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We present a first lattice QCD calculation of the unpolarized nucleon’s isovector transverse-momentum-
dependent parton distribution functions (TMDPDFs), which are essential to predict observables of
multiscale, semi-inclusive processes in the standard model. We use aNf ¼ 2þ 1þ 1MILC ensemble with
valence clover fermions on a highly improved staggered quark (HISQ) sea to compute the quark
momentum distributions in a large-momentum nucleon on the lattice. The state-of-the-art techniques in
renormalization and extrapolation in the correlation distance on the lattice are adopted. The perturbative
kernel up to next-to-next-to-leading order is taken into account, and the dependence on the pion mass and
the hadron momentum is explored. Our results are qualitatively comparable with phenomenological
TMDPDFs, which provide an opportunity to predict high energy scatterings from first principles.

DOI: 10.1103/PhysRevD.109.114513

I. INTRODUCTION

Since the nucleon is at the core of atoms and accounts for
nearly all of the mass of the visible universe, exploring its
internal structure has been a key task for more than a
century in both particle and nuclear physics. In high-energy
scattering, the quark and gluon transverse momentum and
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polarization degrees of freedom in the nucleon are best
described by transverse-momentum parton distribution
functions (TMDPDFs). Thus, mapping out the nucleon’s
TMDPDFs is a crucial step in understanding the inter-
actions between quarks and gluons, and possibly the
phenomenon of confinement [1,2]. Moreover, predicting
the observables in multiscale, noninclusive high energy
processes such as semi-inclusive deep-inelastic scattering
and Drell-Yan scattering at the large hadron collider (LHC)
or electron ion collider (EIC) heavily relies on the knowl-
edge of TMDPDFs [3,4].
Whereas high energy experiments have accumulated a

wealth of relevant data, our knowledge of TMDPDFs is far
from being complete. Their rapidity evolution, i.e., the
Collins-Soper kernel [1], has been perturabtively calculated
up to four loops [5,6], but TMDPDFs at low energies are
nonperturbative in nature. Based on thousands of data
points from the low-pT semi-inclusive DIS and Drell-Yan
scattering processes and perturbative-QCD factorization, a
number of phenomenological analyses have been made to
obtain state-of-art TMDPDFs [7–11]. While similar data-
sets were employed in these analyses, the outcomes exhibit
notable discrepancies. This suggests the presence of sig-
nificant uncertainties in the global extraction of TMDPDFs,
underscoring the need for additional constraints to achieve
a more refined determination.
First-principles calculations of TMDPDFs require non-

perturbative methods such as lattice QCD. A handful of
available investigations using lattice QCD are limited to the
ratios of moments of TMDPDFs [12–15]. The development
of large momentum effective theory (LaMET) allows the
extraction of light-cone quantities through the simulation of
equal-time quasidistributions [16,17]. A directly calcula-
tion is TMDPDFs is nontrivial due to the presence of
the soft function [18], which involves two opposite light-
like directions. Implementing this on an Euclidean lattice
is a crucial difficulty. Recent progress demonstrates that
the rapidity-independent (intrinsic) soft function can be
calculated from a large-momentum-transfer form factor of a
light meson [19], while the rapidity evolution kernel in
the soft function can be accessed via the quasi-TMDPDFs/
beam functions [18,20–22] or quasitransverse-momentum-
dependent wave functions [19,23,24]. Subsequent lattice
efforts have been devoted to exploring the Collins-Soper
kernel and intrinsic soft function. The agreement between
lattice results and phenomenological analyses is encour-
aging [21,25–28].
Following these developments, this work presents a first

calculation of TMDPDFs from first principles. We simulate
the TMD momentum distributions in a large momentum
nucleon or quasi-TMDPDFs on the lattice and perform
a systematic study of renormalization properties by con-
sidering the subtractions from a combination of Wilson
loop and short distance hadron matrix element [29]. In
the matching from quasi-TMDPDFs, we include one-loop

and two-loop perturbative contributions and employ the
renormalization group equation to resum the logarithms.
After analyzing the valence pion mass and momentum
dependence, our final results for TMDPDFs are found to
have a similar behavior as phenomenological fits.
The remainder of this paper is structured as follows.

Section II presents the theoretical framework, followed by
the presentation of lattice simulations in Sec. III. Section IV
details the final results for TMDPDFs, while a concise
summary and future prospects are outlined in Sec. V.

II. THEORETICAL FRAMEWORK

A. Constructing the equal-time quasi-TMDPDFs

Describing the momentum distributions of a parton
inside a hadron, TMDPDFs fðx; b⊥; μ; ζÞ are functions of
the longitudinal momentum fraction x, the Fourier con-
jugate b⊥ of the parton transverse momentum q⊥, as well as
the renormalization scale μ and the rapidity scale ζ. In this
work we will consider the flavor nonsinglet/isovector
unpolarized quark TMDPDFs, which do not mix with
gluons.
In LaMET, the correlations with modes traveling along

the light cone can be extracted from distributions in a
fast-moving nucleon through large-momentum expansion.
On the lattice, the equal-time quasi-TMDPDFs are con-
structed as

f̃Γðx; b⊥; Pz; μÞ≡ lim
a→0
L→∞

Z
dz
2π

e−izðxPzÞ

×
h̃0Γðz; b⊥; Pz; a; LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZEð2Lþ z; b⊥; aÞ
p

ZOð1=a; μ;ΓÞ
;

ð1Þ

where a denotes the lattice spacing. Γ ¼ γt or γz is the
Dirac matrix that can be projected onto γþ in the large
momentum limit. The h̃0Γðz; b⊥; Pz; a; LÞ is built with a
gauge-invariant nonlocal quark bilinear operator as

h̃0Γðz; b⊥; Pz; a; LÞ ¼ hPzjÕ0
Γ;⊏ðz; b⊥; Pz;LÞjPzi; ð2Þ

Õ0
Γ;⊏ðz; b⊥; LÞ≡ ψ̄ðb⊥n̂⊥ÞΓU⊏;Lðb⊥n̂⊥; zn̂zÞψðzn̂zÞ: ð3Þ

In the above, jPzi denotes the unpolarized nucleon state
and L denotes the “infinity” that the gauge link can reach.
The staple-shaped Wilson link is chosen as

U⊏;Lðb⊥n̂⊥; zn̂zÞ≡ U†
z
�ðzþ LÞn̂z þ b⊥n̂⊥; b⊥n̂⊥

�
×U⊥

�ðzþ LÞn̂z þ b⊥n̂⊥; ðzþ LÞn̂z
�

×Uz

�ðzþ LÞn̂z; zn̂z
�
; ð4Þ

in whichUz is the path-ordered Euclidean gauge link along
the z-direction, and U⊥ is along the transverse direction at
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the “infinity” position (zþ L) on the finite lattice. Their
explicit forms are

Uzðξz1n̂z þ ξ⊥n̂⊥; ξz2n̂z þ ξ⊥n̂⊥Þ

¼ P exp

�
−ig

Z
ξz
2

ξz
1

dλn̂z · Aðλn̂z þ ξ⊥n̂⊥Þ
�
; ð5Þ

U⊥ðξzn̂z þ ξ⊥1n̂⊥; ξzn̂z þ ξ⊥2n̂⊥Þ

¼ P exp

�
−ig

Z
ξ⊥2

ξ⊥1

dλn̂⊥ · Aðξzn̂z þ λn̂⊥Þ
�
: ð6Þ

An illustration of the quasi-TMDPDFs is given in Fig. 1,
in which The staple-shaped Wilson link is depicted as
double lines.

B. Renormalization of the TMD matrix elements

Quantities in Eqs. (2) and (3) with the superscript “0” are
bare quantities on a finite lattice. They contain linear
divergence, pinch-pole singularity, and logarithmic diver-
gence. Both the linear divergence and pinch-pole singu-
larity can be renormalized by the square root of Wilson
loop

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEð2Lþ z; b⊥; aÞ

p
[30–34]; and the logarithmic

divergence can be renormalized by a factor ZOð1=a; μÞ,
which is extracted from matching between the lattice and
perturbative calculation of zero-momentum matrix ele-
ments in the perturbative region [29,35–37].
The Wilson loop ZEðr ¼ 2Lþ z; b⊥; aÞ is defined as the

vacuum expectation of a rectangular shaped spacelike
gauge links with size r × b⊥, which can be written as

ZEðr; b⊥; aÞ ¼
�
U†

zððzþ LÞn̂z þ b⊥n̂⊥; ð−zÞn̂z þ b⊥n̂⊥Þ
×U⊥ððzþ LÞn̂z þ bn̂⊥; ðzþ LÞn̂zÞ
×Uzððzþ LÞn̂z; ð−zÞn̂zÞ
×U†

⊥ðð−zÞn̂z þ b⊥n̂⊥; ð−zÞn̂zÞ
�
: ð7Þ

The Wilson loop is introduced to eliminate the linear
divergence of the form e−δm̄r, which comes from the self-
energy corrections to the gauge link [30,36], as well as the
pinch-pole singularity, which is related to the heavy quark
effective potential term e−Vðb⊥ÞL describing the interactions
between the two Wilson lines along the z direction in the
staple link [22].

The logarithmic divergence factor ZO can be extracted
from the zero-momentum bare matrix elements h̃0Γðz; b⊥;
0; a; LÞ. In order to keep the renormalized matrix elements
consistent with perturbation theory, ZO should be deter-
mined from the condition:

ZO

	
1

a
; μ;Γ



¼ lim

L→∞

h̃0Γðz; b⊥; 0; a; LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEð2Lþ z; b⊥; aÞ

p
h̃MS
Γ ðz; b⊥; μÞ

ð8Þ

in a specific window where z ≪ Λ−1
QCD so that perturbation

theory is valid. The perturbative result for the Γð¼ γt or γzÞ
zero-momentum matrix element up to one-loop order in the
MS scheme reads

h̃MS
Γ ðz; b⊥; μÞ ¼ 1þ αsðμÞCF

2π

�
1

2
þ 3

2
ln
	
μ2ðb2⊥ þ z2ÞeγE

4

− 2
z
b⊥

arctan
z
b⊥


�
: ð9Þ

Here the perturbation results have been evolved from the
intrinsic physical scale μ0 ¼ 2e−γE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2⊥

p
to the MS

scale μ using the renormalization group equation [38].

C. Matching at next-to-next-to-leading order and
renormalization group resummation

It has been shown that quasi-TMDPDFs have the same
collinear degrees of freedoms as TMDPDFs [22]. Their
differences from soft modes can be attributed to the
intrinsic soft function and different rapidity scales. Also
contributions from highly off-shell modes are local [20].
Thus TMDPDFs fðx; b⊥; μ; ζÞ are connected to quasi-
TMDPDFs f̃Γðx; b⊥; ζz; μÞ via a multiplicative factoriza-
tion [22,39]:

f̃Γðx; b⊥; ζz; μÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SIðb⊥; μÞ

p
¼ H

	
ζz
μ2



e
1
2
lnðζzζ ÞKðb⊥;μÞfðx; b⊥; μ; ζÞ

þO
	Λ2

QCD

ζz
;
M2

ðPzÞ2 ;
1

b2⊥ζz



; ð10Þ

where SI denotes the intrinsic soft function that has been
calculated on the lattice in Refs. [26,27,40,41] and K
denotes the Collins-Soper kernel. Power corrections are
suppressed by OðΛ2

QCD=ζz;M
2=ðPzÞ2; 1=ðb2⊥ζzÞÞ, which

implies that TMDPDFs can only be accurately obtained
for moderate values of x.
The matching kernel H, as a function of ζz=μ2 ¼

ð2xPzÞ2=μ2, has been perturbatively determined up to
next-to-leading order (NLO) [20,22,42,43]

FIG. 1. Illustration of the quasi-TMDPDFs.
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Hð1Þ
	
ζz
μ2



¼ αsCF

2π

	
−2þ π2

12
þ ln

ζz
μ2

−
1

2
ln2

ζz
μ2



; ð11Þ

as well as next-to-next-to-leading order (NNLO), calcu-
lated recently [44,45]

Hð2Þ
	
ζz
μ2



¼ α2s

�
c2 −

1

2
ðγð2ÞC − β0c1Þ ln

ζz
μ2

−
1

4

	
Γð2Þ
cusp −

β0CF

2π



ln2

ζz
μ2

−
β0CF

24π
ln3

ζz
μ2

�
;

ð12Þ

where ζz ¼ ð2xPzÞ2 and c2 ¼ 0.0725C2
F − 0.0840CFCAþ

0.1453CFnf=2. The perturbative TMDPDF is calculated in
the MS scheme with a fixed renormalization scale μ, while
the quasi-TMDPDFs are associated with the Collins-Soper
scale

ffiffiffiffi
ζz

p
, which is the intrinsic physical scale of pertur-

bative matching. In order to expose the intrinsic physical
scale [38], we resum the large logarithms ∼ lnn ðζz=μ2Þ in
the small x region through the renormalization group (RG)
equation for H:

μ2
d
dμ2

lnH

	
ζz
μ2



¼ 1

2
ΓcuspðαsÞ ln

ζz
μ2

þ γCðαsÞ
2

; ð13Þ

where γC ¼ 2γF þ ΓS þ 2γH with γð1ÞC ¼ −CF=π and

γð2ÞC ¼ ða1CFCA þ a2C2
F þ a3CFnfÞ, the coefficients a1 ¼

44ζ3 − 11π2

3
− 1108

27
, a2 ¼ −48ζ3 þ 28π2

3
− 8 and a3 ¼ 2π2

3
þ

160
27

[22,43]. The cusp anomalous dimension Γcusp is known
up to the four-loop level for the quark case [44,46,47].
In practice, we compare the matching kernel at fixed

order and with employing the RG resummation starting
from the Collins-Soper scale μ0 ¼ 2xPz to μ ¼ 2 GeV.
After the resummation, the intrinsic scale 2xPz appears in
the running coupling αsð2xPzÞ. Fig. 2 shows the compari-
son of NLO and NNLO matching kernels with and without
RG evolution. One can see that the RG evolution changes
the perturbative behavior at small-x, and makes the
predictions of the TMDPDFs in this region less reliable.

III. LATTICE SIMULATIONS

We use the valence tadpole improved clover fermion
on the hypercubic (HYP) smeared [48] 2þ 1þ 1 flavors
MILC configurations with highly improved staggered
quark (HISQ) sea and 1-loop Symanzik improved gauge
action [49]. We analyze a single ensemble with lattice
spacing a ¼ 0.12 fm and volume n3s × nt ¼ 483 × 64 using
physical sea quark masses, and two choices of light valence
quark mass corresponding to mval

π ¼ f220; 310g MeV.
The HYP smearing is also used for nonlocal correla-
tion functions to improve the statistical signal. In order

to explore the momentum dependence, we employ three
different nucleon momenta as Pz¼2π=ðnsaÞ×f8;10;12g¼
f1.72; 2.15; 2.58gGeV.
We adopt momentum-smearing point source [50] at

several time slices, and average correlation functions for
both the forward and backward directions in z and trans-
verse space of the gauge link. In total, there are 1000
(configurations) ×16 (source time slices) ×4 (forward/
backward directions of the z and transverse axes) mea-
surements for the mval

π ¼ 220 MeV case and 1000 × 4 × 4
measurements for the 310 MeV case.

A. Dispersion relations

The two-point correlation functions of the nucleon are
defined as

C2ðt; P⃗Þ ¼
*X

y⃗

eiP⃗·y⃗Tχðy⃗; tÞχ̄ð0⃗; 0Þ
+
; ð14Þ

where T ¼ ð1þ γtÞ=2 denotes the unpolarized projector,
and χ ¼ ϵabcuaðuTbCγ5dcÞ is the nucleon interpolation
field. We have computed the two-point functions using
nucleon momenta up to 2.58 GeV to examine the
dispersion relation.
For the three momenta Pz ¼ 1.72, 2.15, 2.52 GeV, the

statistics of the two-point correlation functions are 1000
(configurations) ×16 (source time slices) for mπ ¼
220 MeV and 1000 × 4 for mπ ¼ 310 MeV; while for the
cases with a momentum smaller than 1.72 GeV, there are
1000 × 4 measurements for mπ ¼ 220 MeV and 1000 × 1
measurements for mπ ¼ 310 MeV. Throughout we use the
parametrizationC2ðtÞ ¼ c0e−E0tð1þ c1e−ΔEtÞ, and we per-
form two-state fits to extract the ground-state energies, as
shown in Fig. 3.

FIG. 2. Comparison of NLO and NNLO matching kernels at
fixed order with μ ¼ 2 GeV (dashed lines) and running from
Collins-Soper scale μ0 ¼ 2xPz to MS scale μ ¼ 2 GeV (solid
lines), Pz is chosen as 2.15 GeV. The abrupt surge in behavior
observed in NNLOþ RGR is attributed to the presence of the
Landau pole.
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Based on the ground-state energies with different Pz, one
can obtain the dispersion relations of the nucleons with the
pion mass mπ ¼ 220 MeV and 310 MeV. We adopt the
following parametrization

EðPzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ b1ðPzÞ2 þ b2ðPzÞ4a2

q
; ð15Þ

where the quadratic term of lattice spacing a is introduced
to parametrize discretization errors. The fit results are
shown in Fig. 4. For the mπ ¼ 220 MeV case, it is found
that b1 ¼ 1.014ð95Þ and b2 ¼ −0.014ð17Þ, while for the
310 MeV case, the fit gives b1 ¼ 1.066ð80Þ and b2 ¼
−0.015ð14Þ. From these results, we can see that the disper-
sion relation is consistent with EðPzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðPzÞ2

p
within uncertainties.

B. Bare quasi-TMDPDFs from correlated joint fits

To extract the quasi-TMDPDFs, one constructs the three-
point functions

CΓ
3ðt; tsÞ ¼

*X
y⃗

eiP⃗·y⃗Tχðy⃗; tsÞ
X
x⃗

ÕΓ
TMDðx⃗; tÞχ̄ð0⃗; 0Þ

+
:

ð16Þ

We adopt the sequential source method [51] to reduce
the number of propagators in three-point functions, ts
denotes the time position of the sequential source. The
operator ÕΓ

TMDðx⃗; tÞ is short for the TMD nonlocal quark
bilinear operator Õ0⊏ðx⃗þ zn̂z; x⃗þ b⊥n̂⊥;Γ; LÞ at discrete
time slice t∈ ½0; ts�. The three-momentum is chosen as
P⃗ ¼ ð0; 0; PzÞ.
After inserting the single particle intermediate states,

one can parametrize the ratio of three- and two-point
functions as

CΓ
3ðt; tsÞ
C2ðtsÞ

¼ h̃0Γ þ c2ðe−ΔEt þ e−ΔEðts−tÞÞ þ c3e−ΔEts

1þ c1e−ΔEts
; ð17Þ

in which h̃0Γ ≡ h̃0ðz; b⊥; Pz;ΓÞ,ΔE is the mass gap between
the ground-state and excited state, and c1;2;3 are para-
meters for the excited-state contaminations. Combining
the parametrization form of 2pt functions: C2ðtÞ ¼
c0e−E0tð1þ c1e−ΔEtÞ, one can extract the values of h̃0Γ at
fixed ðz; b⊥; PzÞ through a correlated joint fit.
In our calculation, we use bootstrap resampling to

establish correlations among all datasets, and the correlations
are maintained consistently throughout the entire analysis.
For the three-point functions, we have excluded the contact

FIG. 3. Two-point correlation functions of nucleons with pion mass mπ ¼ 220 MeV and 310 MeV at largest three momenta Pz ¼
1.72 GeV (left panel), 2.15 GeV (central panel), and 2.58 GeV (right panel). The colored bands indicate the fit ranges (t∈ ½3; 8�a) and
results of each two-state fits.

FIG. 4. The dispersion relations of nucleons with pion mass
mπ ¼ 220 MeV (left panel) and 310 MeV (right panel). The data
with momentum up to 2.58 GeV can be described by Eq. (15).
Both fit bands are consistent with the data points.
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points (t ¼ 0 and t ¼ tseq) for the five values of the source-
sink separation time range tseq ∈ ð0.48 ∼ 0.84Þ fm. For small
b⊥ (b⊥ ≤ 3a), we have further removed two points near the
source and sink(t ¼ 1 and t ¼ tseq − 1).
In Fig. 5, we give the lattice data and the fit results of the

real and imaginary parts of Cγt

3 ðt; tsÞ=C2ðtsÞ with different
fPz;mπg, z and b⊥ as examples. As shown in the figures,
the fit results (colored bands) reproduce the original lattice
data points at each ts, and the gray band corresponds to the
extracted ground-state matrix element.
The fitting qualities of the bootstrap samples are illus-

trated in Fig. 6. The left panel shows the histogram
distributions (normalized to 1) of χ2=d:o:f:, and the right
panel shows the cumulative distribution function (CDF)
of the Q values for all correlated joint fits. Most of the
χ2=d:o:f: spread out between 0.5 and 1.2, and theQ value is
larger than 0.05 for most fits, which indicates that the
ground-state fits are reasonable.
To demonstrate the stability of ground-state fits, the

comparisons between fit results of the bare matrix elements
h̃0γt with different tmin are shown in Fig. 7. The tmin represents
the minimum ts in the fits of the three-point function, and the
Q in the figure is the p-value of the joint fits. The two upper

subdiagrams are at b⊥ ¼ 3a and z ¼ 3a, for the real (left)
and imaginary (right) part, respectively. The two lower
panels are at b⊥ ¼ 5a and z ¼ 5a. It shows that when
tmin increases, that is, when fitting with fewer data points, the
fit results get larger uncertainties but remain consistent
within the error range.

C. Renormalization

As mentioned in Sec. II B, we use the square root of the
Wilson loop

ffiffiffiffiffiffi
ZE

p
and logarithmic divergence factor ZO

to renormalize the bare quasi-TMD matrix elements. In
practice, the signal to noise ratio of ZEðr; b⊥; aÞ defined in
Eq. (7) decreases fast with r and b⊥ such that it is hardly
available for large r or b⊥. To address this, we fit the
effective energies of the Wilson loop, which gives the QCD
static potentials, and then extrapolate them to large r and/or
b⊥, as in Ref. [29]. Numerical results for the Wilson loop
are shown in the upper panel of Fig. 8.
The logarithmic divergence factor ZO can be extracted

from the matching between lattice and perturbative results
in the region where both two theories work well. To
preserve a good convergence of the perturbation theory
before and after RG evolution, we choose the region where

FIG. 5. Ratios of Cγt

3 ðt; tsÞ=C2ðtsÞ (data points), as functions of t and ts, with various combination of fPz;mπg and different z and b⊥.
In this figure, the colored bands correspond to the fitted results, and the gray bands are the ground-state contribution.
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b⊥ ¼ 1a, and z ¼ 0 or 1a, where both perturbation theory
and lattice calculations work. The extracted ZO values at
these two points are 1.0734(93) and 1.0509(92), respec-
tively. Averaging these data points yields an aggregated
result of ZO ¼ 1.0622ð87Þ.
With Eq. (8), it can be concluded that after dividing the

bare matrix elements h̃0Γ by
ffiffiffiffiffiffi
ZE

p
and ZO, the renormalized

matrix elements should approximately be equal to the RG

evolved perturbation results h̃MS
Γ . The lower panel of Fig. 8

shows the consistency at points where we extract the

ZO factor, which serves as a check of the numerical result
for ZO. The points at z ¼ 0 and z ¼ 1 depicted in Fig. 8
demonstrate that, following renormalization with the
extracted factor ZO ¼ 1.0622ð87Þ, the renormalized matrix
elements on the lattice show a consistent trend with the
perturbative results obtained in MS scheme at short dis-
tance. To verify the accuracy of scale evolution from the
intrinsic physical scale in lattice calculation to MS scale
μ ¼ 2 GeV, we vary the origin of the evolution from 0.8μ0
(shown as “RG. I”) to 1.2μ0 (shown as “RG. II”), which is

FIG. 6. Left panel: the χ2=d:o:f: distribution of all ground-state fits for different combinations of fmπðMeVÞ;Γg. Right panel: the
cumulative distribution function (CDF) of the Q values.

FIG. 7. Stability plots to compare fit results of bare matrix elements when varying the minimum ts in the fits of C
γt

3 ðt; tsÞ=C2ðtsÞ. The
two upper subdiagrams denote the real and imaginary results at ðb⊥; zÞ ¼ ð3; 3Þa and the lower ones are at ð5; 5Þa. The Q in each
subplots represents the p-value of the fits, all the fits above have good qualities with p-values greater than 0.1, which are denoted with the
red dashed lines.
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sensitive to higher-order corrections. One can see that the
perturbative results from different μ0 are consistent with the
lattice data in the matching region (b⊥ ¼ 1a, z ¼ 0 or 1a).

D. L-dependence of subtracted quasi-TMD
matrix elements

For a well-defined quasi-TMDPDF, the length of the
Wilson link L should be large enough to ensure that
the final results are independent of L. In the definition
of the staple-shaped Wilson link in Eq. (4), L should be
extended to infinity. The L-dependence is included in the
linear divergence of the Wilson link self-energy and pinch-
pole singularity, which can be subtracted by the square root
of the Wilson loop. Therefore, the subtracted quasi-TMD
matrix elements

h̃Γðz; b⊥; a;LÞ≡ h̃0Γðz;b⊥;Pz; a;LÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEð2Lþ z;b⊥; aÞ

p
ZOð1=a;μ;ΓÞ

ð18Þ

will saturate to a plateau at large enough L to ensure that the
link can extend outside the region of the parton, and exhibit
independence of L.

Reference [29] explored the L-dependence of renormal-
ized TMD matrix elements and reached the conclusion that
setting L ¼ 6a for MILC12 is sufficient, aligning well with
the ensemble we have employed. To verify this, we further
examine the L-dependence of the subtracted quasi-TMD
matrix elements, illustrated in Figs. 9 and 10.
In Fig. 9, the three panels on the left show the real parts

of the ratios defined in Eq. (17) divided by the square root
of the Wilson loop with various combinations of z and b⊥
and L ¼ f6; 8; 10ga. The right panel gives the fit results of
subtracted quasi-TMD matrix elements with different L.
From the comparison, one can see that the fitted results for
L ¼ f6; 8; 10ga are consistent with each other. However, it
should be noted that for large spatial separations, the signal
becomes worse with increasing L. In Fig. 10, a comparison
of the subtracted quasi-TMDPDF as a function of λ with
different L, also confirms this behavior. Therefore, to
balance the statistical and systematic uncertainties, we
adopt L ¼ 6a as an optimal choice in our calculation.
There is a phenomenological explanation for the earlier

saturation of the Wilson line; however, it is essential to
note that a definitive proof is currently unavailable. When
calculating the TMDPDF of a proton, which reflects the
quark correlation within the proton, a reasonable estimate
for the correlation length could be the size of a proton,
approximately 1 fm. Beyond this distance, quarks and
gluons may escape the proton, potentially diminishing their
impact. This suggests a typical saturation length of around
1 fm, with L ¼ 6a (or more precisely, L ¼ 8a) being in
close proximity to this length scale.

E. Quasi-TMDPDFs in the coordinate space
and λ extrapolation

Combining the bare quasi-TMDPDFs matrix elements
with the corresponding Wilson loop and renormalization
factor, we obtain numerical results for renormalized matrix
elements at different λ ¼ zPz. The two panels on the left in
Fig. 11 exhibit the λ dependence of the renormalized matrix
elements with b⊥ ¼ 2a and 5a with various Pz and mπ .
It can be seen that as λ increases, the quasi-TMDPDFs
approach zero for both real and imaginary components.
When b⊥ is large, considerable uncertainties exist in the
fully correlated datasets and nonzero central values can
induce unphysical oscillations for a brute-force Fourier
transformation.
To address this, we adopt a physics-inspired extrapola-

tion at large λ: [33]

h̃Γ;extraðλÞ ¼
�

m1

ð−iλÞn1 þ eiλ
m2

ðiλÞn2
�
e−λ=λ0 ; ð19Þ

in which all parameters m1;2, n1;2 and λ0 depend on the
transverse separation b⊥. The algebraic terms account for
a power law behavior in the endpoint region, and the
exponential term is motivated by the expectation that the

FIG. 8. Upper: Wilson loop with r ¼ 2Lþ z. Lower: renor-
malized zero-momentum matrix element h̃Γðz; b⊥; 0; a; LÞ at
b⊥ ¼ 1a, compare with 1-loop results before (NLO) and after
(NLOþ RG) RG evolution to μ ¼ 2 GeV in the MS scheme.
Besides, we vary the starting point of evolution from 0.8μ0
(“RG. I”) to 1.2μ0 (“RG. II”) to estimate the higher-order
correction effects.

JIN-CHEN HE et al. PHYS. REV. D 109, 114513 (2024)

114513-8



correlation function has a finite correlation length (denoted
as λ0) at finite momentum.
It should be noticed that the λ extrapolation with Eq. (19)

was was initially proposed for the one-dimensional parton
distribution functions [33]. For TMDPDFs, whether this
form holds and whether the involved parameters depend
on the transverse separation remain to be found out. In this

work, we have performed the λ extrapolation in two ways:
a joint extrapolation with the same parameters and an
independent extrapolation for each b⊥. The results are
collected in Table I, from which one can see that each
separate fit result is consistent with the joint one. How-
ever, the joint fit approach gives a more stringent con-
straint for the large b⊥ case, and the corresponding result

FIG. 9. The real parts of ratios defined in Eq. (17) divided by the Wilson loop (three left panels) and the L dependence of the ground
state results after fitting (right panels) at fz; b⊥g ¼ f1; 1g; f3; 3g and f5; 5ga, with Pz ¼ 1.72 GeV, mπ ¼ 220 MeV and Γ ¼ γt. Since
the real parts for fz; b⊥g ¼ f5; 5ga are close to zero, we also give the imaginary parts in this example. The labels are similar to the
corresponding ones in Fig. 5.
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for the extrapolated matrix element has a smaller error
than the original lattice data, as shown in Fig. 12. To be
conservative, we have adopted the independent fits for our
results.
To perform the extrapolation, a reasonable range of λ is

required to determine the parameters. In Fig. 13, we show
several extrapolations of the quasi-TMD matrix elements
subtracted with different combinations of fmπ; Pz; b⊥g.
The fit is performed in the region λ ≥ λL with λL being a
truncation parameter. As one can see from the figures, the

fitting bands agree with the original lattice data in the
moderate λ region and have smooth tails at large λ. With
that, the quasi-TMDPDFs in momentum space do not have
unphysical oscillations which often show up in the brute-
force Fourier transformation of λ. As a conclusion, we
choose λL ¼ 8a for the extrapolation and use λL ¼ 6a to
estimate the systematic uncertainties from λ extrapolation.
As shown in Fig. 11(c), the extrapolated results (colored
bands) agree with lattice data in the moderate λ region, and
give smoothly-decaying distributions at large λ.

FIG. 10. L-dependence of subtracted quasi-TMDPDF matrix elements with b⊥ ¼ f1; 3; 5ga at Pz ¼ 1.72 GeV, mπ ¼ 220 MeV,
Γ ¼ γt. The real parts of b⊥ ¼ f1; 3ga and both the real and imaginary parts of b⊥ ¼ 5a are exhibited.

(a) (b) (c)

FIG. 11. (a, b): Renormalized quasi-TMDPDFs in coordinate space as function of λ ¼ zPz with variousmπ and Pz at b⊥ ¼ 2a and 5a;
(c): Comparison of original (data points) and extrapolated results (colored bands) at b⊥ ¼ 5a.
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F. TMDPDFs and physical extrapolation

After Fourier transforming the renormalized quasi-
TMDPDFs in coordinate space to momentum space, one
can obtain the quasi-TMDPDF f̃Γðx; b⊥; ζz; μÞ, shown as
the dash-dotted (magenta) line in Fig. 14. Combing the
updated results of Collins-Soper kernel [28] and intrinsic soft
function [41] calculated on the same ensembles, we obtain
the TMDPDFs through the matching formula in Eq. (10).
Fig. 14 shows an example of matched TMDPDF from the
NLO [22,43] and NNLO [44,45] kernel with RG running to
scale μ ¼ ffiffiffi

ζ
p ¼ 2 GeV. One can see that the results agree

within uncertainties, except for the end point region.

It should be noted that the TMDPDFs can be obtained
after employing the factorization formula, while residual
dependence on the lattice inputs (such as Pz and mπ) may
still reside in the obtained results. To diminish the depend-
ence, we extrapolate the above results to the physical mπ

value (135 MeV) and infinite momentum using the follow-
ing ansatz:

fðmπ; PzÞ ¼ fphy

�
1þ d0

�
m2

π −m2
π;phy

�
þ d00 ln

�
m2

π=m2
π;phy

�þ d1
ðPzÞ2 þ

d01
Pz

�
; ð20Þ

TABLE I. Results for the parameters n1, n2 and λ in Eq. (19) from separate fits and a joint fit, and the χ2=d:o:f: of
each fit, taking the case of mπ ¼ 220 MeV, Γ ¼ γt and Pz ¼ 1.72 GeV as an example. The results of different fit
methods are consistent with each other.

b⊥ (a) 1 2 3 4 5 Joint

n1 0.909(39) 0.943(61) 0.89(10) 0.801(78) 0.84(16) 0.887(28)
n2 1.31(34) 2.37(68) 1.71(31) 1.55(38) 1.22(44) 1.65(12)
λ0 2.63(38) 3.20(80) 2.42(85) 4.3(1.6) 4.4(2.8) 2.53(28)

χ2=d:o:f: 1.0 1.1 1.3 0.75 0.57 1.2

(a) (b) (c)

FIG. 12. The comparison of extrapolated results from separate fits (pale blue bands) and the joint fit (pink bands) with fmπ; Pz; b⊥g ¼
f220 MeV; 2.15 GeV; 5ag (left panel), f310 MeV; 1.72 GeV; 5ag (central panel) and f220 MeV; 2.15 GeV; 3ag (right panel). The
results of the joint fit are consistent with the separate fits, while giving stricter restrictions for large b⊥.

(a) (b) (c)

FIG. 13. The large λ extrapolation of subtracted quasi-TMD matrix elements in the regions λ ≥ λL with λL ¼ 8a (blue bands) and 6a
(purple bands), for the cases with fmπ ; Pz; b⊥g ¼ f220 MeV; 2.15 GeV; 5ag (left panel), f310 MeV; 1.72 GeV; 5ag (central panel)
and f220 MeV; 2.15 GeV; 3ag (right panel). All the fitting bands agree with the original lattice data in the moderate λ region and have
smooth tails at large λ.
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where the dð
0Þ
0 term characterizes the pion mass dependence,

and dð
0Þ
1 accounts for the momentum-dependent discretiza-

tion error. An interesting analysis has recently derived the
chiral logarithms for quasi-PDFs [52]. In this approach, one
first performs an operator product expansion and constructs
the moments of quasi-PDFs with derivative operators.
Using chiral perturbation theory, one can find hadron-level
operators which have the same symmetry. Calculating the
one-loop perturbative contributions and summing these
contributions for moment operators will lead to the chiral
logarithms in quasi-PDFs. However, this analysis has not
been generalized to TMDPDFs at present. In addition, since
TMDPDFs are three-dimensional distributions, expanding
the nonlocal operators will require the derivatives not only in
the z direction, but also in the transverse direction. This will
likely introduce additional complexities.
Taking d00 ¼ d01 ¼ 0 as our default case, we obtain the

physical TMDPDF from a joint fit of fðmπ; PzÞ shown in
Fig. 15. In order to explore the systematic bias in the
extrapolation ansatz, we also estimate the mπ dependence
by using the d00 term (with d0 ¼ 0) and examine the 1=Pz

contributions by adding the d01 term, shown as the following
two different strategies:

(i) Default form:

fðmπ; PzÞ ¼ fphy

�
1þ d0

�
m2

π −m2
π;phy

�þ d1
ðPzÞ2

�
;

ð21Þ
(ii) Strategy I:

fðmπ; PzÞ ¼ fphy

�
1þ d00 log

m2
π

m2
π;phy

þ d1
ðPzÞ2

�
; ð22Þ

(iii) Strategy II:

fðmπ; PzÞ ¼ fphy

�
1þ d0

�
m2

π −m2
π;phy

�
þ d1
ðPzÞ2 þ

d01
Pz

�
: ð23Þ

Specifically, we introduce the chiral log term as well as
the linear 1=Pz term into the fit formula, and consider the
deviation between them and the default form as the
systematic uncertainty. A comparison of them is shown
in the upper panel in Fig. 16 from which one can see that
the results agree with each other.
Furthermore, we have examined two different sequences

of extrapolation: First, extrapolation to the physical mπ

followed by the Pz → ∞ extrapolation, and second, the
Pz → ∞ extrapolation followed by the extrapolation to the
physical mπ . A comparison of the results is presented in
the lower panel of Fig. 16. It is evident that the results are in
good agreement with each other.

G. γt − γz difference
In quasi-TMDPDFs, both Lorentz structures Γ ¼ γt and

γz can project onto γþ in the large momentum limit. An
interesting observation in Ref. [53] is that the γt case has
fewer operator mixing effects. Therefore, we use the Γ ¼ γt

in Eq. (1) to extract the TMDPDFs. For the γz case, in
addition to the sizable operator mixing effects, it is
anticipated that its deviations from the γt results may come
from power corrections from the operator product expan-
sion of quasicorrelators. These corrections are of order
Oð1=ðPzÞ2Þ with opposite signs at large Pz. In order to
analyze the impact caused by different structures, we plot
the ratio jfγt − fγz j=ðfγt þ fγzÞ with different Pz in Fig. 17.
One can see that with increasing nucleon momentum, the
ratio becomes smaller, except for the endpoint region with

FIG. 14. Quasi TMDPDF (dashed-red line) with nucleon
boosted momentum Pz ¼ 1.72 GeV and matched TMDPDF
from NLO kernel (dashed-black line, no error) and NNLO kernel
(solid-black line) with RG running to scale μ ¼ ffiffiffi

ζ
p ¼ 2 GeV at

b⊥ ¼ 3a. Only statistical errors are included in the bands.
Deviations between NLO and NNLO results at x < 0.2 indicate
that the perturbative matching fails in the small-x region.

FIG. 15. TMDPDFs obtained from different mπ and Pz

(dashed-color lines) at b⊥ ¼ 3a, and their physical results after
extrapolation. The shaded gray band indicates the endpoint
regions where LaMET predictions are not reliable. Only stat-
istical errors of physical results are exhibited.
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large uncertainties. The differences will be incorporated as
a systematic uncertainty.

H. Estimation of systematic uncertainties

As mentioned above, this work considers the systematic
uncertainties from different sources, including from

(i) different fitting ranges in the λ-extrapolation
(Sec. III E);

(ii) different strategies used for the chiral and Pz

extrapolation (Sec. III F);
(iii) the difference between γt and γz results (Sec. III G).

In addition, we also consider the error propagating from the
intrinsic soft function [41] and Collins-Soper kernel [28],
which are calculated on the same configurations. The
comparison of the statistic as well as each systematic
uncertainties are shown in Fig. 18.

IV. FINAL RESULTS FOR TMDPDFS

Combing all the known uncertainties indicated in Fig. 18,
we obtain numerical results of unpolarized nucleon’s iso-
vector TMDPDFs from our lattice simulation. Figure 19
shows xfðx; b⊥; μ; ζÞ at renormalization and rapidity scales
μ ¼ ffiffiffi

ζ
p ¼ 2 GeV as a function of x, together with the

phenomenological results from global analyses [7–11].
From the comparison one can see that, our results are in
qualitative agreement with phenomenological results and
share a similar behavior in b⊥ space: the central values
slowly decrease and uncertainties are gradually increasing
with the increase of b⊥.
In Fig. 19, a bump in the x distribution can be observed,

representing the highest probability for the partons’ longi-
tudinal momentum distributions. It is worth noting that the
peak positions do not align precisely between the lattice
results and the respective phenomenological results. Further
investigations are required to elucidate this phenomenon.
The two shaded bands at the endpoint regions (x < 0.2

and x > 0.8) in each subplots of Fig. 19 indicate that
LaMET predictions are not reliable there, which is esti-
mated from the power correction terms Λ2

QCD=ðxPzÞ2 and
threshold logarithms lnðð1 − xÞPzÞ [54,55]. Besides, since
only one lattice spacing is used, discretization uncertainties
are not properly handled at this stage. Especially the b⊥ ∼ a
case might suffer sizable discretization effects, which can
be improved by a more detailed analysis in future.

FIG. 16. Upper: default extrapolation form in Eq. (21), con-
sidering the systematic uncertainties from chiral extrapolation in
Eq. (22) (strategy I) and from the large-momentum extrapolation
form in Eq. (23) (strategy II). Lower: comparison of the results
from joint fit and chained fits with different order.

FIG. 17. Ratio of jfγt − fγz j=ðfγt þ fγzÞ with mπ ¼ 220 MeV
and different Pz at b⊥ ¼ 3a.

FIG. 18. Ratios of various uncertainties and central value of
final TMDPDF at b⊥ ¼ 3a, include the statistical one and
systematical one from: (1) λ extrapolation, (2) chiral and Pz

extrapolation, (3) γt − γz differences, (4) intrinsic soft function
[41] and (5) Collins-Soper kernel [28].
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Figure 20 shows the results for xfðx; b⊥; μ; ζÞ with
x ¼ 0.3, 0.5, 0.7 as a function of spatial separation b⊥.
The spatial distributions reflect correlations between the
partons at transverse interval b⊥ inside a highly boosted
nucleon, and will reveal aspects of nucleon structure. It
could be conjectured that the distributions vanish when b⊥
is larger than the nucleon radius, however, neither the
present day lattice results nor the phenomenological results
are precise enough to draw such a conclusion.

V. SUMMARY AND PROSPECT

In summary, we have performed the first calculation of
transverse momentum-dependent parton distribution func-
tions (TMDPDFs) within a nucleon using the LaMET
expansion of lattice data. State-of-the-art techniques in
renormalization and extrapolation on the lattice have been

employed, including the consideration of the perturbative
kernel up to NNLO with RG resummation. We investigate
the dependence on pion mass and hadron momentum,
incorporating both statistical and systematic errors to
provide a robust characterization of the inner structure of
nucleons through the parton distributions.
While the current findings are promising, further

improvements are required. First, a comprehensive analysis
of multiple ensembles with varying lattice spacings, pion
masses, and volumes is essential. This approach will not
only reassess all uncertainties addressed in this study but
also systematically explore additional significant factors.
Second, our results exhibit notable theoretical uncertainties
in the endpoint regions, which could stem from power
corrections or threshold logarithms. Third, we expect a
decay of the TMDPDF with increasing b⊥ which is not
(yet) visible in our data. Going to larger b⊥ is thus

FIG. 19. Our final results for unpolarized nucleon’s isovector TMDPDFs xfðx; b⊥; μ; ζÞ at renormalization and rapidity scales at
μ ¼ ffiffiffi

ζ
p ¼ 2 GeV, extrapolated to physical pion mass 135 MeV and infinite momentum limit Pz → ∞, compared with ART23 [7],

BHLSVZ22 [8], MAPTMD22 [9], SV19 [10], and PV17 [11] global fits. The colored bands denote our results with both statistical and
systematic uncertainties, the shaded gray regions imply the endpoint regions where LaMET predictions are not reliable.

FIG. 20. The TMDPDFs xfðx; b⊥; μ ¼ 2 GeV; ζ ¼ 4 GeV2Þ with longitudinal momentum fraction x ¼ f0.3; 0.5; 0.7g, together with
the phenomenological results. The labels of the latter are the same as Fig. 19.
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imperative. Moreover, the presence of chiral logarithms in
the analysis of quasi-PDFs (as demonstrated in Ref. [52])
highlights the potential for similar logarithms in our case,
warranting dedicated theoretical investigation.
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