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We present a gauge and Lorentz invariant effective field theory model for the interaction of a
charged scalar matter field with a magnetic monopole source, described by an external magnetic
current. The quantum fluctuations of the monopole field are described effectively by a strongly
coupled “dual” Udð1Þ gauge field, which is independent of the electromagnetic Uemð1Þ gauge field.
The effective interactions of the charged matter with the monopole source are described by a gauge
invariant mixed Chern-Simons-like (Pontryagin-density) term between the two Uð1Þ gauge fields.
The latter interaction coupling is left free, and a lattice study of the system is performed with the
aim of determining the phase structure of this effective theory. Our study shows that, in the
spontaneously broken-symmetry phase, the monopole source triggers, via the mixed Chern-Simons
term, which is nontrivial in its presence, the generation of a dynamical singular configuration
(magnetic-monopolelike) for the respective gauge fields. The scalar field also behaves in the broken
phase in a way similar to that of the scalar sector of the ’t Hooft-Polyakov monopole. Moreover, we
show that the modest size of the lattices involved does not have significant effects on the main
conclusions of our analysis.
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I. INTRODUCTION AND MOTIVATION

The structureless magnetic monopole of Dirac [1]
was characterized by the presence of the “Dirac
string,” which furnishes the theory with Lorentz-
violating nonlocal hidden degrees of freedom. The
Dirac charge quantization condition leads to the invis-
ibility of the Dirac string. The Lorentz violation neces-
sitated by the presence of the string is manifested in
various field theoretic concepts contexts, such as the
local formulation of the magnetic charges by Zwanziger
[2], which avoids the initial nonlocal degrees of
freedom of the Dirac string by the presence of a fixed
four vector in the associated effective Lagrangian,
which involves two gauge potentials, associated with
electric and magnetic current sources, or Weinberg’s
paradox [3], which states that the leading perturba-
tive term in the scattering amplitude between a mag-
netic pole and an electric charge has a non-Lorentz

invariant form.1 After Dirac and Schwinger [7] has
generalized the magnetic monopole to objects, called
dyons, which contain both electric (qe) and magnetic
(qm) charges, restoring Lorentz invariance, but at the un-
avoidable introduction of a nonlocal Hamiltonian. The
restoration of Lorentz symmetry is guaranteed upon the
imposition of Schwinger generalization of Dirac’s quan-
tization condition in the scattering of two dyon configu-

rations (1,2) with electric (qðiÞe ) and magnetic charges

(qðiÞm ), where i ¼ 1, 2 labels the dyons (with the con-
vention, positive charges for particles, and negative for
antiparticles—in this paper we follow the notation of [2]):

ðqð1Þe qð2Þm − qð2Þe qð1Þm Þ=4π ¼ Zem ∈Z; ð1Þ
where Z is the set of integers.
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1For earlier attempts to discuss quantum electrodynamics in
the presence of magnetic monopoles see [4]. That work also
makes use of two gauge potentials as in [2], but the pathologies
associated with the Dirac string are avoided using path-dependent
variables associated with the field strengths rather than the gauge
potentials. In our approach, using the formalism developed
initially by [2], we also avoid the Dirac string, as we discussed
in [5] (using essentially the argumentation of [6]), and shall
review below.
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In this paper we shall restrict ourselves to the case of a
magnetic monopole, which is obtained from (1) in the
particular case of, say, a particle (1) corresponding to an
ordinary electrically charged matter particle, carrying only

electric charge, qð1Þe ¼ qe, while particle (2) is a magnetic

monopole, carrying only magnetic charge qð2Þm ¼ qm.
Then, the condition (1) reduces to the standard Dirac
quantization,

ðqeqmÞ=4π ¼ Zem ∈Z: ð2Þ

The reader should notice that the fundamental charge unit is
twice that of Dirac [1], given that in the Dirac case the right-
hand side of (2) would be Z=2. Indeed, for the case where
qe ¼ e, the electron charge, the magnetic charge assumes
the value

qm ¼ 4π

e2
eZem ¼ 1

α
eZem ≡ 2ZemgD; Zem ∈Z; ð3Þ

where gD ¼ 1
2α e ¼ 68.5e is the fundamental unit of mag-

netic (Dirac) charge, with α ¼ 1=137 the fine structure
constant (at zero energy scale).
It should be remarked that, upon the imposition of (1) or

(2), any Lorentz noninvariant effect in the effective two-
gauge-potential Lagrangian of Zwanziger [2] disappears.
This feature is also associated with an integrability con-
dition of the representation of the Poincaré Lie algebra, that
stems from Poincaré invariance into a representation of the
finite Poincaré group [2].
Long after Dirac’s proposition of structureless mono-

poles, ’t Hooft and Polyakov [8] proposed composite
monopoles, which were (finite-energy) topological-soliton
solutions of the pertinent Euler-Lagrange equations of
motion of gauge and Lorentz invariant field theories, with
spontaneous (Higgs-like) symmetry breaking. It is impor-
tant to remark that such composite monopoles satisfied the
condition (2) but with the fundamental charge unit being
twice as that of Dirac. Unlike the Dirac case, they are
smooth field configurations which do not have Dirac
strings. The solution is localized around the origin (mono-
pole center), where the gauge group is unbroken. On the
other hand, asymptotically far from the center of the
monopole the gauge group G breaks spontaneously to a
subgroup H. At such large distances the ’t Hooft-Polyakov
monopole behaves as a Dirac one. In his construction
of the SU(2) monopole, ’t Hooft considered the Georgi-
Glashow model [9] involving a Higgs triplet that sponta-
neously breaks the SU(2) group. The simply connected
SU(2) gauge group exhibits a nontrivial homotopy,
π2ðSUð2ÞÞ ¼ Z, with Z the set of integers, defining the
number of times the spatial three-sphere which the mono-
pole and its constituent fields live on, wraps around the
internal(gauge)-space sphere spanned by the Higgs triplet
of the Georgi-Glashow model. This leads to the magnetic

charge quantization condition (2) for the magnetic mono-
pole. Monopole and dyon solutions of phenomenologically
realistic grand unified theories (GUT) with gauge group
SU(5), having large masses of order of the GUT scale
1014–1016 GeV, were discussed in [10]. Inflation of the
Universe at such scales, should wash out these heavy
monopoles thus providing a natural explanation of their
absence from the cosmos today, consistent with the
null results of the pertinent cosmic searches so far [11].
Magnetic monopoles exist also in superstring theories [12],
as well as in D-brane-inspired GUT models [13]. In the
latter models, the unification scale, and therefore the
magnetic monopole/dyon mass, can be lowered signifi-
cantly down to 104–106 GeV, which might be relevant
for future collider or cosmic-ray searches of such objects.
For other discussions involving topological structures in
beyond-the-standard-model theories, the reader is referred
to the recent literature [14].
Unfortunately, unlike the SU(2) or SU(5) or other GUT-

like-group monopoles, the gauge group of the standard
model (SM) SUð2Þ × UYð1Þ, does not have this simple
structure due to the hypercharge UYð1Þ factor. As a
result, after Higgs breaking, the quotient group SUð2Þ ×
UYð1Þ=Uemð1Þ is not characterized by a nontrivial second
homotopy; thus monopoles were not expected to exist in
the Standard Model. However, in [15], it was argued that
one can look for nontrivial homotopy features not in the
gauge but in the Higgs field sector of the model. Indeed, in
this case the Glashow-Weinberg-Salam model with a Higgs
sector is viewed as a gauge CP1 (complex projective)
model with the (normalized) Higgs doublet field playing
the role of the corresponding CP1 field. The latter is
characterized by a nontrivial homotopy π2ðCP1Þ ¼ Z, thus
allowing in principle for a topological quantization à la
’t Hooft-Polyakov, and thus the existence of magnetic
monopoles/dyons. However, the resulting monopole or
dyon solutions of [15] have infinite energy. Finite energy
monopoles of the type proposed in [15] can characterize
extensions of the Standard Model, with either appropriate
nonminimally coupled Higgs and hypercharge sectors [16],
or higher-derivative extensions of the hypercharge sector,
for instance a (string-inspired) Born-Infeld configuration [17].
Such monopole/dyon solutions could have masses acces-
sible to the scales of current or future colliders. Other
finite-energy structured monopole/dyon solutions with
potentially low mass can be found in string-inspired models
with axionlike structures [18], or models of neutrino
masses [19], beyond the standard model of particle physics,
with nonsterile right-handed ones, whose electroweak-scale
Majorana masses are obtained by the coupling to a complex
Higgs-like triplet of scalar fields. A recent review of such
magnetic monopole solutions, and their experimental
searches in colliders and in the cosmos, is given in [20].
Moreover, there have been interesting recent studies [21] in
discussing novel magnetic monopolelike structures (with
sufficiently low masses) upon embedding the Standard
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Model into GUT models, which consist of an appropriate
merging between Dirac-like structures with Nambu mono-
poles [22], the latter being stringlike structures of the
electroweak theory, which utilize a Higgs doublet field
in the SU(2) sector that behaves like a scalar triplet under
SU(2) with zero hypercharge.2

In view of the above theoretical evidence for the
existence of relatively light monopoles/dyons, there
emerges a pressing need for the development of appropriate
effective field theory models and methods that could allow
for the study of the production of such objects at colliders
or their scattering off standard model matter, like quarks
and leptons. Lacking at present a fundamental theory for
the description of such interactions, one can employ ad hoc
phenomenological effective U(1) gauge field theory mod-
els, usually based on appropriate duality symmetries [23].
Indeed, such U(1) models are essentially dual descriptions
of electrically charged particles of various spins interacting
with photons, in which the electric charge that appears in
the interaction with photons is replaced by an effective
magnetic charge. As discussed in [24], one may think of the
magnetic monopole charge in such cases as a collective
coupling to photons of (electrically) charged constituent
degrees of freedom, such as charged W bosons and Higgs
fields, which the monopole is composed of. Modeling these
constituent fields as quantum harmonic oscillators, the
authors of [24] argued that the monopole might be viewed
as a coherent superposition of ∼ 1

α such quantum states,
with the result that the collective coupling to photons is 1

α e,
quantization condition (1). Such a representation also leads
to a significant suppression of the production cross section
of such composite magnetic monopoles in colliders. This
conclusion does not apply to the case of structureless Dirac
monopole sources. At this point it is worth mentioning that
such suppression is avoided in the Schwinger production of
magnetic monopole/antimonopole pairs (with or without
structure) [25], which is a nonperturbative mechanism,
thereby providing reliable mass bounds for monopole
masses in interpretation of experimental searches for such
objects at colliders [26].
In [5] a first attempt was made to construct (strongly

coupled) effective gauge field theories for the above-
mentioned type of composite monopoles, by extending
nontrivially the ideas of Zwanziger [2] that were developed
for structurelessmonopoles, using a novel Schwinger-Dyson

renormalization treatment. The effective quantum field
theory invoked two Uð1Þ gauge fields, one Uemð1Þ charac-
terized by a weak coupling, which plays the rôle of
electromagnetic interactions, and the other, a (strongly)
coupled “dual” gauge Udð1Þ field, which expresses the
quantum fluctuation of the classical dual potential of [2].
In [5]we used the quantumUð1Þ gauge fields as independent
path integration variables.
When the effective theory is considered sufficiently far

away from the monopole center, the ’t Hooft-Polyakov-
type monopoles mentioned above resemble the structure-
less Dirac ones, to a good approximation. Nonetheless, as
explained in [5], the selected Schwinger-Dyson approach
implied that the method was appropriate only for composite
monopoles, since when one considers the quantization of
our nonperturbative effective field theory, the resulting
wave-function renormalization for the monopole field will
not respect the appropriate unitarity bounds for an elemen-
tary field, thus making our effective description suitable
only for composite fields [27]. The monopoles of the work
of [5] were assumed, for definiteness, to be fermionic.
In this work we follow another effective approach of a

theory with two Uð1Þ, which however concentrates only on
the effects of the interaction of matter with a background of
a monopole source, with the quantum fluctuations of the
latter being represented by a (strongly coupled in general)
“dual” Udð1Þ, which is independent of the electromagnetic
interactions, as in the model of [5], the latter interacting
only with the charged matter field, assumed to be a scalar
field. However, we introduce an interaction, of Chern-
Simons (CS) (Pontryagin-density) type, between the two
Uð1Þ’s, whose origin is inspired by, but is actually a
generalization of, the constraint of the model of [2] among
the classical gauge potentials of its two Uð1Þ’s, so that in
the classical limit of the theory there is only 1 degree of
freedom, that of the photon.
Concerning the nature of the monopole, we shall be quite

generic in our considerations, by not specifying whether it
is composite or pointlike. For us, the monopole might be
one of the known microscopic types, mentioned above, or
an as yet unknown solution of some beyond the SM theory
with or without Dirac string singularities. Its spin is also not
going to be specified. The resummation of the strongly
coupled dual Udð1Þ sector of the theory in our case below
will be done by placing the theory on a lattice.
The structure of the paper is as follows: in the next

section, Sec. II, we present the continuum model for the
effective description of the dynamics of a quantum-
fluctuating monopole interacting with scalar Higgs matter,
and set up the formalism, which is based on a Uemð1Þ ×
Udð1Þ gauge theory, with a scalar sector of Higgs type,
associated with the electromagneticUemð1Þ only. In Sec. III
we discuss the lattice action corresponding to the con-
tinuum theory of Sec. II. In Sec. IV we discuss spontaneous
symmetry breaking in the Higgs sector and the rôle of
the monopole background. We discuss the symmetric and

2We note, for completion, that, in the theory of [22], the
existence of the monopole solutions leads to the so-called Nambu
dumb-bell configurations of monopole/antimonopole pairs con-
nected via a Z-flux string. In the constructions of [21], one can
have composite structures consisting of Dirac monopoles con-
nected to one or several Nambu monopoles via Z-flux strings. To
ensure well defined (finite) energies, though, of such configura-
tions, one needs, as in the case of [15] mentioned above, to embed
the electroweak theory into appropriate extensions of the Stan-
dard Model, such as GUT.
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spontaneously broken phases of the theory, as well as the
dependence of the results on the strength of the character-
istic coupling parameter ξ of the model introduced by the
appropriate constraint between the gauge potentials of the
two Uð1Þ’s in the model. The dependence of the effects of
the monopole on the various field configurations in regions
near to and away from the monopole core is discussed in
Sec. IV D. For completeness, and to stress the effects of the
characteristic kinetic mixing between the field strength of
the electromagnetic Uemð1Þ and the dual field strength of
theUdð1Þ, which is crucial for the model, and is induced by
an appropriate constraint responsible for the appearance of
the coupling ξ, we also consider in Sec. V a model with a
normal kinetic mixing between the two Uð1Þ’s instead of
the aforementioned axial kinetic mixing. We repeat the
analysis of Sec. IV for this case in Sec. V, including again a
study of the corresponding broken phase, and a discussion
on the ξ dependence of the corresponding results. A
comparison of the results between Secs. IV and V follows,
where the nontrivial effects of the magnetic monopole
background on the phase diagram of the model of Secs. II
and III are distinguished from the case of Sec. V, which
involves ordinary kinetic mixing between the two Uð1Þ’s.
In Sec. VI we examine the effects of the finite size of our
lattices on the main conclusions of this work. Finally,
conclusions and outlook are presented in Sec. VII. In the
Appendix, we discuss the details of our lattice simulations.

II. THE EFFECTIVE FIELD THEORY MODELING
SCALAR-MATTER-MONOPOLE INTERACTIONS

Our study will be based partly on the work of
Zwanziger [2], which we shall review below for complete-
ness. The approach employs two related gauge fields,
whose existence avoids the use of nonlocal Dirac strings,
but at the cost of having Lorentz-violating terms in the
pertinent local Lagrangian describing the dynamics of
monopoles/dyons. If one considers electric and magnetic
currents, Jμe and Jμm respectively, then, as shown in [2], the
corresponding Maxwell’s equations read as

∂μFμν ¼ Jνe; ∂μ
⋆Fμν ¼ Jνm; ð4Þ

where Fμν is the electromagnetic field-strength tensor,
while ⋆Fμν ≡ 1

2
ϵμνρσFρσ is the dual tensor; ϵμνρσ denotes

the totally antisymmetric Levi-Civita symbol, with
ϵ0123 ¼ þ1, etc. Throughout this paper, we work in a flat
Minkowski space-time with metric ημν ¼ ð1;−1;−1;−1Þ.
For future use, the reader should keep a note of the axial-
vector (pseudovector) nature of the magnetic current in (4).

A. The two-potential formalism

The general solution of the Maxwell’s equations (4), is
expressed in terms of two classical potentials Aμ and Cμ
and a fixed four vector ημ, as follows [2]:

First equation with electric current∶ F ¼ −⋆ð∂ ∧ CÞ þ ðη · ∂Þ−1ðη ∧ JeÞ; ⋆F ¼ ∂ ∧ C þ ðη · ∂Þ−1⋆ðη ∧ JeÞ; ð5Þ

Second equation with magnetic current∶ ⋆F ¼ ⋆ð∂ ∧ AÞ þ ðη · ∂Þ−1ðη ∧ JmÞ; F ¼ ∂ ∧ A − ðη · ∂Þ−1⋆ðη ∧ JmÞ; ð6Þ

where we used a differential form notation for brevity, in
which ∧ (·) denotes exterior (interior) product, whose
action on four vectors is defined as ða ∧ bÞμν ≡ aμbν −
aνbμ, a · b≡ aμbμ. With these conventions we have
F μν ¼ −F νμ: ⋆⋆F μν ¼ −F μν, for any antisymmetric
second-rank tensor.
We note that the currents can be eliminated from (5)

and (6) [2], so that these equations can be expressed only in
terms of the classical potentials Aμ and Cμ. One also uses
the following representation of the kernel ðη · ∂Þ−1ðxÞ
(satisfying η · ∂ðη · ∂Þ−1ðxÞ ¼ δð4ÞðxÞ):

ðη · ∂Þ−1ðxÞ ¼ c1

Z
∞

0

δð4Þðx − ηsÞds

− ð1 − c1Þ
Z

∞

0

δð4Þðxþ ηsÞds; ð7Þ

with c1 a real constant, appropriately defined in order to
obtain the correct form of the Lorentz force in the classical
relativistic particle limit of the dyon field [2]. The form (7)

implies that, in the point-particle case, the support of
ðη · ∂Þ−1ðxi − xfÞ is reduced to xμi ðτiÞ − xμfðτfÞ ¼ ημs, for
−∞ < τi; τf; s < þ∞, with τ the proper time.
The classical gauge potentials Aμ and Cμ depend on ημ

and on the gauge choice. For convenience, in the approach
of Ref. [2], the fixed four vector ημ was chosen to be
spacelike, ημημ < 0. The gauge potentials are not indepen-
dent, being associated with a single field strength F, since
⋆F is expressed in terms of F. Indeed, from (5) and (6) one
can see that [2]

∂ ∧ Aþ⋆ ð∂ ∧ CÞ ¼ ðη · ∂Þ−1½η ∧ Je þ⋆ ðη ∧ JmÞ�; ð8Þ

so that the two gauge potentials are related, which as
already mentioned, leads to the fact that the classical local
theory of [2] has only two on shell photon propagating
degrees of freedom. From the expression (7), it becomes
clear that the gauge potentials assume nontrivial values
along the direction of the Dirac string ημ. The constraint (8)
would imply that C is an axial vector, since this is the case
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with the magnetic current as well, and in this way one
obtains consistent transformations under the (improper)
Lorentz group, which includes spatial reflections. This will
be crucial for our purposes in the next section, where
we develop the effective quantum gauge field theory for
the interaction of a magnetic monopole with charged
scalar matter.
We mention at this point that the corresponding

Lagrangian proposed in [2] describing the classical dynam-
ics of magnetic monopoles, in the presence of Lorentz- and
gauge-invariance violating ημ-dependent terms, is given by

L ¼ 1

8
tr½ð∂ ∧ AÞ · ð∂ ∧ AÞ� þ 1

8
tr½ð∂ ∧ CÞ · ð∂ ∧ CÞ�

− Je ·A − Jm · C −
1

4η2
ðη · ½ð∂ ∧ AÞ þ⋆ ð∂ ∧ CÞ�Þ2

−
1

4η2
ðη · ½ð∂ ∧ CÞ −⋆ ð∂ ∧ AÞ�Þ2; ð9Þ

where we used the notation

trðF · F Þ≡ F μνF νμ

for any second rank tensor F.
The presence of the monopole, and its topologically

nontrivial nature (that is solutions of a certain field theory in
nontrivial sectors with monopole number n ¼ 1; 2;…) is
reflected precisely on the impossibility to deform contin-
uously the vector so as ημ → 0μ ≡ ð0; 0; 0; 0ÞT , with T
denoting matrix transposition. However, we note that, on
using the form (7), such a limit can be formally taken in (8)
and (9), since we can formally set the η-dependent right-
hand-side to zero [given that it approaches 0 faster than
η2 → 0, given that the operator ðη · ∂Þ−1ðxi − xfÞ has zero
support in the limit ημ → 0μ]. In such a limit, (8) leads to

∂ ∧ Aþ ⋆ð∂ ∧ CÞ ¼ημ→0μ

0: ð10Þ

The Lagrangian (9) then does not contain any Lorentz-
symmetry violating term, and involves two gauge fields
related by the constraint (10).
One could physically justify the limit (10), by recalling

the study of Ref. [6]. There it was argued that the Lorentz-
violating effects of a magnetic pole associated with the
Dirac string can be resummed in a nonperturbative way
with the result that the scattering amplitude of an electri-
cally charged matter particle off a magnetic charge contains
all such Lorentz-violating effects in a phase. The latter thus
drops out of physical quantities such as cross sections.
Additionally, such a phase turns out to be a multiple of 2π if
the quantization condition (1) is valid, in which case the
corresponding amplitude is Lorentz invariant. Although
such a conclusion was reached by means of studying a toy
model employing perturbative magnetic charges in a dark

sector, using the two potential formalism (9) appropriately
in both the visible and dark sectors, and assuming a
perturbative small mixing of ordinary photons with dark
photons, nonetheless we shall assume for our purposes in
this work, following [5], that a similar conclusion charac-
terizes the realistic nonperturbative magnetic monopole
cases. This in turn leads to a decoupling of the Lorentz-
violating-(Dirac-stringlike) effects of the vector ημ from the
relevant cross sections.
Hence, as in [5], from now on we shall ignore

η-dependent terms in the pertinent effective Lagrangian,
but assume the constrain (10) in the pertinent effective
quantum field theory, which we next proceed to develop.
We stress once again that the effective field theory model
to be discussed below contains only the magnetic monop-
ole as a source, without specifying its microscopic structure
and spin content, or the underlying field theory which
admits it as a solution of the relevant equations of motion.
If our model turns out to be correct, then all the above-
described models can be used as provider of such
source terms.

B. The continuum model

The constraint (10) is now a gauge-invariant one, and
can be implemented in the corresponding Euclidean path
integral, involving charged matter fields coupled directly
only to the electromagnetic potential A, by means of a δ
functional constraint of the Lorentz-invariant square of the
left-hand-side of (10). The corresponding effective action is
given by (9), in the limit ημ → 0μ, so the relevant partition
function reads as

Z ¼
Z

DADC exp
�
i
Z

d4x

�
−
1

4
FμνðAÞFμνðAÞ

−
1

4
GμνðCÞGμνðCÞ

�
þ Lmatterðϕ†;ϕ;AÞ þ…

�

× δ½ðFαβ þ G̃αβÞðFαβ þ G̃αβÞ�; ð11Þ

where Fμν¼∂μAν−∂νAμ is the Maxwell tensor of Uemð1Þ,
G̃μν ¼ 1

2
ϵμνρσGρσ denotes the dual of Gμν ¼ ∂μCν − ∂νCμ,

3

with Cμ the axial vector potential of the Udð1Þ group, and
the … denotes the corresponding electric and magnetic
current Je;m source terms, as in (9), which however we shall
set to zero in our formalism, as we shall discuss below. The
matter Lagrangian, invariant under Uemð1Þ, is given, for
concreteness, by that of a complex (charged) scalar field of
charge qe, coupled to the electromagnetic potentialAμ with
a Uemð1Þ gauge-invariant potential Vðϕ†ϕÞ describing
scalar self interactions:

3The reader should recall that, in differential form notation, we
have denoted previously the dual of G by a Hodge star ⋆G.
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Lmatterðϕ†;ϕ;AÞ ¼ ½ð∂μ þ iqeAμÞϕ�†ð∂μ þ iqeAμÞϕ
− Vðϕ†ϕÞ: ð12Þ

The potential can be taken to be that of Higgs (Mexican
hat),

Vðϕ†ϕÞ ¼ −μ2ϕ†ϕþ λðϕ†ϕÞ2; μ∈R; λ > 0; ð13Þ

if we want spontaneous symmetry breaking of the electro-
magnetic Uemð1Þ, but, in general, we do not restrict
ourselves to that case.
Some comments are in order at this point as to the choice

of the toy model (12) and (13), for the matter sector. In
general, our ultimate interest will be to study the scattering
of magnetic monopoles off Standard-Model (SM) matter.
However, placing the entire SM, including its fermionic
content, on the Lattice is not a trivial task and it will not be
the purpose of the current article. Instead we would like to
examine the generic effects of the presence of monopole
sources due to their back reaction on matter actions in the
two-potential quantum field theory model (11). For this
purpose, and given that all massive particle excitations in
SM, including the Higgs, acquire their masses through the
Higgs mechanism, we would like to examine here the
effects of quantum fluctuations of the monopole source on
the symmetry breaking pattern itself. For this reason we
consider a simplified version of the scalar matter sector of
SM by considering the aforementioned Abelian Higgs
model (12) and (13), interacting with the monopole source,
and study the effects of the latter on the phase structure of
the model. As we shall discuss below, the presence of the
monopole source is responsible for inducing dynamically
in the path integral a nontrivial kinetic mixing [of Chern-
Simons type, see (16), below] between the field strength of
the electromagnetic field Aμ of the Uemð1Þ gauge group
and the dual field strength of the axial vector potential C of
the Udð1Þ group. Although, in the absence of monopole
configurations such a mixing term vanishes, due to appro-
priate Bianchi identities of the field strengths involved,
nonetheless it is nontrivial in the presence of the magnetic
monopole source. In this way, there is an indirect interaction
between the charged Higgs field (which couples directly to
the Aμ field) and the magnetic monopole and its quantum
fluctuations, represented by the Cμ potential. This mixing is
crucial for inducing nontrivial effects of themonopole on the
phase diagram of the model, affecting the spontaneously
broken phase. In contrast, as we shall also discuss in this
paper, if only an ordinary kinetic mixing between the two
potentials were present, as happens in some millicharged
darkmatter models including dark photons, the effects of the
monopole on the broken phase would be vanishing.
Although it is admittedly an oversimplification to

consider only the Abelian Higgs model, nonetheless the
nontrivial effects of magnetic monopoles on the sponta-
neously broken phase of the theory are expected to carry

over to the more realistic cases of a weak hypercharge
Abelian gauge group. We remind the reader that in our
approach here we do not specify the details of the magnetic
monopole source, other than the form of the associated
magnetic field. Thus, to extend the model to more realistic
matter Lagrangians can be achieved by extending simply
the gauge field content of the matter sector, leaving the
magnetic-monopole source term intact. In case one wishes
to incorporate fermions, the latter have to be dealt with
properly on the lattice by means of techniques that bypass
the well-known sign problem, which is still an open issue.
These are problems the discussion of which we postpone
for the future. In what follows, therefore, we shall con-
centrate on the simplified model (11)–(13), which describes
the interactions of magnetic monopole sources with
Abelian-Higgs-matter quantum field theories, and their
effects on the respective phase diagram.
On representing the δ-functional constraint in the path

integral (11) as the following limit,

δ½ðFαβ þ G̃αβÞðFαβ þ G̃αβÞ�

¼ lim
ξ→0

exp

�
−i

1

ξ2

Z
d4xðFαβ þ G̃αβÞðFαβ þ G̃αβÞ

�
; ð14Þ

and going back to Minkowski space by analytic continu-
ation, the effective Lagrangian stemming from the con-
strained path integral (11) in agreement with the solutions
(5) and (6), reads [2] as

Leff ¼ −
�

1

4q2e
þ 1

q2eξ2

�
FμνðAÞFμνðAÞ

−
�

1

4q2m
þ 1

q2mξ2

�
GμνðCÞGμνðCÞ

−
2

qeqmξ2
FμνðAÞG̃μνðCÞ þ L0

matterðϕ†;ϕ; AÞ þ…;

Aμ ≡ qeAμ;

Cμ ≡ qmCμ ⇒ L0
matterðϕ†;ϕ; AÞ

≡ Lmatterðϕ†;ϕ;A → A; qe → 1Þ; ð15Þ

with the… denoting, as already mentioned, the source Je;m
terms that we shall set formally to zero in our formalism, as
explained below. The rescaling of the gauge potentials is
dictated by the lattice model which we shall discuss in the
next section, Sec. III. In our work we shall go beyond
the classical effective field theory of [2] by treating the
parameter ξ as a phenomenological coupling, away from its
formal value ξ → 0, stemming from the δ-function repre-
sentation (14). The reader should notice that, for any finite
ξ2 < ∞, the potentials A and C interact via the mixed CS
terms in the Lagrangian (15)
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Leff
CS ¼ −

2

qeqmξ2
FμνðAÞG̃μνðCÞ: ð16Þ

However, for regular A and C, whose field strengths satisfy
the ordinary Bianchi identities [cf. (27) below], a partial
integration reveals that the terms (16) are total derivatives,
and thus do not contribute to the equations of motion for
standard quantum field theories whose fields and their
derivatives vanish at space-time infinity. As we shall argue,
however, in this paper, the presence of the monopole source
induces singular potentials A and C in the quantum theory,
and thus the mixed CS terms are nontrivial. As we shall see
in Sec. III, these interactions play a crucial rôle in the phase
diagram of the (strongly coupled) gauge theory (15), which
we study here using lattice techniques.
The reader should notice that the product of the coupling

constants qeqm does not necessarily obey the Dirac quan-
tization condition (2). To this end, we need to determine the
correct interaction of the matter with the monopole back-
ground, which sources a radial magnetic field:

B⃗sing
mon ¼ qm

r̂
r2
; ð17Þ

where r̂ is the unit vector along the direction of the radial
spatial coordinate r, and qm ¼ l

nα e, l∈Z, is the magnetic
charge obeying the Dirac quantization condition (2) [cf. (3)],
where qe ¼ ne, n∈Z, is the electric charge of the field ϕ
(for the standard charged Higgs n ¼ 1). The magnetic field
is singular at the origin of the monopole r ¼ 0. We may
represent this singularity as corresponding to a singular
background field strength:

FijðAback
μ Þ ¼ Fback

ij ðAback
μ Þ≡ ϵijkB

sing
mon k;

i; j; k ¼ 1; 2; 3 ðspatial indicesÞ ⇒ Fback
ij ðAback

μ Þ
≡ ϵijkqeB

sing
mon k; ð18Þ

with ϵijk the Euclidean 3-space Levi-Civita symbol. In (18),
we took into account that Aback

μ ¼ 1
qe
Aback
μ .

The background (18) can be written in a covariant form,
with (3þ 1)-dimensional indices, by assuming that all the
rest of the indices of the background tensor Fback

μν , involving
μ ¼ 0 and/or ν ¼ 0 yield zero. We then treat the field
strength of FμνðAÞ as involving both singular and non-
singular field configurations of the potential Aμ, which is
quantized in a path integral. As we shall show in Sec. III,
and mentioned above, the singular configurations of the
gauge field A are a consequence of the presence of the
magnetic monopole source, and imply nontrivial mixed
CS terms (16).
Let us see now what amendments we need to make to the

Lagrangian (15) so as to reproduce the classical equa-
tions (4). To this end, we first couple the model Lagrangian
density (15) to the background (17) by setting

Jμe ¼ Jμm ¼ 0, μ ¼ 0;…; 3, and introducing the monopole
background via the aforementioned background term Aback

μ

[see (18)] of the electromagnetic potential Aμ, as follows:

Leff ¼ −
1

4q2e

�
1þ 4

ξ2

�
FμνðAÞFμνðAÞ

−
1

4q2m

�
1þ 4

ξ2

�
GμνðCÞGμνðCÞ

−
2

qeqmξ2
ðFμνðAÞ þ χFμνbackðAbackÞÞG̃μνðCÞ

þ L0
matterðϕ†;ϕ; AÞ; ð19Þ

where Fμνback ¼ 0 if any of μ, ν ¼ 0; otherwise it
assumes the value (18). At this point, let us make the
important remark that shifting the Fμν by the background
FμνbackðAbackÞ in the Maxwell-like kinetic terms of the
Lagrangian (19), does not affect the equations of motion
for the configuration of the magnetic monopole back-
ground (17), as one can readily see [the so-resulting constant
Lagrangian term FμνbackðAbackÞFμνbackðAbackÞ is irrelevant
from the path integral point of view]. This explains why
in (19)we coupled only the dual tensor G̃μν to the background
(17) via a CS coupling. This coupling term is parity invariant,
because the potential Cμ is axial. We also notice that the
scalar matter ϕ in (19) couples only to the potential Aμ and
not to the monopole background.4

It is important to notice that the coefficient χ is to be
determined by the requirement that in the limit ξ → 0 one
recovers, in the classical limit, the magnetic monopole
model of [2], as we shall discuss below. In fact, if χ ¼ 1 the
theory, as we shall demonstrate below, is inconsistent.
To this end, we discuss now the classical Euler-Lagrange
equations for the gauge fields Aμ, Cμ.
The equations of motion with respect to the field Aμ,

stemming from (19) read [attention of the reader is drawn to
the fact that the background (source) term Fback

μν ðAbackÞ is
not varied with respect to the (nonsingular) field Aμ] as

1

q2e

�
1þ 4

ξ2

�
∂
μFμνðAÞ ¼ −

1

qeqm

4

ξ2
∂
μG̃μνðCÞ þ iϕ†

∂νϕ

− ið∂νϕÞ†ϕ − 2Aνϕ
†ϕ ⇒�

1þ 4

ξ2

�
∂
μFμνðAÞ ¼ −

4

ξ2
∂
μG̃μνðCÞ þ qeðiϕ†

∂νϕ

− ið∂νϕÞ†ϕ − 2qeAνϕ
†ϕÞ; ð20Þ

where in the second line we took into account the rescaling
(15) of the gauge potentials. The last equation can be
conveniently written as

4For completeness, we mention that such a situation also
characterizes the lattice Abelian gauge models of [28] in external
fields.
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∂
μFμνðAÞ ¼ qeðiϕ†

∂νϕ − ið∂νϕÞ†ϕ − 2qeAνϕ
†ϕÞ

−
4

ξ2
ð∂μFμνðAÞ þ ∂

μG̃μνðCÞÞ: ð21Þ

Thus, in the limit ξ → 0, which corresponds to the classical
theory of [2], Eq. (21) leads to a finite standard result for the
electric current of scalar electrodynamics (SQED) if and
only if the constraint (10) is satisfied when ξ → 0, which in
this context implies that

lim
ξ→0

∂
μðFμνðAÞ þ G̃μνðCÞÞ ¼ 0 ¼ lim

ξ→0
∂
μðF̃μνðAÞ þ GμνðCÞÞ:

ð22Þ
Hence, the ξ → 0 limit of the 1=ξ terms in (21) is identically
zero, leaving only the ξ-independent terms, leading to (23)

lim
ξ→0

∂
μFμνðAÞ ¼ qeðiϕ†

∂νϕ − ið∂νϕÞ†ϕ − 2Aνϕ
†ϕÞ≡ Jeν;

ð23Þ
where the right-hand side is the standard electric current of
the scalar electrodynamics, corresponding to the Noether
current JNoetherν of the associated global version of the
electromagnetic gauge symmetry Uem. For any finite ξ ≠ 0,
on writing

∂
μFμνðAÞ ¼ Je eff

ν ½C;ϕ; ∂ϕ�

≡ −
4

4þ ξ2
∂
μG̃μνðCÞ þ qe

�
1þ 4

ξ2

�
−1

× ðiϕ†
∂νϕ − ið∂νϕÞ†ϕ − 2qeAνϕ

†ϕÞ; ð24Þ

we observe that the effective “current” J eff
ν ½C;ϕ; ∂ϕ�

receives also ξ-dependent contributions from the dual field
strength of the Udð1Þ potential C.
On the other hand, the equations of motion with respect

to the field Cμ, stemming from (19), read as

�
1þ 4

ξ2

�
∂
μGμνðCÞ ¼ −

2qm
qeξ2

ϵμνρσ∂
μ

× ðFρσ þ χFρσbackðAbackÞÞ ⇒�
1þ 4

ξ2

�
∂
μGμνðCÞ ¼ −

4

ξ2
∂
μðF̃μνðAÞ þ χF̃μνbackðAbackÞÞ;

ð25Þ

which can be conveniently written as

∂
μGμνðCÞ¼−

4

ξ2
∂
μðGμνðCÞþ F̃μνðAÞÞ−4χ

ξ2
∂
μF̃μνbackðAbackÞ:

ð26Þ

The reader should have noticed that in arriving at both (20)
and (25) we did not assume a priori the Bianchi identities

for the regular tensors FμνðAÞ and GμνðCÞ; that is, in our
context we have

ϵμνρσ∂
μFρσðAÞ ¼ 2∂μF̃μνðAÞ ≠ 0;

ϵμνρσ∂
μGρσðCÞ ¼ 2∂μG̃μνðCÞ ≠ 0: ð27Þ

This will be understood from our subsequent lattice
analysis, which indicates that the coupling of the monopole
background to the system of the gauge potentials A; C
induces monopolelike singularities in these fields, which
invalidate the corresponding Bianchi identities.5

In similar spirit to the case of the A-field equations (21),
in the limit ξ → 0, the classical constraint (10), or equiv-
alently (22) in this context, should be valid, which implies
that the 1=ξ2-dependent first term on the right-hand side
of (26) vanishes identically when ξ → 0. Thus, on account
of the fact that for the singular background (17) we have

ϵμνρσ∂
μFρσ backðAbackÞ ≠ 0; ð28Þ

one obtains a finite nontrivial result for the C-field equation
when ξ → 0, if and only if χ=ξ2 is ξ independent.
On account of (4) and (5), the right-hand side of the
equations in (25) in the limit ξ → 0, would then define, up
to a crucial minus sign, the magnetic current in the effective
theory of [2]:

Jmag
ν ðAbackÞ≡ 2χ

ξ2
ϵμνρσ∂

μFρσ backðAbackÞ ¼ ∂
μF̃back

μν ðAbackÞ;

ð29Þ

upon the normalization

χ ¼ ξ2

4
: ð30Þ

We stress once again that the definition (29) and (30), is
consistent with (4) and the constraint (10) [or, equivalently,
(22)]. In this way, in the limit ξ → 0, one recovers the
standard monopole theory of [2] with respect to the original
potentials Aμ and Cμ.
For generic ξ ≠ 0, the effective magnetic current, which

would depend on both the fluctuationsA of the background
Aback and Aback itself, would read as

Jmag eff
ν ðA;AbackÞ

¼ 2

4þ ξ2
ðϵμνρσ∂μFρσðAÞ þ χϵμνρσ∂

μFρσbackðAbackÞÞ

≡ 4

4þ ξ2
ð∂μF̃μνðAÞ þ χ∂μF̃back

μν ðAbackÞÞ: ð31Þ

5It should also be noticed that, if the fields A; C satisfied the
Bianchi identities, the pertinent Euler-Lagrange equations would
decouple, which is incorrect, as it does not correspond to the
theory of [2].
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It is important for the reader to notice that, as a consequence
of the singular nature (17) of the magnetic field background
at r ¼ 0 [see also (18)], the quantity Jmag eff

ν is nontrivial for
any value of jξj < þ∞.
Assuming static fields, as standard in the magnetic

monopole case, Eq. (26) in the limit ξ → 0 can be
expressed as

lim
ξ→0

∂
iGi0ðCÞ ¼ −ρm ¼ −∇⃗ · B⃗sing

back ≠ 0; ð32Þ

with ρm the magnetic charge density, which yields the
standard Maxwell equation in the presence of magnetic
monopoles, as should be expected.
Because of this, the presence of magnetic monopoles

would prevent superconducting properties of the Higgs
vacuum. Indeed, to have superconductivity one requires a
vanishing electric field,

E⃗ ¼ 0; ð33Þ

and a nonzero magnetic field B⃗ ≠ 0, which is expelled from
the bulk of the superconductor, up to a penetration depth
(Meissner effect). In the standard SQED, this depth is
inversely proportional to jqvj [which is the same as the
photon mass in the Higgs phase of SQED, that is, in the
phase of spontaneously broken symmetry, where the scalar
matter field acquires a nontrivial vacuum expectation

value
�
hϕi ¼ hϕ†i ¼ vffiffiffi

2
p ≠ 0

�
].

The vanishing ðE⃗Þi ¼ F0i implies in our effective theory
that, in the same limit ξ → 0, the temporal component of
Eq. (23) yields in the Higgs phase

ρ ¼ þq2ev2A0; ð34Þ

where ρ is the electric charge density, and we have
set ∂

iF0i ¼ J0 ¼ ρ. On account of (33) we thus have
A0 ¼ ρ ¼ 0.
On the other hand, the spatial component of (23) (in the

limit ξ → 0) yields the current:

lim
ξ→0

∂
jFji ¼ Jei ¼ þq2ev2Ai: ð35Þ

In the absence of a magnetic charge ρm, this would be the
standard London equation leading to the Meissner effect
with the aforementioned properties. But when ρm ≠ 0
[cf. Eq. (32)], the situation changes, since upon standard
manipulations one would arrive at the following equation

for the magnetic field intensity ∇! · ð∇! · B⃗Þ −∇2B⃗þ
q2ev2B⃗ ¼ 0. The nonzero term ∇! · ð∇! · B⃗Þ ≠ 0 spoils the
Meissner effect in the case of magnetic monopole
backgrounds.
We also remark, for completion at this stage, that in the

case ξ ≠ 0, the effective “electric” Noether current of

SQED (24) receives contributions from the dual field C,
which also spoils any superconducting properties of the
Higgs-phase ground state:

∂
jFji

���
ϕ¼hϕi¼v=

ffiffi
2

p ¼ JNoether;“electric”i

���
ϕ¼hϕi¼v=

ffiffi
2

p

¼ −
4

4þ ξ2
∂
jG̃ji þ

q2ev2

1þ 4
ξ2
Ai; ξ ≠ 0:

ð36Þ

From this expression we observe that only in the absence of
monopoles, i.e. in the case ξ → ∞, (for which the field Cμ

decouples in the path integral), Eq. (36) yields the
London equation of superconductivity (and the associated
Meissner effect), which corresponds to the broken Uemð1Þ
phase of the scalar electrodynamics, according to standard
arguments.
In general, one should put the Lagrangian (19) on the

lattice, keeping the quantities qe; ξ2 and qm arbitrary.
According to the above analysis, the classical monopole
solution of [2] should correspond to a fixed point ξ → 0 at
which the constraint (10) is realized. This is the main focus
of the current paper, which is discussed from the next
section onward.
Before proceeding to the lattice nonperturbative study,

we should stress once again that for any ξ < ∞, the
effective Lagrangian (19) contains CS terms that mix the
two gauge potentials A and C. We remind the reader that
such terms arise initially (for ξ → 0) from implementing the
constraint (10) of [2] in the path integral. At this point we
should mention for completeness that such terms arise
naturally (upon appropriate constraints in the gauge cou-
plings) in the gauged supergravity model with Uð1Þ ×
U0ð1Þ gauge groups [29].6 Also, the analog of such mixed
terms arises in (2þ 1)-dimensional Uð1Þem ×Uð1Þstat
gauge models of high-temperature superconductors [30],
in which the Uð1Þem is the group of the electromagnetism,
while the group Uð1Þstat represents the “statistical” gauge
group, associated with the attractive force generated by the
anyon statistics of the excitations of these planar models.
Although below we shall mainly concentrate on the

lattice (nonperturbative) version of the Lagrangian (19),
nonetheless, in order to demonstrate the special rôle of the
coupling between the electromagnetic and dual Uð1Þ via
the CS-type kinetic mixing (16), FμνðAÞG̃μνðCÞ, we shall
also consider in Sec. V, for comparison, an alternative
lattice action with an ordinary kinetic mixing between the
two Uð1Þ’s in the absence of the interaction (16):

Leff ∋
2λ

qeqm
FμνGμν; ð37Þ

6We thank F. Farakos for a useful discussion on this point.
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where λ∈R a real coupling parameter [in our case this is
fixed as in (49), Sec. V]. For our purposes here we do not
ascribe any potential physical significance to such a term,
as we simply consider it to differentiate its effects from
those of the dual mixing term in (19), as far as the
symmetry breaking patterns and the rôle of the monopole
configuration are concerned, as we shall discuss below. We
do note, though, for completeness, that kinetic mixings
between U(1) of the form (37) are considered in massive-
photon models of (millicharged) dark matter [31], upon
inclusion of matter fermions coupled to both Uð1Þ’s, in the
phase where the nonelectromagneticUð1Þ is spontaneously
broken. However, in our case, as already mentioned below
(8), due to the constraint (8) [or (10)], the vector potential
Cμ of the dual Udð1Þ is an axial (pseudo)vector, which is
not the case in [31]. In the current paper we shall not
consider such implications, postponing the pertinent dis-
cussion for the future.

III. THE LATTICE MODEL

The action representing the expression (19) on the lattice
reads as

S ¼ βA
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FA;latt
μν ðxÞ�2

þ βC
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FC;latt
μν ðxÞ�2

þ 2
ffiffiffiffiffiffiffiffiffiffi
βAβC

p
ξ2

X
x

X
1≤μ<ν≤4

X
ρ;σ

ϵμνρσ

× ½ðFA;latt
μν ðxÞ þ χFB;latt

μν ðxÞÞFC;latt
ρσ ðxÞ�

þ
X
x

Φ�ðxÞΦðxÞ − βh
X
x

� X
1≤μ≤4

Φ�ðxÞUA
xμ̂Φðxþ μ̂Þ

	

þ βR
X
x

½Φ�ðxÞΦðxÞ − 1�2; χ ¼ ξ2

4
: ð38Þ

The quantity x is a collective index for all four coor-
dinates. The lattice version of the field strengths is defined,
for example, through

FA;latt
μν ðxÞ≡ θAμ ðxÞ þ θAν ðxþ μ̂Þ− θAμ ðxþ ν̂Þ− θAν ðxÞ; ð39Þ

FC;latt
μν ðxÞ≡ θCμ ðxÞ þ θCν ðxþ μ̂Þ− θCμ ðxþ ν̂Þ− θCν ðxÞ; ð40Þ

where θAμ ðxÞ≡ qeaAμðxÞ ¼ aAμðxÞ; θCμ ðxÞ≡ qmaCμðxÞ ¼
aCμðxÞ are the lattice versions of the potentials
AμðxÞ; CμðxÞ at the position x along the direction μ.
The quantity a is the lattice spacing, and qe, qm are the

coupling constants. In the action (38) the symbol xþ μ̂
denotes the first neighbor of site x in the direction μ̂.
We also use the notation UA

xμ ¼ eiθ
A
xμ for the link gauge

field, which enters the interaction with the scalar field.

The expression FB;latt
μν represents the monopole background

field, and the couplings βA ¼ 1
q2e
; βC ¼ 1

q2m
equal the inverse

square couplings appearing in the continuum Lagrangian
(19). The A field contains contributions from the monopole
background (second line), as well as interaction with the
scalar field (third line). Notice that the scalar field interacts
only with the A gauge field. Finally the constant βR
corresponds to the quartic coupling of the scalar field.
Writing ΦðxÞ ¼ ρðxÞeiϕðxÞ and UA

xμ ¼ eiθ
A
xμ the action

becomes

S¼βA
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FA;latt
μν ðxÞ�2

þβC
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FC;latt
μν ðxÞ�2

þ2
ffiffiffiffiffiffiffiffiffiffi
βAβC

p
ξ2

X
x

X
1≤μ<ν≤4

X
ρ;σ

ϵμνρσ½ðFA;latt
μν þχFB;latt

μν ÞFC;latt
ρσ �

þ
X
x

ρ2ðxÞ−βh
X
x

X
1≤μ≤4

ρðxÞρðxþ μ̂Þ

×cos½ϕðxþ μ̂ÞþθAxμ−ϕðxÞ�þβR
X
x

½ρ2ðxÞ−1�2: ð41Þ

This is the precise form to be used in the lattice simulations.
We have used the noncompact version of the lattice Uð1Þ
models. This has been done to avoid monopoles arising
from the compact formulation, such as the ones studied
long ago [32].

IV. THE HIGGS MODEL WITHIN AND OUTSIDE
A MONOPOLE BACKGROUND

A first step we take is to consider the model without the
monopole background (17), i.e. with B⃗sing

mon ¼ 0. The point
is that one should know what happens in this case, before
investigating the influence of the monopole source. Of
particular interest is the influence of the parameter ξ.
To proceed with the calculations we need the definitions

of two observables, which will be used in the simulations:
the angular part of the link variable

Vð0Þ ¼ 1

N4

XN−1

nx;ny;nz;nt¼0

cos½ϕðnx þ 1̂; ny; nz; ntÞ

þ θA
nx;ny;nz;nt;1̂

− ϕðnx; ny; nz; ntÞ�; ð42Þ

as well as the mean square

Rð0Þ
2 ¼ 1

N4

XN−1

nx;ny;nz;nt¼0

Φ†ðnx; ny; nz; ntÞΦðnx; ny; nz; ntÞ

¼ 1

N4

XN−1

nx;ny;nz;nt¼0

ρ2ðnx; ny; nz; ntÞ: ð43Þ
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In the previous expressions we have denoted the lattice sites
by the dimensionless integers nx, ny, nz, nt. We have also
used the notation 1̂ for direction x, while nx þ 1̂ means the
site next to nx in the direction x. In Vð0Þ we have used links
in the x direction; it would make no difference if we used
any other spatial direction.

The quantity Rð0Þ
2 is the lattice version of the expectation

value of ϕ†ðxÞϕðxÞ, that is a gauge invariant version of the
vacuum expectation value (squared) of the scalar field. A

large value of Rð0Þ
2 indicates the symmetry broken phase of

the gauge-Higgs theory. The symmetric phase is charac-
terized by a small value of this indicator, typically of the
order of 1 in lattice units.
The quantity Vð0Þ is a gauge invariant lattice version of

the expectation value of ½ð∂1̂ þ iqeA1̂Þϕ�†½ð∂1̂ þ iqeA1̂Þϕ�.
A value of Vð0Þ around 1 indicates the symmetry broken
phase, while a small value for this quantity (around zero)
corresponds to the symmetric phase of the model.
Then we calculate the statistical averages hVð0Þi and

hRð0Þ
2 i versus βh for the values of the parameters set to

βA ¼ 4.0, βC ¼ 0.25; βR ¼ 0.001. We use Monte Carlo
simulations to calculate these averages; typically we have
performed 3000 lattice sweeps to thermalize the system
and 2000 iterations to compute the averages (using one
out of every five configurations). The details concerning
the simulation of the mixed term are explained in the
Appendix.
Notice that βAβC ¼ 1, which simplifies the lattice action.

The results are shown in Fig. 1. We show the results for
three quite different values of ξ, namely ξ ¼ 0.1, ξ ¼ 1.0
and ξ ¼ 10.0. The differences in ξ, although quite large, do
not have serious consequences, and we see the expected
transition from the symmetric to the broken phase. The
phase transition lies between βh ¼ 0.24 and βh ¼ 0.26
for all values of ξ considered. It is evident that the value
βh ¼ 0.22 corresponds to the symmetric phase, while
βh ¼ 0.28 corresponds to the broken phase. We will use
these values for βh repeatedly in the sequel.

A. Lattice monopole background

Let us define the lattice monopole background. This will
be derived from a source term corresponding to

B⃗ ¼ B
n⃗ − x⃗M
jn⃗ − x⃗Mj3

; ð44Þ

where n⃗ → ðnx; ny; nzÞ, x⃗M → ðxM; yM; zMÞ (the position
of the monopole source) and B is a dimensionless number.
Throughout this work we will set B ¼ 500 and use a
N4 ¼ 204 lattice. We suppose that the monopole position is
at the center of the lattice: if the nx coordinate takes on the
values 0; 1;…; N − 1, the position of the monopole lies
at xM ¼ yM ¼ zM ¼ N−1

2
. This position, which does not

correspond to any lattice site, has been chosen on purpose,
to avoid infinities. We set the monopole field strength equal
to zero if jn⃗ − x⃗Mj > Dmax, whereDmax ¼ N − 1

2
, that is we

suppose that there exists a sphere of antimonopoles, which
exactly cancels the monopole field at large distances. A
copy of the monopole is constructed for each value of the
remaining coordinate t. In Fig. 2 we depict the absolute

FIG. 2. Monopole background Bz field as a function of nz.

FIG. 1. Angular part hVð0Þi of links (upper panel) and mean

measure squared hRð0Þ
2 i of the scalar field (lower panel) versus βh

for ξ ¼ 0.1, ξ ¼ 1.0, and ξ ¼ 10.0 in the absence of the monopole
background. The uppermost curves correspond to ξ ¼ 0.1, while
the lowest curves to ξ ¼ 10.0. The relevant parameters read as
βA ¼ 4.0, βC ¼ 0.25. βR ¼ 0.001. With the notation hVUVi we
mean hVð0Þi in relation (42).
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value jBzj of the monopole background field strength along
z (or whichever other spatial direction) versus nz. We have
set nx ¼ nx0 ≡ N

2
; ny ¼ ny0 ≡ N

2
, so that

jBzj ¼ 500
jnz − 19

2
jh

1
2
þ ðz − 19

2
Þ2
i
3=2 : ð45Þ

An important consequence of the monopole background
field is that the system is no more homogeneous, since
various quantities depend on the distance from the position
of the monopole.
To describe the observables to be measured in the

sequel we define a line along z, with fixed values of
nx ¼ nx0 ≡ N

2
; ny ¼ ny0 ≡ N

2
, while nz and nt run from 0 to

N − 1. This line will lie at the basis of our calculations. The
line passes very near the monopole background core, when
nz ¼ N

2
, while its extremities lie away from it. It has been

constructed to illustrate the different behaviors at small and
large distances from the core. The various regions are
labeled by the nz dependence of the results.
We study two observables, which have to do with the

Higgs sector, namely the angular part of the space-like links:

VðnzÞ ¼
1

N

X
nt

cos½ϕðnx0 þ 1; ny0; nz; ntÞ

þ θA
nx0;ny0;nz;nt;1̂

− ϕðnx0; ny0; nz; ntÞ�; ð46Þ
as well as the mean square

R2ðnzÞ ¼
1

N

X
nt

Φ†ðnx0; ny0; nz; ntÞΦðnx0; ny0; nz; ntÞ

¼ 1

N

X
nt

ρ2ðnx0; ny0; nz; ntÞ: ð47Þ

We have slightly changed our notation, in the sense that we
write down explicitly the four coordinates, rather than using
a collective index. The quantities nz, nt take the values
0; 1;…; N − 1. The coordinates nx and ny have been set to
the values nx0 ¼ N

2
and ny0 ¼ N

2
. Both are local quantities.

The variable VðnzÞ represents links between the sites
ðnx0; ny0; nz; ntÞ and ðnx0 þ 1; ny0; nz; ntÞ, where one may
spot the scalar fields, while the gauge field between them is
UA

nx0;ny0;nz;nt;1̂
¼ exp ½iθA

nx0;ny0;nz;nt;1̂
�. In these calculations we

have used links in direction 1̂. It wouldmake no difference to
use whichever other spatial direction; one might also form a
sum over all three directions, but this would be more noisy.
The variable R2ðnzÞ is simpler, since it does not involve any
direction.

B. Symmetric phase

In the following we will concentrate on the value
βh ¼ 0.22, which corresponds to the symmetric phase.
The remaining parameters are set to βA ¼ 4.0, βC ¼ 0.25,

βR ¼ 0.001 and B ¼ 500. We use B ¼ 500 in the most part
of this paper.
We start with the results for the A and C plaquettes

(which are the lattice versions of the energy densities) and
are defined through the expressions

PlAðnzÞ ¼
1

N

X
nt

h½FA;latt
12 ðnx0; ny0; nz; ntÞ�2i;

PlCðnzÞ ¼
1

N

X
nt

h½FC;latt
12 ðnx0; ny0; nz; ntÞ�2i: ð48Þ

The field strengths FA;latt
12 and FC;latt

12 are defined in Eqs. (39)
and (40) respectively, and nx0; ny0 have been already
defined. The results for ξ ¼ 1.0 are depicted in Fig. 3.
We find that there is some structure around the position of
the monopole background (around nz ¼ 9) for both pla-
quettes. Simulations with βh ¼ 0, where the scalar field is
decoupled from the gauge fields yield very similar results,
implying that the influence of the monopole source on the
gauge fields does not depend very much on the scalar field.
We have also performed the corresponding calculations

for ξ ¼ 10.0, and we have found no similar peaks. We have
also simulated models of noncompact Uð1Þ gauge fields
with no coupling to scalar fields and no mixing terms, and

FIG. 3. Symmetric phase, ξ ¼ 1.00. Plaquettes A (upper panel)
and C (lower panel) in the symmetric phase versus nz. The
parameters read as βA ¼ 4.0, βC ¼ 0.25, βh ¼ 0.22, B ¼ 500
and βR ¼ 0.001. With the notation hPL Ai and hPL Ci we refer
to the relation (48).
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the results on the plaquettes at the values βA ¼ 4.0 and
βC ¼ 0.25 are the same as the ones found in the previous
model. In Fig. 4 one may see plaquettes A and C at
ξ ¼ 10.0, in the symmetric (and the broken) phase. They do
not exhibit any structure along the z direction and differ
little from one another.
In Fig. 5 we depict the angular quantity hVðnzÞi of links

(upper panel) and mean measure squared hR2ðnzÞi (lower
panel) of the scalar field for ξ ¼ 1.00 and ξ ¼ 10.00.
Brackets denote statistical averages, as usual. No essential
difference is detected between the two values of ξ. Since
there is a magnetic monopole background, one would
expect some nontrivial dependence of various observables,
such as hVðnzÞi and hR2ðnzÞi on nz. However, the nz
dependence is barely seen, which means that, in the
symmetric phase, no significant influence of the back-
ground on the system is detected. Thus, although the
plaquettes take large values at the origin of the monop-
ole background source, the link quantities do not detect
any sign of the background. We have checked numeri-
cally that large values of ξ render the system almost
indistinguishable from a system with no coupling
between the two gauge fields and the background
magnetic field.

C. Broken phase

Now we examine the system in the broken phase, setting
βh ¼ 0.28. The remaining variables read as βA ¼ 4.0,
βC ¼ 0.25, βR ¼ 0.001 and B ¼ 500. In Fig. 4, apart from
the results in the symmetric phase, one may also find the
plaquettes A and C at ξ ¼ 10.0 in the broken phase. No
structure appears in the z direction for these plaquettes.
On the other hand, we found that the corresponding

results for the A and C plaquettes in the broken phase at

ξ ¼ 1.0 are quite similar to the ones found for the
symmetric phase. The difference between the symmetric
and the broken phases shows up in the behavior of the
quantities related to the links, rather than the plaquettes.
We examine two values of ξ, namely 1.00 and 10.00, and

depict the angular part hVðnzÞi of links (upper panel) and
mean measure squared hR2ðnzÞi (lower panel) of the scalar
field, as functions of nz, in Fig. 6. One may see results
strikingly different from the ones corresponding to the
symmetric phase. As already stated, for fairly large values
of ξðξ ¼ 10.00 for example), it is expected that the terms
proportional to 1=ξ2 in the action are negligible, so that the
model reduces to a simpler one, not involving the coupling
of the two Uð1Þ0s and the monopole background contri-
bution. Thus no noticeable nz dependence of either hVðnzÞi
or hR2ðnzÞi is expected for large ξ. We have checked
numerically that ξ ¼ 10.00 is a value, above which ξ may
be considered as large in the previous sense. A result
supporting this is included in Fig. 6, where it may be seen
that, for ξ ¼ 10.00, the quantities hVðnzÞi and hR2ðnzÞi,
defined via Eqs. (46) and (47), have a very mild nz
dependence; this dependence becomes almost invisible
for even larger values of ξ. However, at ξ ¼ 1.0, the
ξ-dependent terms in the action come into play and the
nz dependence is manifest, in the sense that a well develops

FIG. 5. Symmetric phase. Angular parts hVðnzÞi of links in
space-like directions (upper panel) and hR2ðnzÞi (lower panel)
versus nz. Couplings: βA ¼ 4.0, βC ¼ 0.25, βh ¼ 0.22, B ¼ 500
and βR ¼ 0.001. We depict results for ξ ¼ 1.00 and ξ ¼ 10.00.
With the notation hVUVi we refer to the relation (46).

FIG. 4. Plaquettes A versus nz in the symmetric phase (inter-
mediate line) and broken phase (lowest line) at ξ ¼ 10.0.
Plaquettes C do not change as one moves from the sym-
metric to the broken phase and are represented by the uppermost
lines. The parameters read as βA ¼ 4.0, βC ¼ 0.25, B ¼ 500
and βR ¼ 0.001; the symmetric phase is represented by setting
βh ¼ 0.22, while the broken phase is reached by setting
βh ¼ 0.28.
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around the core of the monopole source. In particular the
measure of the scalar field approaches the value corre-
sponding to the symmetric phase. This result is consistent
with our understanding that in the monopole core the scalar
field should take on very small values. Our results indicate
that a monopole configuration has been created in the
broken phase, through the couplings between the two
Uð1Þ0s and the background magnetic monopole (Fig. 2),
which is just an alternative form of the external magnetic
current. The building up of the monopole configuration
has to do with the mixed CS coupling in (41). The lattice
appears to have a region where the system lies in the
symmetric phase. Such a region corresponds to a three-
dimensional sphere centered at the monopole origin. The
rest of the lattice remains in the broken phase, as shown
in Fig. 6. We will examine the ξ dependence of this
phenomenon in the next subsection.
The monopole is present when βh is large enough to

drive the system into the broken phase; however it is
interesting to examine the role of this parameter in more
detail. A particular scenario is that, if βh grows too large, it
could be difficult to create a monopole out of the too
massive scalar and gauge fields, so the effects of the mixed
CS-like terms may not be visible. We have chosen to use

ξ ¼ 1.00 and examine the effect of βh on the angular parts
of the links. We expect that, for this value of ξ, the effects
of βh will be easily visible. The angular parts of the links
have been chosen, since they are good indicators for the
existence of monopoles; in addition their absolute values do
not exceed 1, so it is easy to compare them for different
values of βh, while the measure of the scalar field will vary
widely, and the comparison is not straightforward. The
results may be seen in Fig. 7. At βh ¼ 0.28, i.e. close to
the phase transition toward the broken phase, we testify to
the appearance of deep wells, that is regions of symmetric
phase in the middle of the lattice, which remains at the
broken phase away from the center. As βh increases to 0.30,
the well is slightly less deep, while it becomes even more
shallow when βh ¼ 0.40 and βh ¼ 0.50. In the last case it
appears that the whole lattice lies in the broken phase. In
short, an increase of βh tends to undo the effect of the
background source and its coupling to the A fields.

D. Dependence on ξ

We show, in Fig. 8, the angular parts hVðnzÞi of links in
spacelike directions versus ξ for βh ¼ 0.28, that is in the
broken phase. We depict three different curves, the upper-
most corresponding to positions away from the monopole,
specifically at nz ¼ 0, and the lowest one corresponding
to positions near the monopole, the site with nz ¼ 10,
while the parameter B is set to the values B ¼ 500. The
intermediate curve corresponds to B ¼ 100. Notice that the
sites away from the core (upper curve) lie in the broken
phase for any value of ξ. For small values of ξ, say at
ξ ≃ 0.5, B ¼ 500, the sites near the monopole core lie in the
symmetric phase, as indicated by the small values of
hVðnz ¼ 10Þi. However, if even smaller values of ξ are
considered, the values of hVðnz ¼ 10Þi approach the ones

FIG. 7. Angular parts of links in space-like directions in the
broken phase versus nz. The parameters read as βA ¼ 4.0,
βC ¼ 0.25, B ¼ 500 and βR ¼ 0.001. The parameter ξ is 1.00
throughout, while βh takes the values 0.28 (this corresponds to
the deepest wells), 0.30, 0.40 and 0.50 (the latter has the weakest
nz dependence). With the notation hVUVi we refer to the
relation (46).

FIG. 6. Higgs phase. Angular parts hVðnzÞi of links in space-
like directions (upper panel) and hR2ðnzÞi (lower panel) versus
nz. Couplings: βA ¼ 4.0, βC ¼ 0.25, βh ¼ 0.28 and βR ¼ 0.001.
We depict results for ξ ¼ 1.00 and ξ ¼ 10.00. The deepest wells
correspond to ξ ¼ 1.00. With the notation hVUVi we refer to the
relation (46).
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for nz ¼ 0. This value of ξ, where the minimum of the
lower curve is situated, depends on the value of B that has
been used: in particular it is ξ ≃ 1, when B ¼ 500. For
larger values of B we expect that the ξ which yields the
minimum hVðnz ¼ 10Þi will move to smaller values. On
the contrary, for smaller values of B it will move to the
right. This is exactly what the intermediate curve shows:
the link angular variable hVðnzÞi does not take small
values any more, and the position of the minimum moves
to the right. This observation may be understood, since the
influence of the source depends on ξ2B, as may be seen by
inspection of the expression (38). This behavior suggests
that, below some value of ξ, it becomes difficult to
dynamically create a monopole, possibly because of its
too large energy. If one insists in creating a dynamical
monopole for a given small value of ξ, one should use a
sufficiently large B. However, letting B grow large means
that the background will be too large near the ends of the
lattice, unless one can use even bigger lattices. This is the
reason why we have chosen to use consistently the values
ξ ¼ 1.00 in our simulations and have not attempted to
approach lower values of ξ.
The behavior of the observables shows that the system

lies in different phases at different regions of the lattice.
This characteristic is less sharp for large values of ξ, which
drive the system to a definite phase throughout the lattice.
One might also consider similar lines at distances between
the ones depicted here ð0 < nz < 10Þ, and the result would
be a set of curves filling the space between the curves of
Fig. 8. It is important to notice that there is a smooth
transition between the regions with small and large values
of ξ. That means that the limit ξ → 0 is more or less smooth
and the characteristics of the model pertaining to ξ ¼ 0
appear already at small, but nonzero, values of ξ.

V. AN ALTERNATIVE MODEL: STANDARD
KINETIC COUPLING BETWEEN THE TWO U(1)’S

In this section we consider for comparison an alternative
model with kinetic mixing term of the type (37) (in the
continuum limit), with a fixed coefficient λ=ðqeqmÞ ¼ 1=ξ2

in our lattice units, used so far. There are no mixed
CS terms of the form (16) in this model. The action
now reads as

S ¼ βA
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FA;latt
μν ðxÞ�2

þ βC
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FC;latt
μν ðxÞ�2

þ 2
ffiffiffiffiffiffiffiffiffiffi
βAβC

p
ξ2

X
x

X
1≤μ<ν≤4

½ðFA;latt
μν þ χFB;latt

μν ÞFC;latt
μν �

þ
X
x

Φ�ðxÞΦðxÞ − βh
X
x

� X
1≤μ≤4

Φ�ðxÞUA
xμ̂Φðxþ μ̂Þ

	

þ βR
X
x

½Φ�ðxÞΦðxÞ − 1�2: ð49Þ

FIG. 8. Broken phase. Angular parts of links in space-like
directions away from the core hVðnz ¼ 0Þi (uppermost curve),
hVðnz ¼ 10Þi near the core for B ¼ 500, (lowest curve) and
hVðnz ¼ 10Þi near the core for B ¼ 100, (intermediate curve) in
the broken phase versus ξ. The parameters read as βA ¼ 4.0,
βC ¼ 0.25, βh ¼ 0.28 and βR ¼ 0.001. With the notation hVUVi
we refer to the relation (46).

FIG. 9. Angular parts hVð0Þi of links in space-like directions
versus βh in the absence of the monopole background (upper

panel). Also hRð0Þ
2 i are depicted (lower panel). The parameters read

as βA ¼ 4.0, βC ¼ 0.25, B ¼ 0 and βR ¼ 0.001. Two values for ξ
are depicted: ξ ¼ 10.00 (lower curves) and ξ ¼ 1.00 (upper
curves). With the notation hVUViwe mean hVð0Þi in relation (42).
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We start by studying the behavior of the model without
a monopole background as the parameter βh varies.
We set βA ¼ 4.0, βC ¼ 0.25, βR ¼ 0.001, B ¼ 0, and

plot, in Fig. 9, the quantities hVð0Þi and hRð0Þ
2 i defined

in Eqs. (42) and (43), versus βh for two values of ξ,
namely ξ ¼ 1.00 and ξ ¼ 10.00. The plots show that the
presence of the kinetic coupling does not influence the
behavior of the system much. In particular, one may be
sure that for βh ¼ 0.28 the system is in the bro-
ken phase.
We now come to the investigation of the model with the

background monopole source. We set B ¼ 500 and study
the nz dependence of the quantities hVðnzÞi and hR2ðnzÞi,
defined via Eqs. (46) and (47), for βA ¼ 4.0, βC ¼ 0.25,
βh ¼ 0.28 βR ¼ 0.001. Two values for ξ have been con-
sidered, namely ξ ¼ 1.00 and ξ ¼ 10.00. We have just
considered the broken phase of the model, since in the
symmetric phase nothing interesting happens, as we
have checked, similarly to the previous model. Based on
our previous experience we check whether there exists
some dependence on nz of the angular parts of links in
spacelike directions and the measure squared of the

scalar field. The difference between the two values of ξ,
shown in Fig. 10 is just that the results for ξ ¼ 1.00 are
larger than the corresponding results for ξ ¼ 10.00, but
no significant dependence on nz shows up, in contrast to
the previous model. This is expected, since the kinetic
coupling has an entirely different structure from the
mixed CS coupling of the field strength of the potential
A with the dual field strength of the potential C, which
characterized the magnetic monopole case.

VI. FINITE SIZE EFFECTS

Our results are preliminary in the sense that the size of
the lattices involved is rather modest, namely 204.
To get some feeling about the finite size effects we depict
in Fig. 11 the angular parts, as well as hR2ðnz − N

2
Þi for both

204 (pink circles) and 304 (red squares) lattices. We have
transported nz, so that the wells for the two lattice sizes
appear at the same region. The wells for 304 seem to have
only minor differences from the ones of 204. Their basic
characteristics are more or less the same. Thus, it is
reasonable to expect that the behavior that we described
in this work is genuine, since it does not appear to depend
crucially on the size of the lattice.

FIG. 11. Angular parts of links in space-like directions versus
nz − N

2
(upper panel) in the broken phase ðβh ¼ 0.28Þ. Also

hR2ðnzÞi is depicted (lower panel). The parameters read as
βA ¼ 4.0, βC ¼ 0.25, B ¼ 500, ξ ¼ 1.0 and βR ¼ 0.001. With
the notation hVUVi we refer to the relation (46).

FIG. 10. Angular parts of links in space-like directions versus
nz (upper panel) in the broken phase ðβh ¼ 0.28Þ. Also hR2ðnzÞi
is depicted (lower panel). The parameters read as βA ¼ 4.0,
βC ¼ 0.25, B ¼ 500 and βR ¼ 0.001. The parameter ξ takes the
values 10.00, (the lowest curves) and 1.00 (the uppermost
curves). With the notation hVUVi we refer to the relation (46).
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VII. CONCLUSIONS AND OUTLOOK

In this work, we have studied nonperturbatively (on the
lattice, cf. Sec. III) a proposal for the description of the
effects of a quantum fluctuating monopole on Higgs matter
in a gauge theory of Uemð1Þ ×Udð1Þ, where the scalar
Higgs field couples only to Uemð1Þ representing electro-
magnetism. The dual Udð1Þ has been argued to represent
the quantum fluctuations of the magnetic monopole field,
which is characterized by a nontrivial background magnetic
field of the characteristic singular type at the origin of the
monopole core.
The use of two gauge potentials was inspired by the work

of [2], in an attempt to avoid the use of Dirac strings.
Following [6], which argued about the appearance of the
Lorentz-violating effects of the Dirac string only on the
phase of the scattering amplitudes of a monopole off
matter, or the absence of such effects altogether if the
Dirac quantization condition (1) were in operation, we have
considered the lattice version of the effective action (19) in
an attempt to study the phase diagram of charged scalar
matter interacting with a magnetic monopole. The latter
was described both by an external background magnetic
field, with the characteristic monopole singular structure at
the origin, (17), and by quantum fluctuations described by
the gauge potential Cμ of the Udð1Þ gauge group.
It is important to notice that in our approach, which

generalizes nontrivially the original work of [2], the
constraint (10) (upon ignoring the Dirac-string effects)
among the two gauge potentials is implemented in a path
integral via the introduction of the gauge- and Lorentz-
invariant δ-functional term (14). However, in our general-
ized analysis we consider the parameter ξ as taking values
in the entire real axis, not only in the region ξ2 → 0 that
defines the monopole case of [2]. Such an effective
description [cf. (19)] implies the existence of CS terms
mixing the electromagnetic with the dual gauge field
strengths. As discussed in Sec. V, such terms are important
in yielding configurations in the matter field, with a
behavior representing the emergence of a magnetic mono-
pole configuration. The appearance of such configurations
is triggered in our approach by the monopole background
source (17). The situation is similar to the microscopic
monopoles, of e.g. ’t Hooft-Polyakov type [8] in models
with adjoint Higgs fields, which are solutions of the
classical equations. In the lattice version of such models,
the ’t Hooft-Polyakov monopole configurations would
appear upon triggering with appropriate external sources.
In our case we treat the background monopole source as

a Dirac, pointlike one, without specifying any structure. In
the case of ’t Hooft-Polyakov models, e.g. in the SU(2)
case with scalar triplets, the latter lead to the well-known
homotopy Π2ðSUð2ÞÞ properties leading to the magnetic
monopole sectors of the nontrivial solutions. In our Dirac-
source case, we are agnostic as to the precise microscopic
homotopy structure of the monopole configuration arising

in our lattice simulation in the broken phase (cf. Sec. IV, in
particular Sec. IV C). In Sec. IV D, we have seen that the
emergence of a nontrivial configuration for the scalar field,
with a behavior familiar from the t’ Hooft-Polyakov-
monopole case, is triggered by relatively strong source
magnetic fields, e.g. for ξ ¼ 1 we need a magnetic intensity
of the source of order B ¼ 500 in lattice units [cf. (44)].
Deep in the broken phase, or equivalently for smaller ξ
(cf. Sec. IV C), one needs much stronger sources to be able
to see monopole configurations. Because the magnetic field
carries energy of order B2 one expects from such arguments
that the magnetic monopole configuration in our case is
sufficiently massive in appropriate units.
We conclude by mentioning that, due to the modest size

of the lattices involved in our analysis (204), we considered
it as essential to examine the finite-size effects on the basic
conclusions of this work. By repeating the analysis for
bigger lattices of size 304, we have seen that the essential
characteristics of our study presented above, and thus its
main conclusions, are not significantly affected. We hope
to be able to come back to such issues in the future, by
performing the analysis for the case of significantly larger
lattices than the ones examined here, but also to extend the
model by incorporating fermionic matter and its inter-
actions with the magnetic monopoles.
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APPENDIX: SIMULATION DETAILS

The gauge part of the action reads as

Sg ¼
βA
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FA;latt
μν ðxÞ�2

þ βC
2

�
1þ 4

ξ2

�X
x

X
1≤μ<ν≤4

½FC;latt
μν ðxÞ�2

þ 2
ffiffiffiffiffiffiffiffiffiffi
βAβC

p
ξ2

X
x

X
1≤μ<ν≤4

X
ρ;σ

ϵμνρσ½ðFA;latt
μν ðxÞ

þ χFB;latt
μν ðxÞÞFC;latt

ρσ ðxÞ�; ðA1Þ

where FA;latt
μν ðxÞ, FB;latt

μν ðxÞ and FC;latt
μν ðxÞ represent the lattice

versions of the field strengths, and we remind the reader
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that χ ¼ ξ2=4. In the following we denote them simply by
FA
μνðxÞ, FB

μνðxÞ and FC
μν.

We concentrate on the last part of the action. We want to
simulate the mixed CS term

2

ξ2
X
μ;ν

ðFA
μν þ χFB

μνÞ · ðF̃C
μνÞ ¼

2

ξ2
X
μ<ν

ϵμνρσðFA
μν þ χFB

μνÞFC
ρσ;

since F̃C
μν ¼ 1

2

P
ρ;σ ϵμνρσF

C
ρσ.

We observe that, if we interchange e.g. μ and ν, the
part of the action ϵνμρσFA

νμFC
ρσ is equal to ϵμνρσFA

μνFC
ρσ,

because of the antisymmetry of both ϵμνρσ and FA
μν. With

similar arguments we conclude that the (relevant part of
the) action equals

SmixedCS ¼
2

ξ2
½ðFA

12þ χFB
12ÞFC

34þðFA
13þ χFB

13ÞFC
42

þðFA
14þ χFB

14ÞFC
23þðFA

34þ χFB
34ÞFC

12

þðFA
42þ χFB

42ÞFC
13þðFA

23þ χFB
23ÞFC

14�: ðA2Þ
Let us consider updating of the A field. We shall change

in turn the links AA
1 ðxÞ; AA

2 ðxÞ; AA
3 ðxÞ and AA

4 ðxÞ. We recall
the definition:

FA
μν ¼ AA

ν ðxþ μ̂Þ − AA
ν ðxÞ − AA

μ ðxþ ν̂Þ þ AA
μ ðxÞ: ðA3Þ

We observe that, upon the replacement,

AA
μ ðxÞ → AA

μ ðxÞ þ Δ ⇒ δAA
μ ðxÞ ¼ Δ;

i.e. the field strength FA
μν will change by þΔ. If we replace

AA
ν ðxÞ → AA

ν ðxÞ þ Δ ⇒ δAA
ν ðxÞ ¼ Δ;

the quantity FA
μν will change by −Δ.

In general the replacement δAA
μ ðxÞ ¼ þΔ implies

δFA
μνðxÞ ¼ þΔ, while the replacement δAA

ν ðxÞ ¼ þΔ
implies δFA

μνðxÞ ¼ −Δ.
As stated above, for each x, we will update successively

the links AA
1 ðxÞ; AA

2 ðxÞ; AA
3 ðxÞ and AA

4 ðxÞ.
(1) (a) When we update AA

1 ðxÞ, some terms in (A2)
that will be influenced will be FA

12ðxÞFC
34ðxÞ,

FA
13ðxÞFC

42ðxÞ and FA
14ðxÞFC

23ðxÞ. The change in
the action due to these terms only will be

2

ξ2
ðδFA

12ðxÞFC
34ðxÞ þ δFA

13ðxÞFC
42ðxÞ

þ δFA
14ðxÞFC

23ðxÞÞ

¼ 2

ξ2
ΔðFC

34ðxÞ þ FC
42ðxÞ þ FC

23ðxÞÞ:

In addition the terms e.g. FA
12ðx − 2̂ÞFC

34ðx − 2̂Þ
contain AA

1 ðxÞ, but the sign of the corresponding

change will be opposite, −ΔFC
34ðx − 2̂Þ, so that this

kind of term yields Δ½FC
34ðxÞ − FC

34ðx − 2̂Þ�.
The terms FA

13ðxÞFC
42ðxÞ will yield additional

contributions, so that this kind of term yields
Δ½FC

42ðxÞ−FC
42ðx− 3̂Þ�. Similarly the terms ΔFC

23ðxÞ
should be completed to Δ½FC

23ðxÞ − FC
23ðx − 4̂Þ�.

Finally the change in the action reads as

δSA1 ¼ 2

ξ2
Δf½FC

34ðxÞ − FC
34ðx − 2̂Þ�

þ ½FC
42ðxÞ − FC

42ðx − 3̂Þ�
þ ½FC

23ðxÞ − FC
23ðx − 4̂Þ�g:

(2) (b) When we update AA
2 ðxÞ, some terms in (A2)

that will change will be FA
12F

C
34; F

A
42F

C
13 and F

A
23F

C
14.

The change in the action will be

2

ξ2
Δð−FC

34 − FC
13 þ FC

14Þ:

The signs are reflections of the result that, in this
case, δFA

12 ¼ −Δ, δFA
42 ¼ −Δ and δFA

23 ¼ þΔ.
As before, there is more, so that

δSA2 ¼ 2

ξ2
Δf−½FC

34ðxÞ − FC
34ðx − 1̂Þ�

− ½FC
13ðxÞ − FC

13ðx − 4̂Þ�
þ ½FC

14ðxÞ − FC
14ðx − 3̂Þ�g:

(3) (c) When we update AA
3 ðxÞ, the terms in (A2) that

will change will be FA
13F

C
42; F

A
34F

C
12 and FA

23F
C
14.

The change in the action will be

2

ξ2
Δð−FC

42 þ FC
12 − FC

14Þ:

The signs are reflections of the result that, in this
case, δFA

13 ¼ −Δ, δFA
34 ¼ þΔ and δFA

23 ¼ −Δ.
Including the additional contributions we end up

with

δSA3 ¼ 2

ξ2
Δf−½FC

42ðxÞ − FC
42ðx − 1̂Þ�

þ ½FC
12ðxÞ − FC

12ðx − 4̂Þ�
− ½FC

14ðxÞ − FC
14ðx − 2̂Þ�g:

(4) (d) When we update AA
4 ðxÞ, the terms in (A2) that

will change will be FA
14F

C
23; F

A
34F

C
12 and FA

42F
C
13.

The change in the action will be

2

ξ2
Δð−FC

23 − FC
12 þ FC

13Þ:
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The signs are reflections of the result that, in this case, δFA
14 ¼ −Δ, δFA

34 ¼ −Δ and δFA
42 ¼ þΔ.

Including the additional contributions we end up with

δSA4 ¼ 2

ξ2
Δf−½FC

23ðxÞ − FC
23ðx − 1̂Þ� − ½FC

12ðxÞ − FC
12ðx − 3̂Þ� þ ½FC

13ðxÞ − FC
13ðx − 2̂Þ�g:

We now proceed with the updating of the C field. We will update successively the links AC
1 ðxÞ; AC

2 ðxÞ; AC
3 ðxÞ

and AC
4 ðxÞ.

(5) (e)

δSC1 ¼ 2

ξ2
Δf½ðFA

34ðxÞ þ χFB
34ðxÞÞ − ðFA

34ðx − 2̂Þ þ χFB
34ðx − 2̂ÞÞ�

þ ½ðFA
42ðxÞ þ χFB

42ðxÞÞ − ðFA
42ðx − 3̂Þ þ χFB

42ðx − 3̂ÞÞ�
þ ½ðFA

23ðxÞ þ χFB
23ðxÞÞ − ðFA

23ðx − 4̂Þ þ χFB
23ðx − 4̂ÞÞ�g:

(6) (f)

δSC2 ¼ 2

ξ2
Δf−½ðFA

34ðxÞ þ χFB
34ðxÞÞ − ðFA

34ðx − 1̂Þ þ χFB
34ðx − 1̂ÞÞ�

− ½ðFA
13ðxÞ þ χFB

13ðxÞÞ − ðFA
13ðx − 4̂Þ þ χFB

13ðx − 4̂ÞÞ�
þ ½ðFA

14ðxÞ þ χFB
14ðxÞÞ − ðFA

14ðx − 3̂Þ þ χFB
14ðx − 3̂ÞÞ�g:

(7) (g)

δSC3 ¼ 2

ξ2
Δf−½ðFA

42ðxÞ þ χFB
42ðxÞÞ − ðFA

42ðx − 1̂Þ þ χFB
42ðx − 1̂ÞÞ�

þ ½ðFA
12ðxÞ þ χFB

12ðxÞÞ − ðFA
12ðx − 4̂Þ þ χFB

12ðx − 4̂ÞÞ�
− ½ðFA

14ðxÞ þ χFB
14ðxÞÞ − ðFA

14ðx − 2̂Þ þ χFB
14ðx − 2̂ÞÞ�g:

(8) (h)

δSC4 ¼ 2

ξ2
Δf−½ðFA

23ðxÞ þ χFB
23ðxÞÞ − ðFA

23ðx − 1̂Þ þ χFB
23ðx − 1̂ÞÞ�

− ½ðFA
12ðxÞ þ χFB

12ðxÞÞ − ðFA
12ðx − 3̂Þ þ χFB

12ðx − 3̂ÞÞ�
þ ½ðFA

13ðxÞ þ χFB
13ðxÞÞ − ðFA

13ðx − 2̂Þ þ χFB
13ðx − 2̂ÞÞ�g:
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