþ ỹES†ÞĒLER þ H:c:;

ð23Þ

where dRk
and eRk

are the singlet down-type quark and the
singlet charged lepton in the SM, respectively. Since CP
invariance is assumed in the model, all coupling constants
in Eq. (23) are considered to be real. If the singlet scalar S
gets a VEV as hSi ¼ 1ffiffi

2
p ueiρ0 , spontaneous CP violation is

caused. Complex phases due to this CP violation could be
brought about in the PMNS and CKMmatrices through the
mixing between the SM fermions and vectorlike fermions
which is caused by these interactions.5 The last term in the
first line of (23) induces the mass of the right-handed
neutrino Nk. If we redefine Nk to make its mass real, MNk

and Λk in Eq. (4) can be expressed as

MNk
¼ ðy2Nk

þ ỹ2Nk
þ 2yNk

ỹNk
cos 2ρ0Þ1=2u;

Λk ¼ jλkjeiθk ; tan θk ¼
yNk

− ỹNk

yNk
þ ỹNk

tan ρ0: ð24Þ

This θk determines the CP violation in the N1 decay and
then it fixes the CP asymmetry ε given in Eq. (8).
In the context of this paper, we should especially note

that these interactions can cause scatterings D̄LdRk
→

N̄1Nc
1, ĒLeRk

→ N̄1Nc
1, ĒLER→ N̄1Nc

1, and N̄kNc
k→ N̄1Nc

1

through the exchange of S. If the mass of the vectorlike
fermions is smaller than the reheating temperature, they
could be in the thermal equilibrium through the SM gauge
interactions. Heavier right-handed neutrinos N2;3 could
also be in the thermal equilibrium effectively through their
neutrino Yukawa interactions at the temperature less than
Oð108Þ GeV if their couplings take the values given in

Eq. (7) [21,22]. In such a case, these processes can produce
N1 effectively to reach its equilibrium density. Thus, if its
mass MN1

takes a similar value to mη0R
as in the case

(b) shown in the right panel of Fig. 1, we can expect that the
N1 decay generates the lepton number asymmetry suffi-
ciently and it also contributes to the relic abundance of η0R
substantially.6

For its quantitative check, we solve the Boltzmann
equations for YN1

; Yη0R
, and YL by taking account of these

scattering processes. Equation (14) should be modified by
introducing the right-hand side additional terms,

−
sðmη0R

Þ
Hðmη0R

Þx2
X
α

hσviαðY2
N1

− Yeq2
N1

Þ; ð25Þ

where the suffix α describes the above processes. We take
YN1

¼ 0 as an initial value of YN1
. Couplings in Eq. (23)

and the mass of the vectorlike fermions, which are crucial
for the determination of the PMNS matrix, are fixed to the
ones used in [15]. They are presented in the Appendix. We
assume u ¼ 106 GeV and ρ0 ¼ π

4
as a VEV of the singlet

scalar S and then these couplings fix mass eigenvalues
of the fourth charged lepton and N2;3 as ME ¼ 3165 GeV
andMN2;3

given in Eq. (6), respectively. It is noticeable that
these can realize the present experimental results for the
PMNS matrix well through a framework presented in the
Appendix as described in [15]. We also note that the CP
violation, which fixes the CP asymmetry ε, can take a
maximal value.
The results of this calculation are given in Fig. 3. It

shows that N1 reaches its equilibrium number density
through the introduced interactions and its decay produces
both the sufficient lepton number asymmetry and a sub-
stantial part of the required relic η0R abundance as in the
same way as the right panel of Fig. 1. In this example, the
η0R yielded through the N1 decay occupies about 70% of
the required abundance Ωη0R

h2 ¼ 0.12. The remaining part

is supplied from η0R in the thermal equilibrium by setting the
relevant parameters as λþ ¼ 0.66 and λ3 ¼ 2.6. Since the
N1 decay starts at a larger x due to a smaller value of h1
compared with the right panel of Fig. 1, its contribution to
the relic η0R becomes larger.
Finally, we examine how the relative share of η0R

produced from the N1 decay in the total relic depends

5A rough sketch of this scenario is given in the Appendix.

6We should note that a scalar interaction κSηS†Sη†η is not
forbidden in the model, which could give an additional source of
η0R through the scattering. However, since this process is effective
at the temperature higher than mη0R

, it does not affect the present
calculation of the DM abundance. It should be also noted that
any change in the neutrino mass formula (4) is not caused by this
interaction since the one-loop neutrino mass depends on the
squared mass difference of η0R and η0I which is not changed by this
interaction.
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on the N1 mass. Results are shown in Fig. 4 where the
abundance of the thermal η0R and the η0R produced from the
N1 decay is respectively represented as ΩT and ΩD, and
ðΩT þΩDÞh2 ¼ 0.12 is imposed. The scalar couplings λ3;4
are fixed to realize this value. In this study, mη0R

and MN2;3

are fixed to the ones given as (b) in Eq. (6), and thenMN1
is

allowed in the range 2000 GeV < MN1
< 6000 GeV. We

also choose two values of h1 which are used in the right
panel of Figs. 1 and 3. The figure shows that the relic η0R can
be entirely produced by the N1 decay if N1 takes a close
value with the η0R mass. In that case, λ3 and jλ4j have to take
large values near their perturbative bound since the η0R
abundance produced by the N1 decay is large and its
substantial part has to be reduced through the annihilation
processes. We also find from the figure thatΩDh2 can reach
the order of the required DM abundance in a wide region

of MN1
. This result suggests that the coincidence between

the baryon number density and the DM density in the
present Universe can be recognized as a natural conse-
quence of the model. If η0R is discovered as the DM, the
origin of the relic η0R can be an interesting subject. In that
case, the present study suggests that detailed experimental
study of the scalar couplings λ3;4 might tell us the ratio
of ΩD to ΩT .

IV. SUMMARY

We study a new scenario for the DM abundance in the
scotogenic model from a view point of the coincidence of
the baryon number asymmetry and the DM abundance in
the present Universe. In this model, the abundance of the
inert doublet DM is usually considered to be explained as
the thermal relic following the WIMP scenario. Since it is
irrelevant to the baryon number asymmetry in that case, the
model cannot give any answer for this problem. However, if
we note that the decay of the lightest right-handed neutrino
N1 generates both the lepton number asymmetry and
the DM candidate η0R, a correlation can be found between
them in a certain situation such thatN1 takes the same order
mass as η0R.
The mass of the right-handed neutrinos can take a TeV

scale value consistently with the neutrino oscillation data in
the model. Moreover, the decay of such N1 is known to
generate the sufficient baryon number asymmetry through
leptogenesis if the N1 is in the thermal equilibrium through
certain interactions. These suggest that the relic η0R as the
DM could be supplied not only as the thermal relic but also
as the yields of the decay of N1 which also causes the
lepton number asymmetry. If the latter gives a dominant
part of the DM abundance, the baryon number asymmetry

FIG. 4. The lightest right-handed neutrino mass MN1
depend-

ence of the ratio of the relic abundance of η0R originated from the
N1 decay to the total relics which are composed of the thermal
oneΩT and ΩD from the N1 decay. The masses of N2;3 and η0R are
fixed to the ones given as (b) in Eq. (6).

FIG. 3. Left: Evolution of the lepton number asymmetry YL and the η0R number density Yη0R
. In the calculation, h1 ¼ 3.4 × 10−8 and

M1 ¼ 3.1 × 103 GeV for the case (b) are used. Horizontal lines represent the required values of YL (dotted) and Yη0R
(solid) to explain the

baryon number asymmetry and the DM abundance, respectively. Right: Evolution of the relevant reaction rates included in the

Boltzmann equations. ΓðabÞ
f stands for the reaction rate of the scattering ab → N1N1 mediated by f. The washout of the lepton number

asymmetry YL is caused by ΓðηlÞ
N and ΓðllÞ

N .
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has a close relation to the DM abundance. The model could
give an insight for the coincidence problem.
We examine this idea quantitatively by solving the

Boltzmann equations under the assumption that N1 is in
the thermal equilibrium initially. The result shows that
their coincidence can be explained well. We also
propose a well-motivated model which contains the
interactions to make N1 reach the thermal equilibrium
and show how the coincidence of the baryon number
asymmetry and the DM abundance can happen in this
extended model. An interesting point of the model is that
these interactions can give an explanation for the CP
issues in the SM.
If both the baryon number asymmetry and a substantial

part of the DM are produced through the decay of a common
mother particle, it could be a promising scenario to give an
answer to the coincidence problem. In such a context, low-
scale leptogenesis may provide an interesting possibility not
only from a phenomenological viewpoint but also from a
cosmological viewpoint. The extended model studied in this
paper might be considered as a prototype model which can
realize such a scenario naturally.

APPENDIX: DERIVATION OF THE CP PHASES
IN THE PMNS MATRIX

In this Appendix, we briefly address how CP phases in
the PMNS matrix can be induced through Yukawa inter-
actions given in Eq. (23) following [15]. If the singlet scalar
gets a VEV as hSi ¼ 1ffiffi

2
p ueiρ0 , which causes spontaneous

CP violation, the CP phase can appear in the PMNS matrix
through the couplings of the singlet S with vectorlike
charged leptons EL;R. These Yukawa interactions extend
the SM charged lepton mass matrix me

ij to a 4 × 4 mass
matrix Me such as

ðlLi
; ĒLÞ

�me
ij Gi

F e
j μE

��
eRj

ER

�
; ðA1Þ

where lLi
and eRi

are the charged leptons in the SM. F e
j ,

Gi, and μE are defined asF e
j ¼ 1ffiffi

2
p ðyejeiρ0 þ ỹeje

−iρ0Þu, Gi ¼
xihϕi and μE ¼ 1ffiffi

2
p ðyEeiρ0 þ ỹEe−iρ0Þu.

Diagonalization of a matrix MeM
†
e by a 4 × 4 unitary

matrix ṼL is represented as

�
Ã B̃

C̃ D̃

��
meme† þ GG† meF e† þ μ�EG

F eme† þ G†μE jμEj2 þ F eF e†

�

×

�
Ã† C̃†

B̃† D̃†

�
¼

�
m̃2

e 0

0 M̃2
E

�
; ðA2Þ

where a 3 × 3 matrix m̃2
e in the right-hand side is diagonal.

Equation (A2) requires,

meme† þ GG† ¼ Ã†m̃2
eÃþ C̃†M̃2

EC̃;

F eme† þ G†μE ¼ B̃†m̃2
eÃþ D̃†M̃2

EC̃;

jμEj2 þ F eF e† ¼ B̃†m̃2
eB̃þ D̃†M̃2

ED̃: ðA3Þ

If jμEj2 þ F eF e† is much larger than each component of
F eme† þ Gμ�E, we find that B̃; C̃, and D̃ can be approx-
imately expressed as

B̃≃−
ÃðmeF e†þ μ�EGÞ
jμEj2þF eF e† ; C̃≃

F eme†þG†μE
jμEj2þF eF e† ; D̃≃ 1:

ðA4Þ

These guarantee the approximate unitarity of the matrix Ã.
In that case, it is also easy to find that

Ã−1m̃e2Ã¼meme†þGG†

−
1

jμEj2þF eF e†ðmeF e†þμ�EGÞðF eme†þμEG†Þ:

ðA5Þ

The charged lepton effective mass matrix m̃e is obtained
as a result of the mixing between the light charged leptons
and the extra heavy lepton. If ỹej is not equal to yej and

jμEj2 < F eF e† is satisfied, the matrix Ã could have a large
CP phase.
We assume that the neutrino mass matrix Mν is

diagonalized by a tribimaximal matrix Uν as UT
νMνUν ¼

Mdiag
ν , where the matrix Uν can be expressed as

Uν ¼

0
BBB@

2ffiffi
6

p 1ffiffi
3

p 0

−1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p −1ffiffi
3

p 1ffiffi
2

p

1
CCCA
0
B@

1 0 0

0 e−iα1 0

0 0 e−iα2

1
CA: ðA6Þ

Majorana phases α1 and α2 are written by using Eq. (24) as

α1 ¼
θ3
2
; α2 ¼

1

2
tan−1

�
h21jΛ1j sin θ1 þ h22jΛ2j sin θ2
h21jΛ1j cos θ1 þ h22jΛ2j cos θ2

�
:

ðA7Þ

The PMNSmatrix is obtained as VPMNS ¼ Ã†Uν where Ã is
fixed through Eq. (A5). Since the matrix Ã is expected to be
almost diagonal from hierarchical masses of the charged
leptons, the structure of VPMNS is considered to be mainly
determined by Uν in the neutrino sector. Although tribi-
maximal mixing cannot realize a nonzero mixing angle θ13
which is required by the neutrino oscillation data, the
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matrix Ã could compensate this fault and a desirable VPMNS may be derived as VPMNS ¼ Ã†Uν. If we fix the relevant
parameters in Eq. (23) as

ye ¼ ð0; 3 × 10−3; 0Þ; ỹe ¼ ð0; 0; 10−3Þ; yE ¼ ỹE ¼ 3.3 × 10−6;

yN ¼ ð2.2 × 10−3; 6 × 10−3; 7 × 10−3Þ; ỹN ¼ ð2.2 × 10−3; 0; 0Þ; ðA8Þ

VPMNS obtained in this way is found to be rather good realization of the experimental results including nonzero θ13 as
shown in [15].

[1] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep.
267, 195 (1996); G. Bertone, D. Hooper, and J. Silk, Phys.
Rep. 405, 279 (2005).

[2] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[3] M. Misiaszek and N. Rossi, Symmetry 16, 201 (2024).
[4] K. Petraki and R. R. Volkas, Int. J. Mod. Phys. A 28,

1330028 (2013).
[5] E. Ma, Phys. Rev. D 73, 077301 (2006).
[6] J.Kubo,E.Ma, andD.Suematsu, Phys.Lett.B642, 18 (2006).
[7] R. Barbieri, L. J. Hall, and V. S. Rychkov, Phys. Rev. D 74,

015007 (2006); M. Cirelli, N. Fornengo, and A. Strumia,
Nucl. Phys. B753, 178 (2006); L. L. Honorez, E. Nezri, J. F.
Oliver, and M. H. G. Tytgat, J. Cosmol. Astropart. Phys. 02
(2007) 028; Q.-H. Cao, E. Ma, and G. Rajasekaran, Phys.
Rev. D 76, 095011 (2007); T. Hambye, F.-S. Ling, L. L.
Honorez, and J. Roche, J. High Energy Phys. 07 (2009) 090;
S. Andreas, M. H. G. Tytgat, and Q. Swillens, J. Cosmol.
Astropart. Phys. 04 (2009) 004; E. Nezri, M. H. G. Tytgat,
and G. Vertongen, J. Cosmol. Astropart. Phys. 04 (2009)
014; L. L. Honorez and C. E. Yaguna, J. Cosmol. Astropart.
Phys. 01 (2011) 002.

[8] T. Hambye, F.-S. Ling, L. L. Honorez, and J. Rocher,
J. High Energy Phys. 07 (2009) 090.

[9] E. Ma, Mod. Phys. Lett. A 21, 177 (2006); T. Hambye, K.
Kannike, E. Ma, and M. Raidal, Phys. Rev. D 75, 095003
(2007).

[10] S. Kashiwase and D. Suematsu, Phys. Rev. D 86, 053001
(2012); Eur. Phys. J. C 73, 2484 (2013).

[11] B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957) [Sov.
Phys. JETP 6, 429 (1957)]; Zh. Eksp. Teor. Fiz. 34, 247
(1958) [Sov. Phys. JETP 7, 172 (1958)]; Z. Maki, M.
Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

[12] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov,
Phys. Lett. B 155, 36 (1985).

[13] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[14] P. F. Harrison, D. H. Perkins, and W. G. Scott, Phys. Lett. B

530, 167 (2002).
[15] D. Suematsu, Phys. Rev. D 108, 095046 (2023).
[16] J. Kubo and D. Suematsu, Phys. Lett. B 643, 336 (2006);

D. Suematsu, T. Toma, and T. Yoshida, Phys. Rev. D 79,
093004 (2009).

[17] P. Minkowski, Phys. Lett. B 67, 421 (1977); M
Gell-Mann, P. Ramond, and R. Slansly, in Supergravity,
edited by D. Freedman and P. Van Nieuwenhuizen
(North Holland, Amsterdam, 1979), p. 315; T.
Yanagida, Prog. Theor. Phys. 64, 1103 (1980); R. N.
Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912
(1980); J. Schechter and J. W. F. Valle, Phys. Rev. D 22,
2227 (1980).

[18] T. Hugle, M. Platscher, and K. Schmitz, Phys. Rev. D 98,
023020 (2018); D. Borah, P. S. B. Dev, and A. Kumar,
Phys. Rev. D 99, 055012 (2019).

[19] S. Kashiwase and D. Suematsu, Phys. Lett. B 749 (2015)
603; D. Suematsu, Phys. Lett. B 760, 538 (2016).

[20] T. Hashimoto and D. Suematsu, Phys. Rev. D 102, 115041
(2020); T. Hashimoto, N. S. Risdianto, and D. Suematsu,
Phys. Rev. D 104, 075034 (2021); D. Suematsu, J. Cosmol.
Astropart. Phys. 08 (2023) 029.

[21] D. Suematsu, Phys. Rev. D 100, 055008 (2019).
[22] D. Suematsu, Phys. Rev. D 100, 055019 (2019).
[23] D. Suematsu, Eur. Phys. J. C 81, 311 (2021).
[24] M. Flanz, E. A. Paschos, and U. Sarkar, Phys. Lett. B 345,

248 (1995); L. Covi, E. Roulet, and F. Vissani, Phys. Lett. B
384, 169 (1996); A. Pilaftsis, Phys. Rev. D 56, 5431 (1997);
W. Buchmüller and M. Plümacher, Phys. Lett. B 431, 354
(1998).

[25] K. Griest, M. Kamionkowski, and M. S. Turner, Phys. Rev.
D 41, 3565 (1990); P. Gondolo and G. Gelmini, Nucl. Phys.
B360, 145 (1991).

[26] K. Griest and D. Seckel, Phys. Rev. D 43, 3191 (1991).
[27] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett.

131, 041003 (2023).
[28] J. E. Kim, Phys. Rep. 150, 1 (1987); J. E. Kim and G.

Carosi, Rev. Mod. Phys. 82, 557 (2010); D. J. E. Marsh,
Phys. Rep. 643, 1 (2016).

[29] A. Nelson, Phys. Lett. 136B, 387 (1984); S. M. Barr, Phys.
Rev. Lett. 53, 329 (1984); A. Nelson, Phys. Lett. 143B, 165
(1984).

[30] L. Bento, G. C. Branco, and P. A. Parada, Phys. Lett. B 267,
95 (1991).

[31] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652
(1973).

DAIJIRO SUEMATSU PHYS. REV. D 109, 115004 (2024)

115004-10

https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.3390/sym16020201
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1142/S0217751X13300287
https://doi.org/10.1103/PhysRevD.73.077301
https://doi.org/10.1016/j.physletb.2006.08.085
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1103/PhysRevD.74.015007
https://doi.org/10.1016/j.nuclphysb.2006.07.012
https://doi.org/10.1088/1475-7516/2007/02/028
https://doi.org/10.1088/1475-7516/2007/02/028
https://doi.org/10.1103/PhysRevD.76.095011
https://doi.org/10.1103/PhysRevD.76.095011
https://doi.org/10.1088/1126-6708/2009/07/090
https://doi.org/10.1088/1475-7516/2009/04/004
https://doi.org/10.1088/1475-7516/2009/04/004
https://doi.org/10.1088/1475-7516/2009/04/014
https://doi.org/10.1088/1475-7516/2009/04/014
https://doi.org/10.1088/1475-7516/2011/01/002
https://doi.org/10.1088/1475-7516/2011/01/002
https://doi.org/10.1088/1126-6708/2009/07/090
https://doi.org/10.1142/S0217732306021141
https://doi.org/10.1103/PhysRevD.75.095003
https://doi.org/10.1103/PhysRevD.75.095003
https://doi.org/10.1103/PhysRevD.86.053001
https://doi.org/10.1103/PhysRevD.86.053001
https://doi.org/10.1140/epjc/s10052-013-2484-9
https://doi.org/10.1143/PTP.28.870
https://doi.org/10.1016/0370-2693(85)91028-7
https://doi.org/10.1016/0370-2693(86)91126-3
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1016/S0370-2693(02)01336-9
https://doi.org/10.1103/PhysRevD.108.095046
https://doi.org/10.1016/j.physletb.2006.11.005
https://doi.org/10.1103/PhysRevD.79.093004
https://doi.org/10.1103/PhysRevD.79.093004
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1143/PTP.64.1103
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevLett.44.912
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.22.2227
https://doi.org/10.1103/PhysRevD.98.023020
https://doi.org/10.1103/PhysRevD.98.023020
https://doi.org/10.1103/PhysRevD.99.055012
https://doi.org/10.1016/j.physletb.2015.08.062
https://doi.org/10.1016/j.physletb.2015.08.062
https://doi.org/10.1016/j.physletb.2016.07.048
https://doi.org/10.1103/PhysRevD.102.115041
https://doi.org/10.1103/PhysRevD.102.115041
https://doi.org/10.1103/PhysRevD.104.075034
https://doi.org/10.1088/1475-7516/2023/08/029
https://doi.org/10.1088/1475-7516/2023/08/029
https://doi.org/10.1103/PhysRevD.100.055008
https://doi.org/10.1103/PhysRevD.100.055019
https://doi.org/10.1140/epjc/s10052-021-09109-5
https://doi.org/10.1016/0370-2693(94)01555-Q
https://doi.org/10.1016/0370-2693(94)01555-Q
https://doi.org/10.1016/0370-2693(96)00817-9
https://doi.org/10.1016/0370-2693(96)00817-9
https://doi.org/10.1103/PhysRevD.56.5431
https://doi.org/10.1016/S0370-2693(97)01548-7
https://doi.org/10.1016/S0370-2693(97)01548-7
https://doi.org/10.1103/PhysRevD.41.3565
https://doi.org/10.1103/PhysRevD.41.3565
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1016/0550-3213(91)90438-4
https://doi.org/10.1103/PhysRevD.43.3191
https://doi.org/10.1103/PhysRevLett.131.041003
https://doi.org/10.1103/PhysRevLett.131.041003
https://doi.org/10.1016/0370-1573(87)90017-2
https://doi.org/10.1103/RevModPhys.82.557
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/0370-2693(84)92025-2
https://doi.org/10.1103/PhysRevLett.53.329
https://doi.org/10.1103/PhysRevLett.53.329
https://doi.org/10.1016/0370-2693(84)90827-X
https://doi.org/10.1016/0370-2693(84)90827-X
https://doi.org/10.1016/0370-2693(91)90530-4
https://doi.org/10.1016/0370-2693(91)90530-4
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652

