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At its critical point, the three-dimensional lattice Ising model is described by a conformal field theory
(CFT), the 3D Ising CFT. Instead of carrying out simulations on Euclidean lattices, we use the quantum
finite elements method to implement radially quantized critical ϕ4 theory on simplicial lattices approaching
R × S2. Computing the four-point function of identical scalars, we demonstrate the power of radial
quantization by the accurate determination of the scaling dimensions Δϵ and ΔT as well as ratios of the
operator product expansion coefficients fσσϵ and fσσT of the first spin-0 and spin-2 primary operators ϵ and
T of the 3D Ising CFT.
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I. INTRODUCTION

Since the first discovery of critical opaqueness made by
Andrews in the 19th century [1] and especially since
Wilson’s breakthrough formulation of the renormalization
group (RG) framework for critical phenomena [2], the study
of systems at criticality has fascinated physicists throughout
the decades. The prototype of such a system with a
continuous phase transition and the workhorse in studying
critical phenomena is the Isingmodel. Despite its simplicity,
it is of great physical relevance because universality guar-
antees that the critical Ising model shows the same behavior
as encountered for critical transitions in e.g. uniaxial
magnetic systems, fluids [3], and micellar systems [4].
Motivated by experimental measurements of the scaling

behavior of physical quantities near criticality, past theo-
retical efforts to study the critical point of the Ising model
had the main goal of calculating its critical exponents. As
there is no analytic solution for the Ising model in d ≥ 3,
such calculations have to be performed using approximate
and computational methods, the most prominent of those

including high-temperature expansions, field-theoretic
methods such as the ε-expansion or nonperturbative meth-
ods based on approximate solutions of the RG-equations,
as well as Monte Carlo simulations. For a review, see [5].
After the development of spin cluster algorithms [6,7],
especially the latter method combined with finite-size
scaling arguments yielded precise results for the critical
exponents [5,8,9].
For comparison with experiments, it is sufficient to

determine the critical exponents of the 3D Ising model.
But from a theoretical point of view, the critical Ising model
contains much more information. Following Polyakov’s
hypothesis [10], we expect the scale invariance of a system
at criticality combined with Poincaré invariance to lead this
critical system to be invariant under the conformal group
Oðdþ 1; 1Þ. Consequently, the physics of the critical 3D
Ising model can be described by a conformal field theory
(CFT), the 3D Ising CFT [11]. The local operator content of
such a CFT is spanned by the so-called primary operators
and their descendants, which are created by acting on the
primaries with translation generators. The primary oper-
ators can be assigned spins and parity and, in the case of the
3D Ising CFT, include the leading 0−-operator σ, the
leading 0þ-operator ϵ and the energy-momentum tensor
T (2þ), as well as infinitely many subleading and higher-
spin operators. As will be further explained in Sec. II, a
CFT is characterized by two sets of quantities—the scaling
dimensions ΔO and the operator product expansion (OPE)
coefficients fO1O2O3

for different primary operatorsO of the
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CFT. This CFT point of view on the critical Ising model has
most prominently been taken by the conformal bootstrap
method [12–14] to obtain extremely precise values for both
scaling dimensions and OPE coefficients for several pri-
mary operators [15,16].
For (at least some of) the scaling dimensions, there is a

mapping to the critical exponents, which have been
thoroughly investigated with the traditional methods
reviewed in [5]

η ¼ 2Δσ − dþ 2;

ν ¼ 1=ðd − ΔϵÞ;
ω ¼ Δϵ0 − d: ð1Þ

The OPE coefficients, however, are largely uninvestigated
with these methods. With functional renormalization group
methods, it was only recently possible to determine fσσϵ
[17]. Moreover, fσσϵ and fϵϵϵ have been measured with
traditional Monte Carlo methods on Euclidean lattices from
three-point correlators [18,19] and from the scaling of two-
point correlators [20,21] of the operators σ and ϵ.
However, as suggested by Cardy [22] in 1985, there is, in

principle, a huge advantage by replacing the traditional
toroidal Euclidean lattice approximation to Rd with sim-
ulations on simplicial lattices convergent to the cylindrical
R × Sd−1. This is an exact Weyl map of all CFT data to
what is called radial quantization [23] with translations
generated by the dilatation operator. The challenge [22] for
d > 2 is to define the correct lattice action on the curved
manifold. Recently, the quantum finite elements (QFE) [24]
project has begun to address this by including lattice
counter terms to improve the UV cutoff.
QFE tests began with ϕ4 theory at the critical point in

comparison with the minimal 2D Ising CFT on S2,
accurately reproducing the exact results for the Z2-odd
scalar propagator and the scalar four-point amplitude [25]
as well as examples of the Z2-even sector in the fermionic
representation [26] on S2. The next step was to apply the
QFE to critical ϕ4 theory on R × S2 in order to compare to
the 3D Ising CFT. The scalar propagator [27] was well-
represented in the continuum limit with the scaling dimen-
sion Δσ determined to better than 10−2 agreement with the
conformal bootstrap [15,16]. Here, we extend the QFE
method to the scalar four-point amplitude of the 3D Ising
CFT. As the lowest n-point function with a nontrivial
operator product expansion, the four-point function pro-
vides a stringent test of whether we reach the CFT in the
continuum limit with our QFE method. Moreover, it is a
good quantity to show that the 3D Ising CFT is more than
just a small perturbation from the Gaussian theory [28]
presented in Sec. VI, as the scaling dimension for some
operators like ϵ have been found to deviate significantly
from their free values [15,16]. The present work is intended
as a proof of concept to show that by fitting our lattice data

to the expected form from the continuum OPE for CFTs in
radial quantization, we can extract scaling dimensions ΔO
and OPE coefficients fσσO of Z2-even primary operators in
the continuum limit. Preliminary results presented at
LATTICE 2022 [29] are extended and finalized here to
higher fidelity to assess the capabilities of our method.
In the conclusion, we discuss further improvements of

the QFE method and make comparisons with results from
the conformal bootstrap [13–16], which offer definitive
tests for Monte Carlo simulations even for nonintegral
theories. Moreover, there are recent successes in determin-
ing OPE coefficients using Hamiltonian methods on the
fuzzy sphere [30,31]. While each method is complemen-
tary, comparisons may suggest improvement for them all.

II. N-POINT FUNCTIONS IN RADIALLY
QUANTIZED CFTs

A. CFTs and radial quantization

At the Wilson-Fisher fixed point, 3D ϕ4 theory is
described by the 3D Ising CFT. d-dimensional CFTs are
quantum field theories that are invariant under the con-
formal group Oðdþ 1; 1Þ of transformations that leave the
metric invariant up to a Weyl rescaling [32]

gμνðxÞ → g0μνðx0Þ ¼ Λ2ðxÞgμνðxÞ: ð2Þ

Thus, instead of considering the 3D Ising CFT on three-
dimensional Euclidean space with metric,

ds2flat ¼ dr2 þ r2dΩ2 ¼ r2

R2
½dt2 þ R2dΩ2�; ð3Þ

where t ¼ R logðr=RÞ, one can quantize the theory on
R × S2 with Weyl-rescaled metric

ds2cyl ¼ dt2 þ R2dΩ2 ¼ R2

r2
ds2flat: ð4Þ

n-point functions of scalar fields in flat space are then
related to those on the cylinder via

hσðr1;Ω1Þσðr2;Ω2Þ � � �iflat
¼

�
R
r1

�
Δσ
�
R
r2

�
Δσ � � � hσðt1;Ω1Þσðt2;Ω2Þ � � �icyl ð5Þ

with Δσ the scaling dimension of scalar primary σ [33].
This choice of coordinates is called radial quantization and
is often useful for scale-invariant theories as dilatations of r
on R3 are mapped to shifts in cylinder time t. As will be
explained in Sec. II C, the determination of CFT data is also
extremely facilitated by radial quantization.
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B. Conformal n-point functions

Due to the symmetries of CFTs, two-point functions of
primary operators follow power laws [32],

hOðx1ÞOðx2Þi ¼
CO

jx1 − x2j2ΔO
: ð6Þ

Moreover, the OPE is exact, such that under the path
integral, a product of two primaries can be replaced by a
sum over “intermediate states” (schematically)

Oiðx1ÞOjðx2Þ ¼
X
k

fOiOjOk
Cðx1 − x2ÞOkðx2Þ; ð7Þ

with the OPE coefficients fOiOjOk
as expansion coefficients.

Thus, all n-point functions of a CFT can be expressed as
functions of the scaling dimensions ΔO and the OPE
coefficients fOiOjOk

of conformal primaries O. Moreover,
all those quantities can be extracted by measuring different
four-point functions.
In this work, we focus on the four-point function of four

identical scalar primaries σ, which—when divided by the
corresponding two-point functions—forms the amplitude
gðu; vÞ. It is called the conformally invariant amplitude as
any factors Eq. (5) from Weyl rescaling the metric
equation (2) drop out. Thanks to the OPE, this amplitude
can be expanded into a sum over the primaries O of the
CFT [34,35]:

gðu; vÞ≡ hσðx1Þσðx2Þσðx3Þσðx4Þi
hσðx1Þσðx2Þihσðx3Þσðx4Þi

ð8Þ

¼ 1þ
X
O

f2σσOGOðΔO; u; vÞ: ð9Þ

In this case, actually only the primaries O with even spin
and parity contribute because of the symmetries of the
amplitude. The GO are the so-called conformal blocks,
functions of the scaling dimensions ΔO of primaries O as
well as the kinematic information encoded in the con-
formally invariant cross ratios u and v,

ffiffiffi
u

p ¼ jx1−x2jjx3−x4j
jx1−x3jjx2−x4j

;
ffiffiffi
v

p ¼ jx1−x4jjx2−x3j
jx1−x3jjx2−x4j

: ð10Þ

In odd dimensions, there is no known analytic form of
the conformal blocks. However, if we express the GO as a
function of the (also conformally invariant) quantities

coshðτÞ ¼ 1þ ffiffiffi
v

p
ffiffiffi
u

p ; cosðαÞ ¼ 1 −
ffiffiffi
v

p
ffiffiffi
u

p ; ð11Þ

they can be expanded in an absolutely convergent series in
the Gegenbauer polynomials [36,37]:

GOðτ;αÞ¼
X
n∈2N0

e−ðΔOþnÞτX
j

Bn;jðΔOÞCd=2−1
j ðcosαÞ; ð12Þ

where in d ¼ 3 dimensions the Gegenbauer polynomials
correspond to the Legendre polynomials Cd=2−1

j ðcos αÞ ¼
Pjðcos αÞ. The j in the second sum is determined by the
usual rules for the addition of angular momenta between
the spin l of the primary O and n,

j∈ fmaxð0; l − nÞ;…; lþ ng; ð13Þ

and the Bn;j are normalization coefficients. In three
dimensions, they are normalized by

B0;jðΔOÞ ¼ 4ΔO
l!

ð1=2Þl
δj;l; ð14Þ

where ðÞl is the Pochhammer symbol. For their recursive
calculation, we used the Mathematica Notebook provided
with [37].

C. The antipodal scalar four-point function
on R × S2

We now consider the theory onR × S2. On this manifold,
the dilatation operator plays the role of the Hamiltonian and
α and τ are the natural coordinates in which the symmetries
of the four-point function are manifest even for theories
away from the critical point. If we measure the four-point
function on this manifold with xi ¼ ðti; niÞ; i∈ f1; 2; 3; 4g
placed such that they lie pairwise at identical times, t1 ¼ t2
and t3 ¼ t4, and on antipodal points of S2, n1 ¼ −n2 and
n3 ¼ −n4 (see Fig. 1), we have [27]

n1 · n4 ≡ cosðθÞ ¼ cosðαÞ; coshðtÞ ¼ coshðτÞ ð15Þ

such that we can directly measure

FIG. 1. Schematic illustration of the antipodal frame on R × S2

in which we calculate the four-point function.

OPERATOR PRODUCT EXPANSION FOR RADIAL LATTICE … PHYS. REV. D 109, 114518 (2024)

114518-3



gðt; cos θÞ ¼ 1þ
X
O

f2σσO
X

n∈ 2N0

e−ðΔOþnÞt

×
X
j

Bn;jðΔOÞPjðcos θÞ: ð16Þ

This is the big advantage of doing lattice calculations in
radial quantization compared to usual Euclidean lattices.
Now gðt; cos θÞ has the form of a partial wave expansion in
the chosen antipodal frame

gðt; cos θÞ ¼ 1þ
X
j

cjðtÞPjðcos θÞ ð17Þ

with expansion coefficients

cjðtÞ ¼
X
O

f2σσO
X∞
n∈ 2N0
n≥jj−lj

Bn;jðΔOÞe−ðΔOþnÞt ð18Þ

so that each expansion coefficient consists of infinite towers
of exponentials for all even parity and even spin primaries.
By fitting these expansion coefficients, we can extract the
quantities ΔO and fσσO.

III. RADIALLY QUANTIZING THE 3D ISING
CFT WITH QUANTUM FINITE ELEMENTS

In Refs. [25,27], Brower et al. succeeded at radial lattice
quantization of ϕ4 theory. For that, they approximated S2

via a series of simplicial lattices as shown in Fig. 2.
Starting from an icosahedron, its edges are first sub-

divided into L equal pieces, thereby introducing a finer
triangulation. Subsequently, the N ¼ 10L2 þ 2 vertices are
projected onto the sphere. Using the finite element method,
the classical action can then be discretized on this simplicial
complex [27]:

S ¼ 1

2

X
t;x

X
y∈ hx;yi

l�xy
lxy

ðϕ̃t;x − ϕ̃t;yÞ2 þ
a2

4R2

ffiffiffiffiffi
g̃x

p
ϕ̃2
t;x

þ ffiffiffiffiffi
g̃x

p �
a2

a2t
ðϕ̃t;x − ϕ̃tþ1;xÞ2 þm2

0ϕ̃
2
t;x þ λ0ϕ̃

4
t;x

�
; ð19Þ

where we sum over x∈ f1; 2;…; Ng on each sphere and
t∈ f1; 2;…; Ltg along the cylinder with periodic boundary
conditions. Here, ϕ̃t;x is the dimensionless field, m2

0 and λ0
the dimensionless mass and coupling. a and at are the
average lattice spacings on the sphere and along the
cylinder, respectively, and a is related to the radius R of
the sphere via

a2=R2 ¼ 8πffiffiffi
3

p
N

¼ 8πffiffiffi
3

p ð10L2 þ 2Þ : ð20Þ

The bare speed of light a=at is set to one, though it is
renormalized by interactions. For further details on the
construction of this action as well as on how the dimensions
of the quantities are restored, see Refs. [25,27].
While the position-dependent finite element weights

l�xy=lxy and
ffiffiffiffiffi
g̃x

p
ensure the convergence of the action in

Eq. (19) to the spherically symmetric classical continuum
theory [25], Brower et al. found that for the quantum
theory, they introduce fluctuations in the effective cutoff
that are amplified by UV divergences, preventing conver-
gence to the spherically symmetric quantum continuum
theory [27]. To compensate for these quantum UV defects,
perturbative counterterms, the so-called quantum finite
elements, were introduced to the lattice action:

SQFE ¼ S −
X
t;x

ffiffiffiffiffi
g̃x

p ð6λ0δGt;x − 24λ20δG
ð3Þ
t;x Þϕ̃2

t;x; ð21Þ

where δGt;x and δGð3Þ
t;x are calculated numerically from the

free lattice propagator Gt;x;t0;y via

δGt;x ≡Gt;x;t;x −
1

N

XN
x0¼1

ffiffiffiffiffiffi
g̃x0

p
Gt;x0;t;x0 ; ð22Þ

δGð3Þ
t;x ≡X

t0;y

ffiffiffiffiffi
g̃y

p �
G3

t;x;t0;y −
1

N

XN
x0¼1

ffiffiffiffiffiffi
g̃x0

p
G3

t;x0;t0;y

�
: ð23Þ

In order to tune this QFE action to the Ising critical
surface, the Binder cumulant was studied for fixed
λ0 ¼ 0.2, finding m2

0 ¼ −μ20 ¼ −0.27018ð4Þ as the critical
coupling. With the parameters tuned to these values, the
study of the scalar two-point function carried out in [27]
suggests that we reach the 3D Ising CFT in the continuum
limit a=R → 0. In the following, we will fix the bare
parameters to these values for our analysis of the interacting
theory.

IV. CALCULATING AND FITTING
THE ANTIPODAL LATTICE
FOUR-POINT FUNCTION

To compute the antipodal scalar four-point function on
the lattice, we used our QFE action (21) and carried out

FIG. 2. Construction of the simplicial lattice for refinement
L ¼ 3.
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Monte Carlo simulations with the Brower-Tamayo clus-
ter algorithm [38] combined with Metropolis [39] and
overrelaxation [40–43]. After some initial equilibration
sweeps, O (volume) four-point function configurations of
our scalar lattice fields ϕ̃ were sampled in each sweep
along with the corresponding equal-time two-point func-
tions to obtain gðu; vÞ as in Eq. (8). Subsequently, we
projected onto Legendre polynomials to obtain the expan-
sion coefficients cjðtÞ in Eq. (12). Note that for finite
lattice spacing, the lattice operator ϕ̃ does not exactly
correspond to the primary σ as in Eq. (12) but it is a mixture
of all Z-even scalar primaries of the CFT. However, as
a=R → 0, the contribution of operators other than σ go
to zero.
Such simulations were carried out for different lattice

refinements L∈ f24; 28; 32; 36; 40; 44; 48; 56; 64g in order
to take the continuum limit later by sending L → ∞,
corresponding to a=R → 0. We performed N ¼ 8000
independent simulations for L ¼ 24, N ¼ 1600 for
32 ≤ L ≤ 56, and N ¼ 800 for L ¼ 64. The resulting data
is freely available in the Zenodo repository associated with
this project [44]. For L ¼ 64, the measured expansion
coefficients up to j ¼ 20 are shown in Fig. 3 with the error
bars determined by the statistical error from averaging over
the N independent runs. This figure illustrates that even for
the L-value with the least amount of statistics, we have
several timeslices of good data up until high j, such that it
should in principle be possible to extract information about
high-spin operators.
And in fact, by simply fitting unconstrained sets of

exponentials to the different cj, we could extract five
exponentials for j ¼ 0, and even for j ¼ 10 we could fit
up to three exponentials. However, the statistics did not
allow, especially for the higher j, to always resolve the
contribution from different primaries. For example, in the
case of j ¼ 2, we expect from Eq. (18) and the bootstrap

results in Table I that the leading exponential ∝ e−ΔT t

involves the scaling dimension ΔT of the energy-momen-
tum tensor T with l ¼ 2, while the next-lowest exponential
∝ e−ðΔϵþ2Þt should stem from the l ¼ 0 operator ϵ. To be
able to resolve these two contributions at L ¼ 64 without
having to introduce additional constraints in the fitting
parameters such as Eq. (18), we would likely have to
increase the statistics by a factor 9–16, which is computa-
tionally not feasible as already the N ¼ 800 runs took
Oð6 × 105Þ hours of computing time on single cores on the
BU shared computing cluster.
Thus, instead of fitting each cj independently with uncon-

strained exponentials, we analyzed the Monte Carlo data by
fitting the cj simultaneously for different j with much
more constrained functions based on the expansion
Eq. (18). This has the advantage that adding a new primary
operatorO to the fit only introduces two new fit parameters
in total, namely fσσO and ΔO, while describing (in
principle infinite) towers of exponentials for each cj.
The scaling dimension and OPE coefficients of a spin-l
operator are then mainly determined by the operator’s
contribution to cl while appropriately contributing to
higher-order terms in cj with l ≠ j. Overall, this procedure
improves convergence and helps resolve the different
contributions.
Of course, strictly speaking, Eq. (18) is only true in the

continuum limit as our finite lattice spacing breaks con-
formal invariance. However, we still performed fits based
on the form of Eq. (18) because we expect that if a=R is
small enough, the corrections due to the breaking of lattice
spacing can be absorbed into corrections to our fit param-
eters that vanish as a=R → 0.
In the present proof of principle, we focused on

simultaneous fits to c0 and c2, for which the leading
contributions come from the primaries ϵ (0þ) and the
energy-momentum tensor T ð2þÞ, respectively.
Furthermore, we included the first subleading operators
for each l, namely ϵ0 ð0þÞ and T 0 ð2þÞ in our fits. We
truncated the sums of exponentials at nmax ¼ 20 for ϵ and
correspondingly lower values for the other operators such
that the largest exponents are of the same order of
magnitude. With these truncations, Eq. (18) yields the
following fit functions for c0ðtÞ and c2ðtÞ (in terms of the
lattice “time” t)

FIG. 3. Monte Carlo results for the four-point function ex-
pansion coefficients cjðtÞ from N ¼ 800 independent runs with
statistical errors. The coefficients are plotted for a t-range such
that the relative error of the effective mass does not exceed
Δmeff=meff ≤ 0.125.

TABLE I. Conformal bootstrap values for scaling dimen-
sions and OPE coefficients of conformal primaries ϵ; T; ϵ0, and
T [15,16].

Operator O (lP) ΔO fσσO

ϵ (0þ) 1.41265(36) 1.05185(12)
ϵ0 (0þ) 3.82951(61) 0.05304(16)
T (2þ) 3 0.32613776(45)
T 0 (2þ) 5.499(17) 0.01054(10)
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cfit0 ðtÞ ¼
Xnmax

n¼0

f2σσϵBn;0ðΔϵÞe−ðΔϵþnÞtat=R

þ
Xnmax−2

n¼0

f2σσϵ0Bn;0ðΔϵ0 Þe−ðΔϵ0þnÞtat=R

þ
Xnmax−4

n¼2

f2σσT 0Bn;0ðΔT 0 Þe−ðΔT0þnÞtat=R

þ ðt → Lt − tÞ; ð24Þ

cfit2 ðtÞ ¼
Xnmax−2

n¼0

f2σσTBn;2ðΔTÞe−ðΔTþnÞtat=R

þ
Xnmax−4

n¼0

f2σσT 0Bn;2ðΔT 0 Þe−ðΔT0þnÞtat=R

þ
Xnmax

n¼2

f2σσϵBn;2ðΔϵÞe−ðΔϵþnÞtat=R

þ
Xnmax−2

n¼2

f2σσϵ0Bn;2ðΔϵ0 Þe−ðΔϵ0þnÞtat=R

þ ðt → Lt − tÞ; ð25Þ

where the quantities ΔO and f2σσO are taken as the fit
parameters. Note that we did not include contributions from
the energy-momentum tensor T to c0ðtÞ because for the
theoretical continuum value ΔT ¼ 3, all Bn;0ð3Þ vanish. In
order to convert the lattice time of our data, which is given
in units of at, to the time on R × S2 in Eq. (18), which after
the Weyl transform has units of R, we included factors at=R
in the exponentials. This can be written as at=R ¼ a=ðRcRÞ
where a=R is known from Eq. (20) and cR is the
renormalized speed of light cR ¼ a=at. cR was deter-
mined nonperturbatively in [27], yielding cR ¼ 0.996.
Furthermore, to take into account wraparound the effects
due to the periodicity along the cylinder to leading order,
we added for each exponential in our fit function the same
term with t substituted by Lt − t.
The light blue curves in Fig. 4 show the functions

Eqs. (24) and (25) plotted with the bootstrap values for
ΔO and fσσO, alongside our lattice data for L ¼ 64.
Comparison of these theoretical continuum curves with
our lattice data shows apparent consistency, justifying our
use of fit functions of this form. The other curves illustrate
how the fit functions change depending on how many
operators and n are included. Evidently, the operators ϵ and
T are most influential while including the subleading ϵ0 and
T 0 only slightly shift the theoretical curve, mostly at low-t
values. However, including these operators in fits decreased
excited state contamination of the fit parameters for the
leading operators and significantly increased the model
probability of our fits, which we determined using the
Akaike information criterion as described in [45]. Including

even higher order operators like ϵ00 led to either uncon-
strained or unphysical fit parameters, however. Thus, for
simultaneous fits of c0 and c2, we determined the fits
including ϵ; ϵ0; T, and T 0 [Eqs. (24) and (25)] to be optimal.
Because of the truncations and approximations made in

our fit functions, we do not expect them to describe our data
within the entire t-range. Thus, we performed a model-
averaging procedure as described in [45] in order to
determine a reasonable range of minimal time slices
ðtmin

0 ; tmin
2 Þ. For each value of L, the fitting procedure

can then be summarized as follows:
(i) First, we performed simultaneous fits to c0ðtÞ and

c2ðtÞ with the respective fit functions Eqs. (24) and
(25) with fixed maximal time slices ðtmax

0 ; tmax
2 Þ

and all possible combinations of starting times
ðtmin

0 ; tmin
2 Þ. Figure 4 suggested the use of the boot-

strap values listed in Table I as initial guesses for our
fit parameters to speed up the convergence of the
nonlinear fitting procedure. However, we ensured
that there is no dependence of our results on the

FIG. 4. Lattice data for c0 and c2 at a refinement of L ¼ 64
compared to theoretical curves based on truncations of Eq. (18).
For each curve, we include another primary operator contribu-
tion, corresponding to a new line in Eqs. (24) and (25), or a higher
nmax. The light blue curve corresponds to the function we used for
the fits in our analysis, including operators ϵ; ϵ0; T, and T 0 with
nmax ¼ 20. Note that these are not fits to the data but theoretical
curves with the bootstrap values as scaling dimensions and OPE
coefficients.
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initial guesses by repeating the fits with the first-fit
results as initial guesses and with checks perturbing
these initial guesses. ðtmax

0 ; tmax
2 Þ were chosen such

that the relative error of the effective mass for c0 and
c2 never exceeded 12.5%. The simultaneous fits
were carried out with the least squares method using
the L-BFGS-B optimization algorithm implemented
in SciPy [46].

(ii) Then, we calculated the model probabilities
for all fits with the Akaike criterion according
to [45].

(iii) Thereafter, we discarded fits with unphysical [47] or
unconstrained parameters (i.e. parameters with er-
rors higher than 50%) as well as fits with ðtmin

0 ; tmin
2 Þ

far from the values with highest model probability.
After eliminating these fits, we renormalized the
model probability.

(iv) For each fit parameter, we lastly computed a
weighted average over all fits with renormalized
model probability higher than 0.1%.
The results of the individual fits used in calculat-

ing the final model-averaged values for each L are
available in the Zenodo repository associated with
this project [44].

V. RESULTS

The model-averaged fit results for the scaling dimen-
sions and OPE coefficients of the leading operators are
shown in Fig. 5 as functions of the dimensionless lattice
spacing a=R. The errors were calculated from the cova-
riances of the fits according to Eq. (17) in [45]. Thus, they
do not capture possible systematic errors in the setup of the
QFE framework.
If we compare our lattice results to the values obtained

by the conformal bootstrap (shown in Table I and plotted as
black dotted lines), it is apparent thatΔϵ, f2σσϵ, andΔT trend
towards the continuum bootstrap values as a=R → 0. Only
f2σσT , the OPE coefficient associated with the energy-
momentum tensor, does not show such a clear trend.
For a quantitive comparison, we had to extrapolate our

lattice results to the continuum limit a=R → 0. In
Appendix B, we performed a finite-size scaling analysis
of gðu; vÞ, yielding that to leading order, the squared OPE
coefficients and scaling dimensions approach their con-
tinuum values with the leading power of ða=RÞΔϵ0−3 ≈
ða=RÞ0.83. To extrapolate our data to the continuum, we
therefore fit our lattice results with functions of this form.
Moreover, in the spirit of Taylor series approximations to

FIG. 5. Model-averaged fit results (green dots) for the scaling dimensions and OPE coefficients of the leading operators ϵ and T as a
function of the lattice spacing. We have performed extrapolations to a=R → 0 of different functional forms (26)–(28) and included
different ranges of a=R. The values shown as blue squares at a=R ¼ 0 correspond to the continuum results obtained after model
averaging all different extrapolation fits. For each quantity, we also show the extrapolation fit with the highest model probability in
orange; in (a) and (d), this is the finite-size scaling based fit, for (b) it is the linear extrapolation, and for (c) the quadratic fit, always
including all data points. For comparison, the continuum bootstrap values are shown as dashed black lines.
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the true scaling form, we performed linear fits as well as fits
including a linear and a quadratic term. Thus, the different
fit functions we used for the continuum extrapolations are

fFSS ¼ c1

�
a
R

�
0.83

þ c0; ð26Þ

flinear ¼ c1

�
a
R

�
þ c0; ð27Þ

fquadratic ¼ c2

�
a
R

�
2

þ c1

�
a
R

�
þ c0: ð28Þ

Initially, we had also considered fits to general power laws,
fpower ¼ c1ðaRÞc2 þ c0. However, our statistics were not
good enough to constrain all fit parameters. Similar
problems arose for the quadratic fit, as the only quantity
for which such fits could be constrained was f2σσϵ due to its
small error bars. Thus, f2σσϵ is the only quantity for which
we included such quadratic fits in determining our extrapo-
lation results.
To account for the fact that for high a=R (low L) we

might not be close enough to the continuum for our OPE-
based fit functions to be applicable, we also carried out all
extrapolating fits excluding the first one or two data points
taken at the lowest lattice refinements (L ¼ 24 and
L ¼ 28). Subsequently, we used model averaging again
to weigh the extrapolated values of Δϵ, ΔT , f2σσϵ, and f2σσT
for the different fits by their model probability. Performing
this procedure, we saw that in general, the model proba-
bility decreased the more low-L data points we excluded.
Moreover, we note that the fFSS fit to all data points was
among the two extrapolations with the highest model
probability for all quantities.
In Fig. 5, the most probable extrapolation fit (orange) as

well as the model-averaged continuum extrapolation values
(blue) are shown for the scaling dimensions and OPE

coefficients of the leading operators. The quantitative
results of our extrapolations are given in Table II. It is
apparent that the relative errors of our lattice results are
significantly higher for the quantities associated with the
l ¼ 2 operator T compared to the leading l ¼ 0 operator ϵ
due to fact that we have better statistics for c0, in which T
does not appear, than for c2. With these relatively high error
bars, all of our extrapolations for ΔT (and, thus, in
particular the model-averaged extrapolation) are in good
agreement with the exact value ΔT ¼ 3. For Δϵ, the model-
averaged extrapolation is also just in agreement with the
bootstrap value with a deviation of 2.7σ, even with just
taking into account statistical and fitting errors.
Our continuum extrapolations of f2σσϵ and f2σσT , however,

are significantly higher than the respective bootstrap
values. Given that the value of the OPE coefficients could
be sensitive to our normalization choice Eq. (14) for the
conformal blocks, we can explore the sensitivity to this
potential source of systematic error by studying the ratio of
the OPE coefficients f2σσϵ and f2σσT in Fig. 6, for which we
performed the same extrapolation procedure as for the other
quantities. If we take this ratio, all of our extrapolations are
in 1σ agreement with the bootstrap value. This suggests that
the normalization of conformal blocks at finite lattice
discretization L warrants further study.
So far, we have only focused on the fit results for the

quantities associated with the leading operators ϵ and T as
these have the most signal and the least excited state
contamination. To demonstrate that our method also works
for the subleading operators, Fig. 7 shows our results for
Δϵ0 and f2σσϵ0 , along with extrapolations to a=R → 0. The
error bars for those quantities are even larger than for ΔT
but the extrapolations show agreement with the bootstrap
values. Here, we also do not have the issue of a deviation of
the OPE coefficient from the bootstrap value as the
extrapolated value for f2σσϵ0 has an error of 100%. To get
more precise and reliable results for quantities associated

TABLE II. Extrapolation results. We show the continuum values obtained with the finite-size scaling based fits including all data
points, the results from the fits with the highest model probability, and the model averaged extrapolations for all quantities that are also
plotted in Figs. 5–8. These values are compared to those obtained from the conformal bootstrap [15,16], and in the last column, we show
the deviation of the model-averaged extrapolation values to the bootstrap results with respect to the statistical and fitting errors of our
lattice results.

Quantity Bootstrap FSS fit Fit with highest pmodel Fit model average Deviation (σ)

Δϵ 1.41265(36) 1.3961(46) 1.3961(46) 1.3905(83) 2.7
f2σσϵ 1.10639(26) 1.1625(31) 1.1583(91) 1.160(15) 3.6
ΔT 3 (exact) 3.005(11) 3.0021(86) 3.002(12) 0.2
f2σσT 0.10636583(30) 0.11261(58) 0.11261(58) 0.11280(76) 8.5
Δϵ0 3.82951(61) 3.82(24) 3.74(20) 3.78(27) 0.2
f2σσϵ0 0.0028102(59) 0.0020(24) 0.0027(20) 0.0028(29) 0.02

CT=C
ðfreeÞ
T

0.946543(42) 0.896(10) 0.8961(81) 0.896(11) 3.9

f2σσϵ=f2σσT 10.4017(24) 10.312(79) 10.19(12) 10.30(16) 0.6

CT=C
ðfreeÞ
T · f2σσϵ=Δ2

ϵ
0.52478(30) 0.5219(81) 0.5219(81) 0.528(16) 0.2
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with ϵ0 and T 0, we would have to improve the statistics and
go to even higher L in order to be able to include even more
operators in our fits to reduce the excited state contami-
nation of these quantities.
Lastly, we want to use our lattice results to determine

the central charge of the 3D Ising CFT, which can be
calculated via

CT ¼ Δ2
σΔ2

T

16f2σσT
: ð29Þ

Our results for the central charge relative to the free value

CðfreeÞ
T ¼ 3=2 can be seen in Fig. 8(a),wherewe use our lattice

values for ΔT and f2σσT to calculate CT at different L. ForΔσ

we used our continuum value obtained in [27]. Because our
continuumextrapolation forf2σσT is significantly toohigh, it is
not surprising that the extrapolation procedure performed
for the central charge yields a continuum value that is
significantly lower than the bootstrap value.
If we, however, take an appropriate ratio again, multi-

plying CT=C
ðfreeÞ
T ∝ Δ2

T=f
2
σσT by f2σσϵ=Δ2

ϵ, the extrapolation
yields a continuum value in good agreement with the
bootstrap [see Fig. 8(b)].

VI. FREE CFT ANALYSIS OF LATTICE ERRORS

Errors in the Monte Carlo simulations come from several
sources: The statistical Monte Carlo sampling, possible
systematic errors with a nonuniversal form of the action,
and the finite lattice errors that need to be removed by
extrapolating to infinite lattice volume in the IR and zero
lattice spacing for the UV cutoff.
Clearly, the finite lattize errors can easily be evaluated for

the exact free scalar CFT, for which we can calculate the
four-point amplitude on the same lattices as in our current
ϕ4 simulations for the interacting theory. The comparison
may be especially revealing here since the 3D Ising CFT is
in some ways a small perturbation of the free CFTexploited
in the epsilon expansion (ϵ ¼ 4 − d).
For the free theory, the exact continuum amplitude of the

four-point function as in Eq. (8)

gðfreeÞðu; vÞ ¼ 1þ 2

ð2 coshðtÞ − 2 cosðθÞÞΔðfreeÞ
σ

þ 2

ð2 coshðtÞ þ 2 cosðθÞÞΔðfreeÞ
σ

ð30Þ

is a sum over pairs of two-point functions expressed in our
radial coordinates

FIG. 6. Ratio of the model-averaged fit results for the OPE
coefficients of the leading operators ϵ and T (green dots) as a
function of the lattice spacing. We have performed extrapolations
to a=R → 0 according to (26) and (27) over different a=R-ranges.
The extrapolation with the highest model probability is the finite-
size scaling based fit using the lattice data for L ≥ 28, shown in
orange. The blue square at a=R ¼ 0 represents the continuum
value obtained after model averaging all extrapolations. For
comparison, the continuum bootstrap value is shown as a dashed
black line.

FIG. 7. Model-averaged fit results for the scaling dimension and OPE coefficient of the subleading l ¼ 0 operator ϵ0 (green dots) as a
function of the lattice spacing. We have performed extrapolations to a=R → 0 according to (26) and (27) over different a=R-ranges. The
extrapolations with the highest model probability are linear fits using the lattice data for all a=R, shown in orange. The blue squares at
a=R ¼ 0 represent the continuum values obtained after model averaging all extrapolations. For comparison, the continuum bootstrap
values are shown as dashed black lines.
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Gð2Þ
ϕ ðt; cos θÞ ¼ 2

ð2 cosh t − 2 cos θÞΔðfreeÞ
σ

; ð31Þ

where we now mean the primary operator σ of the free

CFT for which ΔðfreeÞ
σ ¼ 1=2. The partial wave expansion

Eq. (17) for the free theory then has the expansion
coefficients

cðfreeÞj ðtÞ ¼ 8ð2jþ 1Þ
X∞
n¼0

e−ðjþ2nþ1Þt 2
jðjþ nÞ!ð2n − 1Þ!!
n!ð2jþ 2nþ 1Þ!! :

ð32Þ
for the even j coefficients, while the odd j coefficients are
zero. Moreover, as described in Appendix A, these equa-
tions may be modified to include the finite length (or finite
temperature) of the cylinder.
We computed the four-point amplitude Eq. (30) on our

lattices, replacing the free continuum propagator by the
finite temperature lattice propagator, calculated by inverting
the quadratic action numerically. The goal was then to
analyze this synthetic free lattice data similarly to what was
done for the interacting case, in order to study how well our
lattices enable extrapolations to reproduce the exact free
zero-temperature continuum OPE data in Eq. (32).
In particular, we calculated the finite temperature antipo-

dal four-point function for the free theory for the lattice
refinements L∈ f4; 6; 8; 12; 16; 24; 32g and different cyl-
inder lengths Lt such that Lt=L was between 4 and 16.
Projecting this data on the Legendre polynomials, we

obtained the expansion coefficients cðfreeÞj ðtÞ for different

values of L and Lt. The data for the different c
ðfreeÞ
j ðtÞ is also

available in the Zenodo repository associated with this

project [44]. For the two coefficients with j ¼ 0 and j ¼ 2
also considered in the interacting theory, we then per-
formed multiexponential fits of the form

cfitj ðtÞ ¼
X
k

akjðe−E
k
j tat=R þ e−E

k
j ðLt−tÞat=RÞ ð33Þ

in order to extract the leading coefficients and scaling
exponents. In these fits, the finite temperature is only
taken into account via the addition of the exponentials
e−EkðLt−tÞat=R, just like it was done in the interacting theory.
We then used a model-averaging procedure similar to what
was described for the interacting theory in Sec. IV to
average over fits to different t-ranges and, in this free case,
different numbers of included exponentials.
Comparing Eq. (32) to Eq. (18), we can calculate the

OPE coefficients fðfreeÞσσϵ and fðfreeÞσσT for the operators ϵ and T
of the free CFT from the leading fit parameters a0j and E0

j

via

fðfreeÞ2σσϵ ¼ a00
4E

0
0

fðfreeÞ2σσT ¼ 3

8 · 4E
0
2

�
a02 −

4E0
0

3ðE0
0 þ 1Þ a

0
0

�
: ð34Þ

Our lattice results for these OPE coefficients as well as the

scaling dimensions ΔðfreeÞ
ϵ and ΔðfreeÞ

T corresponding to the
leading exponents in c0 and c2, E0

0, and E0
2, respectively,

can be seen in Fig. 9. We plot them as a function of ðaRÞ2,
which we know to be the leading scaling behavior of lattice
artifacts in the free case. The error bars stem from the fitting
errors. Note that we do not show the results for L ¼ 4 due
to the fact that for such small lattice refinements, the fitting

FIG. 8. (a) Central charge (green dots) in relation to CðfreeÞ
T ¼ 3=2 as a function of lattice spacing calculated with our the model-

averaged fit results for f2σσT and ΔT , as well as Δσ ¼ 0.518ð2Þ as obtained in [27]. (b) CT=C
ðfreeÞ
T multiplied by our model averaged fit

results results for f2σσϵ=Δ2
ϵ as a function of the lattice spacing. For both quantities, we have performed extrapolations to a=R → 0

according to (26) and (27) over different a=R-ranges. The extrapolations with the highest model probability (orange) are a linear

extrapolation for CT=C
ðfreeÞ
T and a finite-size scaling based extrapolation for CT=C

ðfreeÞ
T · f2σσϵ=Δ2

ϵ, in both cases using all data points. The
blue squares at a=R ¼ 0 represent the continuum values obtained after model averaging all extrapolations. For comparison, the
continuum bootstrap values are shown as dashed black lines.
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errors are several orders of magnitudes higher than for the
other refinements.
The results in green are taken at finite temperature

with fixed Lt=L ¼ 16 just as in the interacting theory.
Extrapolating these to the continuum by fitting f ¼ c0 þ
c1ðaRÞ2 leads to good agreement with the analytic values in
the case of the scaling dimensions, which we expect to be

ΔðfreeÞ
ϵ ¼ 1 and ΔðfreeÞ

T ¼ 3 as a=R → 0. The numerical
values for these extrapolations are given in Table III.
The OPE coefficients, however, are affected by

finite temperature effects. Thus, for the fixed finite ratio
Lt=L ¼ 16 corresponding to a finite temperature, the

extrapolations to a=R → 0 with fðfreeÞ2σσϵ ¼ 1.998527ð93Þ
and fðfreeÞ2σσT ¼ 0.093681ð16Þ slightly miss the zero temper-
ature continuum expectations from Eq. (32) corresponding

to fðfreeÞ2σσϵ ¼2 and fðfreeÞ2σσT ¼ 0.09375. However, these devi-
ations due to wraparound effects only amount to 0.07%.
We can eliminate this systematic error by carrying out a

double limiting procedure, first extrapolating the lattice
results to zero temperature Lt=L → ∞ via fit function
fðLtÞ ¼ f þ p1e−p2Lt for each L, yielding the gray data in
Fig. 9, and then taking the limit a → 0. Figure 9 and
Table III show that if we perform this procedure, our results
perfectly agree with the continuum zero temperature
expectations.
From these results, we can draw two main conclusions.

Firstly, as we know the scaling with the lattice spacing
exactly, we can perfectly extrapolate the free theory data
calculated on our simplicial lattices data to remove the IR
and UV cutoff, yielding the free continuum values. This
might be an incentive to study the cutoff dependence of the
interacting theory to higher than just leading order in order
to improve extrapolations.
Secondly, there are wraparound effects influencing our

data if we only carry out calculations at finite T (finite
Lt=L) and compare to T → 0 (Lt=L → ∞) continuum
expectations. However, the errors associated with these

FIG. 9. Model-averaged fit results for the scaling dimensions and operator product expansion coefficients for the free operators ϵ (0þ)
and T (2þ) as a function of the squared lattice spacing. The green results are taken at fixed finite temperature, Lt=L ¼ 16, while the gray
points in (c) and (d) are extrapolations to zero temperature Lt=L → ∞. Extrapolations to the continuum (orange fit functions, blue
squares at a=R ¼ 0) are shown to compare with the exact continuum results at zero temperature (black dashed line).

TABLE III. Extrapolation results for the free theory compared
to the zero-temperature exact values [compare Eq. (32)]. For the
OPE coefficients f2σσϵ and f2σσT we list the continuum extrapo-
lations obtained from the data with Lt=L ¼ 16 fixed, as well as
for data which had been extrapolated to zero temperature,
Lt=L → ∞, prior to the continuum extrapolation a=R → 0.

Quantity Exact value Lt=L ¼ 16 Lt=L → ∞

ΔðfreeÞ
ϵ

1 1.0000073(94) � � �
ΔðfreeÞ

T
3 3.000030(35) � � �

fðfreeÞ2σσϵ
2 1.998527(93) 2.00014(15)

fðfreeÞ2σσT
0.09375 0.093681(16) 0.093769(24)
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effects are around two orders of magnitude smaller than the
deviations of our OPE coefficient results from the bootstrap
values that we see in the interacting theory. Thus, we
conclude that the improvement from carrying out a limit
Lt=L → ∞ in the interacting theory would be negligible
compared to the effect of the systematic errors in the
interacting theory that we could not study with the free case.

VII. CONCLUSION AND OUTLOOK

The quantum finite element program seeks to extend
Euclidean Monte Carlo lattice methods to nonperturbative
quantum field theory on curved manifolds. In particular, the
present goal is to demonstrate its advantage when applied to
radial quantization for d ≥ 3 conformal field theory. For the
prototype lattice ϕ4 example, we have demonstrated that
we can extract scaling dimensions and OPE coefficients for
leading as well as subleading operators of the 3D Ising CFT
from the four-point function on a R × Sd manifold. In
particular, this is the first time, to our knowledge, that the
OPE coefficient fσσT has been determined from lattice
Monte Carlo calculations.
Continuum extrapolations of our lattice simulations for

the scaling dimensions of operators ϵ, T as well as the
subleading operator ϵ0 agree with the values obtained with
the conformal bootstrap (and the exact value in the case of
the energy-momentum tensor) within the statistical and
fitting errors. Extrapolations for the OPE coefficients fσσϵ
and fσσT deviate more from the bootstrap values than is
covered by these errors so that also our value for the central
charge is significantly too low in violation of the bootstrap
lower bound [14]. However, ratios of these quantities
extrapolate to values that are consistent with values
obtained by the other two methods that were able to extract
both fσσϵ and fσσT , namely the conformal bootstrap and the
fuzzy sphere, as is shown in the comparison Table IV.
The method employed here follows a sequence of

quantum finite element developments. First, there is the
requirement to introduce UV counterterms in 2D on S2 and
in 3D on R × S2 to modify the simplicial finite element
method (FEM) to reach the Ising critical surface. Next, the
importance of the Ricci term in 3D was seen as it
dramatically improved the approach to continuum for the
scalar two-point function. While this simplicial QFE action
has enabled us to study the OPE expansion, there are
clearly additional improvements to pursue, as is common
practice in lattice field theory.

Comparison of the free scalar theory on the simplicial
lattice vs the continuum free CFT reveals two issues. First,
the finite temperature (also known as the IR finite length
of the cylinder) is probably not a significant source of
systematic error. Second, the extrapolation to zero lattice
spacing (i.e. removing the UV cutoff) for the free CFTwith
Oða2Þ scaling is under good control. For the strongly
interacting CFT, however, the analytic dependence on the
cutoff is a more serious problem to address and finite-size
scaling analysis offers some guidance.
Within the current QFE framework presented here, there

are still some potential sources of systematic error that could
be explored further. A slight mistuning of the bare mass
parameter μ20 could potentially lead to a systematic shift in
estimated OPE coefficients. This can only be checked by
new calculations at even larger values of L. Similarly, all
calculations were performed at only a single bare λ0 with no
attempt to extrapolate to the bare lattice λ0 → 0. Also, our
determinations of scaling dimensions and OPE coefficients
were actually variational estimates limited by our inability to
model the contributions of higher primaries: (ϵ00, T 00, l ≥ 4,
etc.). Any of these studies would require a significant
investment in software development for increased paralle-
lization of the code as well as at least an order of magnitude
increase in computational resources. Before making such an
investment, we would like to consider whether this frame-
work is the best option available.
Beyond cutoff effects, we continue to explore the validity

of using perturbative counterterms in super-renormalizable
theories. Recall that our counterterms only correct the mass
parameter and do not modify the classical FEM Laplace-
Beltrami operator [48,49] in Eq. (19). However, in a recent
study of the 2D Ising model on an affine lattice [50],
equivalent to lattice ϕ4 at bare lattice λ0 → ∞, we dem-
onstrated that the critical theory required a modification of
the kinetic term away from the classical FEM operator. This
provides yet further evidence that the way to continue using
our current simplicial action in Eq. (21) with perturbative
counterterms is to fix the dimensional renormalized cou-
pling [λR ¼ Oðλ0=aÞ] instead of the bare λ0 as we extrapo-
late to zero lattice spacing. This should reduce the quantum
correction of FEM Laplace-Beltrami operator to OðaÞ.
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APPENDIX A: THE FREE CASE

In the special case of the free theory, the propagator

Gð2Þ
σ ðt; cos θÞ≡ hσðt1;n1Þσðt2; n2Þi for a free scalar field

σðt; nÞ on R × S2 is

Gð2Þ
σ ðt; cos θÞ ¼ 2

ð2 cosh t − 2 cos θÞΔðfreeÞ
σ

; ðA1Þ

where t ¼ jt2 − t1j and cos θ ¼ n1 · n2. Expanding as a
series in Legendre polynomials this is

Gð2Þ
σ ðt; cos θÞ ¼

X∞
j¼0

2e−ðjþ1=2ÞtPjðcos θÞ; ðA2Þ

where we have substituted the scaling exponent

ΔðfreeÞ
σ ¼ 1=2.
The free antipodal four-point function is simply a sum of

s-, t-, and u-channels. Following the same notation used
above this gives

Gð4Þ
σ ðt; cos θÞ ¼ Gð2Þ

σ ð0;−1Þ2 þ Gð2Þ
σ ðt; cos θÞ2

þ Gð2Þ
σ ðt;− cos θÞ2: ðA3Þ

Note that we have conveniently normalized the two-point
function (A2) so that the s-channel diagram is 1. Thus, the
antipodal four-point function in this normalization already
corresponds to the conformally invariant amplitude g.
Inserting Eq. (A2) we obtain the somewhat complicated
expression,

Gð4Þ
σ ðt; cos θÞ ¼ 1þ 4

�X∞
j¼0

e−ðjþ1=2ÞtPlðcos θÞ
�

2

þ 4

�X∞
j¼0

e−ðjþ1=2ÞtPjð− cos θÞ
�

2

; ðA4Þ

which can again be expressed as a series in Legendre
polynomials

Gð4Þ
σ ðt; cos θÞ ¼ 1þ

X∞
j¼0

cðfreeÞj ðtÞPjðcos θÞ; ðA5Þ

where all of the odd j coefficients are zero, and the even j
coefficients are

cðfreeÞj ðtÞ ¼ 8ð2jþ 1Þ
X∞
n¼0

e−ðjþ2nþ1Þt 2
jðjþ nÞ!ð2n − 1Þ!!
n!ð2jþ 2nþ 1Þ!! :

ðA6Þ

As required, we recover the partial wave expansion for a
free scalar four-point function.
Finally, we consider corrections to (A5) due to wrap-

around effects on a periodic cylinder with length Lt (i.e.
finite temperature effects). In the free case, the thermal two-

point function G̃ð2Þ
σ in the interval 0 ≤ t ≤ Lt can be

expressed as a sum over an infinite set of image charges,

G̃ð2Þ
σ ðt;cosθÞ¼

X∞
n¼−∞

Gð2Þ
ϕ ðtþnLt;cosθÞ

¼ 4
X∞
j¼0

cosh ½ðΔðfreeÞ
σ þ jÞðt−Lt=2Þ�

sinh ½ðΔðfreeÞ
σ þ jÞLt=2�

PjðcosθÞ:

ðA7Þ

The four-point function can be evaluated as before,
and to lowest order, the finite temperature Legendre
coefficients are related to the zero-temperature coefficients

by c̃ðfreeÞj ðtÞ ≃ cðfreeÞj ðtÞ þ cðfreeÞj ðLt − tÞ. The leading cor-
rections occur near t ¼ Lt=2, giving

δc̃ðfreeÞ0 ðt ∼ Lt=2Þ ≃
8

sinhðΔðfreeÞ
ϵ Lt=2Þ

ðA8Þ

for j ¼ 0 and

δc̃ðfreeÞj ðt ∼ Lt=2Þ ≃ 16
cosh ½ðΔðfreeÞ

ϵ þ j − 1Þðt − Lt=2Þ�
sinh ½ðΔðfreeÞ

ϵ þ jÞLt=2�
ðA9Þ

for all even j ≥ 2.

APPENDIX B: FINITE-SIZE SCALING ANALYSIS
FOR THE INTERACTING THEORY

To determine which fit function to use for extrapolating
the lattice results to the continuum a=R → 0, we carried out
a finite-size scaling analysis based on [52].

1. Scaling of the free energy

The free energy is defined as

F ðgσ; gϵ; fgω; � � �g; a=LÞ ¼ logZ; ðB1Þ
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where

Z ¼
Z

Dϕe−Sþh·ϕ: ðB2Þ

Here, gσ , gϵ are relevant and gω; � � � irrelevant couplings of
the action near the Wilson-Fisher fixed point, not the bare
couplings h; μ0; λ0 in the action. a is the lattice spacing, L is
the characteristic “finite size” of our system, and a=L a
dimensionless ratio.
If we change the scale by a factor λ, the free energy

renormalizes as follows:

F ðgσ; gϵ; fgω; � � �g; a=LÞ
¼ λ−dFðλyσgσ; λyϵgϵ; fλyωgω; � � �g; λa=LÞ
þ Gðgσ; gϵÞ: ðB3Þ

Here, F is the scaling part of F , whereas G is regular. The
exponents yO are related to the scaling dimensions of the
respective operators via yO ¼ d − ΔO.

2. n-point functions

We calculate connected n-point functions of the scalar
field ϕ from F by taking derivatives with respect to the
(bare) external field h and subsequently setting h ¼ 0:

hϕðx1Þ � � �ϕðxnÞijconn ¼
δ

δhðx1Þ
� � � δ

δhðxnÞ
F

����
h¼0

: ðB4Þ

Rewriting the derivatives with respect to gσ , we get for
the two-point function

hϕðx1Þϕðx2Þijconn
¼

Z
x;y

δ2F
δgσðxÞδgσðyÞ

δgσðxÞ
δhðx1Þ

δgσðyÞ
δhðx2Þ

����
h¼0

; ðB5Þ

where we have used that gσ is an odd function of h

gσ ¼ hα1 þ h3
α3
3!

þ h5
α5
5!

þ � � � ðB6Þ

such that terms like δ2gσðxÞ
δhðx1Þδhðx2Þ vanish. For the four-point

function, we get

hϕðx1Þϕðx2Þϕðx3Þϕðx4Þijconn ¼
Z
x;y;u;w

δ4F
δgσðxÞδgσðyÞgσðuÞδgσðwÞ

δgσðxÞ
δhðx1Þ

δgσðyÞ
δhðx2Þ

δgσðuÞ
δhðx3Þ

δgσðwÞ
δhðx4Þ

þ
Z
x;y

δ2F
δgσðxÞδgσðyÞ

�
δgσðxÞ
δhðx1Þ

δ3gσðyÞ
δhðx2Þδhðx3Þδhðx4Þ

þ δgσðxÞ
δhðx2Þ

δ3gσðyÞ
δhðx1Þδhðx3Þδhðx4Þ

þ δgσðxÞ
δhðx3Þ

δ3gσðyÞ
δhðx1Þδhðx2Þδhðx4Þ

þ δgσðxÞ
δhðx4Þ

δ3gσðyÞ
δhðx1Þδhðx2Þδhðx3Þ

�
:

Derivatives of the free energy with respect to gσ in the
limit of h → 0 and thus gσ → 0 scale as

∂
kF
∂gkσ

¼ F ðkÞðgϵ; fgω; � � �g; a=LÞ

¼
�
L
a

�
kyσ−d

FðkÞ
��

L
a

�
yϵ
gϵ;

��
L
a

�
yω
gω; � � �

	
; 1

�

þ GðkÞðgϵÞ: ðB7Þ

Near the critical point, we can expand these derivatives
in Taylor series as follows:

FðkÞ ¼ak0þak1ðgϵ−g�ϵÞ
�
L
a

�
yϵ þak2ðgϵ−g�ϵÞ2

�
L
a

�
2yϵ þ���

þbk1ðgω−g�ωÞ
�
L
a

�
yω þbk2ðgω−g�ωÞ2

�
L
a

�
2yω þ���

ðB8Þ

and

GðkÞ ¼ ck0 þ ck1ðgϵ − g�ϵÞ þ ck2ðgϵ − g�ϵÞ2 þ � � � ; ðB9Þ

where g� denotes the critical values of the couplings at the
Wilson-Fisher fixed point.
Putting everything together, we see that the two-point

function scales as

hϕϕijconn ∼
�
L
a

�
2yσ−2d

α21

�
Fð2Þ þ

�
L
a

�
d−2yσ

Gð2Þ
�

ðB10Þ

near the critical point, whereas the connected four-point
function scales as

hϕϕϕϕijconn∼
�
L
a

�
4yσ−4d

α41

�
Fð4Þ þ

�
L
a

�
d−4yσ

Gð4Þ
�

þ4

�
L
a

�
2yσ−4d

α1α3

�
Fð2Þ þ

�
L
a

�
d−2yσ

Gð2Þ
�
:

ðB11Þ
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By tuning μ20 in our action to the critical surface, we
eliminate all terms ∝ ðgϵ − g�ϵ ¼ 0Þ, which diverge as
L → ∞. The remaining terms then yield

hϕϕijconn∼
�
L
a

�
−2Δσ

α21

�
a20þb21ðgω−g�ωÞ

�
L
a

�
d−Δω0 þ � � �

þ
�
L
a

�
2Δσ−d

c20

�
ðB12Þ

and

hϕϕϕϕijconn∼
�
L
a

�
−4Δσ

α41

�
a40þb41ðgω−g�ωÞ

�
L
a

�
d−Δω0

þ���þ
�
L
a

�
−3dþ4Δσ

c40

�
þ4

�
L
a

�
−2Δσ−2d

α1α3

×

�
a20þb21ðgω−g�ωÞ

�
L
a

�
d−Δω0 þ���

þ
�
L
a

�
2Δσ−d

c20

�
: ðB13Þ

We now have to take the ratio hϕϕϕϕijconn
hϕϕihϕϕi of Eqs. (B13) and

(B12) and expand in a=L. Using that for the d ¼ 3 Ising
model, the leading irrelevant operator ω corresponds to the
conformal primary ϵ0 and comparing with the values for Δσ

and Δϵ0 in [15], we find that to leading order

hϕϕϕϕijconn
hϕϕihϕϕi ¼ gðu; vÞ − 1

∼ C0 þ C1

�
a
L

�
Δϵ0−3 þ � � � ðB14Þ

such that the leading finite-size scaling exponent is
Δϵ0 − 3 ≈ 0.83. In our case, the characteristic “finite size”
of our system is the radius of the sphere R. Thus, we expect
the OPE coefficients from our fits at finite lattice spacing to
receive corrections

f2σσO

�
a
R

�
¼ f2σσO þ c0O

�
a
R

�
Δϵ0−3 þ � � � ðB15Þ

to leading order. Taking the logarithm, we find that also

ΔO

�
a
R

�
¼ ΔO þ cO

�
a
R

�
Δϵ0−3 þ � � � ðB16Þ

Note, C1 in Eq. (B14) as the leading correction to scaling
is a function of the irrelevant couplings and its value can be
set to zero by tuning the bare couplings [53], thereby
increasing the rate of convergence of the discrete theory to
the continuum limit. This is often referred to as non-
perturbative improvement of the discrete action.
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