
Perturbative application of next-to-leading order pionless EFT
for A ≤ 3 nuclei in a finite volume

Tafat Weiss-Attia ,1 Martin Schäfer ,2,* and Betzalel Bazak 1,†

1The Racah Institute of Physics, The Hebrew University, Jerusalem 9190401, Israel
2Nuclear Physics Institute of the Czech Academy of Sciences, Rez 25068, Czech Republic

(Received 7 February 2024; accepted 13 May 2024; published 21 June 2024)

Lattice quantum chromodynamics (LQCD) calculations with physical pion mass would revolutionize
nuclear physics by enabling predictions based on the fundamental theory of the strong force. To bridge the
gap between finite-volume LQCD results and free-space physical observables, two primary extrapolation
methods have been employed so far. The traditional approach relies on the Lüscher formula and its
extensions, while a recent alternative employs effective field theories (EFTs) fitted directly to the finite
volume data. In this study, we fit pionless EFT with perturbative inclusion of the next-to-leading order to
finite-volume energies generated from a phenomenological NN interaction. The theory is then used to
extrapolate the finite-volume results into free space as well as to predict new few-body observables. As a
benchmark, we also apply the Lüscher formalism directly to the finite-volume data. Through a
comprehensive analysis, we explore the characteristics of order-by-order predictions of the pionless
EFT fitted within a finite volume, investigate the limitations of the different extrapolation techniques used,
and derive recommended box sizes required for reliable predictions.
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I. INTRODUCTION

In the realm of nuclear physics, future ab initio pre-
dictions for low energy observables would ideally be based
on lattice quantum chromodynamics (LQCD), a lattice
gauge theory of quarks and gluons at low energies [1–5].
LQCD involves extensive numerical calculations per-
formed on a finite space-time lattice, and in the limit of
an infinitely large lattice size and infinitesimal spacing, it
provides an exact solution to QCD. However, practical
LQCD calculations are often performed with a small lattice
size, where finite-volume effects come into play, and
therefore require extrapolation of the results into free-space
observables to give them physical meaning. At the moment,
calculations with physical quark masses are not available;
however, there is ongoing progress in approaching the
physical point, see for example Refs. [6,7].
Several decades ago, Lüscher developed a method

for extracting free space observables from finite-volume
spectra of two-body systems confined in a box of size
L × L × L [8,9]. This approach is based on the assumption
of scale separation, where the potential range R, the
possible binding momentum κ, and the box size L satisfy
the conditions R ≪ κ−1 ≪ L. Nonetheless, this assumption
may not always hold for all systems, considering the
characteristic scales of the nuclear interaction and the

computational limitations of current LQCD calculations.
For instance, the long-range part of the nuclear interaction
has a range of approximately R ≈ 2 fm, while the typical
deuteron binding momentum is around κ−1 ≈ 5 fm.
Moreover, due to computational constraints, the box
size in LQCD calculations is typically fixed at about
L ≈ 5 fm. As the box size decreases, it becomes essential
to include exponentially suppressed corrections [10,11].
Reference [10] demonstrates that incorporating corrections
to Lüscher’s asymptotic formula allows extraction of the
deuteron binding energy with high precision when using
box sizes of L≳ 10 fm.
Finite-volume corrections in three-hadron systems were

studied in Refs. [12–19]. So far, theoretical studies beyond
three particles involve only systems where dominant finite-
volume corrections might be described through the sepa-
ration of N-body systems into two subclusters [20–22].
An alternative approach was proposed in Ref. [23],

which suggests the use of effective field theory (EFT;
see, e.g., [24] for a recent review). Here, the few-body
Schrödinger equation is solved in the same finite volumes
used in the LQCD calculations, and an EFT is fitted to
reproduce the corresponding LQCD results. Subsequently,
the infinite volume quantities are obtained by solving this
EFT in free space. Specifically, a pionless effective field
theory (=πEFT) [25–28], where the nucleons are the only
degrees of freedom, was utilized in Ref. [23] to analyze the
nuclear spectrum obtained by the NPLQCD collaboration
at a pion mass ofmπ ≈ 806 MeV [29]. In later works, =πEFT
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was employed to calculate relevant matrix elements and
analyze other LQCD results [30–33].
One of the most important features of EFT is its ability to

systematically improve results by incorporating order-by-
order corrections. The majority of studies use only leading
order (LO) =πEFT to extrapolate LQCD results [23,30–33].
While the LO is to be resummed, the subleading range
corrections of =πEFT are to be included perturbatively to
ensure a properly renormalized theory. In free space, higher
order terms were perturbatively included in nuclear three-
body systems up to N2LO [34] and in four- and five-body
nuclear systems up to NLO [35,36]. In finite-volume, the
widely used particle-dimer formalism faces numerical
challenges, once perturbative effective range corrections
are included in the dimer propagator. As a result, an
alternative scheme for effective range corrections was
introduced [37,38]. Recently, Ref. [33] applied NLO
=πEFT to analyze the LQCD spectra of two-nucleon systems
[2]. In Ref. [33], the authors follow naive power-counting
and implement at NLO all interaction terms with quadratic
momenta nonperturbatively. Consequently, the theory faces
renormalization issues due to the Wigner bound [39,40],
the renormalization group invariance cannot be verified
since the large cutoff limit cannot be reached, and the
model independence is obscured.
In this study, we employ the power-counting scheme as

used in Refs. [34–36]. The NLO contains effective range
corrections, which are included through the perturbative
insertion of two-body momentum-dependent s-wave terms.
This allows us to access both the cutoff dependence of our
two- and three-body =πEFT results as well as finite-volume
effects induced by the fit of =πEFT low-energy constants
(LECs) to finite-volume spectra. Calibration of LECs using
finite-volume energies requires an accurate solution of the
few-body Schrödinger equation in a box with periodic
boundary conditions. Here we use the correlated Gaussian-
based stochastic variational method (SVM), which has
shown its ability to accurately capture the finite-volume
effects [41,42], and serves as a reliable tool for fitting =πEFT
to LQCD data [23,30–33]. Specifically, we use the imple-
mentation from Ref. [23], which has been further optimized
and improved in Ref. [42] to obtain efficient and accurate
computations in a periodic box, and which has been
generalized in this work to include NLO terms as well.
Due to the lack of nuclear LQCD results at physical pion
mass, we artificially generate LQCD-like data. To this end,
we assume that the nuclear interaction is fully described by
the phenomenological Minnesota potential [43]. The
extracted free-space LO and NLO =πEFT results are then
compared to the corresponding values calculated directly
from the Minnesota potential. We observe a significant
improvement in the results obtained using NLO =πEFT in
comparison to the LO results, indicating that the NLO
corrections effectively account for finite volume effects. In
most of the investigated systems, the NLO =πEFT yields

predictions with high accuracy when utilizing box
sizes L≳ 7 fm.
The paper is organized as follows. Section II presents the

Lüscher extrapolation formulas, which are suitable for
both bound states and scattering states. Section III describes
the =πEFT framework. Section IV presents the numerical
tools used to solve the few-body problem, focusing on the
implementation of periodic boundary conditions. An
explanation of the fitting procedure for the EFT LECs is
also included in this section. Our results are presented in
Sec. V, followed by conclusions in Sec. VI. Finite-volume
energies of two- and three-body systems calculated
using Minnesota potential are listed in Appendix A. In
Appendix B we include complementary =πEFT results.

II. LÜSCHER METHODS

The common framework for processing the LQCD
finite-volume data was introduced by Lüscher [8,9].
Lüscher established the connection between the finite-
volume spectra of a two-body system, confined in a box
with periodic boundary conditions, and the physical
observables of the same system in free space, specifically
the binding energy and phase shifts.
The first-order finite-volume correction to the binding

energy of an s-wave two-body bound state in a box of size
L, ΔB2 ¼ B2ðLÞ − Bfree

2 , is given by [8]

ΔB2 ¼
6κ2jA2j2
μ2L

e−κ2L þOðe−
ffiffi
2

p
κ2LÞ; ð1Þ

where Bfree
2 is the binding energy of the two-body system in

free space and B2ðLÞ is the corresponding binding energy
in a finite volume with a box size L. Here we set ℏ ¼ 1, μ2
is the reduced mass, κ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ2Bfree

2

p
is the binding

momentum, and A2 is the dimensionless two-body asymp-
totic normalization coefficient (ANC).
A generalization of Eq. (1) for an N-body bound state

was given in Ref. [20]. Assuming that the lowest threshold
of the system is a breakup into two subclusters and these
subclusters can be treated as pointlike particles, the leading
finite-size correction to the free-space N-body binding
energy Bfree

N is

ΔBN ¼ CN
6κN jAN j2

μNL
e−κNL þOðe−

ffiffi
2

p
κNLÞ: ð2Þ

Here, μN stands for the reduced mass of the subclusters,

κN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μNðBfree

N − Bfree
1 − Bfree

2 Þ
q

is the binding momentum calculated from the free-space
binding energies of the two subclusters Bfree

1 and Bfree
2 , AN

is the corresponding N-body ANC, and CN is a
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combinatorial factor counting the number of partitions of N
identical particles into these two subclusters.
A formula suitable for the analysis of two-body scatter-

ing states was given in Ref. [9]. For a range of interaction R
smaller than the size of the box, R < L, the free-space
scattering amplitude in a specific partial wave can be
related to the energy spectra of two particles in a finite
volume, with periodic boundary conditions and a certain
cubic symmetry. Assuming that all partial waves higher
than the s-wave can be neglected, the s-wave phase shifts
δ0ðkÞ can be determined from the corresponding Aþ

1 finite-
volume energies by applying the equation [9]

k cot δ0ðkÞ ¼
1

πL
S

��
Lk
2π

�
2
�
: ð3Þ

Here k is the relative momentum corresponding to the
finite-volume energy E ¼ k2=m, with nucleon mass m.
SðηÞ is given by the regularized sum [44]

SðηÞ≡ lim
Ω→∞

 XΩ
j∈Z3

1

jjj2 − η
− 4πΩ

!
; ð4Þ

running over all integer three-vectors j such that jjj < Ω.
The next lowest partial wave that can also affect the Aþ

1

finite-volume energy spectrum is the g-wave. At nuclear
energies considered in this study, the g- or even higher
partial-wave contributions to the spectrum are negligible,
and their effect is not taken into account.
The scattering length and effective range can be obtained

by fitting the extracted s-wave phase shifts with the
effective range expansion (ERE)

k cot δ0ðkÞ ¼ −
1

a0
þ 1

2
r0k2 þOðk4Þ: ð5Þ

Using the scattering parameters, the two-body binding
energy can be approximately calculated,

B2 ≈
1

ma20

�
1 −

r0
a0

�
−1
: ð6Þ

III. =πEFT UP TO NLO

An alternative approach to utilize LQCD results is to
fit the =πEFT directly to LQCD finite-volume spectra
[23,30–33]. At LO, each two- and three-body s-wave
channel contains one two- and three-body contact inter-
action term, respectively. After regularization, the contact
interaction is smeared by a local Gaussian regulator

δΛðrÞ ¼
Λ3

8π3=2
exp½−Λ2r2=4�

¼ Λ3

8π3=2

Y
α∈ fx;y;zg

exp½−Λ2ðrðαÞÞ2=4�; ð7Þ

where Λ is the momentum cutoff. The regularized LO
potential takes the form

V̂ð0Þ ¼
X
i<j

�
Cð0Þ
0 ðΛÞP̂½0;1�

ij þ Cð0Þ
1 ðΛÞP̂½1;0�

ij

�
δΛðrijÞ

þ
X
i<j<k

X
cyc

Dð0Þ
0 ðΛÞQ̂½1=2;1=2�

ijk δΛðrijÞδΛðrjkÞ; ð8Þ

where rij ¼ ri − rj is the relative coordinate between

particles i and j and P̂½S;I�
ij , Q̂½S;I�

ijk are projection operators
into the respective two- and three-body spin-isospin ½S; I�
channels. Here Cð0Þ

0 ðΛÞ, Cð0Þ
1 ðΛÞ, and Dð0Þ

0 ðΛÞ are the LO
LECs which have acquired cutoff dependence after
regularization.
Moving into the next EFT order, the NLO potential

contains derivatives of the contact potential, as well as
counter-terms. The NLO potential takes the form

V̂ð1Þ ¼
X
i<j

ðCð1Þ
0 ðΛÞP̂½0;1�

ij þ Cð1Þ
1 ðΛÞP̂½1;0�

ij ÞδΛðrijÞ

þ
X
i<j<k

X
cyc

Dð1Þ
0 ðΛÞQ̂½1=2;1=2�

ijk δΛðrijÞδΛðrjkÞ

þ
X
i<j

ðCð1Þ
2 ðΛÞP̂½0;1�

ij þ Cð1Þ
3 ðΛÞP̂½1;0�

ij Þ

· ðδΛðrijÞ∇⃗2
ij þ ∇⃖2

ijδΛðrijÞÞ: ð9Þ

At NLO, the adopted power-counting further includes a
momentum-independent four-body force [35,45], which is
not required in this A ≤ 3 study.
The model independence of our approach is ensured by

requiring that both the LO and the NLO of =πEFT are
properly renormalized to low-momentum data. While the
LO potential is iterated, nonperturbative inclusion of the
NLO momentum-dependent (derivative) terms leads to
renormalization problems caused by the Wigner bound
[39,40]. To maintain a properly renormalized EFT, the
NLO potential is treated within first-order perturbation
theory [27].
The truncation of =πEFT at a certain order leads to a

theoretical error that reflects higher order terms not
accounted for in the EFT expansion. A rough LO and
NLO error estimate is ðQRÞ and ðQRÞ2, respectively, where
Q is the typical momentum of an observable and R ∼ r0 is
the interaction range. Another way to estimate the error is
the residual cutoff variation, which would eventually be
removed by including all EFT orders [46]. In this work, we
repeat =πEFT calculations for several values from a broad
momentum range of 1.25 fm−1 ≤ Λ ≤ 10 fm−1 which
allows to assess the cutoff convergence of our results as
well as to estimate the truncation error.
In a periodic box of size L, the =πEFT potential must obey

the periodic boundary conditions. Following Refs. [23,41],
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this is achieved by summing over all possible translations
of the box. As a result, the Gaussian regulator now has the
form

δΛ;LðrÞ ¼
Λ3

8π3=2

Y
α∈ fx;y;zg

X
qðαÞ ∈Z

exp½−Λ2ðrðαÞ − LqðαÞÞ2=4�:

ð10Þ

IV. METHODS

A. Stochastic variational method

We solve the few-body Schrödinger equation by utilizing
the SVM [47]. The total wave function Ψ is expanded on a
correlated Gaussian basis [48]

Ψ ¼
X
i

ciÂfGiðrÞχSMS
ξIMI

g: ð11Þ

Â denotes the antisymmetrization operator over nucleons,
and χSMS

and ξIMI
are the spin and isospin parts of the

wave function, respectively. The spatial part is given by
GiðrÞ ¼ exp ½− 1

2
ðrTAi rÞ�, where rT ¼ ðr1; r2;…; rNÞ are

the single-particle N-body coordinates, and Ai is a sym-
metric positive-definite matrix of size N × N, chosen
stochastically. Finally, the variational coefficients ci and
the associated bound-state energies are obtained by solving
the generalized eigenvalue problem.
The total wave function in a box, ΨL, has to obey the

periodic boundary conditions

ΨLð…; ri;…Þ ¼ ΨLð…; ri þmiL;…Þ ð12Þ

for arbitrary integer trio mi ¼ ðmðxÞ
i ; mðyÞ

i ; mðzÞ
i Þ. The corre-

sponding spatial part is then represented by a product of
periodic correlated Gaussians in the x, y, z directions

GLðrÞ ¼
Y

α∈ fx;y;zg
GLα

ðrðαÞÞ ð13Þ

with ðrðαÞÞT ¼ ðrðαÞ1 ; rðαÞ2 ;…; rðαÞN Þ. Following Refs. [41,42],
the periodicity is achieved by summing over all box
translations

GLα
ðrðαÞÞ ¼

X
nðαÞ

GαðAα; rðαÞ− LnðαÞÞ ð14Þ

with Gα being a correlated Gaussian function

GαðAα; rðαÞÞ ¼ exp

�
−
1

2
ðrðαÞÞTAα rðαÞ

�
ð15Þ

and nðαÞ ¼ ðnðαÞ1 ; nðαÞ2 ;…; nðαÞN Þ, nαi ∈Z.

It was shown in Ref. [41] that it is beneficial to choose
the Aα matrices that obey

ðrðαÞÞTAα rðαÞ ¼
X
i<j

ðrðαÞi − rðαÞj Þ2
b2ij

; ð16Þ

where the stochastically selected parameters fbijgi<j

reflect the relative distance between each pair of particles.
Such basis functions are then invariant under center-of-
mass shifts. As demonstrated in Ref. [42], the center-of-
mass coordinate can be integrated out in finite-volume
calculations, further simplifying the numerical computa-
tions and eliminating center-of-mass excitations.

B. Fitting the LECs

In place of genuine physical LQCD results, we use
artificially generated finite-volume data. To this end, we
apply the SVM to calculate the Aþ

1 spectra of two and three
nucleons in a periodic box, where the underlying nuclear
interaction is described via the phenomenological NN
Minnesota potential [43]. Using the exchange mixing
parameter u ¼ 1, this potential reproduces the experimental
np spin-triplet and pp spin-singlet s-wave effective-range
parameters. Furthermore, it was demonstrated that the
Minnesota potential describes successfully the basic free-
space properties of the deuteron, triton, and α-particle [43].
The generated finite-volume data are listed in Appendix A.
Motivated by the Lüscher bound-state formulas, Eqs. (1)

and (2), we show in Fig. 1 the calculated finite-volume
corrections LjΔBN j to the free-space Minnesota deuteron
and triton binding energies. The corrections are plotted as a
function of L on a logarithmic scale. The linear behavior
then reveals the range of applicability of the Lüscher
formulas, L≳ 10 fm for the deuteron bound state (filled
red circles) and L≳ 8 fm for the triton bound state (green
filled diamonds). The first finite-volume excited state in the
deuteron channel (empty red squares) or both the ground
and the first excited state in the dineutron channel (empty
blue circles and diamonds, respectively) correspond to the
finite-volume scattering states. Their jΔBN j behavior,
measured this time to the free-space two-body separation
threshold Bfree

2 ¼ 0, does not follow Eq. (1) but instead can
be in the large L asymptotic region expanded into the
∼1=Lβ contributions [49].
The s-wave phase shifts are extracted from the calculated

two-body Aþ
1 Minnesota finite-volume energies at various

box sizes L∈ h3; 20i fm using the Lüscher scattering
formula, Eq. (3). Figure 2 shows the corresponding values
in terms of k cotðδNNÞ as a function of k2, which were
calculated using the finite-volume ground state and the first
excited state energies in the deuteron and dineutron
channels. While the finite-volume energies of the first
excited state are positive, the attractive nature of the NN
Minnesota potential introduces negative Aþ

1 finite-volume
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ground-state energies in both two-body channels [44,49].
By approaching the free-space limit (L → ∞) the first
excited state energies converge to Bfree

2 ¼ 0 from above, the
spin-singlet ground-state energy converges to Bfree

2 ¼ 0

from below, and the spin-triplet ground-state energy con-
verges to the free-space deuteron energy. Equation (3), used
at different box sizes, yields k cotðδNNÞ at different k2 > 0

(first excited states) or k2 < 0 (ground states). The latter can
be understood as the analytical continuation of the phase
shifts to the momenta below the two-body threshold.
Once the size of the box starts to approach the range of
the Minnesota interaction, the results obtained from the
Lüscher scattering formula begin to deviate from the
Minnesota values calculated directly in free space (black
solid lines). This is apparent for phase shifts at k2≳
1.5 fm−2 which are extracted from the finite-volume first
excited state energies at box sizes L≲ 5 fm.
=πEFT is limited to momenta up to the one pion-exchange

threshold, k ∼mπ . Equation (3) relates Aþ
1 two-body finite-

volume states with energies EðLÞ to the free-space s-wave
phase shifts with the momenta jkj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mjEðLÞjp
. As a

result, we can identify which two-body finite-volume
energy levels introduce high-momentum physics outside
the scope of the theory and are not admissible to fit the
=πEFT LECs. For the Minnesota potential, the two-body
finite volume energies of the first excited state begin to
surpass the breakdown scale of =πEFT for box sizes

L≲ 7 fm (deuteron channel) and L≲ 8 fm (dineutron
channel). The same is observed at smaller box sizes L≲
4 fm for the two-body finite volume ground-state energies
in both the deuteron and dineutron channels. The three-
body LECs are fitted to the Aþ

1 ground-state finite-volume
energies in the triton channel. Assuming that the box size L
is sufficiently large and the finite-volume correction to the
free-space deuteron binding energy can be neglected,
EdðLÞ ≃ Ed, the three-body finite-volume energies EtðLÞ
below the free-space three-nucleon separation threshold
can be related to the s-wave neutron-deuteron (nd) phase
shifts with momenta jkndj ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=3mjEtðLÞ − Edj

p
[50].

This suggests that by fitting the three-body LECs to
EtðLÞ at L≲ 8 fm, we might start to introduce high
momenta that exceed the breakdown scale of our theory.
To emulate usual LQCD input scenarios and to demon-

strate an option how to bypass possible high-momenta of
two-body finite-volume excited states, we employ two
distinct approaches to fit the =πEFT LECs up to NLO:
(1) The fitting procedure is performed by considering the

finite-volume energies generated only for one size of

the box L. At LO, we fit the Cð0Þ
0 ðΛÞ; Cð0Þ

1 ðΛÞ, and

FIG. 1. The finite-volume results used to mimic LQCD data in
this work. The data were obtained by solving the Minnesota
potential in a periodic box with different box sizes L. Shown are
the absolute values of the finite volume energy shifts jΔBN j,
multiplied by the box size L, as a function of the box size for the
deuteron (red), dineutron (blue), and triton (green) channels. The
circles and thin diamonds correspond to the finite-volume ground
states. For the two-body systems, the values of the first excited
state are depicted as well (squares and diamonds). The filled
symbols indicate the finite-volume deuteron and triton ground
states which in the large L-limit approach the free-space bound
states.

FIG. 2. The NN s-wave phase shifts, presented as k cotðδNNÞ,
for the deuteron (upper panel) and dineutron (lower panel)
channels plotted as a function k2. We compare the phase shifts
calculated directly from the Minnesota potential (black solid line)
to the phase shifts extracted from the Minnesota finite-volume
energies using the Lüscher scattering formula, Eq. (3). The phase
shifts were calculated from both the finite-volume ground-
state (empty circles) and the first-excited-state (filled squares)
energies using different box sizes L ¼ f3; 3.5; 4; 4.5; 5; 5.5;
6; 7; 9; 20g fm. For reference, the black dashed lines show
ERE, Eq. (5), with the first two terms fitted to the “free-space”
Minnesota phase shifts (black solid lines).
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Dð0Þ
0 ðΛÞ LECs to reproduce exactly the Minnesota

ground-state finite-volume energies in the dineutron,
deuteron, and triton channels, respectively. The NLO

two-body LECs Cð1Þ
0 ðΛÞ, Cð1Þ

1 ðΛÞ, Cð1Þ
2 ðΛÞ, and

Cð1Þ
3 ðΛÞ are perturbatively adjusted using the LO

wave functions to further reproduce the Minnesota
first excited state finite-volume energies in the re-
spective two-body spin-isospin channels, while keep-
ing the ground-state energies at the same LO values.

The remaining Dð1Þ
0 ðΛÞ NLO LEC is perturbatively

adjusted to keep the correct reproduction of the
Minnesota finite-volume ground-state energy in the
triton channel.

(2) We employ information only from the ground-state
finite-volume levels and no excited state energies are

considered. At LO, we fix again theCð0Þ
0 ðΛÞ; Cð0Þ

1 ðΛÞ,
andDð0Þ

0 ðΛÞ LECs by using the calculated Minnesota
finite-volume energies in the dineutron, deuteron, and
triton channels, respectively. However, this time, we
fit each LOLECby applying a χ2 fit to best match two
Minnesota finite-volume ground-state energies which
have been calculated for two different box sizes hLi �
1 fm in the corresponding channel. At NLO, the two-

bodyLECsCð1Þ
0 ðΛÞ,Cð1Þ

1 ðΛÞ,Cð1Þ
2 ðΛÞ, andCð1Þ

3 ðΛÞ are
perturbatively adjusted to reproduce the Minnesota
finite-volume ground-state energies in both hLi �
1 fm boxes exactly. Finally the Dð1Þ

0 ðΛÞ LEC is
perturbatively fixed to keep the LO χ2-fitted three-
body finite-volume ground-state energy at the same
LO value.

If not written otherwise, we fit =πEFT for each value
of momentum cutoff Λ using different box sizes L∈
f3; 5; 7; 9; 11; 13; 15g fm (first approach) and hLi∈
f4; 6; 8; 10; 12; 14g fm (second approach). To assess the
cutoff dependence we consider several Λ∈ f1.25; 2;
4; 6; 8; 10g fm−1 cutoffs values. The cutoff variation is
used to estimate the lower bound on the theoretical
truncation error. The reported results represent the mean
of calculations with different cutoffs, where the uncertainty
band corresponds to the one standard deviation.

V. RESULTS

Using the two different fitting scenarios described above,
we present in this section the =πEFT predictions for both the
deuteron, triton free-space binding energies and the low-
energy s-wave NN spin-singlet, NN spin-triplet, and nd
spin-quartet scattering length and effective range. Where it
is possible, we benchmark the =πEFT results by employing
the Lüscher formalism where we limit ourselves to the
same finite-volume energies as were considered during the
=πEFT fit. The resulting free-space quantities are then
shown as a function of the box size and are compared

to the free-space results calculated directly from the
Minnesota potential.

A. Deuteron channel

We start with the free-space deuteron bound state energy.
The corresponding value calculated directly from the
Minnesota potential is

Ed ≃ −2.202 MeV:

In the first =πEFT fitting scenario, we employ the finite-
volume energy of the ground state (LO) and the first
excited state (NLO) evaluated using the Minnesota poten-
tial at one size of the box L. The =πEFT free-space deuteron
bound state energy Ed is then calculated by using the fitted
LO and NLO LECs and solving the Schrödinger equation
outside the box. The upper panel of Fig. 3 presents the
corresponding LO (green) and NLO (red) results as a
function of L employed during the fit. There is a
significant improvement in our NLO results compared
to the LO =πEFT prediction. For L≳ 7 fm the NLO =πEFT
yields free-space Ed energies fairly close to the Minnesota
value. In this box size region, the residual cutoff variation
(red shaded band) suggests that the NLO theoretical error
is ∼3%. This surpasses the expected =πEFT NLO truncation
error, which can be estimated as ðr1NN=a

1
NNÞ2≃ 10%. A

possible explanation is another small parameter at play,
which is related to the relevant short-range scale divided by
the box size. To put it differently, the NLO LECs are
calibrated using deuteron binding energy in boxes signifi-
cantly larger than the short-range scales not yet considered
in the EFT order, this physics is essentially already
accounted for in these LECs, and no additional truncation
error is introduced.
In the second fitting scenario, we consider two finite-

volume ground state energies from adjacent box sizes
hLi � 1 fm. The resulting free-space LO and NLO
=πEFT deuteron binding energies, Ed, are shown for differ-
ent hLi in the lower panel of Fig. 3. Similar to the first case,
once the NLO =πEFT is fitted to hLi≳ 6 fm finite-volume
input data, it successfully reproduces the deuteron free-
space Minnesota binding energy.
The lighter-shaded bands with dotted lines depict the

free-space deuteron energies, which were obtained using
the =πEFT with LECs fitted to the finite-volume input data
that introduce momenta above the one-pion-exchange
threshold (see discussion in Sec. IV B). The Ed results
start to deteriorate quite rapidly moving deeper into the
small-L region. Furthermore, our results confirm a slight
advantage of the second fitting scenario which is renor-
malized only to the finite-volume ground-state energies and
is not affected by the high momenta first excited state,
which emerges already at L≲ 7 fm.
We move now to the Lüscher approach. Due to the

limitations imposed by the first fitting scenario, which

WEISS-ATTIA, SCHÄFER, and BAZAK PHYS. REV. D 109, 114515 (2024)

114515-6



involves finite-volume energies of the ground and first
excited state within the same box, it is not possible to
extract the free-space Ed via Eq. (1). On the other hand,
within the second fitting scenario, we have at our disposal
deuteron finite-volume ground state energies for two differ-
ent L. As a result, we can use Eq. (1) and fit κ2 and A2 to
extract Ed. Interestingly, the Eq. (1), when utilized with
energies from two adjacent box sizes (hLi � 1 fm), provides
a solution only for hLi≳ 7 fm and larger (see dash-double
dotted black line in the lower panel of Fig. 3). To get an
accuracy of about 5% one has to use hLi ≳ 12 fm.
Another option is to employ Lüscher’s scattering state

formula, Eq. (3). From the finite-volume ground state and
the first excited state energies at the given L (first fitting
scenario) or two adjacent ground state energies at the

average box size hLi (second fitting scenario), we extract
the s-wave spin-triplet phase shifts at two different
momenta. The Ed is then obtained by fitting the ERE,
Eqs. (5) and (6), to these two phase-shift points. These Ed
values are shown using the blue dash-dotted line in both the
upper and lower panel of Fig. 3. In the first case, the
Lüscher’s scattering formula yields Ed energies with ∼7%
accuracy at L≳ 11 fm. In the second case, the accuracy of
5% is achieved when average box sizes hLi ≳ 8 fm are
used. At larger boxes, the accuracy does not improve due to
the truncation of the ERE, Eq. (5). Using a larger amount of
finite volume excited states energies and considering higher
ERE terms would likely further improve the Ed result.
The =πEFT results for s-wave spin-triplet scattering

parameters are shown here only for the first fitting scenario.
The outcomes of the second option are similar and the
corresponding results are deferred to Appendix B. The
s-wave scattering parameters calculated directly from
the Minnesota potential are

a1NN ≃ 5.427 fm; r1NN ≃ 1.758 fm:

Figure 4 shows the predicted NN spin-triplet scattering
length and effective range at LO (green) and NLO (red)
=πEFT, as a function of the box size L employed in the fit.
The figure does not show the calculated LO effective range,
since it trivially behaves as Λ−1 converging to zero in the
contact limit. The blue dot-dashed lines represent s-wave
scattering parameters which have been extracted by apply-
ing Lüscher’s scattering formula, Eq. (3). Again, both the
=πEFT results up to NLO and the Lüscher predictions were

FIG. 3. The free-space deuteron binding energy Ed extracted
from finite-volume energies is plotted against the varying box
size L employed in the extraction. We compare different
methods: In the upper panel, we use the ground-state and the
first-excited-state energies from the same box size L. We show
the results from Eq. (3) (blue dash-dotted line) and =πEFT at LO
(dotted green line) and NLO (solid red line) with LECs con-
strained through the first fitting scenario. In the lower panel, we
use the finite-volume ground state energies from two adjacent
box sizes hLi � 1 fm. Shown are the results obtained by fitting
Eq. (1) (black dash-double dotted line), Eq. (3) (blue dash-dotted
line), and =πEFT at LO (green) and NLO (red) with LECs
constrained through the second fitting scenario. The shaded
bands in our =πEFT results indicate the uncertainty induced by
the residual cutoff variation within the cutoff range
1.25 ≤ Λ ≤ 10 fm−1. The lighter shaded bands reveal =πEFT
results where at least one LEC is fitted to a finite-volume energy
which might introduce momenta above the one-pion-exchange
threshold. The result calculated directly from the Minnesota
potential is shown as a black dashed line.

FIG. 4. Same as the upper panel of Fig. 3 but for the NN
spin-triplet scattering length (upper panel) and effective range
(lower panel).
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obtained using the finite volume ground state and first
excited state energies from the same box size L.
The =πEFT and Lüscher approach yield accurate pre-

dictions for the a1NN and r1NN values when utilizing box
sizes L≳ 7 fm, although the Lüscher results converges
more rapidly than the =πEFT results, with the latter being
accurate within the uncertainty band. At smaller box sizes
the LO or NLO LECs are fitted to finite-volume energies
which eventually introduce momenta above the breakdown
scale of the theory (lighter shaded bands with the dotted
lines). As might be expected this leads to deterioration of
our =πEFT results.

B. Dineutron channel

The s-wave scattering parameters in the S; I ¼ 0, 1
dineutron channel are extracted from the finite-volume
energies in a similar way as in the deuteron channel. The
corresponding Minnesota scattering length and effective
range values are

a0NN ≃ −16.80 fm; r0NN ≃ 2.885 fm:

Both the first and the second =πEFT fitting scenarios,
outlined in Sec. IV B, yield comparable dineutron scattering
predictions. Here, we discuss results related only to the first
case; the results obtained through the second scenario are
again included inAppendixB. Figure 5 shows the calculated
LO (green) and NLO (red) inverse NN spin-singlet scatter-
ing lengths and effective ranges as a function of the box size
L used throughout the fit. The inverse of the scattering length

is selected to avoid divergences when approaching the
unitary point. As seen in the figure, the results of =πEFT
demonstrate again a significant improvement from LO to
NLO. Starting at the box size L ≃ 7 fm and larger, the NLO
=πEFT provides predictions close to the Minnesota values
with accuracy of ∼1%. In comparison, the size of the NLO
theoretical error is roughly estimated as ðr0NN=a

0
NNÞ2≃ 3%.

The difference between the errors can be attributed to the
presence of an additional small parameter (see Sec. VA).
The Lüscher formalism, Eq. (3), accurately predicts the

scattering length for L≳ 11 fm, but it does not achieve the
same level of accuracy for the effective range (blue dot-
dashed lines). This can be explained by referring to Fig. 2,
where it is evident that an accurate description of the phase
shifts in this spin channel with the ERE requires consid-
eration of the shape parameter term. Therefore, it seems
that the reduced accuracy in the Lüscher prediction for the
effective range is mainly due to the truncation of the ERE at
second order in k.

C. Triton channel

The three-body S; I ¼ 1=2; 1=2 channel supports the
triton bound state. Its free-space energy, as calculated
directly from the Minnesota potential, is

Et ≃ −8.385 MeV:

There is no new three-body term at NLO =πEFT and only
a single three-body energy is needed to calibrate the theory.
In line with our two-body studies, we show here free-space
Et energies which have been calculated by using the =πEFT
with LECs constrained through the first fitting scenario.
The Et results obtained from the fit at two adjacent box
sizes are given in Appendix B. The resulting free-space
energy, Et, is shown in Fig. 6 as a function of the box size L
employed in the LEC fit. The NLO =πEFT results approach

FIG. 5. Same as the upper panel of Fig. 3 but for theNN inverse
spin-singlet scattering length (upper panel) and effective range
(lower panel).

FIG. 6. Same as the upper panel of Fig. 3 but for the free-space
triton bound state energy Et.
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the Minnesota triton ground state energy with increasing L
and they reach an accuracy of ∼4% when box size L¼9 fm
is utilized.
The triton calculation employs the full set of two- and

three-body LO and NLO LECs all of which fitted to the
finite-volume data which correspond to the relatively low
free-space momenta. Since the finite-volume triton ground-
state energy begins to exceed the breakdown scale of the
=πEFT for L≲ 8 fm (roughly estimated in Sec. IV B), the
three-body LECs fit is the most limiting factor in our finite-
volume study. In this small L-range the calculated Et
energies, both at LO and NLO, quickly diverge with
decreasing L from the free-space Minnesota value (see
lighter shaded bands in Fig. 6). As the box size gets smaller,
also the two-body LECs start to gradually introduce
momenta above the breakdown scale of the theory. This
probably leads to a more pronounced and faster deterio-
ration of our three-body results than in the previous two-
body studies.
The lowest breakup threshold of the triton is into

deuteron and neutron. Consequently, if one treats the
deuteron as a pointlike particle, Eq. (2) holds. Thus, in
principle, having two triton finite-volume ground state
energies at two different box sizes one can constrain the
parameters κ3 and A3 in the equation and extract the free-
space Et. This is the case in the second fitting scenario. The
Et results obtained through this fit in two adjacent box sizes
can be found in Appendix B. There, the corresponding
=πEFT triton results as well as free-space Et energies
obtained using the Lüscher-like formula, Eq. (2) are
depicted in Fig. 10. It can be seen that the NLO =πEFT
and the Lüscher-like results converge very similarly, and
both provide accurate results when average box sizes hLi ≳
10 fm are used.

D. Three-nucleon S= 3=2; I = 1=2 channel

The S; I ¼ 3=2; 1=2 three-body channel does not support
a bound state, and so we focus solely on the s-wave nd
scattering. The scattering parameters calculated directly
from the Minnesota potential are

a3=2nd ≃ 6.327 fm; r3=2nd ≃ 1.968 fm:

This channel serves as a noteworthy demonstration of a
significant advantage of the EFT. While the Lüscher
approach can relate the finite-volume results to the corre-
sponding free-space quantity and cannot predict properties
of different systems based on results from another one, the
EFToffers a more versatile solution. By calibrating the EFT
using empirical data, it possesses the predictive power to
address different characteristics of a variety of bound or
unbound nuclear systems. Using fitted =πEFT up to NLO,
which has been employed up to now, no further finite-
volume results are required, and the properties of the
s-wave nd spin-quartet scattering are a pure prediction.

To this end, we solve the nd system with the harmonic
potential added to the =πEFT potential, resulting in a
spectrum of bound states. Scattering information can then
be extracted from the fitting condition relating the phase
shifts of the s-wave δ3=2nd ðkÞ to the corresponding bound-
state energy spectrum in the trap [51]

k cot ½δ3=2nd ðkÞ� ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4μndω

p Γð3=4 − ϵω=2ωÞ
Γð1=4 − ϵω=2ωÞ

: ð17Þ

Here k stands for the relative nd momentum and μnd ≃
2m=3 is the respective reduced mass. ϵω ¼ EωðndÞ −
EωðdÞ is the energy of the trapped nd state with respect
to the d energy threshold. Taking the limit of vanishing
trapping potential, one can minimize the trap effect and
obtain pure free-space results. This method has been used
before, for example in Refs. [35,36,52], and has the
advantage of obtaining scattering properties with a method
intended for bound state calculations.
The =πEFT results for the nd spin-quartet scattering

parameters are shown in Fig. 7. It is apparent that the
inclusion of NLO terms significantly decreases the residual
cutoff dependence and shifts predicted a3=2nd and r3=2nd
parameters closer to the exact Minnesota values. Only
spin-triplet LO and NLO terms contribute in the s-wave nd
spin-quartet channel. Consequently, the results depicted
with the dotted lines reveal the same L-region, as in the
Figs. 3 and 4, where the LO or NLO LECs are fitted to the
finite-volume energies corresponding to the free-space
momenta above the one-pion-exchange threshold.

FIG. 7. Same as the upper panel of Fig. 3 but for the nd spin-
quartet scattering length (upper panel) and effective range
(lower panel).
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E. Propagation of finite-volume data uncertainties
to extrapolated results

After obtaining the results described in the previous
subsections, we evaluate the robustness of the Lüscher and
NLO =πEFT approaches by examining how the uncertainties
in the artificial finite-volume LQCD input data affect the
free-space results. This evaluation is necessary given the
possible large statistical uncertainties in LQCD results,
which arise from the signal-to-noise problem in the
corresponding calculations.
In the first step, we assume a relative uncertainty of 5%

for the input finite-volume energies. In the second step,
we propagate these uncertainties into our free-space
results: For the Lüscher approach, we use analytical
derivatives, while for the =πEFT approach, we perform a
Monte Carlo simulation. For simplicity, we restrict this
study only to the two-body sector with =πEFT LECs
fitted through the first scenario. We use one cutoff value
Λ ¼ 4 fm−1 and we consider two different box sizes
L ¼ 5 fm and 7 fm.
In Table I, we summarize the calculated free-space

deuteron bound state energy, scattering lengths, and effec-
tive ranges with the propagated uncertainties given in the
parenthesis. Using LECs fitted in the L ¼ 5 fm finite-
volume, the =πEFT Ed result has a relative uncertainty of
30%. Considering the same L ¼ 5 fm finite-volume ener-
gies, the Lüscher result has a relative uncertainty of about
85%. On the other hand, for L ¼ 7 fm, both the Lüscher
result and the =πEFT predictions for the spin-triplet scatter-
ing length and effective range show a relative uncertainty of
about 9%. There is an exceptional case in the dineutron
channel for L ¼ 5 fm, where the =πEFT prediction has a
larger relative uncertainty compared to the Lüscher.
Nevertheless, both uncertainties remain substantial and
exceed 50%. Based on the table, it is visible that the
Lüscher results have either larger or comparable relative
uncertainty to the corresponding NLO =πEFT predictions.
The propagated uncertainty in the Lüscher predictions

can be attributed to the behavior of the SðηÞ function in
Eq. (4) that governs the prediction. Within the η values
relevant to this study, SðηÞ changes rapidly, which means

that even small deviations from the exact value lead to
different predictions. On the other hand, the =πEFT seems to
be less sensitive to the accuracy of the input data. It can be
inferred that the =πEFT might be in general more robust than
the Lüscher approaches, especially when it comes to the
finite-volume input data uncertainties.

VI. CONCLUSIONS

The primary objective of this work is to explore the NLO
=πEFT with perturbative effective range corrections fitted to
finite-volume input data—a crucial consideration for forth-
coming LQCD calculations pertinent to nuclear physics. To
achieve this, we employ both the free space and finite
volume versions of the SVM, with the latter incorporating
periodic boundary conditions. These few-body techniques
provide us with a highly accurate framework to address the
finite-volume effects at varying box sizes as well as in the
free-space limit. In lieu of nuclear LQCD results at physical
pion mass, and to facilitate a quantitative comparison with
established data, we emulate the finite-volume spectra by
solving the Minnesota NN potential.
From these finite-volume data, we extract the free-space

binding energies and s-wave scattering parameters for two-
and three-nucleon systems. We then juxtapose the out-
comes obtained through the Lüscher methods with those
derived from =πEFT at both LO and NLO. The free-space
results, which are obtained by applying directly the
Minnesota potential, serve as the benchmark.
Our findings reveal a substantial improvement of =πEFT

results when transitioning from LO to NLO. Moreover,
the NLO =πEFT generally provides predictions close to
the free-space Minnesota values when using the box
sizes L≳ 7 fm. In most two-body scenarios, the NLO
=πEFT effectively captures the finite-volume effects and
incorporates the necessary corrections. This trend is also
evident in the nd S ¼ 3=2 channel, which at NLO involves
only a two-body scale. By introducing relative uncertainties
into the finite-volume input data, we demonstrated the
robustness of =πEFT results. On the other hand, the Lüscher
free-space results remain rather sensitive to the propagated
uncertainties.

TABLE I. The two-body free-space results in the deuteron and dineutron channels. We compare the results
calculated directly from the Minnesota potential to those extracted from boxes of size L ¼ 5 fm and 7 fm using the
Lüscher formulas, Eqs. (1) and (3), and utilizing NLO πEFT. The errors in the parenthesis correspond to propagated
finite-volume input data uncertainties (for a detailed explanation see the text).

L ¼ 5 fm L ¼ 7 fm

Minnesota Lüscher NLO Lüscher NLO

Ed [MeV] −2.2 −0.8ð7Þ −2.5ð8Þ −1.8ð4Þ −2.2ð4Þ
a1NN [fm] 5.4 8.4(3.1) 6.1(8) 5.9(5) 6.3(6)
r1NN [fm] 1.7 2.1(3) 1.8(1) 1.9(2) 2.0(2)
1=a0NN ½fm−1� −0.058 −0.4ð3Þ −0.02ð2Þ −0.11ð5Þ −0.05ð2Þ
r0NN [fm] 2.885 5.8(3.2) 2.3(2) 4(1) 2.7(3)
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For L≲ 5 fm, the Lüscher formalism yields the NN
spin-singlet and spin-triplet s-wave phase shifts, which
deviate from the corresponding free-space Minnesota
values. This suggests that the finite-volume corrections
in this small L-region start to be dominated by the strong
interplay between the size of the box and the range of the
Minnesota potential. The same might potentially affect any
EFTwith LECs fitted at such small box sizes. In our study,
the finite-volume energies in this L-region start to corre-
spond, through the Lüscher formalism, to NN phase shifts
with momenta above the breakdown scale of =πEFT. Here,
our results quickly deteriorate with decreasing L and they
should be considered as a mere extrapolation outside the
scope of the theory. This sets a hard limit on the validity of
our =πEFT predictions.
=πEFT proves to be a robust tool, not only due to its

capacity to yield precise free-space results but also because
it enables the extraction of meaningful insights with limited
finite-volume input data. This results in a reduced number
of unknown parameters that must be determined. In
contrast, the Lüscher formalism demands finite volume
energies from the same system to compute free space
observables, while EFToffers the potential to transcend this
requirement.
In future =πEFT works, it would be interesting to explore

higher orders of the theory, which introduce p-wave, d-
wave, and noncentral interaction terms. This would require
the study of T−

1, E
þ, and Tþ

2 finite-volume spectra, where
the leading contribution in the T−

1 cubic symmetry is
induced by the p-wave, while for the Eþ and Tþ

2 cubic
symmetries it is the d-wave. Furthermore, it is highly
topical to use EFTs to explore the LQCD finite-volume
results with nonzero strangeness. Here, recent advances in
LQCD baryon-baryon and meson-baryon calculations
[6,7,53] seem to converge rather fast to the physical pion
mass. Using these LQCD results would provide an in-
triguing insight into a strangeness sector, where the amount
of low-energy experimental data is often limited.
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APPENDIX A: FINITE-VOLUME DATA

The finite-volume input data are generated using the
Minnesota NN potential [43] with mixing parameter
u ¼ 1. In Table II, we list the calculated energies of the
two lowest laying states of the Aþ

1 deuteron and dineutron
spectra for different L. The finite-volume ground-state
energies in the triton channel are given as well. In our
calculations, we use the nucleon mass parameter
ðℏcÞ2=m ≃ 41.471 MeV:fm2.

APPENDIX B: ADDITIONAL RESULTS

We introduced two different options of how to fit LO and
NLO =πEFT LECs to finite-volume data (see Sec. IV B).
The first scenario uses the finite-volume ground state and
the first excited state energy values at the same single box
size L, while the second scenario considers only the finite-
volume ground state energies from two adjacent box sizes
hLi � 1 fm. For free-space deuteron bound state energy Ed
we show the corresponding =πEFT results of both fitting
methods in Sec. VA. For completeness, we enclose in this
appendix additional results obtained with the second fitting
scheme using two adjacent box sizes.
The results of NN s-wave scattering parameters are

shown for spin-triplet, Fig. 8, and spin-singlet, Fig. 9.
Lüscher’s scattering formula, Eq. (3), can also be used here,
and its results are shown as well. The free-space triton
bound state energy is given in Fig. 10. In the same figure,
we show the results of the generalization of Lüscher’s
bound state formula, Eq. (2), as well. Finally, the s-wave nd
spin-quartet scattering parameters are presented in Fig. 11.

TABLE II. Finite-volume input data which are employed to constrain the =πEFT LO and NLO LECs. Listed are the
ground-state (E0) and the first excited state (E1) A

þ
1 energies in the deuteron and dineutron channels as well as the

Aþ
1 ground-state energy value in the triton channel, which are calculated at different box sizes L. The last row of the

table corresponds to the free-space results.

Deuteron Dineutron
Triton

L [fm] E0 E1 E0 E1 E0

3 −49.6002 145.0738 −38.4197 161.5753 −131.7462
5 −13.2650 48.8501 −8.5695 60.2897 −32.8364
7 −6.8728 20.3600 −3.6048 27.9261 −16.5174
9 −4.5895 10.1385 −1.9741 15.5872 −11.3680
11 −3.5205 5.6454 −1.2355 9.8703 −9.4258
13 −2.9523 3.3794 −0.8396 6.8068 −8.7281
15 −2.6326 2.1290 −0.6036 4.9852 −8.4973
∞ −2.2019 0 0 0 −8.3850
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FIG. 8. Sameas the lowerpanel ofFig.3but for theNN spin triplet
scattering length (upper panel) and effective range (lower panel).

FIG. 9. Same as the lower panel of Fig. 3 but for the NN inverse
spin-singlet scattering length (upper panel) and effective range
(lower panel).

FIG. 10. Same as the lower panel of Fig. 3 but for the free-space
triton ground state energy Et. Here, the black dash-double dotted
line show Et results obtained through the generalized Lüscher
bound state formula, Eq. (2).

FIG. 11. Same as the lower panel of Fig. 3 but for the nd spin-
quartet scattering length (upper panel) and effective range
(lower panel).
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