
Leptogenesis consequences of trimaximal mixing and μ− τ reflection
symmetry in the most minimal seesaw model

Zhen-hua Zhao, Hong-Yu Shi, and Yan Shao *

Department of Physics, Liaoning Normal University, Dalian 116029, China
and Center for Theoretical and Experimental High Energy Physics, Liaoning Normal University,

Dalian 116029, China

(Received 2 April 2024; accepted 10 May 2024; published 4 June 2024)

In this paper, we have studied the realizations of the popular first trimaximal neutrino mixing and
neutrino μ − τ reflection symmetry (which are well motivated from the neutrino oscillation data and lead to
interesting phenomenological consequences) in the most minimal seesaw model with a pseudo-Dirac pair
of right-handed neutrinos and their consequences for leptogenesis. In order to realize the low-scale resonant
leptogenesis scenario, we have considered two possible ways of generating the tiny mass splitting between
the two right-handed neutrinos: one way is to modify their Majorana mass matrix to a form as shown in
Eq. (25); the other way is to consider the renormalization-group corrections for their masses. For the μ − τ
reflection symmetry, in order for leptogenesis to work, we have further considered the flavor-dependent
conversion efficiencies from the lepton asymmetry to the baryon asymmetry during the sphaleron processes
and its breaking via the renormalization-group corrections.

DOI: 10.1103/PhysRevD.109.115001

I. INTRODUCTION

As we know, the phenomena of neutrino oscillations
indicate that at least two of the three neutrinos are massive
(while the lightest one is still allowed to be exactly
massless) and their flavor eigenstates να (for α ¼ e, μ, τ)
are certain superpositions of the mass eigenstates νi

(for i ¼ 1, 2, 3) possessing definite masses mi: να ¼P
i Uαiνi with Uαi being the αi element of the 3 × 3

neutrino mixing matrix U [1]. In the standard parametriza-
tion, U is expressed in terms of three mixing angles θij (for
ij ¼ 12, 13, 23), one Dirac CP phase δ and two Majorana
CP phases ρ and σ as

U ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CA
0
B@

eiρ

eiσ

1

1
CA; ð1Þ

where the abbreviations cij ¼ cos θij and sij ¼ sin θij have
been employed.
Thanks to the various neutrino oscillation experiments,

three neutrino mixing angles and the neutrino mass squared
differencesΔm2

ij ≡m2
i −m2

j have been measured to a good
degree of accuracy, and there is also a preliminary result for
δ but with a large uncertainty. Several research groups have
performed global analyses of the accumulated neutrino

oscillation data to extract the values of these parameters
[2,3]. For definiteness, we will use the results in Ref. [2]
(reproduced in Table I here) as reference values in the
following numerical calculations. Note that the sign of
Δm2

31 remains undetermined, thereby allowing for two
possible neutrino mass orderings: the normal ordering
(NO) m1 < m2 < m3 and inverted ordering (IO) m3 <
m1 < m2. Unfortunately, neutrino oscillations are com-
pletely insensitive to the absolute scales of neutrino masses
and the Majorana CP phases. Their values can only be
inferred from certain nonoscillatory experiments such as
the neutrinoless double β decay experiments [4]. However,
so far there has not been any lower bound on the lightest
neutrino mass (allowing it to be exactly massless) nor any
constraint on the Majorana CP phases.
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From Table I one can see that θ12 and θ23 are close to
some special values (i.e., sin2 θ12 ∼ 1=3 and sin2 θ23 ∼ 1=2),
and θ13 is relatively small. In fact, before its value was
measured, it had been widely expected to be vanishingly
small. For the ideal case of sin2 θ12 ¼ 1=3, sin2 θ23 ¼ 1=2,
and θ13 ¼ 0, the neutrino mixing matrix takes a very
special form as

UTBM ¼ 1ffiffiffi
6

p

0
B@

2
ffiffiffi
2

p
0

1 − ffiffiffi
2

p
−

ffiffiffi
3

p

1 − ffiffiffi
2

p
−

ffiffiffi
3

p

1
CA; ð2Þ

which is referred to as the tribimaximal (TBM) mixing [5].
Such a remarkably simple and compact neutrino mixing
pattern has attracted people to believe that there exists some
flavor symmetry in the neutrino sector and to make a lot
of attempts to explore the possible flavor symmetries
underlying the observed neutrino mixing pattern [6]. In
the literature, there are two mainstream approaches for
the flavor-symmetry studies: one approach is to arrange a
certain flavor symmetry in the lepton sector and then break
it in different ways in the charged-lepton and neutrino
sectors so that a nontrivial neutrino mixing pattern may
arise; the other approach is to explore the minimal flavor
symmetries exhibited by the neutrino flavor parameters. In
the light of the experimental results for the neutrino flavor
parameters, two very attractive candidates of the latter
approach are the trimaximal mixing and μ − τ reflection
symmetry, which are briefly introduced as follows.
On one hand, the observation of a relatively large θ13

(compared to 0) compels us to make corrections for the
TBM mixing. A very popular and minimal choice is to
retain its first or second column while modifying the other
two columns, giving the first or second trimaximal (TM1 or
TM2) mixing [7]

UTM1 ¼
1ffiffiffi
6

p

0
B@

2 · ·

1 · ·

1 · ·

1
CA; UTM2 ¼

1ffiffiffi
3

p

0
B@

· 1 ·

· −1 ·

· −1 ·

1
CA:

ð3Þ

Because of its simplicity and interesting consequences, the
trimaximal mixing has attracted a lot of attention and many
flavor symmetries have been employed to build realistic
neutrino mass models realizing it [6].
On the other hand, owing to the preliminary experi-

mental hint for δ ∼ −π=2 [8], the μ − τ reflection symmetry
[9,10] has become increasingly popular, under which the
neutrino mass matrix is required to keep invariant with
respect to the following transformations of three left-
handed neutrino fields:

νe ↔ νce; νμ ↔ νcτ ; ντ ↔ νcμ; ð4Þ

with the superscript c denoting the charge conjugation of
relevant fields. Under this symmetry, the Majorana neutrino
mass matrix takes a form as

Mν ¼

0
B@

A B B�

B C D

B� D C�

1
CA; ð5Þ

with A and D being real, which leads to the following
interesting predictions for the neutrino mixing angles and
CP phases:

θ23 ¼
π

4
; δ¼�π

2
; ρ¼ 0 or

π

2
; σ ¼ 0 or

π

2
:

ð6Þ

As for the neutrino masses, one of the most popular and
natural ways of generating them is the type-I seesaw model
in which at least two heavy right-handed neutrinos NI
(I ¼ 1; 2;…) are introduced into the Standard Model
(SM) [11]. First of all, NI can constitute the Yukawa
coupling operators together with the left-handed neutrinos
να (which reside in the lepton doublets Lα) and the Higgs
doublet H: ðYνÞαILαHNI with ðYνÞαI being the αI element
of the Yukawa coupling matrix Yν. These operators will
generate the Dirac neutrino masses ðMDÞαI ¼ ðYνÞαIv [here
ðMDÞαI is the αI element of the Dirac neutrino mass matrix

TABLE I. The best-fit values (bf), 1σ errors, and 3σ ranges of six neutrino oscillation parameters extracted from a
global analysis of the existing neutrino oscillation data [2].

Normal ordering Inverted ordering

bf �1σ 3σ range bf �1σ 3σ range

sin2 θ12 0.303þ0.012
−0.012 0.270 → 0.341 0.303þ0.012

−0.012 0.270 → 0.341

sin2 θ23 0.451þ0.019
−0.016 0.408 → 0.603 0.569þ0.016

−0.021 0.412 → 0.613

sin2 θ13 0.02225þ0.00056
−0.00059 0.02052 → 0.02398 0.02223þ0.00058

−0.00058 0.02048 → 0.02416

δ=π 1.29þ0.20
−0.14 0.80 → 1.94 1.53þ0.12

−0.16 1.08 → 1.91

Δm2
21=ð10−5 eV2Þ 7.41þ0.21

−0.20 6.82 → 8.03 7.41þ0.21
−0.20 6.82 → 8.03

jΔm2
31j=ð10−3 eV2Þ 2.507þ0.026

−0.027 2.427 → 2.590 2.412þ0.028
−0.025 2.332 → 2.496
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MD] after the neutral component of H acquires a nonzero
vacuum expectation value (VEV) v ¼ 174 GeV. Further-
more, NI themselves can also have the Majorana mass
terms Nc

I ðMRÞIJNJ [here ðMRÞIJ is the IJ element of the
right-handed neutrino mass matrix MR]. Then, under the
seesaw condition MR ≫ MD, one will obtain an effective
Majorana mass matrix for three light neutrinos as

Mν ¼ −MDM−1
R MT

D; ð7Þ

by integrating the right-handed neutrinos out. Thanks to
such a formula, the smallness of neutrino masses can be
naturally explained by the heaviness of right-handed
neutrinos [e.g., Oð1013Þ GeV].
Remarkably, the seesaw model also provides an attrac-

tive explanation (which is known as the leptogenesis
mechanism [12,13]) for the baryon-antibaryon asymmetry
of the Universe [14],

YB ≡ nB − nB
s

≃ ð8.69� 0.04Þ × 10−11; ð8Þ

where nB (nB̄) denotes the baryon (antibaryon) number
density and s the entropy density. The leptogenesis mecha-
nism works in a way as follows: a lepton-antilepton
asymmetry is first generated from the out-of-equilibrium
and CP-violating decays of right-handed neutrinos and
then partly converted into the baryon-antibaryon asymme-
try via the sphaleron processes. It is well known that, in the
scenario of the right-handed neutrino masses being hier-
archial, in order to successfully reproduce the observed
value of YB, there exists a lower bound about 109 GeV for
the right-handed neutrino mass scale [15]. However, for
low-scale seesaw models, a successful leptogenesis can still
be achieved with the help of the resonant leptogenesis
scenario that is realized for nearly degenerate right-handed
neutrinos [16].
In this paper, following the simplicity principle, we will

consider the possibility that there only exist two right-
handed neutrinos N1 and N2, which is referred to as the
minimal seesaw model [17,18], and their Majorana mass
matrix takes a form as

MR ¼
�

0 M

M 0

�
: ð9Þ

Such a right-handed neutrino mass matrix can be naturally
realized in the minimal linear seesaw model [19,20] and is
the most minimal one in the sense that it only contains a
single mass parameter. Because of its simplicity, this form
of right-handed neutrino mass matrix has received consid-
erable attention [21]. More interestingly, it can also serve
as a unique starting point for the realization of low-energy
seesaw and leptogenesis regimes: initially, the two right-
handed neutrinos have equal masses M but opposite

parities [i.e., two eigenvalues of MR in Eq. (9) are −M
andM, respectively], forming a Dirac pair; if they acquire a
tiny mass splitting through some way (thus forming a
pseudo-Dirac pair [22]), then the resonant leptogenesis
scenario will be naturally realized. In this scenario, a
successful leptogenesis can be achieved even if the right-
handed neutrino mass is lowered to the TeV scale, which
has the potential to be directly accessed by presently
running and foreseeable collider experiments [23].
Motivated by the above facts, in this paper we will study

the realizations and consequences of the above-mentioned
TM1 mixing and μ − τ reflection symmetry (which serve
as powerful guiding principles for the organization of the
flavor structure of the seesaw models) in the minimal
seesaw model with MR in Eq. (9) and TeV-scale right-
handed neutrino masses (which have the potential to be
directly accessed by presently running and foreseeable
collider experiments). As we will see, such a combination
will further reduce the parameters of the seesaw model and
consequently make it more predictive.

II. REALIZATION AND CONSEQUENCE
OF THE TM1 MIXING

In this section, we study the realization and consequence
of the TM1 mixing in the minimal seesaw model with MR
in Eq. (9).

A. Realization of the TM1 mixing

We first consider the realization of the TM1 mixing in
the minimal seesaw model withMR in Eq. (9). In a general
minimal seesaw model, MD can be parametrized as

MD ¼

0
B@

a a0

b b0

c c0

1
CA; ð10Þ

with all the parameters being complex. For MR in Eq. (9),
the seesaw formula gives an Mν as

Mν ¼ −
1

M

0
B@

2aa0 ab0 þ ba0 ac0 þ ca0

ab0 þ ba0 2bb0 bc0 þ cb0

ac0 þ ca0 bc0 þ cb0 2cc0

1
CA: ð11Þ

In order for thisMν to yield the TM1 mixing, the following
relation must hold:

Mν ¼ RTM1MνRTM1 with RTM1 ¼ −
1

3

0
B@

1 2 2

2 −2 1

2 1 −2

1
CA;

ð12Þ

which leads to the requirements
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bþ c ¼ −2a; b0 þ c0 ¼ −2a0: ð13Þ

Therefore, in the minimal seesawmodel withMR in Eq. (9),
the form of MD that naturally realizes the TM1 mixing can
be expressed as

MD ¼

0
B@

a a0

−að1þ xÞ −a0ð1þ yÞ
−að1 − xÞ −a0ð1 − yÞ

1
CA; ð14Þ

with x and y being two dimensionless complex parameters.
The form of MD in Eq. (14) can be easily realized by

slightly modifying the flavor-symmetry models for realiz-
ing the TBM mixing (see, e.g., Ref. [24]): in the usual
minimal seesaw model, under the employed flavor sym-
metry (e.g., the A4 or S4 group [6]), three lepton doublets
are organized into a triplet representation L ¼ ðLe; Lμ; LτÞ,
while the two right-handed neutrinos are simply singlets.
To break the flavor symmetry in a proper way, two flavon
fields ϕJ (for J ¼ 1, 2) are introduced. Each of them is a
triplet [with three components ϕJ ¼ ½ðϕJÞ1; ðϕJÞ2; ðϕJÞ3�T]
under the flavor symmetry. Owing to such a setting, the
following dimension-five operators

X
I;J

yIJ
Λ

�
L̄eðϕJÞ1 þ L̄μðϕJÞ2 þ L̄τðϕJÞ3

�
HNI ð15Þ

will serve to generate the Dirac neutrino mass terms after
the electroweak and flavor symmetries are respectively
broken by nonzero VEVs of the Higgs and flavon fields.
Here yIJ are dimensionless coefficients and Λ is the energy
scale for the flavor-symmetry physics. Then, in the mass
basis of two right-handed neutrinos, the TBM mixing
will naturally arise under the following two conditions:
ϕ1 only couples with N1, while ϕ2 only couples with N2

(i.e., yIJ ¼ 0 for I ≠ J), which can be fulfilled by invoking
an auxiliary flavor symmetry; the VEV alignments of ϕ1

and ϕ2 come out as

hϕ1i ∝ ð1;−1;−1ÞT; hϕ2i ∝ ð0;−1; 1ÞT: ð16Þ

Note that these two forms of flavon VEValignments are just
those that are widely invoked to realize the TBM mixing
with the help of an A4 or S4 flavor symmetry. For their
realization under the flavor symmetry, see Refs. [6,25]. By
slightly modifying the above flavor-symmetry models, one
can naturally realize the form ofMD in Eq. (14): both ϕ1 and
ϕ2 couple with N1 and N2 simultaneously, and their VEV
alignments remain as in Eq. (16). This can be achieved
by simply discarding the aforementioned auxiliary flavor
symmetry.
Now, forMR in Eq. (9) andMD in Eq. (14), the resultant

Mν appears as

Mν ¼ −
aa0

M

0
B@

2 −2 − x − y −2þ xþ y

−2 − x − y 2ð1þ xÞð1þ yÞ 2ð1 − xyÞ
−2þ xþ y 2ð1 − xyÞ 2ð1 − xÞð1 − yÞ

1
CA: ð17Þ

Considering that the overall phase ofMν (which is just the phase of aa0) is of no physical meaning, we will take a and a0 to
be real without affecting the physical results. Such an Mν can be diagonalized by a TM1-type unitary matrix UTM1 as
follows:

U†
TM1MνU�

TM1 ¼ Dν ¼ diagð0; m2; m3Þ; ð18Þ

with

UTM1 ¼
1ffiffiffi
6

p

0
B@

2
ffiffiffi
2

p
0

1 −
ffiffiffi
2

p
−

ffiffiffi
3

p

1 −
ffiffiffi
2

p ffiffiffi
3

p

1
CA
0
B@

1 0 0

0 cos θ sin θe−iφ

0 − sin θeiφ cos θ

1
CA
0
B@

1 0 0

0 eiβ 0

0 0 eiγ

1
CA: ð19Þ

The parameters θ and φ can be determined as

tan 2θ ¼
ffiffiffi
6

p j3ðxþ yÞ þ 2jxj2yþ 2xjyj2j
4jxyj2 − 9

;

φ ¼ arg ½3ðxþ yÞ þ 2jxj2yþ 2xjyj2�; ð20Þ

and the corresponding neutrino masses and the associated β and γ phases are given by
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m2e2iβ ¼ −
aa0

M

�
6 cos2 θ þ 4xy sin2 θe−2iφ −

ffiffiffi
6

p
ðxþ yÞ sin 2θe−iφ�;

m3e2iγ ¼ −
aa0

M

�
4xy cos2 θ þ 6 sin2 θe2iφ þ

ffiffiffi
6

p
ðxþ yÞ sin 2θeiφ�: ð21Þ

Subsequently, the neutrino mixing angles and CP phases can be extracted from UTM1 in Eq. (19) as

s213 ¼
1

3
sin2 θ; s212 ¼

1

3
−

2s213
3 − 3s213

; s223 ¼
1

2
þ

ffiffiffi
6

p
sin 2θ cosφ

6 − 2 sin2 θ
;

tan 2θ23 cos δ ¼ −
1 − 5s213

2
ffiffiffi
2

p
s13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3s213

p ; σ ¼ φ − δþ β − γ ð22Þ

(note that the Majorana CP phase ρ becomes unphysical
due to the vanishing of m1). With the help of Eq. (22),
by inputting the 3σ ranges of s213 and s223, θ and jφj are
respectively constrained into the ranges 0.25–0.27 and
0.33π–0.65π, and s212 and jδj are respectively predicted
to lie in the ranges 0.347–0.350 and 0.34π–0.64π, which
are in good agreement with the neutrino oscillation data.
With the help of Eqs. (20)–(22) and the experimental

results for s213, s
2
23, Δm2

21, and Δm2
31, the allowed values of

aa0=M, jxj, jyj, argðxÞ, and argðyÞ can be calculated. The
results are shown in Fig. 1. Since Mν in Eq. (17) keeps
invariant with respect to the interchange x ↔ y, here we
have only shown the results for jxj > jyj, while the results
for jxj < jyj can be simply obtained with the help of such
an interchange. The results show that only for 0.8≲
aa0=M ≲ 1.9 meV can the model considered be consistent
with the experimental results. As can be seen from Eq. (17),
this means that the effective Majorana neutrino mass
jðMνÞeej (i.e., the ee element of Mν) that controls the rates
of neutrinoless double β decays is constrained into the
range 1.6–3.8 meV. Furthermore, jxj lies between 2 and 10,
while jyj is around 2; argðxÞ is mainly in the range −π–0,
while argðyÞ is within the range 0–π. It is interesting to note

that argðxÞ and argðyÞ have chance to take the special value
−π=2 (corresponding to a purely imaginary x or y), while
argðxÞ also has chance to take the special values 0 and π
(corresponding to a real x).

B. Consequence for leptogenesis

Before we study the consequence of the specific model
given in last subsection [with MR in Eq. (9) and MD in
Eq. (14)] for leptogenesis, we first elucidate our common
strategy for the leptogenesis calculations in the minimal
seesaw model withMR in Eq. (9), which will also apply for
the specific models studied in Sec. III. First of all, as is
usual in the literature, we go into the mass basis of right-
handed neutrinos via the following unitary transformation:

UT
RMRUR ¼ diagðM;MÞ with UR ¼ 1ffiffiffi

2
p

�
1 1

−1 1

�
P;

ð23Þ

where P ¼ diagði; 1Þ serves to make the right-handed
neutrino masses positive. In the meantime, MD becomes

FIG. 1. For the model given in Sec. II A, the allowed values of (a) jxj, jyj and (b) argðxÞ and argðyÞ as functions of aa0=M.
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M0
D ¼ MDUR: ð24Þ

It should be noted that at the present stage the two right-
handed neutrinos are degenerate in their masses, which
prohibits leptogenesis to work. In order to have a successful
leptogenesis, the degeneracy between the two right-handed
neutrino masses needs to be broken. However, in order to
take advantage of the resonant leptogenesis scenario, which
can help us accommodate successful leptogenesis in the
low-scale seesaw models, the splitting between the two
right-handed neutrino masses should be tiny. In this paper,
we consider two possible ways of generating the tiny
splitting between the two right-handed neutrino masses:
one way is to modify MR to a form as

MR ¼
�

μ M

M μ

�
; ð25Þ

with μ ≪ M. Such a modification of MR has the merit that
it only introduces one additional parameter and will not
alter the unitary matrix UR in Eq. (23) for the purpose of its
diagonalization. For such an MR, the two right-handed
neutrino masses are changed to M − μ and M þ μ, respec-
tively (yielding ΔM ≡M2 −M1 ¼ 2μ). Another way is to
consider the renormalization-group corrections for the
right-handed neutrino masses [26]: if the energy scale Λ
of the flavor-symmetry physics that shapes the special
textures of neutrino mass matrices is much higher than the
right-handed neutrino mass scale M where leptogenesis
takes place, then the renormalization-group evolution
effects (between the scales of Λ and M) may induce a
considerable splitting between the two right-handed neu-
trino masses [27],

ΔM ≃
M
8π2

�ðY 0†
ν Y 0

νÞ11 − ðY 0†
ν Y 0

νÞ22
�
ln

�
Λ
M

�
; ð26Þ

with Y 0
ν ¼ M0

D=v.

As is well known, depending on the temperature ranges
where leptogenesis takes place, different lepton flavors
may become relevant [28]. In the TeV-scale seesaw models
considered in the present paper, all the yα-related inter-
actions (with yα being the charged-lepton Yukawa cou-
plings) have entered thermal equilibrium, so all the three
lepton flavors are distinguishable and should be treated
separately. Furthermore, due to the quasidegeneracy of the
two right-handed neutrinos, their contributions to the final
baryon asymmetry will be of equal importance. For these
two reasons, the final baryon asymmetry can be calculated
according to [16]

YB ¼ cr
X
α

εακðm̃αÞ ¼ cr
�
εeκðm̃eÞ þ εμκðm̃μÞ þ ετκðm̃τÞ

�
;

ð27Þ

where c ¼ −28=79 describes the conversion efficiency
from the lepton-antilepton asymmetry to the baryon-
antibaryon asymmetry via the sphaleron processes, and
r ≃ 4 × 10−3 measures the ratio of the number density of
right-handed neutrinos to the entropy density. Then, the
efficiency factor κðm̃αÞ < 1 takes account of the washout
effects due to the inverse decay and various lepton-number-
violating scattering processes, whose value relies on the
following washout mass parameter and can be calculated
by numerically solving relevant Boltzmann equations [13]:

m̃α ¼ m̃1α þ m̃2α with m̃Iα ¼
jðM0

DÞαIj2
MI

: ð28Þ

Finally, εα is the sum of the α-flavor CP asymmetries εIα
(i.e., εα ¼ ε1α þ ε2α), which measure the asymmetries
between the decay rates of NI → Lα þH and their CP-
conjugate processes NI → L̄α þ H̄. In the resonant lepto-
genesis scenario, εIα are given by [16]

εIα ¼
Im

�ðM0�
DÞαIðM0

DÞαJ
�
MJðM0†

DM
0
DÞIJ þMIðM0†

DM
0
DÞJI

��
8πv2ðM0†

DM
0
DÞII

·
MIΔM2

IJ

ðΔM2
IJÞ2 þM2

IΓ2
J
; ð29Þ

with ΔM2
IJ ≡M2

I −M2
J and ΓJ ¼ ðM0†

DM
0
DÞJJMJ=ð8πv2Þ being the decay rate of NJ (for J ≠ I).

Now we are ready to study the consequence of the specific model given in last subsection for leptogenesis. For MD in
Eq. (14), M0

D is obtained as

M0
D ¼ MDUR ¼ 1ffiffiffi

2
p

0
B@

iða − a0Þ aþ a0

i½−að1þ xÞ þ a0ð1þ yÞ� −að1þ xÞ − a0ð1þ yÞ
i½−að1 − xÞ þ a0ð1 − yÞ� −að1 − xÞ − a0ð1 − yÞ

1
CA: ð30Þ

For this M0
D, the washout mass parameters m̃α and CP asymmetries εα are explicitly given by
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m̃e ¼
jaj2 þ ja0j2

M
; εe ¼ ðjaj2 − ja0j2ÞΘ;

m̃μ ¼
jað1þ xÞj2 þ ja0ð1þ yÞj2

M
; εμ ¼ ðjað1þ xÞj2 − ja0ð1þ yÞj2ÞΘ;

m̃τ ¼
jað1 − xÞj2 þ ja0ð1 − yÞj2

M
; ετ ¼ ðjað1 − xÞj2 þ ja0ð1 − yÞj2ÞΘ; ð31Þ

where Θ stands for

Θ ¼ −Im½aa0�ð3þ 2xy�Þ�MΔM
4πv2

	
1

ðM0†
DM

0
DÞ11½4ðΔMÞ2 þ Γ2

2�
þ 1

ðM0†
DM

0
DÞ22½4ðΔMÞ2 þ Γ2

1�



ð32Þ

with

ðM0†
DM

0
DÞ11 ¼

1

2
fjaj2ð3þ 2jxj2Þ þ ja0j2ð3þ 2jyj2Þ − 2Re½aa0�ð3þ 2xy�Þ�g;

ðM0†
DM

0
DÞ22 ¼

1

2
fjaj2ð3þ 2jxj2Þ þ ja0j2ð3þ 2jyj2Þ þ 2Re½aa0�ð3þ 2xy�Þ�g: ð33Þ

We first consider the possibility that the splitting
between the two right-handed neutrino masses is realized
by modifying MR into the form as shown in Eq. (25).
Figure 2(a) has shown the required values of μ (in order for
leptogenesis to work successfully) as functions of aa0=M.
In obtaining these results (and in the following numerical
calculations) we have taken M ¼ 1 TeV as a benchmark
value. In fact, the dependence of the final results on the
values of M is very weak, which is a generic feature of
the resonant leptogenesis scenario [16]. We have also
taken some benchmark values for a0=a. This is because,
although Mν is only dependent on the product of a and a0
[see Eq. (17)], the leptogenesis results do depend on
their individual values. The results show that, in order to

achieve a successful leptogenesis, μ should lie in the range
∼10−4– ∼ 103 eV, and a0=a should be a small quantity in
the range ∼0.001– ∼ 0.1. It is interesting to note that a
small a0=a is consistent with the linear seesaw model,
where an approximate lepton number conservation is
invoked [29]: the right-handed neutrinos N1 and N2 are
endowed with the lepton numbersþ1 and −1, respectively.
When the lepton number is conserved exactly, MR is
constrained into the form shown in Eq. (9), while the
second column of MD (i.e., a0) is simply vanishing. In
this way the relative smallness of a0 compared to a can
be naturally interpreted as a result of the lepton
number conservation being broken but only to a small
degree.

FIG. 2. (a) For the model given in Sec. II A, the values of μ that allow for a successful leptogenesis as functions of aa0=M, in the
scenario that the splitting between the two right-handed neutrino masses is realized by modifyingMR into the form as shown in Eq. (25).
(b) The values of Λ that allow for a successful leptogenesis, in the scenario that the splitting between the two right-handed neutrino
masses is generated from the renormalization-group corrections.
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We then consider the possibility that the splitting
between the two right-handed neutrino masses is generated
from the renormalization-group corrections as shown in
Eq. (26). Similar to Figs. 2(a) and 2(b) has shown the
required values of Λ (in order for leptogenesis to work
successfully) as functions of aa0=M. The results show that
successful leptogenesis can be achieved for Λ ranging from
TeV to the grand unification scale and for a0=a in the
range ∼0.001– ∼ 0.03.

III. REALIZATION AND CONSEQUENCE
OF THE μ− τ REFLECTION SYMMETRY

In this section, we study the realization and consequence
of the μ − τ reflection symmetry in the minimal seesaw
model with MR in Eq. (9).

A. Realization of the μ− τ reflection symmetry

We first consider the realization of the μ − τ reflection
symmetry in the minimal seesaw model withMR in Eq. (9).
In order for Mν in Eq. (11) to respect the μ − τ reflection
symmetry as in Eq. (5), one has the following two options:

Case I : a0 ¼ a�; b0 ¼ c�; c0 ¼ b�;

Case II : ImðaÞ ¼ Imða0Þ ¼ 0; c ¼ b�; c0 ¼ b0�:

ð34Þ

Therefore, in the minimal seesawmodel withMR in Eq. (9),
the form of MD that naturally realizes the μ − τ reflection
symmetry can be expressed as

Case I : MI
D ¼

0
B@

a a�

b c�

c b�

1
CA; Case II : MII

D ¼

0
B@

a a0

b b0

b� b0�

1
CA; ð35Þ

with a and a0 being real in case II and all the other parameters being complex.
Now, for MR in Eq. (9) and MD in Eq. (35), the seesaw formula gives an Mν as

Case I : MI
ν ¼ −

1

M

0
B@

2jaj2 ac� þ a�b ab� þ a�c

ac� þ a�b 2bc� jbj2 þ jcj2
ab� þ a�c jbj2 þ jcj2 2b�c

1
CA;

Case II : MII
ν ¼ −

1

M

0
B@

2aa0 ab0 þ ba0 ab0� þ b�a0

ab0 þ ba0 2bb0 bb0� þ b�b0

ab0� þ b�a0 bb0� þ b�b0 2b�b0�

1
CA: ð36Þ

Both MI
ν and MII

ν can be diagonalized by a unitary matrix as follows:

Uμτ ¼
1ffiffiffi
2

p

0
B@

1

eiϕ

−e−iϕ

1
CA
0
B@

ffiffiffi
2

p
c12c13

ffiffiffi
2

p
s12c13 −

ffiffiffi
2

p
iηδs13

−s12 − iηδc12s13 c12 − iηδs12s13 c13
s12 − iηδc12s13 −c12 − iηδs12s13 c13

1
CA
0
B@

eiα

eiβ

eiγ

1
CA; ð37Þ

with ηδ ¼ �1 for δ ¼ �π=2.
In case I, the parameters θ12, θ13, and ϕ of Uμτ are determined by

tan θ13 ¼ −
ffiffiffi
2

p
ηδIm½bc�e−2iϕ�

Re½ðac� þ a�bÞe−iϕ� ; tan 2θ13 ¼ −
2

ffiffiffi
2

p
ηδIm½ðac� þ a�bÞe−iϕ�

2jaj2 þ 2Reðbc�e−2iϕÞ − jbj2 − jcj2 ;

tan 2θ12 ¼
2Δ2

Δ3 − Δ1

; ð38Þ

with

Δ1 ¼ −2c213jaj2 þ s213
�
2Reðbc�e−2iϕÞ − jbj2 − jcj2�þ 2

ffiffiffi
2

p
ηδc13s13Im

�ðac� þ a�bÞe−iϕ�;
Δ2 ¼ −

ffiffiffi
2

p
c13Re

�ðac� þ a�bÞe−iϕ�þ 2ηδs13Imðbc�e−2iϕÞ;
Δ3 ¼ −2Reðbc�e−2iϕÞ − jbj2 − jcj2; ð39Þ
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and the corresponding neutrino masses are given by

m1e2iα ¼
1

M

�
c212Δ1 þ s212Δ3 − 2c12s12Δ2

�
; m2e2iβ ¼

1

M

�
s212Δ1 þ c212Δ3 þ 2c12s12Δ2

�
;

m3e2iγ ¼
1

M

�
c213

�jbj2 þ jcj2 − 2Reðbc�e−2iϕÞ�þ 2s213jaj2 þ 2
ffiffiffi
2

p
ηδc13s13Im

�ðac� þ a�bÞe−iϕ��: ð40Þ

Note that one of m1 and m3 will be vanishing, depending
on the parameter values. Obviously, since Δ1, Δ2, and Δ3

are real, one has α, β, γ ¼ 0 or π=2. From these results,
ρ and σ can be subsequently obtained as ρ ¼ α − γ and
σ ¼ β − γ.
With the help of Eqs. (38)–(40) and the experimental

results for θ12, θ13, Δm2
21, and Δm2

31, the allowed values
of the model parameters in MI

D can be calculated. Note
that MI

ν only depends on the combinations argða�bÞ ¼

argðbÞ − argðaÞ and argða�cÞ ¼ argðcÞ − argðaÞ among
argðaÞ, argðbÞ, and argðcÞ, so only jaj, jbj, jcj, argða�bÞ,
and argða�cÞ can be determined. Furthermore, since MI

ν

keeps invariant with respect to the interchange between
b ↔ c�, in the following we will only show the results for
jbj > jcj, while the results for jbj < jcj can be simply
obtained with the help of such an interchange. In the NO
case (with m1 ¼ 0, where the Majorana CP phase ρ
becomes unphysical), the results are given by

σ ¼ 0∶ jaj ¼ 2.7 × 104; jbj ¼ 2.7 × 105; jcj ¼ 5.1 × 104 eV;

argða�bÞ ¼ 0.40π; argða�cÞ ¼ 0.39π;

σ ¼ π

2
∶ jaj ¼ 4.3 × 104; jbj ¼ 1.5 × 105; jcj ¼ 7.2 × 104 eV;

argða�bÞ ¼ −0.18π; argða�cÞ ¼ 0.83π: ð41Þ

In obtaining these results, we have taken M ¼ 1 TeV as a
benchmark value. For other values of M, the results of jaj,
jbj, and jcj can be obtained with the help of a simple
rescaling law, while the results of arg ða�bÞ and arg ða�cÞ
keep invariant. Furthermore, in the numerical calculations,
we have fixed δ ¼ −π=2 out of �π=2, which is more
experimentally favored. From these results, it is direct to

obtain the effective Majorana neutrino mass jðMνÞeej that
controls the rates of neutrinoless double β decays to be 1.4
or 3.7 meV in the case of σ ¼ 0 or π=2. In the IO case (with
m3 ¼ 0, where only the difference ρ − σ between the two
MajoranaCP phases is of physical meaning), the results are
given by

ρ − σ ¼ 0∶ jaj ¼ 1.6 × 105; jbj ¼ 1.3 × 105; jcj ¼ 9.5 × 104 eV;

argða�bÞ ¼ 0.50π; argða�cÞ ¼ 0.50π;

ρ − σ ¼ π

2
∶ jaj ¼ 9.7 × 104; jbj ¼ 3.4 × 105; jcj ¼ 1.8 × 104 eV;

argða�bÞ ¼ 0.99π; argða�cÞ ¼ −0.20π; ð42Þ

and jðMνÞeej is obtained to be 51.2 or 18.8 meV in the case of ρ − σ ¼ 0 or π=2.
In case II, the parameters θ13 and ϕ of Uμτ are determined by

tan θ13 ¼ −
ffiffiffi
2

p
ηδIm½bb0e−2iϕ�

Re½ðab0 þ ba0Þe−iϕ� ; tan 2θ13 ¼ −
ffiffiffi
2

p
ηδIm½ðab0 þ ba0Þe−iϕ�

aa0 þ Reðbb0e−2iϕÞ − Reðbb0�Þ ; ð43Þ

while θ12 is same as in Eq. (38) but with

Δ1 ¼ −2c213aa0 þ 2s213
�
Reðbb0e−2iϕÞ − Reðbb0�Þ�þ 2

ffiffiffi
2

p
ηδc13s13Im

�ðab0 þ ba0Þe−iϕ�;
Δ2 ¼ −

ffiffiffi
2

p
c13Re

�ðab0 þ ba0Þe−iϕ�þ 2ηδs13Imðbb0e−2iϕÞ;
Δ3 ¼ −2Reðbb0e−2iϕÞ − 2Reðbb0�Þ: ð44Þ
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The expressions for m1e2iα and m3e2iγ are same as in
Eq. (40), while the expression for m3e2iγ becomes

m3e2iγ ¼
1

M

�
2c213

�
Reðbb0�Þ − Reðbb0e−2iϕÞ�þ 2s213aa

0

þ 2
ffiffiffi
2

p
ηδc13s13Im

�ðab0 þ ba0Þe−iϕ��: ð45Þ

With the help of Eqs. (43)–(45) and the experimental
results for θ12, θ13, Δm2

21, and Δm2
31, the allowed values of

the model parameters inMII
D can be calculated. Figure 3 has

shown the allowed values of jaj, jbj, ja0j, and jb0j as
functions of a0=a. Note that since MII

ν keeps invariant with
respect to the joint interchanges a ↔ a0 and b ↔ b0, here
we have only shown the results for ja0j > jaj, while the
results for ja0j < jaj can be simply obtained with the help of
such interchanges. Furthermore, corresponding to each
value combination of jaj and ja0j, there are two value
combinations of jbj and jb0j. In order to distinguish these

two value combinations, we have used jb1j=jb01j (in solid
lines) and jb2j=jb02j (in dashed lines) to denote them.

B. Consequence for leptogenesis

Then, we study the consequence of the specific model
given in last subsection [with MR in Eq. (9) and MD in
Eq. (35)] for leptogenesis. For MD in Eq. (35), M0

D is
obtained as

Case I : MI0
D ¼ MI

DUR ¼ 1ffiffiffi
2

p

0
B@

−2ImðaÞ 2ReðaÞ
iðb − c�Þ bþ c�

iðc − b�Þ b� þ c

1
CA;

Case II : MII0
D ¼ MII

DUR ¼ 1ffiffiffi
2

p

0
B@

iða − a0Þ aþ a0

iðb − b0Þ bþ b0

iðb� − b0�Þ b� þ b0�

1
CA:

ð46Þ

FIG. 3. For the model withMII
D given in Sec. III A, the allowed values of jaj, jbj, ja0j, and jb0j as functions of a0=a. (a) In the NO case

with σ ¼ 0. (b) In the NO case with σ ¼ π=2. (c) In the IO case with ρ − σ ¼ 0. (d) In the IO case with ρ − σ ¼ π=2.
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In case I, the washout mass parameters m̃α and CP asymmetries εα are explicitly given by

m̃e ¼
2jaj2
M

; m̃μ ¼ m̃τ ¼
jbj2 þ jcj2

M
; εe ¼ 0;

εμ ¼ −ετ ¼ −ðjbj2 − jcj2Þ½ReðaÞImðaÞ þ ImðbcÞ�MΔM
2πv2

×

	
1

ðMI0†
D MI0

DÞ11½4ðΔMÞ2 þ Γ2
2�
þ 1

ðMI0†
D MI0

DÞ22½4ðΔMÞ2 þ Γ2
1�



; ð47Þ

with

ðMI0†
D MI0

DÞ11 ¼ 2½ImðaÞ�2 þ jbj2 þ jcj2 − 2ReðbcÞ;
ðMI0†

D MI0
DÞ22 ¼ 2½ReðaÞ�2 þ jbj2 þ jcj2 þ 2ReðbcÞ: ð48Þ

This means that the contributions of the μ and τ flavors
to the baryon asymmetry exactly cancel out each other
(due to εμ ¼ −ετ and m̃μ ¼ m̃τ), while the e flavor has no
contribution (due to εe ¼ 0). Therefore, in the present case,
in order for leptogenesis to work, one not only needs to
generate a splitting between the two right-handed neutrino
masses but also needs to break the exact cancellation
between the contributions of the μ and τ flavors to the
baryon asymmetry. Note that in Eq. (27) we have used a
flavor-universal conversion factor (i.e., c ¼ −28=79) for
the lepton-antilepton asymmetries in three lepton flavors to
the baryon-antibaryon asymmetry via the sphaleron proc-
esses. However, as shown in Ref. [30], the hierarchies in the
charged-lepton Yukawa couplings lead to different con-
version factors for different lepton flavors, although the
differences among them are very tiny. This is just what we
need to break the exact cancellation between the contri-
butions of the μ and τ flavors to the baryon asymmetry: to
be explicit, in case I, after taking account of such an effect,

the final baryon asymmetry is given by [30]

YB ¼ r
�ðc − 0.03y2eÞεeκðm̃eÞ þ ðc − 0.03y2μÞεμκðm̃μÞ

þ ðc − 0.03y2τÞετκðm̃τÞ
�

≃ −0.03y2τrετκðm̃τÞ ≃ −3 × 10−6rετκðm̃τÞ: ð49Þ

Now, we first consider the possibility that the splitting
between the two right-handed neutrino masses is realized
by modifying MR into the form as shown in Eq. (25).
Note that such a modification has the merit that it does not
jeopardize the already-established μ − τ reflection sym-
metry. Figure 4 has shown the maximally allowed values of
YB as functions of μ, which are obtained by freely varying
the values of argðaÞ [which has not been constrained by the
neutrino oscillation data as discussed above Eq. (41)].
Unfortunately, the results show that in the present case the
observed value of YB cannot be successfully reproduced. In
the NO case with σ ¼ 0, YB can reach 3 × 10−11 at most,
smaller than its observed value by a factor of about 3. In the
IO case, YB is smaller than its observed value by about 2
orders of magnitude at least.
Then, we consider the possibility that the splitting between

the two right-handed neutrino masses is generated from the

FIG. 4. For the model with MI
D given in Sec. III A, the maximally allowed values of YB as functions of μ, in the scenario that the

splitting between the two right-handed neutrino masses is realized by modifying MR into the form as shown in Eq. (25). (a) In the NO
case with σ ¼ 0 (in red) and π=2 (in blue). (b) In the IO case with ρ − σ ¼ 0 (in red) and π=2 (in blue). The green horizontal line
indicates the observed value of YB.
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renormalization-group corrections as shown in Eq. (26).
However, it should be noted that the renormalization-group
evolution effects also render the breaking of the μ − τ
reflection symmetry (and consequently the exact cancella-
tion between the contributions of the μ and τ flavors to the
baryon asymmetry), making another contribution to the final
baryon asymmetry. This is because, due to the differences
among the charged-lepton Yukawa couplings yα, the Dirac
neutrino mass matrix MDðMÞ at the right-handed neutrino
mass scaleM will be corrected by the renormalization-group
evolution effects to the following form from its counterpart
MDðΛÞ at the flavor-symmetry scale [31]:

MDðMÞ ∝

0
B@

1þ Δe

1þ Δμ

1þ Δτ

1
CAMDðΛÞ; ð50Þ

with

Δα ¼
3

32π2

Z
lnðΛ=MÞ

0

y2αdt ≃
3

32π2
y2α ln

�
Λ
M

�
: ð51Þ

Before proceeding, we point out that, owing to Δe ≪
Δμ ≪ Δτ ≪ 1, it is an excellent approximation for us to
only keep Δτ in the following calculations, and one has
Δτ ≃ 2 × 10−6 in the SM, for Λ=M ¼ 10 as a benchmark
value. Now that the μ − τ reflection symmetry has broken,
one obtains

ετ ≃ −ð1þ 2ΔτÞεμ; m̃τ ≃ ð1þ 2ΔτÞm̃μ: ð52Þ

Consequently, the final baryon asymmetry is given by

YB ¼ crεμ
�
κðm̃μÞ− ð1þ 2ΔτÞκ½ð1þ 2ΔτÞm̃μ�

�
≃−crεμ

�
2Δτκðm̃μÞ þ κ½ð1þ 2ΔτÞm̃μ�− κðm̃μÞ

�
; ð53Þ

which does not suffer the exact cancellation between the
contributions of the μ and τ flavors any more. Taking
account of both the contributions from Eqs. (49) and (53) to
the final baryon asymmetry, Fig. 5 has shown the maximally
allowed values of YB as functions of Λ. Unfortunately, the
results show that in the present case the observed value of YB
cannot be successfully reproduced either. Similar to the
results in the scenario that the splitting between the two
right-handed neutrino masses is realized by modifying MR
into the form as shown in Eq. (25), in the NO case with
σ ¼ π=2, YB can reach 2 × 10−11 at most, smaller than its
observed value by a factor of about 4. In the IO case, YB is
smaller than its observed value by about 3 orders of
magnitude or even worse.
In case II, the washout mass parameters m̃α are explicitly

given by

m̃e ¼
a2 þ a02

M
; m̃μ ¼ m̃τ ¼

jbj2 þ jb0j2
M

; ð54Þ

while the CP asymmetries εα are simply vanishing. This
means that, in the present case, leptogenesis cannot work
through the mechanism described by Eq. (49) unless the
μ − τ reflection symmetry gets broken. Therefore, we will
not consider the possibility that the splitting between the
two right-handed neutrino masses is realized by modifying
MR into the form as shown in Eq. (25), which keeps the
μ − τ reflection symmetry intact. Now we consider the
possibility that the splitting between the two right-handed
neutrino masses is generated from the renormalization-
group corrections as shown in Eq. (26), along with which
the renormalization-group evolution effects also lead to the
breaking of the μ − τ reflection symmetry as shown in
Eq. (50). Thanks to the renormalization-group evolution
effects, εα now become nonvanishing as

FIG. 5. Same as Fig. 4, except that here shown are the maximally allowed values of YB as functions of Λ, in the scenario that the
splitting between the two right-handed neutrino masses is generated from the renormalization-group corrections. (a) NO; (b) IO cases.
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εe ≃ Δτða2 − a02ÞImðbb0�ÞMΔM
2πv2

	
1

ðMII0†
D MII0

D Þ11½4ðΔMÞ2 þ Γ2
2�
þ 1

ðMII0†
D MII0

D Þ22½4ðΔMÞ2 þ Γ2
1�



;

ετ ≃ εμ ≃
jbj2 − jb0j2
a2 − a02

εe; ð55Þ

with

ðMII0†
D MII0

D Þ11 ¼
1

2
ða − a0Þ2 þ jbj2 þ jb0j2 − 2Reðbb0�Þ;

ðMII0†
D MII0

D Þ22 ¼
1

2
ðaþ a0Þ2 þ jbj2 þ jb0j2 þ 2Reðbb0�Þ:

ð56Þ

Similar to Figs. 5 and 6 has shown the maximally allowed
values of YB as functions of Λ. We see that, in the NO case
with σ ¼ π=2, YB can reach 5 × 10−11 at most, smaller than
its observed value by a factor of about 2. In the IO case,
YB is smaller than its observed value by about 3 orders of
magnitude.
In the literature, most of the flavor-symmetry models

have been formulated in the minimal supersymmetric SM
(MSSM) framework for a reason as follows: in order to
break the flavor symmetry properly, one needs to introduce
some flavon fields that transform as multiplets of the flavor
symmetry and develop particular VEV alignments (as we
have seen in the above); and the most popular and perhaps
natural approach to derive the desired flavon VEV align-
ments is provided by the so-called F-term alignment
mechanism, which is realized in the supersymmetric
context [6]. For this reason, we will repeat the above study
in the MSSM framework.
There are the following three key differences between

the leptogenesis in the SM and MSSM frameworks that are
relevant for our study: (1) In the MSSM framework, one
has y2τ ¼ ð1þ tan2 βÞm2

τ=v2 (with tan β being the ratio of
the VEVof the up-type Higgs field to that of the down-type

Higgs field), so Δτ can be greatly enhanced by a large tan β
value. (2) In the MSSM framework, the renormalization-
group evolution (RGE) induced right-handed neutrino mass
splitting differs by a factor of 2 from that in the SM
framework [i.e., the factor 8π2 on the right-hand side of
Eq. (26) should be replaced by 4π2]. (3) In the MSSM
framework, in spite of the doubling of the particle spectrum
and of the large number of new processes involving
superpartners, one does not expect major numerical
changes with respect to the SM framework. To be specific,
for given values of MI , Yν, and Yl, the total effect of
supersymmetry on the final baryon asymmetry can simply
be summarized as a constant factor (for a detailed explan-
ation, see Sec. X.1 of the third reference in Ref. [13]),

YMSSM
B

YSM
B






MI;Yν;Yl

≃

( ffiffiffi
2

p ðin strong washout regimeÞ;
2

ffiffiffi
2

p ðin weak washout regimeÞ:
ð57Þ

Now we are ready to perform the numerical calculations
about the leptogenesis in the supersymmetric context. The
numerical results show that the observed value of YB can be
successfully reproduced for sufficiently large values of
tan β. In Figs. 7 and 8 [for the models with MI

D and MII
D in

Eq. (35), respectively], we have shown the minimal values
of tan β that allow for a successful leptogenesis, as func-
tions of the flavor-symmetry scale Λ. One can see that, for
large values of Λ [which lead to relatively large RGE
effects, see Eq. (51)], one just needs a relatively small value
of tan β (around 10) in order to successfully reproduce the
observed value of YB. However, for smaller values of Λ
(which lead to relatively small RGE effects), one needs

FIG. 6. Same as Fig. 5, except that here shown are the results for the model with MII
D given in Sec. III A. (a) NO; (b) IO cases.
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FIG. 7. For the model with MI
D given in Sec. III A, in the MSSM framework, the minimal values of tan β that allow for a successful

leptogenesis as functions of the flavor-symmetry scale Λ, in the (a) NO and (b) IO cases.

FIG. 8. Same as Fig. 7, except that these results are for the model with MII
D given in Sec. III A. (a) NO; (b) IO cases.

FIG. 9. For the model withMI
D given in Sec. III A, when the μ-term in Eq. (25) and RGE effects are taken into account simultaneously,

the maximally allowed values of YB as functions of the right-handed neutrino mass splitting ΔM, in the (a) NO and (b) IO cases. The
green horizontal line indicates the observed value of YB. These results are obtained by taking Λ ¼ 1015 GeV.
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larger values of tan β (a few tens) to enhance the RGE
effects so that the observed value of YB can be successfully
reproduced.
Finally, we study what would happen when the μ-term in

Eq. (25) and RGE effects are taken into account simulta-
neously. In this scenario, the RGE effects will contribute
to the breaking of μ − τ reflection symmetry and the
generation of right-handed neutrino mass splitting simulta-
neously, while the μ-term only contributes to the right-
handed neutrino mass splitting. For this scenario, in Figs. 9
and 10 [for the models with MI

D and MII
D in Eq. (35),

respectively], we have shown the maximally allowed values
of YB as functions of the right-handed neutrino mass
splitting ΔM. We see that the observed value of YB cannot
be successfully reproduced, except that for the model with
MII

D in Eq. (35) there exists a very little parameter space (for
ΔM ≃ 0.01 eV) that marginally allows for a successful
leptogenesis in the NO case [see Fig. 10(a)].

IV. SUMMARY

In this paper, following the simplicity principle, we have
considered the possibility that there only exist two right-
handed neutrinos, and their Majorana mass matrix takes a
form as in Eq. (9). Such a mass matrix can be naturally
realized in the minimal linear seesaw model and is the
most minimal one in the sense that it only contains a single
mass parameter. In this scenario, the two right-handed
neutrinos are degenerate in their masses. If they acquire a
tiny mass splitting through some way, then the resonant
leptogenesis scenario will be naturally realized. In this
scenario, a successful leptogenesis can be achieved even if
the right-handed neutrino mass M is lowered to the TeV
scale, which has the potential to be directly accessed by
presently running and foreseeable collider experiments.
On the other hand, inspired by the special values of the

neutrino mixing angles and a preliminary experimental hint
for δ ∼ −π=2, in the literature the possibility that there may

exist a certain flavor symmetry in the lepton sector has been
widely studied. The flavor symmetries can serve as a useful
guiding principle to help us organize the flavor structure of
the neutrino mass model and give some interesting phe-
nomenological consequences. Two popular candidates of
them are the TM1 mixing and μ − τ reflection symmetry.
Motivated by these facts, we have studied the realizations
and consequences of the TM1 mixing and μ − τ reflection
symmetry in the minimal seesaw model withMR in Eq. (9)
and TeV-scale right-handed neutrino masses.
In the minimal seesaw model considered in this paper,

the TM1 mixing can be naturally realized by taking MD to
have a form as shown in Eq. (14). As discussed below
Eq. (14), such a form of MD can be easily realized by
slightly modifying the flavor-symmetry models for realiz-
ing the ever-popular TBM mixing. Then, in Fig. 1 we have
shown the allowed values of the parameters of MD by
inputting the neutrino oscillation data. On the basis of these
results, we have mainly studied the consequences of this
model for leptogenesis. In order for leptogenesis to work,
a splitting ΔM between the two right-handed neutrino
masses should arise. In this regard, we have considered
two possible ways of generating the tiny splitting between
the two right-handed neutrino masses: one way is to modify
MR to a form as shown in Eq. (25) which leads to
ΔM ¼ 2μ; the other way is to consider the renormaliza-
tion-group corrections for the right-handed neutrino masses
which leads to a ΔM as shown in Eq. (26). The numerical
results show that in both of these two scenarios the
observed value of YB can be reproduced successfully,
and Fig. 2 has shown the required values of μ and the
flavor-symmetry scale Λ for leptogenesis being successful.
On the other hand, the μ − τ reflection symmetry can be

naturally realized by taking MD to have one of the two
forms as shown in Eq. (35). For MI

D, the values of its
parameters can be determined as in Eqs. (41) and (42) by
inputting the neutrino oscillation data. In this case, in order
for leptogenesis to work, one not only needs to generate a

FIG. 10. Same as Fig. 9, except that these results are for the model with MII
D given in Sec. III A. (a) NO; (b) IO cases.
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splitting between the two right-handed neutrino masses,
but also needs to break the exact cancellation between the
contributions of the μ and τ flavors to the baryon asym-
metry. The latter can be achieved either with the help of the
different conversion efficiencies for the lepton-antilepton
asymmetries in different lepton flavors to the baryon
asymmetry during the sphaleron processes or just with
the help of the renormalization-group evolution effects that
serve to generate the splitting between the two right-handed
neutrino masses. Unfortunately, the numerical results show
that, in both of these two scenarios, the observed value of
YB cannot be reproduced successfully. Nevertheless, in the
supersymmetric SM where the yτ-related effects can be
greatly enhanced by a large tan β value, the observed value
of YB has a chance to be reproduced.
For MII

D, Fig. 3 has shown the allowed values of its
parameters by inputting the neutrino oscillation data. In this
case, due to the vanishing of the CP asymmetries εα,
leptogenesis cannot work unless the μ − τ reflection sym-
metry gets broken. Therefore, we have not considered the

possibility that the splitting between the two right-handed
neutrino masses is realized by modifying MR into the form
as shown in Eq. (25), which keeps the μ − τ reflection
symmetry intact. We have considered the possibility that the
splitting between the two right-handed neutrino masses is
generated from the renormalization-group corrections, along
with which the renormalization-group evolution effects also
render the breaking of the μ − τ reflection symmetry. As in
theMI

D scenario, the renormalization-group evolution effects
cannot help us successfully reproduce the observed value of
YB in the SM, but can do so in the supersymmetric SM.
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