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We apply the Grabowska-Kaplan framework, originally proposed for lattice chiral gauge theories, to
QCD.We show that the resulting theory contains a conserved and gauge invariant singlet axial current, both
on the lattice and in the continuum limit. This must give rise to a difference with QCD, with the simplest
possibility being a superfluous Nambu-Goldstone boson in the physical spectrum not present in QCD. We
find a similar unwanted conserved current in the recent “disk” formalism, this time limiting ourselves to the
continuum formulation. A similar problem is expected when either of these formalisms is used for its
original goal of constructing lattice chiral gauge theories. Finally we discuss a conjecture about the possible
dynamics that might be associated with the unwanted conserved current and the fate of ‘t Hooft vertices.
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I. INTRODUCTION

The original goal of Kaplan’s domain-wall fermions
(DWFs) was to construct lattice chiral gauge theories [1].
Much later, a concrete realization of the original idea was
proposed by Grabowska and Kaplan [2]. As in the standard
lattice formulation of QCD using DWFs [3,4], the basic
geometry can be taken to be a five-dimensional “slab,” with
Weyl fermions of opposite chiralities residing on the two
four-dimensional boundaries.
In QCD, the four-dimensional gauge field is taken to be

independent of the fifth coordinate. The Weyl fermions on
both boundaries (or “walls”) couple to the gauge field with
equal strength, thereby forming Dirac fermions: one Dirac
fermion per each five-dimensional DWF field. By contrast,
in the Grabowska-Kaplan framework the gauge field inside
the five-dimensional (5D) slab is defined via gradient
flow [5] in the fifth direction, with the dynamical four-
dimensional (4D) gauge field on the near wall serving to
start the flow. The goal is that, while preserving gauge
invariance, the gauge field will die out well before reaching
the Weyl fermion on the far wall, thereby decoupling it
from the gauge field. If successful, then only the 4D Weyl
fermion on the near wall of each 5D slab would remain
coupled to the gauge field. All these Weyl fermions can be

chosen to have the same handedness, and the construction
could thus be used for a nonperturbative, gauge invariant
definition of chiral gauge theories in four dimensions.
Recently, another proposal was put forward by Kaplan

[6] and by Kaplan and Sen [7]. In the new proposal the slab
geometry is replaced by a disk geometry, and the rim of the
disk is identified with one of the four physical dimensions.1

Remarkably, the rim supports a single Weyl fermion of one
chirality only [6]. Moreover, this feature appears to survive
lattice discretization [7], thereby circumventing the no-go
theorems [8,9]. By construction, the dynamical gauge field
resides on the rim of the disk and is extended into the whole
disk via a radial gradient flow, once again maintaining
gauge invariance.
In both the slab and disk geometries, it was argued that a

necessary condition that the degrees of freedom in the extra
dimension will fully decouple in the infrared is that the
(chiral) fermion spectrum of the target 4D gauge theory
satisfy the anomaly cancellation condition for the gauge
symmetry. By contrast, if the fermion spectrum suffers
from a gauge anomaly, then the effective low-energy 4D
theory will remain nonlocal. Thus, both formalisms pass an
important consistency test.
The question arises whether there are other possible

stumbling blocks for the successful construction of lattice
chiral gauge theories. In order to examine this question,
here we turn our attention to the global flavor symmetries
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1The remaining three physical dimensions are Cartesian.
While we focus on 4þ 1 dimensions in this paper, the discussion
generalizes straightforwardly to 2þ 1 dimensions.
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and their associated conserved currents. Our main finding is
that, in both the slab and disk geometries, there is always
one “superfluous” 4D current which is both gauge invariant
and conserved and which is not present in the target
gauge theory. In order to highlight the persistence of this
problem, we examine the application of the slab and disk
frameworks for an alternative lattice definition of vectorlike
theories, taking one-flavor QCD as the target 4D theory for
our main example. In the case of a vectorlike theory, the
unwanted conserved current is the singlet axial current,
which should be anomalous. In the case that the target
gauge theory is chiral, the additional conserved current is
the total fermion number, which, once again, should be
anomalous.
In Sec. II we consider the slab geometry, focusing mainly

on one-flavor QCD to demonstrate the issue. We work on
the lattice, and thus our conclusions apply both at finite
lattice spacing and in the continuum limit. In Sec. III we
discuss the novel disk framework, limiting ourselves to the
continuum formulation. Our findings are similar to those
of the slab framework. In Sec. IV we conjecture on the
dynamics that might be associated with the superfluous
conserved axial current, focusing on the fate of the ‘t Hooft
vertices of the target 4D theory. We conclude in Sec. V. In
the Appendix we discuss lattice gradient flows.

II. CONSERVED CURRENTS IN THE
GRABOWSKA-KAPLAN FRAMEWORK

We discuss here the application of the Grabowska-
Kaplan (GK) formalism [2] to QCD, using the one-flavor
theory as an example. The main conclusion is that the GK
framework gives rise to a singlet axial current which is
simultaneously gauge invariant and conserved. The
straightforward interpretation is that this, in turn, gives
rise to a superfluous Nambu-Goldstone boson (NGB) in the
physical spectrum.
We begin with a lattice setup containing two DWFs. In

the standard DWF formulation of QCD [3,4], this provides
for the fermion content of the two-flavor theory. However,
within the GK framework only the Weyl fermion on the
near wall of each DWF is expected to couple to the gauge
field. This will leave us with a total of two Weyl fermions
(of opposite chiralities), in agreement with the fermion
content of the one-flavor theory.
In more detail, the lattice theory contains two five-

dimensional GK fields, both in the fundamental represen-
tation of SU(3). The fifth coordinate takes values s ¼
0; 1;…; N5 − 1. We assume that one of the GK fields,
denoted ΨðRÞ, has a right-handed (RH) Weyl field on the
near wall, while the other, denoted ΨðLÞ, has a left-handed
(LH) Weyl field on the near wall. Taken together, we thus
have a single Dirac fermion, the matter content of one-
flavor QCD. The (bare) quark fields are identified with the
5D fields on the s¼0 layer, namely, ψRðxÞ¼ΨðRÞðx;s¼0Þ

and ψLðxÞ ¼ ΨðLÞðx; s ¼ 0Þ. For simplicity, we assume
that the quark mass is zero.
In practice, flipping the chirality of the Weyl fermion on

the near wall is done by flipping the sign of γ5 everywhere
in the lattice action.2 Therefore, there is no continuous
symmetry that interchanges the two 5D fields ΨðRÞ and
ΨðLÞ. However, each 5D field is endowed with an exact
U(1) symmetry that acts on that field only. Following
closely Refs. [4,10], the corresponding Noether currents are

RμðxÞ ¼
1

2

XN5−1

s¼0

�
Ψ̄ðRÞ

x;s ð1þ γμÞUx;s;μΨ
ðRÞ
xþμ̂;s

− Ψ̄ðRÞ
xþμ̂;sð1 − γμÞU†

x;s;μΨðRÞ
x;s

�
; ð2:1aÞ

LμðxÞ ¼
1

2

XN5−1

s¼0

�
Ψ̄ðLÞ

x;s ð1þ γμÞUx;s;μΨ
ðLÞ
xþμ̂;s

− Ψ̄ðLÞ
xþμ̂;sð1 − γμÞU†

x;s;μΨðLÞ
x;s

�
: ð2:1bÞ

These currents are both gauge invariant and conserved.
Notice that, unlike in the standard DWF formulation of
QCD, here the four-dimensional link variables depend on
the fifth coordinate s via the gradient flow.
We may alternatively construct a vector and an axial

current,

Vμ ¼ Rμ þ Lμ; ð2:2aÞ

Aμ ¼ Rμ − Lμ: ð2:2bÞ

These currents, too, are gauge invariant and conserved.
The U(1) symmetry associated with the vector current Vμ

rotates ψR and ψL with the same phase. This is baryon
number symmetry Uð1ÞB, a good symmetry of (one-flavor)
QCD. The other U(1) symmetry, associated with the current
Aμ, rotates ψR and ψL with opposite phases; this is the
axial symmetry Uð1ÞA, which is anomalous in QCD. The
problem is thus that in the GK framework the axial sym-
metry is an exact symmetry, too. As a result, also the
(singlet) axial current Aμ is both conserved and gauge
invariant within the GK framework. This generates a
conflict between the standard properties of (one-flavor)
QCD and the features of its GK formulation. If the GK
framework for regulating QCD leads to a consistent
continuum limit, that continuum limit must be different
from the one obtained from any of the standard lattice
regularizations of QCD.
Let us elaborate on this conflict. In any standard

formulation of QCD, the axial current Aμ is anomalous,

2In the standard DWF formulation of QCD, this operation can
be undone by a reflection in the fifth dimension, because the
gauge field is independent of the fifth coordinate.
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∂μAμ ¼ X; X ¼ cg2 trðFF̃Þ; ð2:3Þ

with c some nonvanishing numerical constant. This gives
rise to anomalous Ward-Takahashi identities (WTIs).
Consider for example the momentum-space WTI (in the
continuum and chiral limits)

ipμhAμηiðpÞ ¼ hXηiðpÞ þ Σ; ð2:4Þ

where η ¼ ψ̄LψR − ψ̄RψL is the pseudoscalar density, and
Σ ¼ hψ̄LψR þ ψ̄RψLi is the fermion condensate. Thanks
to the anomalous term, this WTI does not require the
existence of any massless particle when Σ ≠ 0, consistent
with the large mass of the η0 meson in QCD.
By contrast, within the GK formulation of the massless

one-flavor theory, the gauge invariant current Aμ has no
anomaly, and, after taking the continuum limit, we obtain
the WTI3

ipμhAμηiðpÞ ¼ Σ: ð2:5Þ

Note that now Σ is a true order parameter, since the axial
symmetry Uð1ÞA is exact in the GK formulation. The next
step is to decompose the correlator in terms of invariant
amplitudes, requiring translation and Lorentz invariance.4

Thanks to the simple form of the correlator, it depends on
only a single invariant amplitude,

hAμηi ¼ −ipμFðp2Þ: ð2:6Þ

Substituting this back into Eq. (2.5), the unique solution is
Fðp2Þ ¼ Σ=p2, or equivalently,

hAμηi ¼ −iΣ
pμ

p2
: ð2:7Þ

Provided that chiral symmetry breaking takes place and
Σ ≠ 0, this result exhibits the pole of the Nambu-Goldstone
boson. This new NGB, being a singlet pseudoscalar meson,
would signal a breakdown of universality in QCD. This is
our main conclusion.
As discussed in Ref. [11], it is possible to split the

current Aμ into several pieces, one of which will behave as
the—anomalous—axial current of QCD. Nonetheless, the
existence within the GK framework of the axial currentAμ,
which is both gauge invariant and conserved, means that
there is no escape from the WTI (2.5) and its consequences
for the physics of the theory.
The existence of a singlet pseudoscalar NGB in the

physical spectrum, which is absent from the standard
formulation of QCD, is a completely general phenomenon
within the GK formulation. Generalizing the lattice setup to

QCD with Nf flavors, it is easy to see that the global sym-
metry of the GK formulation will be UðNfÞL × UðNfÞR
and not SUðNfÞL × SUðNfÞR × Uð1ÞB as expected. Once
again, we will have a singlet axial current which is both
gauge invariant and conserved, and not anomalous. Again,
assuming that the theory confines and breaks its chiral
symmetry, and requiring translation and Lorentz invari-
ance, then, in addition to the expected pions for Nf ≥ 2,
there will be a superfluous, singlet pseudoscalar NGB.
The problem persists when our goal is to construct a

chiral gauge theory. A chiral gauge theory in four dimen-
sions can be formulated in terms of LH fields only, and the
total fermion number current is then always anomalous.
But within the GK formulation, again there is a conserved
and gauge invariant current associated with the total
fermion number.
The violation of the global axial charge in vectorlike

theories, and of the total fermion number in chiral gauge
theories, is believed to arise from ‘t Hooft vertices. In
Sec. IV we discuss a conjecture about the fate of instantons
and ‘t Hooft vertices within the GK formulation.

III. CONSERVED CURRENTS
IN THE DISK FRAMEWORK

It is clear from the discussion of the previous section that
the superfluous current, which is simultaneously conserved
and gauge invariant, originates from the existence of a
fermion number symmetry for each 5D field separately.
This implies the existence of a conserved and gauge
invariant 5D current for each GK field, from which one
can construct a 4D conserved current. One linear combi-
nation of the 4D conserved currents will always be super-
fluous, as explained in the previous section.
In this section we turn to the disk framework and demon-

strate the existence of a similar, superfluous four-dimensional
current. One can envisage various ways of discretizing the
disk framework. For example, it is fairly obvious that there
exist lattice discretizations that will preserve a discrete
subgroup of the rotational symmetry of the disk. By contrast,
in Ref. [7], a discretization based on a “trimmed” regular
hypercubic lattice was preferred. In view of these rather
different options for the lattice discretization, we will limit
the discussion in this section to the continuum case only.

A. The conserved four-dimensional current

We first briefly introduce the disk framework. We will
mostly disregard the gauge field, since it plays no role in the
(classical) conservation equation. We stress, however, that in
the presence of the gauge field, the current is gauge invariant.
Moreover, since continuous symmetries do not have anoma-
lies in odd spacetime dimensions, the conservation of the
gauge invariant 5D current holds to all orders in perturbation
theory. A similar conservation equation holds for the 5D
lattice discretization of Ref. [7] as well.

3At finite lattice spacing, pμ is replaced by ð2=aÞ sinðapμ=2Þ.
4After the analytic continuation to Minkowski space.
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In the ðx; yÞ plane, the fermions are restricted to a disk of
radius R. In addition, there are three Cartesian coordinates,
denoted zi, i ¼ 1, 2, 3. The 5D fermion field satisfies
boundary conditions defined in terms of the radial projec-
tors Pr

� ¼ 1
2
ð1� γrÞ, where γr ¼ γx cos θ þ γy sin θ. As

was shown in Refs. [6,7], this construction gives rise to
a single Weyl fermion on the rim of the disk. Hence, the rim
of the disk is identified with the fourth ordinary dimension,
which thus has a finite length L ¼ 2πR and periodic
boundary conditions. It is described by the coordinate
Rθ, with 0 ≤ θ < 2π. The radial direction of the disk, with
coordinate 0 ≤ r ≤ R, corresponds to the fifth direction of
the slab geometry.5

The conservation equation for the Noether current of the
U(1) symmetry of a given 5D fermion field takes the form

0 ¼
X
i

∂iji þ ∂xjx þ ∂yjy ¼
X
i

∂iji þ
1

r
∂rðrjrÞ þ

1

r
∂θjθ:

ð3:1Þ
The middle expression is the divergence of the 5D current
in Cartesian coordinates, while in the rightmost expression
we switched to radial coordinates for the ðx; yÞ plane
containing the disk. jr (jθ) is the component of the current
in the radial (tangential) direction. Like the fermion field
itself, the 5D current is restricted to r < R.
We define the 4D current by integrating along rays,

Jiðθ; ziÞ ¼
1

R

Z
R

0

rdr jiðr; θ; ziÞ; i ¼ 1; 2; 3; ð3:2aÞ

Jθðθ; ziÞ ¼
Z

R

0

dr jθðr; θ; ziÞ: ð3:2bÞ

Notice that the integration measure for the three transverse
components is ðr=RÞdr, whereas the factor r=R is absent
from the definition of Jθ, the component associated with
the tangential direction along the rim of the disk. As wewill
now demonstrate, this is the right choice that leads to the
conservation of the 4D current. Suppressing the coordinates
ðθ; ziÞ one has

X
μ

∂μJμ ≡
X
i

∂iJi þ
1

R
∂θJθ

¼ 1

R

Z
R

0

rdr

�X
i

∂iji þ
1

r
∂θjθ

�

¼ −
1

R

Z
R

0

dr ∂rðrjrÞ

¼ 1

R
ðrjrÞ

����
r→0

−
1

R
ðrjrÞ

����
r¼R

¼ 0: ð3:3Þ

On the first line, the derivative of the tangential component
is ð1=RÞ∂=∂θ, since Rdθ is the line element along the rim of
the disk. On the second line, we substituted the definitions
(3.2), and on the next line we used the conservation of the
5D current, Eq. (3.1).
As might be expected, the divergence of the 4D current

ends up being a surface term of the radial integral. The first
term on the last line vanishes trivially, because of the r → 0
limit.6 In addition, the surface term on the rim of the disk
vanishes identically thanks to the boundary conditions. For
definiteness let us assume that the boundary conditions at
r ¼ R are Prþψ ¼ 0, ψ̄Pr

− ¼ 0.7 It follows that, on the rim,
the radial component of the current is jr ¼ ψ̄γrψ ¼
ψ̄PrþγrPr

−ψ ¼ 0. This completes the proof.

B. Annulus geometry

It is interesting to explore the relation between the slab and
disk geometries. The connection is provided by an annulus
geometry. We start from the disk and cut out a smaller disk
of radius R0 < R. For the boundary conditions we specified
above on the outer rim r ¼ R, the boundary conditions on
the inner rim r ¼ R0 will be Pr

−ψ ¼ 0, ψ̄Prþ ¼ 0.
The annulus geometry is topologically equivalent to the

slab geometry. Starting from the slab geometry, let us take
one of the four physical directions to be finite and with
periodic boundary conditions. The two-dimensional mani-
fold consisting of this physical direction together with the
(finite) fifth direction is then topologically equivalent to an
annulus.
In the annulus geometry, the definition of the conserved

4D current remains the same as in Eq. (3.2), except that the
lower end of the radial integration is now r ¼ R0. The proof
that this current is conserved works as in Eq. (3.3), with one
notable change. The divergence of the 4D current is now
the difference of two boundary terms

X
μ

∂μJμ ¼
1

R
ðrjrÞ

����
r¼R0

−
1

R
ðrjrÞ

����
r¼R

¼ 0; ð3:4Þ

and both terms vanish thanks to the boundary conditions
imposed on the respective boundary.

IV. DYNAMICAL CONSIDERATIONS:
THE FATE OF ‘T HOOFT VERTICES

In asymptotically-free 4D gauge theories, it is widely
believed that violation of the axial charge in vectorlike
theories, and of fermion number in chiral gauge theories,

5The limit R → ∞ in the disk geometry corresponds for the slab
geometry to simultaneously taking the limits N5 → ∞ together
with the limit L → ∞ for the Cartesian direction identified with the
rim of the disk.

6Since the radial direction is ill defined at the center, the lower
end of the integration is defined as r → 0, rather than r ¼ 0.

7These boundary conditions are consistent with the (Minkow-
ski) relation ψ̄ ¼ ψ†γ0. We identify γ0 as the Dirac matrix
associated with one of the zi directions, hence it anticommutes
with γr.
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comes from instantons8 through the effective ‘t Hooft
interactions they induce [12,13].
Let us focus once again on the example of QCD with Nf

flavors. Formulating the theory in terms of LH and RH
fields in the fundamental representation, the Weyl fields are
ψRi and ψLi, where i ¼ 1; 2;…; Nf. The ‘t Hooft inter-
actions induced by the instantons violate the conservation
of the fermion number of each Weyl field individually.
In terms of global symmetries, the group SUðNfÞL ×
SUðNfÞR × Uð1ÞB is respected by the ‘t Hooft interaction,
while the global axial charge is not conserved.
Let us now turn to the GK or disk frameworks. As we

have discussed in the previous sections, now the individual
fermion numbers are conserved for each 5D field sepa-
rately. The theory as a whole, and its ‘t Hooft interactions
in particular, must therefore be invariant under the larger
symmetry group UðNfÞL × UðNfÞR. We emphasize that
this behavior is completely general. In particular, it is true
regardless of how the 4D gauge field is extended into 5D, as
long as the construction preserves the 4D gauge invariance.
We will argue that, since this symmetry is preserved on the
lattice, it remains true for the effective 4D theory in the
continuum limit of the lattice theory.
We will not attempt to discuss the 5D dynamics in

complete generality, because the details can vary a lot,
depending on how the 4D gauge field is extended into 5D.
Instead, we consider in the Appendix a family of lattice
gradient flows suitable for both the slab and disk geo-
metries. These flows are designed such that it is expected
that all instantons will shrink in size under the flow and
eventually disappear. In particular, using such a lattice flow
in the GK framework, we expect that in the limit of an
infinite fifth dimension, N5 → ∞, the flowed gauge field
on the far wall will always be a pure gauge with trivial
topology and hence that the far-wall Weyl fermions fully
decouple.
Returning for simplicity to the example of the one-flavor

theory discussed in Sec. II, in the field of an instanton we
expect to have one zero mode for (say) the fermion field
ψR and another one for the antifermion field ψ̄L. The
corresponding ‘t Hooft interaction is thus, schematically,
ψ̄Lðx0ÞψRðx0Þ, where x0μ are collective coordinates: the
coordinates of the center of the instanton. These zero modes
will arise from the Weyl fields that reside on the near walls
in the GK framework or on the rims of the disk in the
alternative framework. The resulting ’t Hooft operator is

O4D ∼ ψ̄Lðx0ÞψRðx0Þ: ð4:1Þ

The notation O4D is to indicate that it accounts for the zero
modes of the 4D fields of the target theory.

By itself, the operator O4D violates the individual
fermion numbers of both of the 5D fields ΨðRÞ and ΨðLÞ.
But the GK and disk frameworks preserve these individual
fermion numbers, hence there must exist additional zero
modes, to compensate for the 4D zero modes.
What is the dynamics responsible for the existence of

such additional zero modes? We conjecture that one way
for them to arise is as follows. As explained above, under
the class of lattice flows we introduce in the Appendix,
the size of the instanton keeps shrinking with the fifth
coordinate. After a long enough flow, the instanton’s size
will become comparable to the lattice spacing a, which
enables it to eventually disappear altogether. The 5D point
ðx; sÞ inside the bulk where the instanton disappears must
exhibit a dislocation of the flowed gauge field. We
conjecture that a new zero mode may develop with support
on this dislocation.9 In order to restore the conservation of
the individual fermion numbers of the 5D fields, the bulk
zero modes must have opposite U(1) charges from the 4D
zero modes. Unlike the power-law decay of the familiar
instanton zero modes, we expect the bulk zero modes to be
exponentially localized.10

Let us illustrate the role of the novel bulk zero modes,
again using the example of the one-flavor theory. Also,
for simplicity, we will consider the GK framework, but a
similar reasoning applies to the disk framework as well.
For Nf ¼ 1 we expect two bulk zero modes, which are
represented by the operator

Obulk ∼ Ψ̄ðRÞðx; sÞΨðLÞðx; sÞ: ð4:2Þ

The total ‘t Hooft vertex is the product of the terms coming
from the near wall and from the bulk,

Otot ¼ O4DObulk ∼ ψ̄Lðx0ÞψRðx0ÞΨ̄ðRÞðx; sÞΨðLÞðx; sÞ:
ð4:3Þ

Now the individual fermion numbers of the two 5D fields
are preserved, as required by the UðNfÞL × UðNfÞR global
symmetry.11

We will next argue that, in the continuum limit, Otot
vanishes as an operator acting on the states of the effective
4D theory. This would imply that the UðNfÞL × UðNfÞR
symmetry of the underlying lattice theory is inherited by
the effective 4D theory.
We start by examining the expectation value of Otot

itself, which satisfies

8Other topologically nontrivial configurations may contribute
as well.

9For related setups where a bulk zero mode appears, see
Refs. [14,15].

10Such bulk zero modes would resemble the localized zero
modes of the supercritical Wilson kernel of DWFs [16–18].

11A similar result was anticipated in Ref. [2] for the case of a
continuum flow. See also the Appendix.
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hOtoti ≤ Ce−2Ms; ð4:4Þ

for some constant C, which in turn is independent of s.
Here M ¼ Oða−1Þ is the mass of the bulk 5D fermions.12

The bound arises because the propagator in the fifth
direction falls off like e−Mjs−s0j, and the effective 4D fields
are located on the boundary s0 ¼ 0. As long as the
instanton’s size is large compared to the lattice scale,13

one expects that the product Ms diverges in the continuum
limit. Hence, the expectation value of Otot vanishes.
The above behavior generalizes to any correlation

function involving Otot together with any number of
insertions of 4D fields residing on the s0 ¼ 0 boundary.
In order to contract the fermion fields contained in Obulk,
for each 5D field we will need one propagator from the
position ðx; sÞ of the dislocation to the boundary. As we
have just argued, this propagator is bounded from above by
e−Ms, again leading to a bound similar to Eq. (4.4) for the
correlation function under consideration.
In the above argument we have used that the contraction

hΨðLÞðx; sÞΨ̄ðRÞðx; sÞi vanishes identically, because it does
not preserve the individual fermion numbers of the 5D
fields. The same result generalizes to the thermodyna-
mical limit. In order to take the thermodynamical limit
we introduce a small mass term mqðψ̄RψL þ ψ̄LψRÞ.
Since the mass term couples the two 5D fields, now
hΨðLÞðx; sÞΨ̄ðRÞðx; sÞi is nonzero, and (quark-disconnected)
terms that include this contraction must be considered as
well. However, any propagation from one 5D field to the
other must go through the mass insertion, which in turn
lives on the boundary. Hence14

D
ΨðLÞðx; sÞΨ̄ðRÞðx; sÞ

E
≲mqe−2Ms: ð4:5Þ

It follows that a uniform upper bound by e−2Ms still applies,
and once again the correlation function vanishes in the
continuum limit. The upshot is that the bulk part of the new
‘t Hooft vertex suppresses the original 4D ‘t Hooft vertex,
thus providing a dynamical understanding of the exact,
superfluous Uð1ÞA symmetry.
In this section we have illustrated via a concrete scenario

how the familiar ‘t Hooft vertices of QCD can get modified.
Ultimately, in general, the key point is that Uð1ÞA is an
exact symmetry in a gauge invariant formalism. Regardless
of the details of the 5D dynamics, in both the GK and
disk frameworks, as well as in the “intermediate” annulus
framework, the massless theory admits only ‘t Hooft
vertices that preserve Uð1ÞA, just as they preserve

SUðNÞL × SUðNÞR × Uð1ÞB. Under these circumstances,
unless the low-energy theory violates some fundamental
properties, we expect that the existence of the singlet
pseudoscalar NGB cannot be avoided when chiral sym-
metry breaking takes place, just like the existence of the
familiar massless pions cannot be avoided.

V. DISCUSSION

In this paper we studied two proposals for the lattice
construction of chiral gauge theories [2,6,7] having in
common that the underlying fermion system is five dimen-
sional. We found that both formulations have a superfluous
conserved current which is gauge invariant. If the target 4D
theory is a chiral gauge theory, the superfluous conserved
current is the fermion number current. If the target theory is
vectorlike, it is the singlet axial current. Correspondingly,
the symmetry of the vectorlike theory enlarges to
UðNfÞL × UðNfÞR, instead of SUðNfÞL × SUðNfÞR ×
Uð1ÞB as would be expected. In all cases, the underlying
reason is that the fermion number of each 5D field is
separately conserved.
When the target 4D theory is QCD with a small enough

Nf to enable chiral symmetry breaking, we concluded that
the spectrum will contain a superfluous Nambu-Goldstone
boson, which is a singlet pseudoscalar meson. Apart from
chiral symmetry breaking, we used only translation and
Lorentz invariance.
The standard DWF formulation of QCD, which is also

five-dimensional, is equivalent to a purely 4D formulation
in which the effective Dirac operator satisfies the Ginsparg-
Wilson relation [19]. This raises the question about a
possible connection between the proposals of Refs. [2,6]
and Lüscher’s approach to the construction of lattice chiral
gauge theories [20–22]. In the latter approach, the lattice
theory is gauge invariant provided that the fermion inte-
gration measure can be properly defined, for which a
necessary condition is that the fermion spectrum will have
no gauge anomaly. In comparison with Refs. [2,6], a key
difference is that the total fermion number is violated in
Lüscher’s approach. This behavior is a direct consequence
of the way the fermion integration measure is defined in this
approach [20].
Another approach to the construction of lattice chiral

gauge theories is the gauge-fixing approach [23–25]. In this
approach, the lattice theory is not gauge invariant, and
gauge invariance is restored only in the continuum limit.
Like in the proposals of Refs. [2,6], in the gauge-fixing
approach there is also a U(1) symmetry associated with the
total fermion number. However, in this case the conserved
current is not gauge invariant; conversely, the gauge
invariant current is not conserved [23,26]. The U(1)
fermion number symmetry is always spontaneously bro-
ken, but the associated Nambu-Goldstone boson does not
belong to the gauge invariant physical spectrum [24].

12Also known as the domain-wall height.
13See the Appendix for details.
14The ≲ symbol indicates the presence of a proportionality

factor, similar to Eq. (4.4).
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We comment that the so-called “symmetric mass gen-
eration” (SMG) approach15 to the construction of lattice
chiral gauge theories does not have a similar U(1) issue.
While gauge invariance is always maintained, the U(1)
issue is avoided. The reason is that the multifermion and/or
Yukawa interactions introduced into the lattice action are
designed to break explicitly any symmetry not present in
the target continuum theory, including the fermion number
symmetry. Nevertheless this approach may fail for various
dynamical reasons. Recently, we pointed out that the SMG
approach has a potential issue with unwanted propagator
zeros that could take the form of ghost states in the
continuum theory. For details, as well as references to
the original literature, see Ref. [28].
It is an open question whether or not the proposals of

Refs. [2,6] can lead to a consistent 4D quantum field theory
in the continuum limit. If they do, this would signal a
breakdown of universality, in the following sense.
Considering once again the QCD example, the reason is
that the new universality class would contain a singlet
pseudoscalar Nambu-Goldstone boson in the physical
spectrum if chiral symmetry breaking takes place, whereas
the standard formulation of QCD does not have such a
Nambu-Goldstone boson. If chiral symmetry breaking does
not take place, and/or the 4D theory is not translation or
Lorentz invariant, this would also mean that the theory is
different from QCD as obtained in the continuum limit
of one of the standard lattice regularizations. A similar
breakdown of universality would happen in the case of a
chiral gauge theory, because in the proposals of Refs. [2,6]
there exists a conserved and gauge invariant fermion
number current, while Lüscher’s approach does not have
such a current.
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APPENDIX: LATTICE GRADIENT FLOWS

In both the GK framework and the disk framework, a 4D
gauge field must be extended into 5D while preserving the
4D gauge invariance. Naively, one may aim for a 5D
extension of the gauge field that is smooth everywhere. In
fact, whether or not this is possible, it is not desirable.
Let us start with the disk framework. In order to see why

smoothness everywhere is not always possible, assume that

the initial 4D gauge field is an instanton field. Now
consider the resulting 5D gauge field in the vicinity of a
cylinder defined by a circle of radius 0 < r < R inside the
disk, together with the three transverse directions. If the 5D
extension of the gauge field is smooth in the vicinity of
every cylinder, then the 4D topological charge on every
such cylinder will be Q ¼ 1, same as for the initial
instanton field. But this implies that at r ¼ 0 we will
necessarily generate a singularity.
In the case of the GK framework, it is possible in

principle to use a continuum flow that preserves the
topological charge, without creating a singularity anywhere
in the 5D gauge field. However, this would imply that the
Weyl field on the far wall will couple to a gauge field with
the same topological charge as the initial gauge field [2].
The outcome will be that, instead of the (conjectured) bulk
zero modes we discussed in Sec. IV, there will be fermion
zero modes associated with the Weyl field on the far wall.
These zero modes will replace the bulk zero modes in the
total ‘t Hooft vertex [see Eq. (4.3)]. However, the far-wall
zero modes represent a nonlocal modification of the target
4D theory, something we would like to avoid. Either way,
the ‘t Hooft vertices will preserve the individual fermion
numbers of each 5D field.
Following Refs. [2,6], in this appendix we define the 5D

gauge field via gradient flow, which automatically pre-
serves the 4D gauge invariance. We will introduce a family
of lattice gradient flows, under which the size of any
instanton present in the initial gauge field is expected to
decrease monotonically. Eventually, the instanton’s size
becomes OðaÞ, and the (now lattice-size) instanton dis-
appears, leaving behind a dislocation in the 5D gauge field.
We first briefly introduce gradient flow [5]. The general

form of the flow equation in the continuum is

∂Bμ

∂t
¼ −g2

δS
δBμ

: ðA1Þ

Here t ≥ 0 is the flow time parameter, and Bμ is the flowed
gauge field, which is subject to the boundary condition
Bμ ¼ Aμ at t ¼ 0, where Aμ is the dynamical gauge field. In
the slab geometry, t is identified with the (Cartesian) fifth
coordinate s, while in the disk geometry it is identified with
the radial coordinate R − r.
The right-hand side of the flow equation is the functional

derivative of some continuum action S with respect to the
(flowed) gauge field. Provided that the action S that
generates the flow is gauge invariant, the flow equation
is gauge covariant. If we use the standard continuum gauge
action, then the right-hand side of the flow equation is
proportional to the Yang-Mills equation of motion, and thus
all classical solutions are unmodified by the flow. This
includes in particular topologically nontrivial solutions,
such as instantons.

15For a review of SMG and its relation to lattice chiral gauge
theories, see Ref. [27].
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On the lattice, the action that generates the flow16 can be
expanded as a power series in the (squared) lattice spacing
a2, much like in the Symanzik improvement program
[29–33]. Here we will limit ourselves to the two simplest
lattice gauge actions. The first is the single plaquette
(Wilson) action

SW ¼ 1

g20

X
x;μν

Re trð1 − Px;μνÞ; ðA2Þ

where Px;μν is the oriented product of link variables around
the plaquette, and g0 is the bare lattice gauge coupling. The
second is the rectangle action

Sr ¼
2

g20

X
x;μν

Re tr
�
1 − Prect

x;μν

�
; ðA3Þ

where Prect
x;μν is the oriented product of links around the

rectangle, with μ (ν) corresponding to the short (long) side
of the rectangle.17 Expanding to Oða2Þ, these actions are
given by [30,31]

SW ¼ 1

g20

Z
d4x

�
1

2
trG2 −

1

12
a2S3 þ � � �

�
; ðA4aÞ

Sr=8 ¼ 1

g20

Z
d4x

�
1

2
trG2 −

5

24
a2S3 þ � � �

�
: ðA4bÞ

HereG2 ¼ P
μνG

2
μν is the (squared) field strength. The first

term on the right-hand sides of both equations is recognized
as the familiar continuum gauge action. S3 is the dimen-
sion-6 operator

S3 ¼
X
μν

tr
�ðDμGμνÞ2

�
; ðA5Þ

where Dμ is the covariant derivative in the adjoint repre-
sentation. Notice that S3 is invariant under hypercubic

rotations only. With SW and Sr at hand, the total lattice
action that generates the flow will be assumed to be

S ¼ cpSW þ crSr: ðA6Þ

Requiring that the leading continuum term in the Symanzik
expansion, trG2, will have its standard normalization
implies the constraint18

cp þ 8cr ¼ 1: ðA7Þ

Next, if we substitute into Eq. (A4) an instanton field
with size collective coordinate ρ, we obtain [34]

SW ¼ 8π2

g20

�
1 −

1

5
ða=ρÞ2 þ � � �

�
; ðA8aÞ

Sr=8 ¼ 8π2

g20

�
1 −

1

2
ða=ρÞ2 þ � � �

�
; ðA8bÞ

where 8π2=g20 is the classical instanton action. We see that,
for both SW and Sr, the Oða2Þ term lowers the action, and
the effect becomes stronger if we decrease the instanton
size ρ. Related, a general feature of the flow, both in the
continuum and on the lattice, is that the action S that
generates the flow is always a monotonically decreasing
function of the flow it generates [5].
This motivates us to propose the following strategy: Use a

lattice flowdriven by the plaquette and rectangle terms,where
both cp and cr are positive. The advocated range corresponds
to 0 < cp < 1, while cr is determined via Eq. (A7). For any
flow with these features, both SW and Sr will decrease in
absolute value under the flow.Moreover, in view of Eq. (A8),
we may expect that the size of every instanton present in the
initial gauge field will shrink monotonically under the flow,
until eventually the instanton’s sizewill becomeOðaÞ, and the
instanton will disappear at a dislocation. For a recent related
numerical study, see Ref. [35]
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