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The static QCD force from the lattice can be used to extract ΛMS, which determines the running of the
strong coupling. Usually, this is done with a numerical derivative of the static potential. However, this
introduces additional systematic uncertainties; thus, we use another observable to measure the static force
directly. This observable consists of a Wilson loop with a chromoelectric field insertion. We work in the
pure SU(3) gauge theory. We use gradient flow to improve the signal-to-noise ratio and to address the field

insertion. We extract Λnf¼0

MS
from the data by exploring different methods to perform the zero-flow-time

limit. We obtain the value
ffiffiffiffiffiffi
8t0

p
Λnf¼0

MS
¼ 0.629þ22

−26 , where t0 is a flow-time reference scale. We also obtain

precise determinations of several scales: r0=r1,
ffiffiffiffiffiffi
8t0

p
=r0,

ffiffiffiffiffiffi
8t0

p
=r1, and we compare these to the literature.

The gradient flow appears to be a promising method for calculations of Wilson loops with chromoelectric
and chromomagnetic insertions in quenched and unquenched configurations.

DOI: 10.1103/PhysRevD.109.114517

I. INTRODUCTION

The Standard Model of particle physics is one of the
most precisely tested theories. A precise knowledge of the
Standard Model parameters is a necessary condition to
work out accurate perturbative predictions, and to compare
them with high-precision experimental measurements.
Quantum chromodynamics (QCD) is the sector of the
Standard Model that describes the strong interaction. It is a
field theory based on the gauge group SU(3) that depends
on just one coupling, g, or equivalently αs ¼ g2=ð4πÞ. The
coupling may be traded at any time with an intrinsic scale;
in the MS scheme, this is ΛMS. Once renormalized, αs is
small at energy scales much larger than ΛMS, a property
known as asymptotic freedom, but it becomes of order 1 at

energy scales close to ΛMS. At high energies, we can rely
on weak coupling perturbation theory to compute QCD
observables.
The value of ΛMS, or equivalently αs, at a large energy

scale can be determined by comparing some high-energy
observable computed in weak coupling perturbation theory
with data. A viable alternative is to replace data with lattice
QCD computations—i.e., the exact evaluation of the
observable in QCD via Monte Carlo computations. For
the current status of ΛMS extractions from lattice QCD, see
for example the recent reviews [1,2]. While in the last
several years, lattice extractions of ΛMS have been mostly
done in QCD with dynamical quarks, the interest towards
the running of the coupling in the pure gauge version
of QCD—i.e., without dynamical quarks, also called
quenched QCD—has been recently reignited [3]. With
modern lattice methods, the extraction of the coupling from
the pure gauge theory can be done much more precisely
nowadays than in the past, when quenched calculations
were the only viable option.
The static energy is a well-understood quantity in lattice

QCD [4,5] that can be used to set the lattice scale [6].
Furthermore, the static energy is an observable that can
be used to extract ΛMS by comparing its perturbative
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expression with lattice data at short distances. The QCD
scale ΛMS has been extracted from the static energy both in
pure gauge [7–11] and with dynamical fermions [12–18].
In lattice QCD, the static energy suffers from a linear

divergence and needs to be renormalized. In dimensionally
regularized perturbation theory, this divergence becomes a
renormalon of mass dimension 1. For these reasons, it
presents some advantages to look at the derivative of the
static energy, which is the static force. The static force is not
affected by linear divergences in lattice QCD or by
renormalons of mass dimension 1 in dimensional regulari-
zation, yet it contains all the relevant information on the
running of the strong coupling, as this is entirely encoded in
the slope of the static energy. The force is known up to
next-to-next-to-next-to-leading logarithmic accuracy in the
coupling [19–24].
The derivative of the static energy performed numeri-

cally on lattice data introduces additional systematic
uncertainties. Therefore, it may be advantageous to com-
pute the force directly from a suitable observable [25–27].
This observable consists of a Wilson loop with a chromo-
electric field insertion. A difficulty related to this observ-
able is that field insertions on Wilson loops when evaluated
on the lattice have a bad signal-to-noise ratio and a slow
convergence to the continuum limit originating from the
discretization of the field components. This was studied in a
previous work [28]. In this work, to overcome the difficulty,
we rely on the gradient flow method [29–31] to improve
the signal-to-noise ratio and to remove the discretization
effects of the field components. Wilson loops smeared with
gradient flow have been studied before in terms of Creutz
ratios [32–34]. In Ref. [35], the Wilson line correlator in the
Coulomb gauge was measured at finite T with gradient
flow. To our knowledge, this was the first time the gradient
flow was applied to the force directly. Furthermore, this
study also serves as a preparation for the study of similar
Wilson loops with field insertions appearing in the
computation of several observables in the context of
nonrelativistic effective field theories. New methods for
integrating the gradient flow equations, based on Runge-
Kutta methods, have been developed and implemented
during the last few years [36]. The force in gradient flow,
besides that with lattice QCD, can also be computed
analytically in perturbation theory. In perturbation theory,
the static force at finite flow time is known at one-loop
order [37].
The paper is structured as follows: In Sec. II, we discuss

the theoretical background: we introduce the gradient flow
and the static force at zero and finite flow time, in
continuum and on the lattice. The lattice setup is described
in Sec. III, and in Sec. IV we show our numerical results
and perform the continuum limits. Finally, in Sec. V, we

discuss our results and extract Λnf¼0

MS
. Preliminary results

based on these data have appeared before in conference
proceedings [38,39].

II. THEORETICAL BACKGROUND

A. The static force

The static energy VðrÞ in Euclidean QCD is related to a
rectangular Wilson loop Wr×T with temporal extent from 0
to T and spatial extent r [40] by

VðrÞ¼− lim
T→∞

lnhTrðPWr×TÞi
T

¼−
1

a
lim
T→∞

hTrðPWr×ðTþaÞÞi
hTrðPWr×TÞi

;

ð1Þ

Wr×T ¼
�
exp

�
i
I
r×T

dzμgAμ

��
; ð2Þ

where a is the lattice spacing, g the strong coupling, Tr the
trace over the color matrices, and P is the path-ordering
operator for the color matrices. In dimensional regulariza-
tion, the static energy has a renormalon ambiguity of order
ΛQCD, while on the lattice there is a linear divergence of
order 1=a coming from the self-energy of the Wilson line.
Both the perturbative and lattice problems manifest as a
constant shift to the potential. This may be renormalized by
fixing the potential to a given value at a given point r�:

VrðrÞ ¼ VðrÞ − Vðr�Þ: ð3Þ

Alternatively, taking the derivative removes the divergent
constant, and we obtain a renormalized quantity, the
static force.
The static force FðrÞ is defined as the derivative of the

static energy:

F∂VðrÞ ¼ ∂rVðrÞ: ð4Þ

In perturbation theory, the static force is known up to next-to-
next-to-next-to-leading logarithmic order (N3LL) [19–24].
On the lattice, this derivative is evaluated from the static
energy data either with interpolations or with finite
differences, which leads to increased systematic errors. It
is possible, however, to carry out the derivative of theWilson
lines at the level of Eq. (2), and rewrite the force as [25–27]

FEðrÞ¼− lim
T→∞

i
hTrðPWr×Ti

×

�
Tr

�
P

�
exp

�
i
I
r×T

dzμgAμ

�
r̂ ·gEðr; t�Þ

���

ð5Þ

¼ − lim
T→∞

i
hTrfPWr×T r̂ · gEðr; t�gi

hTrðPWr×Ti
; ð6Þ

where the expression in the numerator consists of a static
Wilson loop with a chromoelectric field insertion on the
temporal Wilson line at position t�, and r̂ is the spatial
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direction of the quark-antiquark pair separation; t� can be
chosen arbitrarily. Since both expressions for the force
represent the same renormalized quantity, it holds in the
continuum that FE ¼ F∂V ¼ F.

B. Gradient flow

We rely on the gradient flow method [29–31] for
measuring Wilson loops with and without chromoelectric
field insertions. The gradient flow is a continuous trans-
formation of the gauge fields toward the minimum of the
Yang-Mills gauge action along a fictitious flow time τF:

ḂμðτF;xÞ¼DνGνμ¼−g20
δSYM½B�
δBμðτF;xÞ

; ð7Þ

BμjτF¼0 ¼ Aμ; ð8Þ

Gμν¼ ∂μBν−∂νBμþ½Bμ;Bν�; Dμ¼∂μþ½Bμ; :�; ð9Þ

where BμðτFÞ are the flowed gauge fields at flow time τF,
with the SU(3) QCD gauge fields Aμ as the initial condition
at zero flow time; SYM is the Yang-Mills action evaluated
with the flowed gauge fields;Gμν is the field strength tensor
evaluated with the flowed gauge fields; andDμ is the gauge
covariant derivative. The flow depends on the local
neighboring gauge field values through the derivative of
the action with respect to the gauge field at position x, and
its characteristic range is given by the flow radius

ffiffiffiffiffiffiffi
8τF

p
.

This results in a smearing that cools off systematically the
ultraviolet physics and automatically renormalizes gauge-
invariant observables [41,42]. Furthermore, we introduce
the reference scale t0 [31], defined implicitly through the
expectation value of the action density

E ¼ 1

4
Ga

μνGa
μν; ð10Þ

as

τ2FhEijτF¼t0 ¼ 0.3: ð11Þ

The gradient flow equation is adapted for flowed link
variables VτFðμ; xÞ on the lattice as

V̇τFðx; μÞ ¼ −g20
	
∂x;μSGaugeðVτFÞ



VτFðx; μÞ;

VτFðx; μÞjτF¼0 ¼ UμðxÞ; ð12Þ

where SGaugeðVτFÞ is some lattice gauge action evaluated
with the flowed link variables, ∂x;μ is the derivative with
respect to VτFðx; μÞ, and UμðxÞ is the original SU(3) link
variable. The flowed link variables of a gauge field
configuration depend uniquely on the initial gauge field
configuration U—i.e., VτF ¼ VτFðUÞ—and flowed observ-
ables are obtained by replacing the original link variables

with the flowed link variables: OðτFÞ ¼ OjU¼VτF
. The

flowed expectation value of O is evaluated on the flowed
gauge ensemble and can be written as

hOðτFÞi ¼
1

Z

Z
D½U�e−SE½U�O½VτFðUÞ�; ð13Þ

which is still a path integral with the Euclidean action SE of
the original zero-flow-time theory. Therefore, on the lattice,
the expectation value is given by

hOðτFÞi ≈
1

N

X
U;pðUÞ∝e−SE

OðVτFðUÞÞ; ð14Þ

where N is the number of gauge fields. We solve the
gradient flow on the lattice by an iterative Runge-Kutta
implementation for the SU(3) matrices. We use either a
fixed step-size algorithm [31] or an adaptive step-size
algorithm [36,43].

C. The perturbative static force
at finite flow time

The one-loop formula for the static force in gradient
flow is [37]

Fðr; τFÞ ¼
αSðμÞCF

r2

��
1þ αS

4π
a1

�
F 0ðr; τFÞ

þ αS
4π

β0FL
NLOðr; τF; μÞ þ

αSCA

4π
FF

NLOðr; τFÞ
�

þOðα3SÞ; ð15Þ

with CF ¼ ðN2
C − 1Þ=ð2NCÞ, CA ¼ NC, NC ¼ 3 the num-

ber of colors, β0 ¼ 11CA=3 − 2nf=3, nf the number of
flavors, and a1 ¼ 31CA=9 − 10nf=9. The functions
F 0ðr; τFÞ and FL

NLOðr; τF; μÞ are given analytically with

F 0ðr; τFÞ ¼ erf

�
rffiffiffiffiffiffiffi
8τF

p
�
−

rffiffiffiffiffiffiffiffiffiffi
2πτF

p exp

�
−

r2

8τF

�
; ð16Þ

FL
NLOðr; τF; μÞ ¼ logðμ2r2ÞF 0ðr; τFÞ

þ log

�
8τF
r2

eγE
�
F 0ðr; τFÞ

−
rffiffiffiffiffiffiffiffiffiffi
2πτF

p
�
e−

r2
8τFMð1;0;0Þ

�
0;
1

2
;
r2

8τF

�

þMð1;0;0Þ
�
1

2
;
3

2
;−

r2

8τF

��
; ð17Þ

where γE is the Euler-Mascheroni constant and Mða; b; zÞ
is the confluent hypergeometric function, defined by

STATIC FORCE FROM GENERALIZED WILSON LOOPS ON THE … PHYS. REV. D 109, 114517 (2024)

114517-3



Mða; b; zÞ ¼
X∞
k¼0

ðaÞk
ðbÞk

zk

k!
ð18Þ

with ðxÞk ¼ Γðxþ kÞ=ΓðxÞ, and

Mð1;0;0Þða; b; zÞ ¼ ∂

∂a
Mða; b; zÞ: ð19Þ

For r >
ffiffiffiffiffi
τF

p
, we approximate FF

NLO with the polynomial

FF
NLOðξ ¼ r=

ffiffiffiffiffi
τF

p Þ ¼
X10
n¼1

cn
n!

�
ξ

1þ ξ=Ca

�
n
e−ξ

þ 44 − Cb

Ca þ ξ2
þ Cbξ

2

ξ4 þ Cc
; ð20Þ

where Ca ¼ 109.358, Cb ¼ 43.8438, Cc ¼ 404.790, and
cn values are listed in Table I. In practice, the computation
of Mð1;0;0Þ takes a considerable amount of time, which is a
problem for fitting this function. Those terms depend only
on the flow-time ratio τF=r2; hence, we precompute them
on a fine flow-time ratio grid, and we use spline inter-
polations for further calls of the perturbative formula.
The one-loop formula has an explicit dependence on the

renormalization scale μ in the form of logðμ2r2Þ and an
implicit dependence through the perturbative strong cou-
pling αsðμÞ. At zero flow time, the only scale is the distance
r; therefore, setting μ ¼ 1=r is a natural choice. At large
flow time, r is negligible with respect to

ffiffiffiffiffiffiffi
8τF

p
, and

therefore, the natural choice is μ ¼ 1=
ffiffiffiffiffiffiffi
8τF

p
. A paramet-

rization of μ that interpolates between these two limiting
cases is μ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 8τF

p
[37]. Because in our lattice

calculations we are not collecting data at large flow time,
we adopt in this work the more general parametrization

μðr; τFÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sr2 þ 8bτF
p : ð21Þ

At zero flow time, μðr; 0Þ ¼ 1=ð ffiffiffi
s

p
rÞ, and we can interpretffiffiffi

s
p

as a scale-variation parameter with central value 1. At

intermediate-flow-time values—i.e.,
ffiffiffiffiffiffiffi
8τF

p
of the order of

r—the parameter b defines an effective flowed distance.
Starting from three loops, an ultrasoft (us) scale of order
αs=r also enters the static force equations at zero flow
time [19]. For the scope of this paper, we set the ultrasoft
scale to be μus ¼ CAαsð1=rÞ=ð2rÞ.
We renormalize the coupling in the MS scheme; hence,

both αs and the scale ΛMS are defined in that scheme. The
scale ΛMS can be obtained by comparing the perturbative
expression of the forcewith lattice data. Sincewework in the

pure SU(3) theory, the comparison provides Λ0 ≡ Λnf¼0

MS
.

The small-flow-time expansion of r2F reads

r2Fðr;τFÞ≈ r2Fðr;τF ¼ 0Þþα2sCF

4π
½−12β0−6CAcL�

τF
r2
;

ð22Þ

with cL ¼ −22=3. We remark that ½−12β0 − 6CAcL� ¼
8nf, which is 0 in this study (nf ¼ 0). This means that
at small flow time, the static force approaches a constant
behavior, and that corrections to it are smaller than
α2sτF=r2; r2Fðr; τF ¼ 0Þ is r2 times the one-loop perturba-
tive force at zero flow time.
The static force at zero flow time is known up to N3LL

accuracy [19–24], and the higher loop contributions are
crucial for the extraction of the Λ0 parameter. To benefit
from this knowledge, we model the flowed force with the
one-loop expression at finite flow time, and we demand it to
converge to the expression at arbitrary order at zero flow
time. In terms of equations, our model function is given by

r2Fðr; τFÞ ¼ r2Fðr; τF ¼ 0Þ þ f1-loopðr; τFÞ; ð23Þ

f1-loopðr;τFÞ¼ r2F1-loopðr;τFÞ− r2F1-loopðr;τF ¼ 0Þ; ð24Þ

where r2Fðr; τF ¼ 0Þ is the static force at a given order at
zero flow time, and r2F1-loop is the full one-loop expression
in Eq. (15). In this way, we correct for the change of the
force due to the flow time up to one-loop order. The
accuracy of the flow-time correction is consistent with
the three-loop accuracy of the zero-flow-time part, as long
as the flow-time correction subleading to α2sτF=r2 is small
compared to α4s . This appears to be the case in our study,
where we invoke the restriction τF=r2 ≲ 0.05.
For the rest of the paper, we refer to Eq. (23) when

dealing with the flowed static force at higher orders. We
label the one-loop-order force [next-to-leading order
(NLO)] as F1l, the two-loop force [next-to-next-to leading
order (N2LO)] as F2l, the two-loop force with leading
ultrasoft logarithms resummed [next-to-next-to-leading
logarithmic order (N2LL)] as F2lLus, the three-loop force
[next-to-next-to-next-to-leading order (N3LO)] with F3l,
and the three-loop force with leading ultrasoft logarithms

TABLE I. Numerical values of the coefficients cn appearing in
Eq. (20).

c1 −0.0501648
c2 0.526758
c3 −5.55177
c4 45.8753
c5 −147.8
c6 463.906
c7 −851.741
c8 884.315
c9 −499.105
c10 121.773
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resummed as F3lLus. For the reasons discussed in [15], we
also restrict the present study to the F3lLus force, although
the force at three-loop order with next-to-leading ultrasoft
logarithms resummed [next-to-next-to-next-to-leading log-
arithmic order (N3LL)] would be available.

D. The force on the lattice

The Wilson loops Wr×T are constructed as the closed,
path-ordered product of link variables, consisting of two
straight spatial Wilson lines in the spatial plane separated
by T in the temporal direction. The spatial Wilson lines
have the length r in the direction r̂. The ends of both spatial
Wilson lines are connected by two straight temporal Wilson
lines. The static force can be obtained as the numerical
derivative of Eq. (1) from the symmetric finite difference

F∂V ¼ Vðrþ aÞ − Vðr − aÞ
2a

: ð25Þ

Other methods of defining the derivative of Eq. (1) consist,
for example, in using the derivative of interpolating
functions; these methods, however, add additional system-
atic uncertainties.
The main purpose of this work is to obtain the static force

directly by computing PWr×TgEjðr ¼ rĵ; t�Þ, which con-
sists of inserting a discretized jth chromoelectric field
component into the path-ordered product at the temporal
position t� in one of the temporal Wilson lines. In general,
t� is arbitrary. Nevertheless, we choose t� ¼ T=2 for even-
spaced separations, and an average over t� ¼ T=2� a=2
for odd-spaced separations. This reduces the interactions
between the chromoelectric field and the corners of the
Wilson loop. We use the clover discretization for the field-
strength tensor,

a2Fμν ¼
−i
8
ðQμν −QνμÞ; ð26Þ

Qμν ¼ Uμ;ν þ Uν;−μ þ U−μ;−ν þ U−ν;μ ¼ Q†
νμ; ð27Þ

where Uμν is a plaquette in the μ − ν plane. This
symmetric definition of the chromoelectric field corre-
sponds to the symmetric center difference according to
Eq. (25) at tree level. Finally, we replace a2Fμν with
a2Fμν − 1Trða2FμνÞ=3, which makes the components of
the field-strength tensor traceless and corresponds to an a2

improvement [44]. The chromoelectric field components
are accessible through the components a2Ei ¼ −a2Fi;4.
The direct determination of the force FE on the lattice

follows from Eq. (6) and the discretized version of
PWr×TgEjðr ¼ rĵ; t�Þ. The finite extent of the chromo-
electric field through its discretization introduces additional
self-energy contributions with a nontrivial lattice spacing
dependence. These self-energy contributions slow down

the convergence to the continuum limit; they have been
studied in lattice perturbation theory [45]. They are absent
in the force obtained through the derivative, F∂V . Since
both calculations provide the same physical quantity, we
may set

ZEFEðrÞ ¼ F∂V; ð28Þ

where the constant ZE reabsorbs the additional self-energy
contributions at finite lattice spacing. If ZE ¼ 1, no self-
energy contributions are present, and we can assume that
the quantity behaves in a trivial way in the continuum
limit. ZE from the static force was investigated non-
perturbatively in a former study [28], and it was found
that ZE has only a weak r dependence. For a different
discretization of the chromoelectric field insertion needed
for determining transport coefficients, the renormalization
constant ZE was computed up to NLO in lattice pertur-
bation theory [46]. More recent studies [47,48] rely on the
gradient flow method to renormalize the field insertions.
In this study, we also use gradient flow to show the
renormalization property explicitly, and to improve the
signal-to-noise ratio. In the rest of this work, the default
force measurement is given in terms of the chromoelectric
field—i.e., F≡ FE—while we still call the force obtained
from the derivative of the static energy ∂rV ≡ F∂V.

III. LATTICE SETUP AND
TECHNICAL DETAILS

On the lattice, we measure a2Fðt; r; TÞ, which, multi-
plied by r2=a2, yields the dimensionless quantity
r2Fðt; r; TÞ. We have data on a periodic N3

s × Nt (Ns:
spatial lattice extent,Nt: temporal lattice extent) grid; in our
case, the available grids are 203 × 40, 263 × 52, 303 × 60,
and 403 × 80. Table II shows our lattice parameters. We
use the scaling from [4], which is based on the scale r0,
to fine-tune the simulation parameters. With this scaling,
our lattices share a physical size of approximately
ð1.2 fmÞ3 × 2.4 fm. We produce the lattice configurations
using over-relaxation and heat-bath algorithms with Wilson
action and periodic boundary conditions.
We solve the gradient flow equation (12) with a fixed

step-size integrator for the coarsest lattice (203 × 40) and an
adaptive step-size integrator for the finer lattices. In all

TABLE II. The parameters for the lattice ensembles. The scale
t0 was set on a smaller subset of lattice configurations.

NS NT β a [fm] t0=a2 Nconf Label

203 40 6.284 0.060 7.868(8) 6000 L20
263 52 6.481 0.046 13.62(3) 6000 L26
303 60 6.594 0.040 18.10(5) 6000 L30
403 80 6.816 0.030 32.45(7) 3300 L40
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gradient flow integrations, we use the Symanzik action. We
measure pure Wilson loops and loops with chromoelectric
field insertions. That way, we can determine both the static
potential and its numerical derivative for obtaining the
static force, and the force directly. In Appendix B, we show
briefly the impact of gradient flow on the bare Wilson loops
with and without chromoelectric field insertions. To find
the reference scale t0, we use the clover discretization in
Eq. (26) to measure hEi and solve Eq. (11) for t0. We use
this reference scale to express our quantities r and τF in
units of

ffiffiffiffi
t0

p
and t0, respectively, and to perform the

continuum limit as a2=t0 → 0.
The adaptive step-size integrator changes the gradient

flow step sizes after every integration step, dependent on
the lattice configuration. This means that the lattice
measurement is done at different flow-time grids for each
individual lattice configuration. Therefore, we need to
interpolate the data to a common flow-time grid among
the different lattice configurations. We use simple spline
interpolations, since the gradient flow is a continuous
transformation of the fields that produces a continuous
function of the flow time. The interpolation can be done to a
fixed flow-time grid in physical units, or to a fixed flow-
time-ratio τF=r2 grid. Data along a flow-time grid in
physical units at a given fixed r can be easily presented
on a flow-time-ratio axis by setting the x axis to τF=r2.
We check the fluctuation of the topological charge and

observe no full freezing of the topology. At our largest
lattice (L40), the fluctuation of topology slows down,
which increases the autocorrelation times of the topological
charge. We inspect the autocorrelation of the L40 lattice
more closely in Appendix C. The static energy (and
consequently, its derivative) is known to be less affected
by topological slowing down [49] than a bare gradient-
flow-coupling measurement would be [50]. However, to be
safe, we block our data such that the block size is larger
than the topological autocorrelation times we see on any of
the ensembles and settle for 30 jackknife blocks per
ensemble. While the static force measurement is only
weakly correlated with the topological charge, the scale
t0 can have a stronger dependence on it. To counter this, we
measure t0 only on a subset of configurations, having
longer Monte Carlo time in between the measurements.
We have performed the simulations at a constant

physical box size and have not tested for finite-volume
effects from varying the physical volume. In [51], the finite-
volume effects were studied and found to be minimal for
hybrid static energies for almost the same set of lattice
parameters. We expect the finite-volume effect to be
equally small for the static force.

IV. PREPARATORY ANALYSES

In this section, we analyze and prepare the raw lattice
data, and we perform the continuum limits needed for the
Λ0 extraction. This preparation contains the plateau

extraction for the static energy and the T → ∞ limit for
the direct force measurement, which is covered in Sec. IVA.
Renormalization properties of gradient flow are discussed in
Sec. IV B, followed by the continuum extraction, worked
out in Sec. IV C. To finalize this section, we investigate the
behavior of the various scales r0, r1, and t0.

A. Plateau extraction

We extract the plateaus in the T → ∞ limit based on a
procedure from [52] that relies on an Akaike information
criterion. We summarize it here briefly. This procedure is
applied to data at every fixed r and τF combination for each
lattice ensemble.
In the first step, we perform constant fits for all possible

continuous ranges within T=a ¼ 1 and a certain Tmax with
a minimum of at least three support points, each fit
minimizing χ2 as

a⋆i1;i2 ¼ argmin
ai1 ;i2

χ2ðai1;i2Þ ¼ argmin
ai1 ;i2

Xi2
i;j¼i1

	
fðxi; ai1;i2Þ − yi




× C−1
i;j

	
fðxj; ai1;i2Þ − yj



; ð29Þ

where i1 and i2 are the indices defining the specific lower
and upper limits of the range; f represents the model
function, which, in our case, is the constant function
fðx; aÞ ¼ a0; and a is the parameter vector, which consists
of only one component for the constant fit. The datasetD is
specified by yi, the force measurement at T ¼ xi, and Cij is
the covariance matrix along the T axis.
In the next step, we define, for a given fit and for a

specific range i1 to i2, the Akaike information criterion
(AIC) as

AICi1;i2 ¼ χ2ða⋆i1;i2Þ þ 2kþ 2ði1 − i2Þ; ð30Þ

where k is the number of parameters of the fit function,
k ¼ 1 for the constant fit, and i1 − i2 is the relative number
of discarded data points within the total range. In theory, we
are required to have the absolute number of discarded data
points, which is given by Ntot − ði1 − i2Þ; however, this
corresponds to a global shift for all AIC values, which can
be eliminated in the next step.
In the third step, we find the model probability of a

specific fit range as

pði1; i2jDÞ ¼ 1

Z
exp−

1
2
AICi1 ;i2 ; ð31Þ

where Z is a normalization constant such that the sum of the
probabilities over all considered fit ranges reduces to 1:

X
i1<i2

pði1; i2jDÞ ¼ 1

Z

X
i1<i2

exp−
1
2
AICi1 ;i2¼! 1: ð32Þ
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At this stage, we observe that a global shift of all AIC
values has no effect on the model probability, since it is
absorbed into a redefinition of Z. Thus, we perform the
global shift AICi1;i2 → AICi1;i2 −mini1;i2AICi1;i2 , because it
makes the computations of the model probability on the
most important ranges numerically more stable.
In the last step, we compute model expectation values

and deviations with the given model probabilities. The final
results and their deviations from the plateau fit are thus
given by

ȧn ¼ hani ¼
X
i1;i2

a⋆n;i1;i2pði1; i2jDÞ; ð33Þ

σ2n ¼ hðan − ānÞ2i ¼ ha2ni − hani2: ð34Þ

This procedure can be generalized to more complex model
functions, which we use in this work for the continuum
limit and the Λ0 extraction. Furthermore, to achieve a better
understanding of the process, we compute the average fit
ranges

hxi1i≡
X
i1;i2

xi1pði1; i2jDÞ; ð35Þ

hxi2i≡
X
i1;i2

xi2pði1; i2jDÞ ð36Þ

and their deviations, defined equivalently to Eq. (34).
A crucial part of this procedure is the selection of a

certain Tmax. In principle, Tmax can be chosen to cover the
whole temporal range of the Wilson loops, since the
information criterion should eventually select the important
ranges. However, especially at larger T, the statistical errors
for the covariance matrix are underestimated. These give
inaccurate model probabilities for insignificant fit ranges.
Therefore, we have to select a proper Tmax value to prevent
this behavior. To find a suitable Tmax, we perform the whole
procedure for several Tmax values and select the one where,
for a small variation of Tmax, the final result stays invariant.
This is justified by the assumption that the important
fit ranges, selected by the information criterion, should
be fully captured by Tmax. Hence, a small variation of
Tmax should not modify the important fit ranges. The Tmax
selection can be automatized by taking data up to a Tmax
where the relative statistical error is less than 10%, and then
decreasing Tmax iteratively until an invariant range of Tmax
is found. However, the automatized procedure does not
work in every case, and sometimes a selection has to be
made manually. To do so, it is enough to identify a
representative selection of a few flow times and distances
r, and use piecewise linear interpolations to cover the whole
dataset.
The Akaike information procedure also provides us an

error estimate of the plateau extraction. Nevertheless, to

propagate the statistical error, we use jackknife resampling
with 30 blocks and perform the plateau extraction for every
jackknife block. If the resulting jackknife error is compa-
rable with the fit error, we use only the jackknife samples to
propagate the error. In several cases, however, the choice of
the fit range is a significant systematic error source, and we
need to take it into account. In these cases, we label the
systematic error by the Akaike information criterion of the
corresponding observable as σ2AIC, and the statistical error
as σ2stat.

B. Implications of the gradient flow

Gradient flow has an impact not only on the signal-to-
noise ratio improvement, but also on reducing discretization
effects that occur through self-interaction contributions.
Therefore, we are also interested in the renormalization
factorZE of the chromoelectric field insertion fromEq. (28).
We find ZE nonperturbatively by solving Eq. (28) for ZE,
which gives the ratio of the numerical derivative of the static
potential and the direct force measurement according to
Eq. (6):

ZEðrÞ ¼
∂rVðrÞ
FðrÞ : ð37Þ

In [28], it was shown that ZEðrÞ has a weak r dependence.
Hence, we extract ZE as a plateau fit, similar to the T → ∞
limit discussed in Sec. IVA, over r at fixed τF; we keep r
approximately between 0.3r0 and 0.65r0. Figure 1 shows the
result for ZE for all lattice sizes against the flow time. At
minimal flow times, we obtain that ZE > 1, meaning that at
minimal flow times, the direct forcemeasurement is affected
by self-energy contributions originating from the chromo-
electric field discretization. Furthermore, we obtain that
ZE ¼ 1 within 1% deviation for flow radii larger than one
lattice spacing, which is required for reliable continuum

FIG. 1. ZE for all lattice sizes with increasing flow time. We see
that for flow radii larger than one lattice spacing, the factor ZE
becomes practically 1.
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limits. We recognize a small bump within the 1% range for
flow radii within 1.5 <

ffiffiffiffiffiffiffi
8τF

p
=a < 5 for all lattice sizes.

This is expected, as the ∂rVðrÞ part is a simple finite
difference and hence only approximates the static force.
We observe that this systematic difference between the
definitions of the force seems to vanish at larger flow radii
(

ffiffiffiffiffiffiffi
8τF

p
=a > 6). In conclusion, we find that a minimum

amount of flow time (
ffiffiffiffiffiffiffi
8τF

p
> a) has to be applied to be in

the regime where the gradient flow has practically elimi-
nated the nontrivial discretization effects.

C. Continuum extrapolation

1. Continuum interpolation

Preparing for the continuum limit, we interpolate r2F on
all ensembles at a fixed flow time to a common r range inffiffiffiffi
t0

p
units. We use polynomial interpolations at different

orders:

PnðrÞ ¼
Xn
k¼0

ak;nrk; ð38Þ

with ak;n being the coefficients. We have different coef-
ficients for different fixed-order polynomials. An interpo-
lation at fixed order corresponds to a single fit, where we
minimize the χ2.
In addition, interpolations have the advantage that small

fluctuations within the data get smoothed. Polynomial
interpolations can have fluctuations, especially higher-
order polynomial fits, and hence, we average over different
polynomial orders to reduce those fluctuations:

PinterðrÞ ¼
Xnmax

n¼nmin

wnPnðrÞ; ð39Þ

Xnmax

n¼nmin

wn ¼ 1; ð40Þ

where wn are normalized, adjustable weights.
For the L20, L26, and L30 lattices, we use equal weights

for all polynomial orders. We choose polynomials of orders
n ¼ 4, 5, 6, 7 for L20; orders n ¼ 7, 8, 9, 10 for L26; and
orders n ¼ 8, 9, 10, 11 for L30. For L40, we use an Akaike
average [52] over the orders from 4 to 12, because at some
flow times the plateau extraction at larger r gives fluctuat-
ing results. This results from underestimated systematic
effects and causes a change in the effective polynomial
orders, which is considered through the Akaike average.
The weights are found analogously to Eqs. (30) and (31)
through

AICn ¼ χ2n þ 2 d:o:f:; ð41Þ

wn ∝ e−
1
2
AICn ; ð42Þ

where the final values of wn are fixed by the normalization
condition. To propagate the statistical error, the continuum
interpolation is done for every jackknife block.
This procedure works for most of the data. An exception

is the data at small r (up to r=a ¼ 3) for the L26 lattice. We
obtain a miscarried interpolation in this case due to large-r
effects in the interpolation. For the L26 lattice, it turns out
that spline interpolations up to r=a ¼ 3 and changing to the
polynomial interpolation for larger r works properly.

2. Tree-level improvement

To reduce the effects of finite lattice spacings, we apply a
tree-level improvement procedure to the data at finite flow
time by dividing out the leading lattice perturbation theory
result. Following [53], the static energy in lattice perturba-
tion theory at finite flow time can be written as

V latðr; τFÞ ¼ −CFg2
Z

d3k
ð2πÞ3 e

ik·re−2τFD
−1
GFDMC; ð43Þ

where we have assumed a ¼ 1 for simplicity and D is the
lattice propagator:

D−1 ¼ 4
X4
i¼1

�
sin2

ki
2
þ cwsin4

ki
2

�
; ð44Þ

with cw ¼ 0 for the Wilson action, which we use for the
simulation part, DMC, and cw ¼ 1=3 for the Symanzik
action, which we use in the gradient flow equations, DGF.
Similarly to the zero-flow-time case that was derived
in [28], the static force coming from the chromoelectric
field insertion reduces to a symmetric finite difference:

Flatðr; τFÞ ¼
V latðrþ a; τFÞ − Vlatðr − a; τFÞ

2a
: ð45Þ

Now, we can tree-level-improve the measured force Fmeas
by dividing out the leading lattice expression and
multiplying by the continuum tree-level gradient flow
expression:

Fimprovedðr; τFÞ ¼
Ftree-level
cont ðr; τFÞ
Flatðr; τFÞ

Fmeasðr; τFÞ; ð46Þ

where Ftree-level
cont is defined as the OðαSÞ contribution

to Eq. (15).

3. Continuum extrapolation

We use the interpolated and tree-level improved data for
the continuum limit, which is obtained from extrapolations
linear and quadratic in a2=t0 at fixed physical distances r
and fixed physical flow times τF:
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flinearða2=t0Þ ¼ m
a2

t0
þ cl; ð47Þ

fquadraticða2Þ ¼ A
a4

t20
þ B

a2

t0
þ Cl; ð48Þ

where m; cl; A; B, and Cl are the fit parameters, and cl and
Cl are the continuum limits of the linear and quadratic
extrapolations, respectively. We take an Akaike average,
defined for polynomials as in Eqs. (41) and (42). Figure 2
shows a working example for the continuum limit at two
fixed distances r and for each distance at two different
flow times.
Although we use tree-level improved data and Akaike

average over linear and quadratic continuum limits, often
both χ2=d:o:f:’s are too large. Hence, we restrict to data
which accomplish that at least one of the extrapolations
gives χ2=d:o:f: < 3.0, and that the flow radius fulfillsffiffiffiffiffiffiffi
8τF

p
> a. The remaining, filtered data represent reliable

continuum limit results, with which we continue the further
analyses.

D. r0 and r1 scales

In terms of the force FðrÞ, we define a reference scale as

r2Fðr; τFÞjrðc;τFÞ ¼ c; ð49Þ

with a dimensionless number c. Common choices are
r0ðτFÞ≡rðc¼ 1.65;τFÞ, r0 ≡ r0ðτF ¼ 0Þ [6], and r1ðτFÞ≡
rðc ¼ 1; τFÞ, r1 ≡ r1ðτF ¼ 0Þ [54]. In the original propos-
als, the scales rðcÞ are defined with the force at zero flow
time; however, in our case, the force is computed at
different flow times. Thus, we obtain flow-time-dependent
r0 and r1 as shown in Figs. 3 and 4. To find r0 and r1, we
perform multiple polynomial interpolations of r2Fðr; τFÞ
for larger r values along the r axis and at fixed flow-time
ratio τF=r2, and we find the roots of the individual
interpolations as ðr2FÞinter − c ¼ 0. The final scales are
given in terms of an Akaike average over the roots of the
polynomial interpolators.
Both scales, r0 and r1, approach a constant plateau

within a recognizable flow-time regime and start deviating
from this plateau at larger flow times. We perform plateau

FIG. 2. Examples of continuum extrapolation for two different separations r. The figure shows the linear and quadratic continuum
limits: the line corresponds to the linear limit, and the curve to the quadratic one.

FIG. 3. The r0 scale along the flow-time axis.
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fits within this range for a zero-flow-time extraction of
both scales, and we find them comparable to the scales
fixed by [4]. The results are shown in Table III. We see that
the error of the scale setting is dominated by the statistical
fluctuation rather than by the Akaike error of the poly-
nomial interpolators.
The ratio of the two scales, r0ðτFÞ=r1ðτFÞ, is shown in

Fig. 5. We take the a2=t0 continuum limit followed by a
constant zero-flow-time limit. Finally, we obtain

r0
r1

¼ 1.380ð14Þ: ð50Þ

Toour knowledge, there are no prior direct determinations of
the scale ratio r0=r1 in pure gauge. However, in Ref. [55],
this ratio was roughly estimated to be ∼1.37 based on the
curves shown in [4], which agrees well with our extraction
within errors. The extracted value is about 9% larger than the
ratio in unquenched theories with 2þ 1 or 2þ 1þ 1
fermion flavors [1,47]. Such a shift is to be expected, due
to the effect of unquenching the quark flavors. A similar
effect between quenched and unquenched scales has been
seen for the gradient-flow scale ratios in Ref. [56].
We repeat the same procedure for the ratios

ffiffiffiffiffiffi
8t0

p
=r0 andffiffiffiffiffiffi

8t0
p

=r1. Figure 6 shows an example for the ratio
ffiffiffiffiffiffi
8t0

p
=r0.

The final results for the ratios of the scales are

ffiffiffiffiffiffi
8t0

p
r0

¼ 0.9569ð66Þ; ð51Þ

ffiffiffiffiffiffi
8t0

p
r1

¼ 1.325ð13Þ: ð52Þ

Our extracted ratio
ffiffiffiffiffiffi
8t0

p
=r0 agrees within errors with the

previous determinations [31,57–63],1 albeit the mean value
is slightly above most of the existing results. We show the
comparison to the existing literature in Fig. 7. The previous
results are somewhat correlated, since most of them focus
on t0 calculation and use the data from Refs. [4,5] for at
least part of their dataset for r0. Again, the quenched ratios
are larger than the unquenched ones [1], as has been
previously seen in Ref. [56]. To our knowledge, this is the
first direct measurement of the scale ratio

ffiffiffiffiffiffi
8t0

p
=r1 in

pure gauge.

V. ANALYSES OF THE
CONTINUUM RESULTS

After havingworked out the continuum limit in Sec. IV C,
we compare the lattice results with the perturbative expres-
sions to extract Λ0. Since gradient flow introduces another
scale next to 1=r, we have several possibilities to compare
the lattice results with the perturbative expressions. In the
first approach, we use the simple expression of the flowed
force in Eq. (22), which turns out to be also applicable to
large-r results. In the second approach, we compare the
lattice results either by keeping the scale 1=r fixed and
inspecting the behavior along the flow time, or vice versa, by
keeping τF fixed and inspecting the behavior along the
distance r. We show plots only for the perturbative one-loop
(F1l) and three-loop with leading ultrasoft resummation

FIG. 4. The r1 scale along the flow-time axis.

TABLE III. Results for r0 and r1 in the zero-flow-time limit at
finite lattice spacing. The table includes the statistical error (“stat”
subscript), the systematic error by choosing different fit ranges
(“AIC” subscript), and the errors added in quadrature.

r0=a σstat σAIC σstatþAIC r1=a σstat σAIC σstatþAIC

L20 8.306 0.017 0.010 0.020 6.026 0.0090 0.006 0.011
L26 10.833 0.031 0.025 0.040 7.849 0.014 0.010 0.018
L30 12.617 0.032 0.018 0.040 9.203 0.0130 0.008 0.015
L40 16.933 0.042 0.015 0.044 12.316 0.0280 0.011 0.030

1The FlowQCD result from Ref. [57] is inferred from their
results of

ffiffiffiffi
t0

p
=w0 and r0=w0, neglecting error correlation.

Therefore, the error shown in Fig. 7 is certainly overestimated.
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(F3lLus) expressions; however, in the result tables, we also
provide extractions based on the two-loop with and without
leading ultrasoft resummation (F2l and F2lLus), and based
on three-loop without ultrasoft resummation (F3l)
expressions.

A. Constant zero-flow-time limit at fixed r

We know from Eq. (22) that the static force has a
constant behavior at small flow times. Physical quantities
are defined at zero flow time; hence, we need to perform the
zero-flow-time limit, τF → 0, while we keep r fixed. In the
constant regime, we perform this by a constant fit at fixed
distance r. Figure 8 shows data where we obtain a constant
behavior of the flowed force. The left side shows the data
for the smallest r before the smaller flow time comes into
conflict with the

ffiffiffiffiffiffiffi
8τF

p
> a condition. The right side shows

FIG. 5. The ratio of the scales r0 and r1. The left side shows the ratio at finite lattice spacing; the right side shows the continuum limit
with the constant zero-flow-time extraction.

FIG. 6. Left: An example for the continuum limit of the ratio
ffiffiffiffiffiffi
8t0

p
=r0 at a fixed flow-time ratio. The straight line corresponds to a

continuum limit linear in a2=t0, and the curved line corresponds to a polynomial up to quadratic order in a2=t0. The red cross and bar
shows the final continuum limit of a weighted average of both extrapolations. Right: The flowed continuum ratio with the constant zero-
flow-time limit.

FIG. 7. Our extracted ratio (red circle) of the scale ratioffiffiffiffiffiffi
8t0

p
=r0 compared to the existing results (black squares) in

the literature.
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data at larger r values, where the condition
ffiffiffiffiffiffiffi
8τF

p
> a is

fulfilled at even minimal flow-time ratios. The small-flow-
time expansion is performed in the ratio τF=r2; thus, small
flow time is defined in the sense of small-flow-time ratio,
which is a dimensionless quantity. The condition

ffiffiffiffiffiffiffi
8τF

p
>a

is given in terms of flow times in physical units; hence,
considering this condition in terms of ratio moves it to
smaller flow-time ratios for larger r, since the r in the
denominator decreases the ratio.
In Fig. 9, we see the final result of the constant

zero-flow-time limits. We identify an increasing behavior
with small errors up to r=

ffiffiffiffi
t0

p
≈ 3.0. Around the distance

of r=
ffiffiffiffi
t0

p
≈ 2.25, we are faced with difficulty extrapolat-

ing to the continuum, and we obtain χ2=d:o:f:’s of order 4
and larger.

We perform a Cornell fit to the data from r=
ffiffiffiffi
t0

p
≈ 1.1 to

r=
ffiffiffiffi
t0

p
≈ 3.0, and we obtain

r2FðrÞ ¼ Aþ σr2; ð53Þ

A ¼ 0.297ð6Þ; ð54Þ

σt0 ¼ 0.151ð3Þ: ð55Þ

The string tension σ is a quantity that is dominated by the
large-r regime; hence, in addition, we perform the fit only
for data beyond the region where the continuum limits are
problematic up to r=

ffiffiffiffi
t0

p
≈ 3.0. In this case, we obtain

A ¼ 0.268ð33Þ; ð56Þ

σt0 ¼ 0.154ð6Þ: ð57Þ

The uncertainty for A is 5 times larger now, which is to be
expected, since it is a small r quantity. The results for σ
from both ranges agree within their uncertainties. With the
result in Eq. (51), we can express the string tension in
r0 units:

σr20 ¼ 1.345ð54Þ: ð58Þ

In the past, the string tension was found to be σr20 ¼
1.353ð3Þ [64] at finite lattice spacing with β ¼ 6.0, which is
in good agreement with our result. Continuum results were
obtained in [34,65] in another reference scale r̄. With the
ratio

ffiffiffiffiffiffi
8t0

p
=r̄ from [34], these results become σt0 ¼

0.133ð2Þ and σt0 ¼ 0.143ð2Þ, respectively. Nevertheless,
the ratio

ffiffiffiffiffiffi
8t0

p
=r̄ in [34] is only an approximation over

several lattice sizes, and it is not extrapolated to the
continuum limit. Reliable continuum results for the string
tension can be found in Refs. [66,67] in units of the critical

FIG. 8. Examples of the flowed force in a regime where a constant behavior can be obtained. The left side shows the data for the
smallest rwhere a constant regime can be obtained. The right side shows the flowed force at larger r, where we can apply a constant fit in
a proper range of τF=r2.

FIG. 9. The extracted force from the constant zero-flow-time
limits with two Cornell fits. In a window from r=

ffiffiffiffi
t0

p
≈ 2.1 to

r=
ffiffiffiffi
t0

p
≈ 2.3, the continuum limit turns out to be difficult to reach.

We lose the signal at larger r around r=
ffiffiffiffi
t0

p
≈ 3.0.
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temperatureTc.With the conversion factorTc
ffiffiffiffi
t0

p
from [58],

these results become σt0 ¼ 0.1484ð22Þ and σt0 ¼ 0.156ð3Þ,
which agree well with our result.
At small r, we extract Λ0 from the data by fitting

the perturbative force at the available orders. We solve
the renormalization group equation for the running
of the coupling αs numerically by using the RunDec

package [68–70], which takes Λ0 as an input parameter.
Setting the scale μ to a specific choice, we remain with a
fit function depending solely on the parameter Λ0, which
serves as the fit parameter. The perturbative coefficients
can be found in the literature [19–24], and an explicit
equation for the force can be found in Eqs. (10) and (11)
of [15]. Figure 10 shows examples of the fit for two
different orders. Table IV shows the fit results. We
observe that the error is dominated by the statistical
fluctuations rather than by the systematic uncertainty due
to the choice of the fit ranges.

B. Flow-time behavior of the
force at fixed r or fixed τF

In the very small-r regime, the requirement
ffiffiffiffiffiffiffi
8τF

p
> a

moves the data points along the τF=r2 axis outside
the regime where they are flow-time independent even
for the smallest possible flow time. Therefore, we compare
the lattice data with the full expression of the force,
Eq. (23)—i.e., without expanding for small τF.
We inspect the small-r flow-time behavior first at fixed

distances r, which corresponds to the classical zero-flow-
time limit. In a second approach, we fit along the r axis at
fixed flow times to extract

ffiffiffiffiffiffi
8t0

p
Λ0. Since the dependence

on τF of the numerical extraction turns out to be negligible
within the distance and flow-time regions used for the fits to
the lattice data, getting

ffiffiffiffiffiffi
8t0

p
Λ0 provides in practice its

zero-flow-time limit.

1. Fixed r

Figures 11 and 12 show the flow-time behavior of the
force at two different fixed r values along the flow-time
axis. We compare our lattice data with the perturbative
expressions of the force at different orders and fit them to
the data. Λ0 serves as the fit parameter. In the figures, we
show the fit results for the case of different, but fixed
choices of b in Eq. (21). The fit range starts at the smallest
possible flow time. For the upper bound, we take an Akaike
average [52] over different fit ranges to reduce the
systematics due to the fit range choice.
From the figures, we get that the choice of the scale

parameter b has a definitive effect on how well the
perturbative curve describes the data. A value of b ¼ 1
guarantees the correct asymptotic behavior at large flow
time [37]. However, we see that b ¼ 1 is the worst of our b
choices at describing the actual lattice data in the range of
flow times we are interested in. Hence, we use negative
values of b, which still lead to valid scaling in our range of
flow times, as discussed in Appendix A. At small r (left-
side plots in Figs. 11 and 12), the slope along the flow time
is strong, while at the largest r to which we can reasonably
apply fixed-r fits (right-side plots in Figs. 11 and 12), the

FIG. 10. The
ffiffiffiffiffiffi
8t0

p
Λ0 extraction with constant zero-flow-time extrapolation at the smallest possible distances r. The vertical lines with

the dimmer bar represent the lower and upper averaged fit range according to Eqs. (35) and (36).

TABLE IV. The fit result for
ffiffiffiffi
t0

p
Λ0 from the constant zero-

flow-time-limit extracted data at different orders. We see that the
error is dominated by statistical fluctuations rather than the choice
of the proper fit window.

Order
ffiffiffiffiffiffi
8t0

p
Λ0 σstat σAIC σstatþAIC

F1l 0.8214 0.0044 0.0018 0.0047
F2l 0.6635 0.0048 0.0029 0.0056
F2lLus 0.6961 0.0057 0.0039 0.0069
F3l 0.6197 0.0036 0.0024 0.0043
F3lLus 0.6353 0.0032 0.0013 0.0035
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data points seem already sensitive to the constant behavior
of the force expected at small flow times. At small flow
times within our considered flow-time range, the fits with
b ¼ 0 and b ¼ −0.5 agree reasonably well with the data.
Table V shows an incomplete part of the fit results.
We conclude that for smaller r, which requires going to

larger flow-time ratios τF=r2, a negative value of b
describes the data better in the large-flow-time regime
than b ¼ 0 or 1, whereas for larger r all choices might
describe the data within the given uncertainties. That means
that fixing b introduces another source of uncertainty which
has to be considered. In the zero-flow-time limit, all choices
of b give μ ¼ 1=r, which is the natural scale choice for the
static force and energy at zero flow time.

2. Fixed τF
In the next step, we use data at fixed flow times τF and fit

the perturbative force along the r axis. We use an Akaike
average [52] over different fit windows for reducing

systematics by choosing the right fit window. We perform
one-parametric fits at fixed b for

ffiffiffiffiffiffi
8t0

p
Λ0. Figure 13 shows

an example fit for b ¼ 0; 1;−0.5 for F1l and F3lLus at the
same flow time. The left vertical line with the dimmer band
corresponds to the average lower fit limit for the b ¼ 0 fit,
and the right vertical line to its average upper limit.
We observe that the b ¼ 0 fit describes the data over a

wide r range from small to larger r. The b ¼ 1 fit describes
the data around r=

ffiffiffiffi
t0

p ¼ 1 and up to larger r in the same
way as the b ¼ 0 fit, but it deviates from the data at smaller
r in contrast to the b ¼ 0 fit. This matches with its lower fit
range limit being at larger r, but the upper fit range limit
being the same as in the b ¼ 0 fit, indicating that the
effective fit range for b ¼ 1 is more on the larger-r side.
The b ¼ −0.5 fit describes the data around r=

ffiffiffiffi
t0

p ¼ 1 like
the b ¼ 0 and b ¼ 1 fits, but in contrast to the b ¼ 1 case, it
fits better to the data at small r and deviates from the data at
larger r. This matches with its upper fit range limit being at
smaller r, but the lower fit range limit being the same as in

FIG. 11. Comparison of different zero-flow-time limits at one-loop order at fixed r. We compare fits with different scale choices
obtained by varying b according to Eq. (21).

FIG. 12. As in Fig. 11, but with the fit function now being the force at three loops with leading ultrasoft resummation.
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the b ¼ 0 fit, indicating that the effective fit range for
b ¼ −0.5 is more on the smaller-r side. We conclude that
the range for b from −0.5 to 1 fits well to the data, but
with different effective fit ranges. The b ¼ 0 fit has the
widest effective fit range and will serve as our default
choice.
Figure 14 shows the fit results for

ffiffiffiffiffiffi
8t0

p
Λ0 at the valid

flow-time positions for b ¼ 1; 0;−0.5 at F1l and F3lLus.
We observe that for a fixed choice of b, the values of Λ0 are
constant along the flow-time axis. This indicates that the
flow-time dependence of the static force at finite flow time
in the distance and flow-time ranges explored in this fixed
τF analysis is well captured by a constant one-loop gradient
flow correction to the static force. We then extrapolateΛ0 to
the zero-flow-time limit with a constant function. The final
results of the constant zero-flow-time limits are shown in
Table VI.

C. Estimate of the perturbative systematic
uncertainties and final results

Up to this point, we have presented results for Λ0 with
error estimates that include only the statistical errors and
the systematic errors from choosing different fit ranges. We
still need to include the perturbative uncertainty from the
unknown higher-order terms in the perturbative expansion.
We can do this by varying the scale μ (21). In previous
studies of the static energy [14,15,17], the zero-flow-time
scale μ ¼ 1=r was varied by a factor of

ffiffiffi
2

p
. We make here

the same choice and vary the parameter s in Eq. (21) from
s ¼ 0.5 to s ¼ 2. We vary the s parameter only in the zero-
flow-time part of Eq. (23) and keep it fixed at s ¼ 1 in the
finite-flow-time part. In principle, we could vary the scale
by a factor of 2 instead of

ffiffiffi
2

p
, but it was noted in Ref. [17]

that this requires access to quite small distances r. Our
current data do not contain small enough distances to allow
for this wider variation.
As already stated in the previous sections, the finite-flow-

time part of the static force has a considerable dependence on
the choice of the parameter b in Eq. (21). To match the
conventions of zero-flow-time studies, we choose b ¼ 0 as
our main result. To estimate the systematic error due to the
choice of b and the missing higher-order finite-flow-time
perturbative terms, we vary the b parameter between
b ¼ −0.5 and b ¼ 1; for this choice, we refer to the
discussion in Appendix A. We vary b only in the finite-
flow-time part of Eq. (23).
To arrive at a final result forΛ0, we have explored several

possibilities in Secs. VA, V B 1, and V B 2:
(1) We have performed the constant zero-flow-time

limit of the force first, followed by fitting the
perturbative expression to the data. This method
has the advantage that we do not need to combine
the zero-flow-time expression of the force with the
one-loop correction coming from the gradient flow.
The method does not work, however, at the smallest
r, but only for r=

ffiffiffiffi
t0

p
≥ 0.8.

(2) We have performed the fit of the combined equation
at fixed r along τF. This method corresponds to the
classical zero-flow-time limit. With this method, the
1=r scale has a minor effect, and the method can be
applied for only a few r, while the gradient flow
scale has a dominant role, which can be seen by the
large dependence on the choice of b.

(3) We have performed the fit of the combined equation
at fixed τF along r. In this method, the 1=r scale has
a major impact, while the flow timescale has a minor
role. This can be seen by the fact that various choices
of b fit well to the data.

On the left side of Fig. 15, we compare the results of all
three methods at the available perturbative orders. All
results agree very well within the errors.
Based on the advantages and disadvantages of all three

methods, we chose method 3 with b ¼ 0 at F3lLus as the

TABLE V. Fit results at fixed r along the flow-time axis for
three different choices of the perturbative order of the static force.
We start at the smallest possible flow time and use an Akaike
range fit for different upper limits. No value for σAIC indicates
that there are not enough points along the flow time to perform an
Akaike range fit. The given χ2=d:o:f: corresponds to the most

likely fit range. τF=r2Max gives the Akaike averaged upper flow-
time limit.

Order r=
ffiffiffiffi
t0

p
b

ffiffiffiffiffiffi
8t0

p
Λ0 σstat σAIC χ2=d:o:f: τF=r2Max

F3lLus 0.6664 1 0.6020 0.0030 0.0010 0.57 0.0449(9)
0 0.6229 0.0031 0.0010 0.52 0.0463(16)

−0.5 0.6388 0.0029 0.0005 0.22 0.0473(14)
0.7323 1 0.6128 0.0037 0.0011 0.93 0.0381(14)

0 0.6300 0.0037 0.0009 0.37 0.0395(20)
−0.5 0.6427 0.0037 0.0004 0.21 0.0403(19)

0.7982 1 0.6210 0.0036 0.72
0 0.6348 0.0037 0.39

−0.5 0.6440 0.0038 0.23

F2l 0.6664 1 0.6132 0.0032 0.0010 0.59 0.0449(9)
0 0.6361 0.0033 0.0011 0.51 0.0463(16)

−0.5 0.6538 0.0031 0.0005 0.20 0.0474(14)
0.7323 1 0.6274 0.0040 0.0012 0.97 0.0381(13)

0 0.6468 0.0041 0.0010 0.38 0.0395(20)
−0.5 0.6612 0.0040 0.0005 0.20 0.0404(19)

0.7982 1 0.6394 0.0040 0.77
0 0.6555 0.0041 0.41

−0.5 0.6663 0.0042 0.23

F1l 0.6664 1 0.7550 0.0036 0.0010 0.86 0.0446(6)
0 0.7952 0.0038 0.0012 0.43 0.0466(16)

−0.5 0.8276 0.0037 0.0001 0.04 0.0476(13)
0.7323 1 0.7696 0.0045 0.0013 1.33 0.0376(9)

0 0.8042 0.0048 0.0013 0.49 0.0393(20)
−0.5 0.8304 0.0048 0.0003 0.12 0.0405(19)

0.7982 1 0.7829 0.0045 1.29
0 0.8125 0.0048 0.59

−0.5 0.8328 0.0050 0.26
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main result. Including the uncertainties due to variations of
the parameters s and b, we obtain our final result, which
reads

ffiffiffiffiffiffi
8t0

p
Λ0 ¼ 0.629þ22

−26 ; ð59Þ

δð
ffiffiffiffiffiffi
8t0

p
Λ0Þ ¼ ð4Þlatticeðþ18

−25Þs-scaleð þ13
−7 Þb-scale; ð60Þ

where ð…Þlattice stands for the error coming from the
statistics and choosing different fit windows. As we allow
the parameters b and s in Eq. (21) to be varied only in the
finite- and zero-flow-time parts, respectively, it follows
that the systematic uncertainties from these variations
are nearly independent one from the other. Hereby, we
quote the uncertainty from the b-scale variation measured
at s ¼ 1 and the uncertainty from the s-scale variation
measured at b ¼ 0, and we add these in quadrature. This
accounts for a conservative estimate of the perturba-
tive error.
On the right side of Fig. 15, we compare our final result

with results from previousmeasurements ofΛ0 [9,63,71–77]
and the FLAG average [1]. We only show previous studies
that contribute to the FLAG average and a couple of newer
studies that have come out since the latest FLAG average. In
Fig. 15, the points above the dashed line have been obtained

FIG. 13.
ffiffiffiffiffiffi
8t0

p
Λ0 fit at fixed flow time for different orders. The left vertical line corresponds to the average lower fit limit for b ¼ 0, and

the right line to its average upper fit limit. The bands around the lines represent the errors of the fit window.

FIG. 14.
ffiffiffiffiffiffi
8t0

p
Λ0 in the zero-flow-time limit from a constant fit including the statistical and fit errors. We compare different orders and

different choices of b. The blue points with the label “const zftl” are the results from Table IV.

TABLE VI. Results of the
ffiffiffiffiffiffi
8t0

p
Λ0 extraction from the constant

zero-flow-time limit of Λ0 at fixed flow time. The error includes
the statistical and the AIC error from the fit.

b scale F1l F2l F2lLus F3l F3lLus

1 0.7972(56) 0.6591(49) 0.6911(52) 0.6062(52) 0.6218(50)
0 0.8134(57) 0.6649(47) 0.6982(54) 0.6154(44) 0.6287(44)
−0.5 0.8334(42) 0.6709(47) 0.7017(53) 0.6285(35) 0.6415(36)
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using the gradient flow-based scales t0 and w0,
2 while the

points below the dashed line have been obtained from the
scale r0. For the measurements done in the r0 scale, we
convert to the t0 scalewith our own ratio (51) (filled points) or
with one of the ratios from Ref. [63] (empty points). We find
it remarkable that all the newer studies done in t0 units are on
the higher end of the measurements. Furthermore, we note
that our error is larger than other recent studies. Our error is
dominated by the perturbative error from the scale variation.
Since the scale variation is more prominent at larger
distances, it is to be expected that future access to finer
lattices could bring this error down. Lastly, with the ratio
in Eq. (51), we can convert our final result into r0 units
and obtain

r0Λ0 ¼ 0.657þ23
−28 : ð61Þ

VI. SUMMARY AND CONCLUSION

We have shown that the gradient flow renormalizes an
operator made of a Wilson loop with a chromoelectric field
insertion by reducing discretization effects, and in this way
improving the convergence towards the continuum limit.
This result can be of use for further studies on operators
with different field insertions, which typically show up in
nonrelativistic effective field theories.
Thanks to the above property, we are able to perform the

continuum limit of the static force at finite flow time, and
extrapolate to zero flow time in three different ways. In the
first method, we extrapolate the static force from a constant
zero-flow-time limit. This works for large and intermediate
r, but not at very short distances in the regime r=

ffiffiffiffi
t0

p
< 0.8.

At large distances, we extract the scales r0 and r1, and are

able to perform a Cornell fit. For the scales, we find the
ratios

r0
r1

¼ 1.380ð14Þ; ð62Þ
ffiffiffiffiffiffi
8t0

p
r0

¼ 0.9569ð66Þ; ð63Þ
ffiffiffiffiffiffi
8t0

p
r1

¼ 1.325ð13Þ; ð64Þ

and for the string tension parameter in the Cornell fit, we
find

σt0 ¼ 0.154ð6Þ; ð65Þ

σr20 ¼ 1.345ð54Þ; ð66Þ

where we have used our result for the ratio
ffiffiffiffiffiffi
8t0

p
=r0 in

Eq. (63) to convert into r0 units. At short distances, we fit
the perturbative force to the data, and we obtain at F3lLus
order

ffiffiffiffiffiffi
8t0

p
Λ0 ¼ 0.635ð4Þ: ð67Þ

In the second and third methods, we fit with a function
that combines the force at zero flow time up to three loops
with the one-loop flow time correction. In this way, the fit
function depends on two scales, r and τF. In the second
method, we keep r fixed and perform the fit along τF. In the
third method, we keep τF fixed and perform the fit along r,
and extrapolate the resulting Λ0ðτFÞ to the zero-flow-time
limit. The third method has, in comparison to the second
method, a strong dependence on the scale 1=r, which is the
dominant physical scale. Furthermore, the third method
reaches out to small r in contrast to the first method.

FIG. 15. The final results for
ffiffiffiffiffiffi
8t0

p
Λ0. Left: Comparison of all fit results for all methods and for all orders. The inner error bar

corresponds to the combined statistical and AIC errors, when applicable. The outer error bar represents the total error, including the
systematic uncertainties from the scale variation. The row “large r” shows the results from the first method, where we perform the
constant zero-flow-time limit of the force first. Right: Our final result compared to the literature. The points above the dashed line were
determined with gradient-flow-based scale settings, t0 (squares) or w0 (triangle), while the lower points (circles) are converted from r0
units with either our ratio in Eq. (51) (filled points), or with the ratio from [63] (hollow points).

2The measurement of Ref. [74] in w0 units was transformed to
t0 units using the ratios from [57].
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Therefore, we take the third method as our reference
method and obtain

ffiffiffiffiffiffi
8t0

p
Λ0 ¼ 0.629þ22

−26 ; ð68Þ

δð
ffiffiffiffiffiffi
8t0

p
Λ0Þ ¼ ð4Þlatticeð þ18

−25Þs-scaleð þ13
−7 Þb-scale: ð69Þ

Using the ratio in Eq. (63), we can give our final result in r0
units as

r0Λ0 ¼ 0.657þ23
−28 : ð70Þ

Nevertheless, all methods agree well within their errors,
with an overlap of almost 70%.
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APPENDIX A: ABOUT NEGATIVE
VALUES OF b IN μ

In the analysis done in Sec. V, we chose the scale (21)
with different values for b, including negative values. The
ratio FL

NLOðr; τF; μÞ=F 0ðr; τFÞ for different values of the
parameters s and b is shown in Fig. 16. In [37], the choices
b ¼ 1, 0 with s ¼ 1, and b ¼ 1 with s ¼ 0 were also
analyzed. The choice s ¼ 1, b ¼ 0 is the natural choice at
zero flow time, since for it, the logðμrÞ terms vanish.
However, this choice does not capture logðμ ffiffiffiffiffi

τF
p Þ terms

that become important at large flow time. This is shown by
the ratio FL

NLOðr; τF; μÞ=F 0ðr; τFÞ becoming large at large
flow times for this choice of parameters. The choice s ¼ 0,
b ¼ 1 is the natural choice at large flow time, since for it,
the logðμ ffiffiffiffiffi

τF
p Þ terms vanish. However, this choice does not

capture logðμrÞ terms that become important at small flow
times. This is shown by the ratio FL

NLOðr; τF; μÞ=F 0ðr; τFÞ
becoming large at small flow times for this choice of
parameters. The choice of s ¼ 1 and b ¼ 1 interpolates
between these two extreme and provides a small
FL

NLOðr; τF; μÞ correction with respect to the leading
gradient flow term F 0ðr; τFÞ over the whole range of flow
times. Also, the overall scale dependence turns out to be
weak with this scale choice.

FIG. 16. Left: The ratio FL
NLOðr; τF; μÞ=F 0ðr; τFÞ [see Eq. (15)] as a function of r=

ffiffiffiffiffi
τF

p
plotted for various values of s and b. The

vertical lines represent the characteristic flow-time window of this study. The left limit on the x axis corresponds to the infinite-flow-time
limit, while the right limit corresponds to the zero-flow-time limit. Right: The same ratio, but as a function of τF=r2 zoomed around the
region of interest.
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Nevertheless, our lattice data explore a very specific and
limited region of flow-time values, the region in between
the vertical lines in Fig. 16. A zoomed-in view of this
region is shown in the right plot that makes manifest that
different choices of b, keeping s ¼ 1, provide, indeed, even
smaller and more stable corrections FL

NLOðr; τF; μÞ in the
region of interest than the choice b ¼ 1. In particular, this is
the case for b ¼ 0 and b ¼ −0.5, which indeed best fit our
lattice data, as we have discussed in the main body
of the paper. More negative values of b further reduce
the relative size of FL

NLOðr; τF; μÞ, but they make it more
scale dependent. Hence, the one-loop expression of the
gradient flow expression of the force suggests that for
0.03≲ τF=r2 ≲ 0.05, the ideal choice of the parameter b is
in between 0 and a negative number larger than −1. This is
confirmed by the lattice data. Clearly, also, a parametriza-
tion with negative b must smoothly go over μ ¼ 1=

ffiffiffiffiffi
τF

p
at

large flow time. However, the specific form of the para-
metrization at large flow times, τF=r2 > 0.05, cannot be
explored with the present data.

APPENDIX B: FLOW-TIME DEPENDENCE OF
THE WILSON LOOPS WITH AND WITHOUT
CHROMOELECTRIC FIELD INSERTIONS

The Wilson loops with and without chromoelectric field
insertion are themainobjects of thiswork; therefore, it isworth
to have a closer look on the flow-time dependence of them.
Figure 17 shows the T dependence of the Wilson loops at
different flow times. In a logarithmic y scale, we see linear,
decreasing curves for large T, which correspond to the
exponential falloff controlled by the static energy. For zero
and small flow times, the slope is the same; for larger flow
times, the slope becomesmore flat. This reflects the flow-time
dependency of the static energy. This observation holds for
Wilson loopswith andwithout chromoelectric field insertions.
Figure 18 shows the flow-time dependence of the Wilson

loops with and without chromoelectric field insertion at
fixed r and T. We see a strong flow-time dependence for
both cases caused by the divergence of the static quark
propagator. The strong flow-time dependence cancels in the
ratio of the Wilson loops.

FIG. 17. The left sides show the T dependence of theWilson loops at four different fixed flow times and for two fixed r. The right sides
show the same for the Wilson loops with a chromoelectric field insertion.
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APPENDIX C: AUTOCORRELATION
TIMES ON L40

To reduce the integrated autocorrelation times, we block
the data to 30 jackknife blocks per ensemble. Apart
from our largest lattice (L40), this choice leads to 200
configs per block, which is considerably higher than the
integrated autocorrelation times τint ≲Oð10Þ for all the
relevant observables including the topological charge Q.
However, we have less statistics for the L40 lattice, which
leads to only 110 configurations per block. Moreover, we
observe slower fluctuation of topological charge for the
L40 lattice with τint ¼ 101.6 for the unblocked data. To see
whether the block size is large enough also for this
ensemble, we plot τintðQ2Þ as a function of the block size3

in Fig. 19. We observe that even the topological charge has
a τint of order 1, at our chosen block size. More importantly,
we also note that the static force has autocorrelation times

below 1 for all possible block sizes. This is expected, as the
static energy is known to be moderately unaffected by the
topological slowing down [49]. Similar topology independ-
ence has also been observed for other methods of deter-
mining the strong coupling constant [78].

FIG. 18. The left sides show the flow-time dependence of the Wilson loop at several fixed T and at two different r values. The right
sides show the same for the Wilson loops with a chromoelectric field insertion.

FIG. 19. Integrated autocorrelation time τint as a function of the
block size for the largest lattice ensemble L40. The curve with a
solid line shows the autocorrelation time for the static force, while
the dashed curve shows τint for the topological charge squared,
and the vertical line indicates our chosen blocking.

3We note that for the topological charge squared Q2, which is
related to the topological susceptibility, the integrated autocorrela-
tion times for the unblocked data are about half of the τint for theQ.
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Péter Petreczky, Joan Soto, Antonio Vairo, and Johannes
Heinrich Weber (TUMQCD Collaboration), Determination

of the QCD coupling from the static energy and the free
energy, Phys. Rev. D 100, 114511 (2019).

[18] Cesar Ayala, Xabier Lobregat, and Antonio Pineda, Deter-
mination of αðMzÞ from an hyperasymptotic approximation
to the energy of a static quark-antiquark pair, J. High Energy
Phys. 09 (2020) 016.

[19] Nora Brambilla, Antonio Pineda, Joan Soto, and Antonio
Vairo, The infrared behavior of the static potential in
perturbative QCD, Phys. Rev. D 60, 091502 (1999).

[20] Antonio Pineda and Joan Soto, The renormalization group
improvement of the QCD static potentials, Phys. Lett. B
495, 323 (2000).

[21] Nora Brambilla, Xavier Garcia i Tormo, Joan Soto, and
Antonio Vairo, The logarithmic contribution to the QCD
static energy at N4LO, Phys. Lett. B 647, 185 (2007).

[22] Nora Brambilla, Antonio Vairo, Xavier Garcia i Tormo, and
Joan Soto, The QCD static energy at NNNLL, Phys. Rev. D
80, 034016 (2009).

[23] C. Anzai, Y. Kiyo, and Y. Sumino, Static QCD potential at
three-loop order, Phys. Rev. Lett. 104, 112003 (2010).

[24] Alexander V. Smirnov, Vladimir A. Smirnov, and Matthias
Steinhauser, Three-loop static potential, Phys. Rev. Lett.
104, 112002 (2010).

[25] Antonio Vairo, A low-energy determination of αs at three
loops, EPJ Web Conf. 126, 02031 (2016).

[26] Antonio Vairo, Strong coupling from the QCD static energy,
Mod. Phys. Lett. A 31, 1630039 (2016).

[27] Nora Brambilla, Antonio Pineda, Joan Soto, and Antonio
Vairo, The QCD potential at Oð1=mÞ, Phys. Rev. D 63,
014023 (2001).

[28] Nora Brambilla, Viljami Leino, Owe Philipsen, Christian
Reisinger, Antonio Vairo, and Marc Wagner, Lattice gauge
theory computation of the static force, Phys. Rev. D 105,
054514 (2022).

[29] R. Narayanan and H. Neuberger, Infinite N phase transitions
in continuum Wilson loop operators, J. High Energy Phys.
03 (2006) 064.

[30] Martin Lüscher, Trivializing maps, the Wilson flow
and the HMC algorithm, Commun. Math. Phys. 293, 899
(2010).

[31] Martin Lüscher, Properties and uses of the Wilson flow in
lattice QCD, J. High Energy Phys. 08 (2010) 071; 03 (2014)
92.

[32] Andreas Risch, Stefan Schaefer, and Rainer Sommer, The
influence of gauge field smearing on discretisation effects,
Proc. Sci., LATTICE2022 (2023) 384.

[33] Andreas Risch, Gauge field smearing and controlled con-
tinuum extrapolations, in 40th International Symposium on
Lattice Field Theory, Proc. Sci., LATTICE2023 (2024) 342.

[34] Masanori Okawa and Antonio Gonzalez-Arroyo, String
tension from smearing and Wilson flow methods, Proc.
Sci., LATTICE2014 (2014) 327.

[35] Alexei Bazavov, Daniel Hoying, Olaf Kaczmarek, Rasmus
N. Larsen, Swagato Mukherjee, Peter Petreczky, Alexander
Rothkopf, and Johannes Heinrich Weber, Unscreened forces
in quark-gluon plasma?, Phys. Rev. D 109, 074504 (2024).

[36] Alexei Bazavov and Thomas Chuna, Efficient integration of
gradient flow in lattice gauge theory and properties of low-
storage commutator-free Lie group methods, arXiv:2101
.05320.

STATIC FORCE FROM GENERALIZED WILSON LOOPS ON THE … PHYS. REV. D 109, 114517 (2024)

114517-21

https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://arXiv.org/abs/2203.08271
https://doi.org/10.1140/epjc/s10052-022-10998-3
https://doi.org/10.1016/S0550-3213(01)00582-X
https://doi.org/10.1016/S0550-3213(01)00582-X
https://doi.org/10.1016/S0550-3213(98)00599-9
https://doi.org/10.1016/S0550-3213(98)00599-9
https://doi.org/10.1016/0550-3213(94)90473-1
https://doi.org/10.1016/0550-3213(94)90473-1
https://doi.org/10.1103/PhysRevD.47.661
https://doi.org/10.1103/PhysRevD.47.661
https://doi.org/10.1016/0370-2693(92)91538-K
https://doi.org/10.1103/PhysRevLett.105.212001
https://doi.org/10.1103/PhysRevLett.108.269903
https://doi.org/10.1051/epjconf/201817514024
https://doi.org/10.1140/epjc/s10052-020-7685-4
https://doi.org/10.1007/JHEP01(2012)025
https://doi.org/10.1007/JHEP01(2012)025
https://doi.org/10.1007/JHEP09(2014)114
https://doi.org/10.1103/PhysRevD.86.114031
https://doi.org/10.1103/PhysRevD.86.114031
https://doi.org/10.1103/PhysRevD.90.074038
https://doi.org/10.1103/PhysRevD.90.074038
https://doi.org/10.1103/PhysRevD.101.119902
https://doi.org/10.1007/JHEP04(2019)155
https://doi.org/10.1103/PhysRevD.100.114511
https://doi.org/10.1007/JHEP09(2020)016
https://doi.org/10.1007/JHEP09(2020)016
https://doi.org/10.1103/PhysRevD.60.091502
https://doi.org/10.1016/S0370-2693(00)01261-2
https://doi.org/10.1016/S0370-2693(00)01261-2
https://doi.org/10.1016/j.physletb.2007.02.015
https://doi.org/10.1103/PhysRevD.80.034016
https://doi.org/10.1103/PhysRevD.80.034016
https://doi.org/10.1103/PhysRevLett.104.112003
https://doi.org/10.1103/PhysRevLett.104.112002
https://doi.org/10.1103/PhysRevLett.104.112002
https://doi.org/10.1051/epjconf/201612602031
https://doi.org/10.1142/S0217732316300391
https://doi.org/10.1103/PhysRevD.63.014023
https://doi.org/10.1103/PhysRevD.63.014023
https://doi.org/10.1103/PhysRevD.105.054514
https://doi.org/10.1103/PhysRevD.105.054514
https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.1007/s00220-009-0953-7
https://doi.org/10.1007/s00220-009-0953-7
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.22323/1.430.0384
https://doi.org/10.22323/1.214.0327
https://doi.org/10.22323/1.214.0327
https://doi.org/10.1103/PhysRevD.109.074504
https://arXiv.org/abs/2101.05320
https://arXiv.org/abs/2101.05320


[37] Nora Brambilla, Hee Sok Chung, Antonio Vairo, and Xiang-
Peng Wang, QCD static force in gradient flow, J. High
Energy Phys. 01 (2022) 184.

[38] Viljami Leino, Nora Brambilla, Julian Mayer-Steudte, and
Antonio Vairo, The static force from generalized Wilson
loops using gradient flow, EPJ Web Conf. 258, 04009
(2022).

[39] Julian Mayer-Steudte, Nora Brambilla, Viljami Leino, and
Antonio Vairo, Implications of gradient flow on the static
force, Proc. Sci., LATTICE2022 (2023) 353.

[40] Kenneth G. Wilson, Confinement of quarks, Phys. Rev. D
10, 2445 (1974).

[41] Martin Luscher, Topology, the Wilson flow and the HMC
algorithm, Proc. Sci., LATTICE2010 (2010) 015.

[42] Martin Luscher and Peter Weisz, Perturbative analysis of the
gradient flow in non-Abelian gauge theories, J. High Energy
Phys. 02 (2011) 051.

[43] Patrick Fritzsch and Alberto Ramos, The gradient flow
coupling in the Schrödinger functional, J. High Energy
Phys. 10 (2013) 008.

[44] Sundance O. Bilson-Thompson, Derek B. Leinweber, and
Anthony G. Williams, Highly improved lattice field strength
tensor, Ann. Phys. (Amsterdam) 304, 1 (2003).

[45] G. Peter Lepage and Paul B. Mackenzie, On the viability of
lattice perturbation theory, Phys. Rev. D 48, 2250 (1993).

[46] C. Christensen and M. Laine, Perturbative renormalization
of the electric field correlator, Phys. Lett. B 755, 316 (2016).

[47] Nora Brambilla, Viljami Leino, Julian Mayer-Steudte, and
Peter Petreczky (TUMQCD Collaboration), Heavy quark
diffusion coefficient with gradient flow, Phys. Rev. D 107,
054508 (2023).

[48] Luis Altenkort, Alexander M. Eller, Olaf Kaczmarek, Lukas
Mazur, Guy D. Moore, and Hai-Tao Shu, Heavy quark
momentum diffusion from the lattice using gradient flow,
Phys. Rev. D 103, 014511 (2021).

[49] Johannes Heinrich Weber, Alexei Bazavov, and Peter
Petreczky, Equation of state in (2þ 1) flavor QCD at high
temperatures, Proc. Sci., Confinement2018 (2019) 166.

[50] Patrick Fritzsch, Alberto Ramos, and Felix Stollenwerk,
Critical slowing down and the gradient flow coupling
in the Schrödinger functional, Proc. Sci., Lattice2013
(2014) 461.

[51] Carolin Schlosser and Marc Wagner, Hybrid static poten-
tials in SU(3) lattice gauge theory at small quark-antiquark
separations, Phys. Rev. D 105, 054503 (2022).

[52] William I. Jay and Ethan T. Neil, Bayesian model averaging
for analysis of lattice field theory results, Phys. Rev. D 103,
114502 (2021).

[53] Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal,
Daniel Nogradi, and Chik Him Wong, The lattice gradient
flow at tree-level and its improvement, J. High Energy Phys.
09 (2014) 018.

[54] Claude W. Bernard, Tom Burch, Kostas Orginos, Doug
Toussaint, Thomas A. DeGrand, Carleton E. DeTar, Steven
A. Gottlieb, Urs M. Heller, James E. Hetrick, and Bob
Sugar, The static quark potential in three flavor QCD, Phys.
Rev. D 62, 034503 (2000).

[55] Rainer Sommer, Scale setting in lattice QCD, Proc. Sci.,
LATTICE2013 (2014) 015.

[56] Mattia Bruno and Rainer Sommer (ALPHA Collaboration),
On the Nf-dependence of gluonic observables, Proc. Sci.,
LATTICE2013 (2014) 321.

[57] Masayuki Asakawa, Tetsuo Hatsuda, Takumi Iritani, Etsuko
Itou, Masakiyo Kitazawa, and Hiroshi Suzuki, Determina-
tion of reference scales for wilson gauge action from Yang-
Mills gradient flow, arXiv:1503.06516.

[58] A. Francis, O. Kaczmarek, M. Laine, T. Neuhaus, and H.
Ohno, Critical point and scale setting in SU(3) plasma: An
update, Phys. Rev. D 91, 096002 (2015).
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