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We perform a nonperturbative calculation of the shear viscosity for (2þ 1)-dimensional SU(2) gauge
theory by using the lattice Hamiltonian formulation. The retarded Green’s function of the stress-energy
tensor is calculated from real time evolution via exact diagonalization of the lattice Hamiltonian with a local
Hilbert space truncation, and the shear viscosity is obtained via the Kubo formula. When taking the
continuum limit, we account for the renormalization group flow of the coupling but no additional operator
renormalization. We find the ratio of the shear viscosity and the entropy density η

s is consistent with a well-

known holographic result 1
4π at several temperatures on a 4 × 4 honeycomb lattice with the local electric

representation truncated at jmax ¼ 1
2
. We also find the ratio of the spectral function and frequency ρxyðωÞ

ω

exhibits a peak structure when the frequency is small. Both the exact diagonalization method and simple
matrix product state classical simulation method beyond jmax ¼ 1

2
on bigger lattices require exponentially

growing resources. So we develop a quantum computing method to calculate the retarded Green’s function
and analyze various systematics of the calculation including jmax truncation and finite size effects, Trotter
errors and the thermal state preparation efficiency. Our thermal state preparation method still requires
resources that grow exponentially with the lattice size, but with a very small prefactor at high temperature.
We test our quantum circuit on both the Quantinuum emulator and the IBM simulator for a small lattice and
obtain results consistent with the classical computing ones.

DOI: 10.1103/PhysRevD.109.114511

I. INTRODUCTION

The scientific goal of relativistic heavy ion collisions is
to study the deconfined phase of nuclear matter at finite
temperature and/or density, known as the quark-gluon
plasma (QGP). The most striking property of the QGP
created in current heavy ion collision experiments is its
small shear viscosity, as shown by the good agreement
between the experimental data on various particles’ yields
and azimuthal distributions and a description that is mainly
based on relativistic hydrodynamic equations with small
shear viscosity [1,2]. The smallness of the shear viscosity
indicates the QGP created in current heavy ion collision
experiments is strongly coupled. Interestingly, the current

value of the ratio between the shear viscosity and the
entropy density η

s extracted from experimental data [3,4] is
consistent with the AdS/CFT calculation result for aN ¼ 4
supersymmetric Yang-Mills plasma in the strong coupling
limit, which is 1

4π [5].
Theoretically, shear viscosity can be calculated from real

time two-point correlation functions of stress-energy tensors
via the Kubo formula. However, this computation is hard
for both perturbative and nonperturbative approaches in
QCD [6]. Perturbatively, certain diagrams have to be
resummed due to the existence of “pinching poles” [7–9],
and the convergence of the perturbative series is poor when
the temperature of the QGP is below 1 GeV [10], which is
the temperature range of most interest in current collision
experiments. Nonperturbatively, Euclidean lattice QCD
methods have been applied to calculate the relevant two-
point correlation functions in imaginary time [11–13].
However, extraction of the shear viscosity from the imagi-
nary time correlation function involves an ill-defined
“inverse problem” and thus is not under good theoretical
control. Different frequency dependence of the real time
correlation function can give the same Euclidean correlation
function in imaginary time. These limitations of current
theoretical studies urgently demand a new technique for
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transport coefficients calculations, since a fully theoretical
determination of the shear viscosity provides an independent
check of the experimental extraction and is thus of great
value. These calculations can test the current hydrodynam-
ical framework for heavy ion collisions and deepen our
understanding of nuclear matter in conditions that are
unachievable in experiments at the moment.
In this paper, we consider the Hamiltonian formulation

of lattice gauge theory and investigate the calculation of
shear viscosity from the retarded correlation function
obtained from real time Hamiltonian evolution. Our study
is motivated by recent developments in quantum computing
for lattice gauge theories [14–19], which follow Feynman’s
idea [20] to use quantum computers and hopefully will be
able to tame the exponential growth of the Hilbert space
and perform more efficient quantum simulations than
classical devices. A previous work studied the construction
of lattice operators for stress-energy tensors and quantum
algorithms for thermal state preparation in the same context
[21]. Here, more specifically, we will carry out detailed
calculations for the SU(2) pure gauge theory in 2þ 1
dimensions ð2þ 1ÞD on a small lattice via both classical
and quantummethods and analyze various systematics. The
paper is organized as follows: In Sec. II, we will briefly
review the Kubo formula for the shear viscosity calculation
in the context of the SU(2) pure gauge theory in ð2þ 1ÞD.
Then, in Sec. III, we will explain the lattice Hamiltonian
formulation for the calculation, followed by an introduction
of a quantum algorithm in Sec. IV. Various systematics of
the calculation will be discussed in Sec. V. We will show
both classical and quantum results in Sec. VI and draw
conclusions in Sec. VII.

II. SHEAR VISCOSITY IN 2+ 1 D SU(2)
GAUGE THEORY

The Lagrangian density of the continuum ð2þ 1ÞD
SU(2) gauge theory can be written as

L ¼ −
1

4g2
Fa
μνFaμν; ð1Þ

where g is the coupling constant, and Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ

fabcAb
μAc

ν is the non-Abelian field strength tensor with Aa
μ

as the gauge field. In particular, Fa
0i denotes the electric

field along the ith spatial direction, and Fa
ij is related to the

non-Abelian magnetic field. The alphabet indices
a; b; c∈ ½1; 2; 3� label the SU(2) adjoint indices.
Stress-energy tensors of the theory are given as

Tμν ¼ −
1

g2
FaμρFaν

ρ þ
1

4g2
ημνFaρσFa

ρσ: ð2Þ

Standard linear response analysis and gradient expansion of
the stress-energy tensor for relativistic hydrodynamics in

the Minkowski spacetime with a small metric perturbation
hxyðtÞ lead to [22,23]1

η ¼ lim
ω→0

∂

∂ω
Gxy

r ðωÞ; ð3Þ

where Gxy
r ðωÞ can be expressed in terms of the retarded

Green’s function of Txy2

Gxy
r ðωÞ ¼

Z
dt eiωtGxy

r ðtÞ≡
Z

dt d2x eiωtGxy
r ðt; xÞ

Gxy
r ðt; xÞ≡ θðtÞTrð½Txyðt; xÞ; Txyð0; 0Þ�ρTÞ: ð4Þ

The density matrix in the definition of Gxy
r ðt; xÞ describes

the thermal state at temperature T ¼ β−1

ρT ¼ 1

Z
e−

H
T ¼ e−βH

Tre−βH
: ð5Þ

By utilizing translation invariance, the retarded correlation
function can also be written as

Gxy
r ðωÞ ¼ 1

A

Z
dt eiωtθðtÞTrð½T̃xyðtÞ; T̃xyð0Þ�ρTÞ

T̃xyðtÞ ¼
Z

d2xTxyðt; xÞ; ð6Þ

where A denotes the area of the system.
Combining everything together gives

η ¼ −
Z

∞

0

t dt ImGxy
r ðtÞ: ð7Þ

We have two ways to evaluate Gxy
r ðtÞ as shown in Eqs. (4)

and (6). If we know all the eigenstates jni of the system and
their corresponding eigenenergies En, we can write

η ¼ lim
tf→∞

η̃ðtfÞ

η̃ðtfÞ≡ −
Z

tf

0

t dt ImGxy
r ðtÞ

¼ −
2

Z

X
n

X
m≠n

hnjT̃xyjmihmjTxyjnie−βEnfðtfÞ

¼ −
2

ZA

X
n

X
m≠n

jhnjT̃xyjmij2e−βEnfðtfÞ

fðtfÞ≡ sinððEn − EmÞtfÞ
ðEn − EmÞ2

−
tf cosððEn − EmÞtfÞ

En − Em
: ð8Þ

1The total metric of the spacetime is gμν ¼ ημν þ hμνðtÞ, where
ημν ¼ diagðþ1;−1;−1Þ is the Minkowski metric, and the only
nonzero elements of the perturbation are hxy and hyx.

2Our definition of the retarded Green’s function has no −i,
which leads to the prefactor þ1 in Eq. (3) instead of i, compared
with Ref. [23]. Our convention has been used in recent pertur-
bative calculations for quarkonium transport [24].
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When the system has an infinite number of states, as
continuum quantum field theories do, the symbol

P
n

means
R
dEnρðEnÞ, where ρðEnÞ is the eigenstate density

at energy En.
Rigorously speaking, Eq. (3) is the tree-level matching

condition between the hydrodynamic effective theory and
the full theory. In this sense, η can be thought of as a Wilson
coefficient of the hydrodynamic effective theory. The
matching condition between η and the retarded Green’s
function becomes more complicated once nonlinear terms
are taken into account in Txy of the hydrodynamic effective
theory. These nonlinear terms contribute at one-loop level
and generate the so-called longtime tails [25], which lead to
a logarithmic divergence in two spatial dimensions [26,27].
As a result, η becomes scale dependent; it is some function
of ηðωÞ that equals Gxy

r ðωÞ when ω is small {see, e.g.,
Eq. (52) in Ref. [27] as the one-loop matching condition}.
In this work, we will only consider the tree-level matching
and use Eq. (8) to calculate the shear viscosity for
simplicity. Classically, Eq. (8) can be evaluated on a lattice
by solving all eigenenergies and eigenstates. We will also
take the continuum limit along the renormalization group
flow of the coupling.

III. LATTICE HAMILTONIAN FORMULATION

A. General setup

The Kogut-Susskind Hamiltonian [28] of the ð2þ 1ÞD
SU(2) gauge theory can be discretized on a honeycomb
lattice as shown in Fig. 1

H ¼ 3
ffiffiffi
3

p
g2

4

X
links

Ea
i E

a
i −

4
ffiffiffi
3

p

9g2a2
X
plaqs

⬡

⬡≡ Tr

� Y
ðx;îÞ∈ plaq

Uðx; îÞ
�
; ð9Þ

where a in the denominator is the side length of the
honeycomb, and we have shifted the energy reference
point. The honeycomb plaquette operator ⬡ is defined as
the trace of the product of the six Wilson lines Uðx; îÞ on
the edges of one honeycomb. The two-vector x ¼ ði; jÞ
labels the position of a honeycomb on the lattice plane
along the directions specified as in Fig. 1. The electric field

Ea ¼ ðEa
x; Ea

yÞ≡ a
g2

ðFa
0x; F

a
0yÞ; ð10Þ

is projected along three unit directions Ea
i ≡ êi · Ea, where

the three unit vectors are defined as in Fig. 1. On each link,
only one type of projected electric field lives; i.e., i is 1, 2
or 3. More details can be found in Ref. [29]. Physical states
satisfy Gauss’s law

X3
i¼1

Ea
i jψphyi ¼ 0; ð11Þ

at each vertex for every a.
We use the electric basis that labels each link by the

quantum number j. In this basis, the electric energy is
diagonal [30–32]

hJjEa
i E

a
i jji ¼ jðjþ 1ÞδJj: ð12Þ

The matrix element of the plaquette term (magnetic energy)
has been worked out to be [29,33,34] (see Refs. [35–39] for
the square plaquette case):

hfJgj⬡jfjgi

¼
Y6
V¼1

ð−1ÞjaþJbþjx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Ja þ 1Þð2jb þ 1Þ

p �
jx ja jb
1
2

Jb Ja

�
;

ð13Þ

where fjg (fJg) labels the states on the six links of the
honeycomb plaquette before (after) the action of the ⬡
operator. The product is over all the vertices V of the
honeycomb plaquette, attached to which are two internal
links labeled by the subscripts a and b and an external link
labeled by x.
For the ð2þ 1ÞD SU(2) lattice gauge theory, gauge

invariant states can be uniquely represented by the j values
if each vertex has at most three links joined. On a square
lattice, one has to introduce extra labels besides the j values
in order to represent gauge invariant states, which leads to
additional computational cost. This is an advantage of
using the honeycomb lattice [29].

FIG. 1. Honeycomb lattice on which the central position of each
plaquette is labeled by ði; jÞ along the two axes shown, starting
from i ¼ j ¼ 0. For example, the plaquette marked in blue is
located at ði ¼ 1; j ¼ 2Þ. The red dots represent the positions at
which the stress-energy tensors are evaluated. The location of a red
dot can be identified by the coordinates of the three plaquettes
sharing the same red dot. The six plaquettes labeled by theK values
around the blue-colored plaquette at ði ¼ 1; j ¼ 2Þ are used when
the magnetic term at ði ¼ 1; j ¼ 2Þ is written out explicitly, as
in Eq. (18).
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From Eqs. (2) and (10), we find

Txy ¼ −
g2

a2
Ea
xEa

y: ð14Þ

Using the electric field projection, we find Ea
1 − Ea

3 ¼ffiffiffi
3

p
Ea
x and Ea

2 ¼ −Ea
y . Combining with Gauss’s law

Ea
1 þ Ea

2 þ Ea
3 ¼ 0, we can express Txy as

Txy ¼ −
g2ffiffiffi
3

p
a2

ððEa
1Þ2 − ðEa

3Þ2Þ: ð15Þ

In this expression, we need to specify the position where
Txy is defined, since the two electric fields Ea

1 and Ea
3 are

defined on different links. We use the convention that the
vertex joining the two electric fields represents the position
of Txy. On a 3 × 4 lattice as shown in Fig. 1, we should
specify 12 positions for different Txy’s. We choose the 12
red points in Fig. 1 as our convention, which can be easily
generalized to bigger lattices. Summing over all red points
gives

T̃xy ¼ 3
ffiffiffi
3

p

2
a2Txy

sum ≡ 3
ffiffiffi
3

p

2
a2
X

red dots

Txy

A ¼ 3
ffiffiffi
3

p

2
a2Nplaq; ð16Þ

whereNplaq is the total number of honeycomb plaquettes on
the lattice and is equal to the number of red dots, as shown
in Fig. 1. Using Eqs. (4) and (6) leads to

Gxy
r ðtÞ ¼ 3

ffiffiffi
3

p
a2

2Nplaq
θðtÞTrð½Txy

sumðtÞ; Txy
sumð0Þ�ρTÞ: ð17Þ

B. Truncation at jmax = 1
2

For quantum computation discussed later, we need to
decompose the Hamiltonian and Txy in terms of tensor
products of Pauli matrices, for which quantum circuits of
implementation are known. This decomposition has been
done for the case with the local Hilbert space truncated
at jmax ¼ 1

2
.

Under this truncation, the Hamiltonian can be repre-
sented as a 2D Ising-like model [29]

aH¼HelþHmag

Hel ¼ hþ
X
ði;jÞ

Πþ
i;j−hþþ

X
ði;jÞ

Πþ
i;jðΠþ

iþ1;jþΠþ
i;jþ1þΠþ

iþ1;j−1Þ

Hmag ¼ hx
X
ði;jÞ

σxi;j
Y5
K¼0

��
1

2
−

i

2
ffiffiffi
2

p
�
σzKσ

z
Kþ1þ

1

2
þ i

2
ffiffiffi
2

p
�
;

ð18Þ

where Π�
i;j ¼ ð1� σzi;jÞ=2 are the projection operators onto

the spin-up and spin-down states that represent the pla-
quette state at ði; jÞ as labeled in Fig. 1. Hel represents
the electric part of the Hamiltonian, andHmag stands for the
magnetic part. We have multiplied the Hamiltonian by the
lattice spacing a such that every quantity is unitless

hþ ¼ 27
ffiffiffi
3

p

8
ag2; hþþ ¼ 9

ffiffiffi
3

p

8
ag2; hx ¼

4
ffiffiffi
3

p

9ag2
: ð19Þ

The index K comes from a periodic (K mod 6) chain
fK ¼ 0∶ði; jþ 1Þ; K ¼ 1∶ðiþ 1; jÞ; K ¼ 2∶ðiþ 1; j − 1Þ;
K ¼ 3∶ði; j − 1Þ; K ¼ 4∶ði − 1; jÞ; K ¼ 5∶ði − 1; jþ 1Þg,
as shown in Fig. 1.
The xy component of the stress-energy tensor for the

honeycomb plaquette located at ði; jÞ is calculated from
Eq. (15) where the two electric fields are those attaching the
red vertex, which is at the upper right corner of the
honeycomb, as shown in Fig. 1

Txy
ij ¼ −

g2ffiffiffi
3

p
a2

3

4

�
1 − σzi;jþ1σ

z
iþ1;j

2
−
1 − σzi;jσ

z
iþ1;j

2

�

¼
ffiffiffi
3

p
g2

8a2
ðσzi;jþ1σ

z
iþ1;j − σzi;jσ

z
iþ1;jÞ: ð20Þ

C. Closed boundary condition

For a finite lattice, we use a closed boundary condition in
which all the links outside the lattice boundary are in j ¼ 0
states. In other words, no electric fluxes go out of the
lattice. For the case with jmax ¼ 1

2
truncation, the imposed

closed boundary condition is equivalent to setting all the
spins outside the boundary to be pointing down.
We choose the closed boundary condition since it makes

the quantum circuit construction more convenient for the
jmax ¼ 1

2
case. The periodic boundary condition results in

an overall spin-flipping degeneracy in the spin representa-
tion of physical states [29]. Lifting up the degeneracy will
distort the expressions of the Hamiltonian and Txy away
from the spin representations in Eqs. (18) and (20). Then
the corresponding quantum circuits are unknown and thus
need explicit constructing, which can be computationally
expensive.
This concludes our discussion of the calculation setup.

Classical computing results of the shear viscosity that are
obtained from Eqs. (8) and (20) will be shown in Sec. VI. In
the next section, we will introduce a quantum algorithm to
evaluate the retarded correlation function.

IV. QUANTUM COMPUTATION OF Gxy
r ðtÞ

In this section, we present a quantum algorithm to
calculate the retarded Green’s function Gxy

r ðtÞ. A schematic
diagramof the quantumcircuit for a four-qubit system (e.g., a
2 × 2 latticewith jmax ¼ 1

2
) is shown in Fig. 2, which consists
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of four parts: thermal state preparation, unitary transforma-
tion driven by Txy for the evaluation of the commutator in
Gxy

r ðtÞ, real time evolution and measurements.

A. Thermal state preparation

We first discuss the quantum circuit for thermal state
preparation that uses the algorithm of Refs. [40,41]. It is
based on imaginary time propagation. The imaginary time
propagation techniques are well-known methods for clas-
sically preparing ground or thermal states. However, for a
quantum algorithm, we have to deal with the nonunitary
nature of the imaginary time operator. In the algorithm we
will use, this is overcome with a diluted operator using
ancilla qubits [41].
The algorithm is schematically shown in Fig. 3. The

physical qubits representing a state of the lattice gauge
theory are the first, third, fifth and seventh qubits from the

top of the figure. We first apply a Hadamard gate to each of
them and then apply controlled-NOT (CNOT) gates with
these four physical qubits as controls and four auxiliary
qubits (second, fourth, sixth and eighth from the top) as
targets. After the CNOT gates, the four auxiliary qubits are
measured. The measurement outcomes are not needed for
the remaining circuit. So effectively, the measurements
serve as partial trace, and the resulting physical state is a
maximally mixed state

ρs ¼
1

2ns
12ns×2ns ; ð21Þ

where ns is the number of qubits in the physical system and
equals to four in the example shown in the figure. Then one
applies the quantum imaginary time propagation (QITPth)
to the physical qubits (whose number is four in the figure)
plus an additional ancilla qubit, which is the bottom qubit
in the figure:

QITPth ¼
 ffiffiffiffi

p
p

e−τðH−ET Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pe−2τðH−ETÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − pe−2τðH−ET Þ

p ffiffiffiffi
p

p
e−τðH−ET Þ

!
;

ð22Þ

where p is a parameter to be tuned (in the limit τ → 0, p is
equal to the success probability), and ET is another
parameter chosen to be smaller than or equal to the ground
state energy. The operators e−τH and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2τH

p
act on the

physical system qubits. If p ¼ 1 and τ ¼ β
2
are chosen and

the measurement of the ancilla qubit returns j0i, one can
show the physical system is in the Gibbs state

ρT ¼ 1

2nsps
e−βðH−ETÞ ¼ 1

Z
e−βH; ð23Þ

where ps indicates the success probability of measuring the
ancilla in j0i state.
The thermal state preparation algorithm used here is

efficient for preparing high temperature thermal states. At
low temperature, it becomes less efficient as the Hilbert
space dimension increases. In particular, the success
probability, i.e., the probability of measuring the ancilla
qubit in j0i, decreases with the Hilbert space dimension at
low temperature. The lower bound (that corresponds to
T ¼ 0) is determined by the degeneracy of the ground state
divided by the dimension of Hilbert space; in the worst
scenario, it is given by 1

2ns
, with ns the number of system

qubits. For future applications in QCD, we only need
temperatures above the confinement-deconfinement cross-
over temperature, which is around 150 MeV. So the
reduced efficiency of the thermal state preparation algo-
rithm at lower temperature may not be a severe problem. In
Sec. V E, we will perform a more detailed analysis of the
thermal state preparation success probability as a function
of the system size.

FIG. 2. Schematic diagram of the implemented quantum circuit
to calculate the retarded Green’s function of Txy on a 2 × 2 lattice

with jmax ¼ 1
2
. The e−

βH
2 part implements the algorithm of

Ref. [40] to prepare the thermal state, which is shown explicitly
in Fig. 3. The e�iπ

4
Σα part is used to calculate the commutator, as

will be explained in Sec. IV B.

FIG. 3. Quantum circuit for preparing the thermal state in
quantum processors. The dashed box shows the gates for
initializing the system qubits to be the maximally mixed state.
The first, third, fifth and seventh qubits from the top represent the
system while the second, fourth, sixth and eighth are used to
initialize the maximally mixed state. The bottom qubit is the
ancilla qubit used to implement the imaginary time evolution in a
unitary way.
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In practice, to explicitly construct the quantum circuit for
the QITPth from the Hamiltonian in Eq. (18), we apply
Trotter decomposition at first order

QITPthðH; τÞ

≈
YNτ

iτ¼1

Y
ði;jÞ

QITPthðHel
ij;ΔτÞQITPthðHmag

ij ;ΔτÞ; ð24Þ

where Δτ ¼ τ
Nτ

is the imaginary time Trotter step, and ði; jÞ
denotes a plaquette position as in Eq. (18). In the Trotter
decomposition, we need to add one additional ancilla qubit
for each noncommuting Hamiltonian term, unless the quan-
tum hardware allows ancilla qubit reset in the middle of the
circuit. More concretely, the QITPth can be written as

QITPthðHel=mag
ij ;ΔτÞ ¼ eiσ

y
anc⊗arccos

	
e
−ΔτHel=mag

ij


; ð25Þ

where σyanc denotes the Pauli-y matrix acting on the ancilla
qubit. The arccos function is best computed in the diagonal
basis of Hel=mag

ij . The electric part is already diagonal in the
computational basis. For themagnetic part at ði; jÞ, one needs
to apply a Hadamard gate before and another one after the
QITPth circuit to the qubit representing the state at ði; jÞ in
order to convert to a basis whereHmag

ij is diagonal. Once the
arccos part ismade diagonal, one can decompose it into sums
of tensor products of identity and σz matrices. The procedure
to construct quantum circuits for tensor products of Pauli
matrices is well known [42]. Appendix B shows a quantum
circuit for the magnetic Hamiltonian term on a 2 × 2 lattice
with jmax ¼ 1

2
.

As we will show later in Sec. V D, we only need to use a
single Trotter step in the imaginary time because its Trotter
error is very small; i.e., Δτ ¼ β

2
.

B. Circuit for commutator of Txy

Using Eq. (20), the commutator ½Txy
sumðtÞ; Txy

ij ð0Þ� ¼
½Pk;l T

xy
kl ðtÞ; Txy

ij ð0Þ� can be rewritten as the sum of two
commutators:

½Txy
sumðtÞ; Txy

ij ð0Þ�

¼
ffiffiffi
3

p
g2

8a2
½Txy

sumðtÞ; σzi;jþ1σ
z
iþ1;j − σzi;jσ

z
iþ1;j�

¼
ffiffiffi
3

p
g2

8a2
ð½Txy

sumðtÞ;Σ0� − ½Txy
sumðtÞ;Σ1�Þ; ð26Þ

where we have decomposed Txy
ij ð0Þ operator in terms of two

Pauli strings as inEq. (20). To simplify the notations,wehave
introduced Σα as Σ0 ¼ σzi;jþ1σ

z
iþ1;j, and Σ1 ¼ σzi;jþ1σ

z
iþ1;j.

The commutator between a Pauli string A and a (generic)
unitary operator B can be easily evaluated in quantum
processor using the following relation [43,44]

½A;B� ¼ iðe−iπ4ABeiπ4A − ei
π
4
ABe−i

π
4
AÞ: ð27Þ

Applying Eq. (27) to Eq. (26) with A and B identified as Σα

and Txy
sumðtÞ, respectively, we find

½Σα; T
xy
sumðtÞ� ¼ ie−i

π
4
ΣαeiHtTxy

sume−iHtei
π
4
Σα

− iei
π
4
ΣαeiHtTxy

sume−iHte−i
π
4
Σα ; ð28Þ

where we have usedOðtÞ ¼ eiHtOð0Þe−iHt and omitted the
argument t ¼ 0 of Txy

sum.

C. Real time evolution

As just discussed, the quantum computation procedure
requires real time evolution. Here, we briefly discuss its
implementation by applying the Trotter decomposition at
first order. We divide the total time length t into Nt steps
with the step size Δt ¼ t

Nt
. The full real time propagator

becomes a product of the short-time electric and magnetic
Hamiltonian evolution operators as the following:

Ut ≡ e−iHt ≈
YNt

it¼1

Y
ði;jÞ

e−iH
el
ijΔte−iH

mag
ij Δt; ð29Þ

where Hmag
ij (Hel

ij) indicates the magnetic (electric) part of
the Hamiltonian at the ði; jÞ plaquette position. Each
Hamiltonian piece just contains commuting strings of
Pauli matrices, for which the construction of quantum
circuits is well known [42]. For example, the circuit for the
magnetic part is discussed in Ref. [29]. A discussion of the
Trotter errors in the real time evolution for the calculation
ofGxy

r ðtÞ can be found in Sec. V D. After implementing the
real time evolution gates, we measure the quantum state in
the computational basis in which the operator Txy

sumð0Þ ¼P
k;l T

xy
kl ð0Þ is diagonal.

D. Postmeasurement processing

The last step to obtain the retarded correlation function is
to perform a postmeasurement analysis. We note that the
stress-energy tensor operator Txy

sum is a sum of Pauli-z tensor
products; so it is diagonal in the computational basis.
Therefore, the thermal expectation value of the commutator
½Txy

sumðtÞ;Σα� is given by

Trð½Txy
sumðtÞ;Σα�ρTÞ ¼ i

X
b

hbjTxy
sumð0Þjbi½P−

α ðbÞ − Pþ
α ðbÞ�;

ð30Þ

where jbi denotes the computational basis states, which,
e.g., on a 2 × 2 lattice with jmax ¼ 1

2
, are j0000i;

j0001i;…j1111i in the spin representation. The symbol
P�
α ðbÞ indicates the measured probability of the jbi state

for the circuit with Σα ¼ e�iπ
4
Σα evolved from time 0 to t.
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The time dependence of P�
α ðbÞ is omitted for notational

simplicity.
We now summarize the quantum algorithm: After

preparing the thermal state, we first apply the gates for
e�iπ

4
Σα , as shown in Fig. 2 [þ for the first line and − for the

second line in Eq. (28)]. Then we evolve the resulting state
in real time e−iHt. Finally, we perform projective measure-
ments in the computational basis. The measurement results
allow us to reconstruct the thermal expectation value of the
commutator in Eq. (28) by postmeasurement processing
and taking the difference of the results obtained from the
two different circuits that differ in the sign of the Σα term.
Because we have two different Pauli strings in order to
evaluate Eq. (26), we have to run four different quantum
circuits that differ in the Pauli operators (different α) and
the signs of the term i π

4
Σα.

To conclude this section, we prove that the action of the
proposed quantum circuit gives the correct value of Gxy

r ðtÞ.
The first set of gates prepares the thermal state density
matrix, ρT ¼ e−βH

Z . Then, after applying the gates for e�iπ
4
Σα

and the real time evolution gates Ut, the density matrix of
the quantum processor becomes

ρ�α ðtÞ ¼
1

Z
Ute�iπ

4
Σαe−βHe∓iπ

4
ΣαU†

t : ð31Þ

Measuring the quantum processors in the computational
basis, we obtain the diagonal part of the density matrix.
Using the cyclic property of the trace, and the fact that
Txyð0Þ is diagonal in the computational basis, we can
write:

X
b

hbjTxy
sumð0ÞjbiP�

α ðbÞ

¼ Tr½Txy
sumð0Þρ�α ðtÞ�

¼ 1

Z
Tr½e∓iπ

4
ΣαU†

t T
xy
sumð0ÞUte�iπ

4
Σαe−βH�

¼ 1

Z
Tr½e∓iπ

4
ΣαTxy

sumðtÞe�iπ
4
Σαe−βH�: ð32Þ

Using Eq. (27), the thermal expectation value of the
commutator ½Txy

sumðtÞ;Σα� is obtained from

Tr½Txy
sumð0Þρþα ðtÞ� − Tr½Txy

sumð0Þρ−α ðtÞ�
¼ Trð½e−iπ4ΣαTxy

sumðtÞeiπ4Σα − ei
π
4
ΣαTxy

sumðtÞe−iπ4Σα �ρTÞ

¼ i
Z
Trð½Txy

sumðtÞ;Σα�e−βHÞ ð33Þ

A final usage of Eq. (26) leads to the retarded Green’s
function of Txy.

V. CALCULATION SYSTEMATICS

Before presenting results, we discuss various systematics
of the calculation. The analysis we will present in this
section is important to understand whether one can obtain
the physical quantity (i.e., shear viscosity) at a given
accuracy with a given amount of quantum computing
resource. This analysis will be useful for large scale
quantum computation of transport coefficients in the future.

A. Continuum limit and renormalization

For physical limits, one needs to take the continuum
a → 0 and the infinite volume limits and remove the local
Hilbert space truncation by setting jmax → ∞. In the
continuum limit a → 0, the coupling of the theory needs
proper renormalization. In ð2þ 1ÞD SU(2) pure gauge
theory, the mass dimension of g is 0.5, so a unitless quantity
for the coupling is ag2. What needs to be done is to tune ag2

as a → 0 such that a physical observable is invariant. An
example of physical observables is the correlation length of
the ground state, which can be extracted from the sub-
system size dependence of the entanglement entropy [45].
In a renormalization scheme where both the pressure and
the trace of the stress-energy tensor Tμ

μ do not require any
additional renormalization other than the running coupling,
the renormalization of the coupling is given by [46]

d lnðag2Þ
d ln a

¼ 1; ð34Þ

which means the rescaled coupling ag2 ∝ a. In the
Hamiltonian approach, the lattice gauge theory also has
a truncation in the local Hilbert space, labeled by jmax.
Whether the running coupling has a nontrivial dependence
on jmax should be studied analytically and tested against
numerical calculations, which are left for future work.
Besides the running coupling, the stress-energy tensor

component Txy may need additional renormalization since
the lattice breaks the Lorentz invariance of the continuum
theory. Generally, one can write

ηR ¼ lim
a→0;jmax→∞

Zðμ; a; jmaxÞηBða; jmaxÞ; ð35Þ

where R and B represent renormalized and bare quantities.
The bare quantity is the direct numerical result obtained by
using the truncated lattice gauge theory with a lattice
spacing a and local Hilbert space truncation jmax.
Zðμ; a; jmaxÞ is the additional operator renormalization
factor needed when taking the continuum limit, which
should be distinguished from the partition function intro-
duced in Eq. (5) and depends on the final renormalization
scheme in which we want to obtain the quantity ηR, e.g., the
MS scheme with the renormalization scale μ. One way to
obtain Zðμ; a; jmaxÞ is to perform a lattice perturbation
theory calculation. Alternatively, one can develop gradient
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flow methods for the Hamiltonian approach to regularize
the stress-energy tensor operator, as done in Euclidean
lattice calculations [47,48]. Compared with Euclidean
lattice calculations, the potential dependence on jmax is
new and needs systematic understanding.
As can be seen, taking the continuum limit and renorm-

alizing the quantity properly can be complicated. Since our
current study is on a small lattice with a low-jmax
truncation, we will only take into account the coupling
renormalization here and leave studies of additional oper-
ator renormalization to future work.

B. Local truncation effect

We then consider local Hilbert space (i.e., jmax) trunca-
tion effect with a given lattice spacing a, which means the
coupling ag2 is fixed, and a fixed lattice size. The
truncation effect can lead to artifacts in thermodynamic
description of the system, since they constrain the energy
spectrum of the system. This has been considered on a
SU(2) plaquette chain [49], and here, we generalize it to the
honeycomb lattice case.
Specifically, we first consider the internal energy density

ε and the entropy density s as a function of jmax on a 2 × 2

honeycomb lattice with ag2 ¼ 1, which are defined as

ε≡ −
1

A
∂ lnZ
∂β

; s≡ 1

A
∂ðT lnZÞ

∂T
; ð36Þ

where the partition function Z can be evaluated from
Tre−βH by exactly diagonalizing the Hamiltonian.
The results of the internal energy and entropy densities

are shown in Fig. 4, together with fits of the forms αεT3 þ γ
and αsT2, respectively, which are expectations from the
continuum theory. The fits use the results with jmax ¼ 2 and
in the temperature range T < 2.5 (in lattice units). The
fitted parameters are αε ¼ 0.0191, γ ¼ −0.0466 and
αs ¼ 0.0234. We see that the 2 × 2 lattice with jmax ¼ 1

already shows continuum behavior for ag2 ¼ 1 in the
temperature range T ≲ 3. In the region 3 < T < 5, the
curves of ε and s already converge with jmax ¼ 1.5. Further
increasing jmax is of no help for continuum physics, and
one has to use a bigger lattice.
At last, we provide an analytic estimate of the jmax

needed. At a given lattice size, if we want to describe all
the states below a fixed energy E [corresponding to the
Hamiltonian in Eq. (9)] with an accuracy 1 − ϵ, the
minimum jmax needed is at most

jmax ¼
4NlẼ

3
ffiffiffi
3

p
g2ϵ

; ð37Þ

where Nl is the number of links on the lattice, and

Ẽ ¼ Eþ 8
ffiffi
3

p
9g2a2 Np, where Np denotes the number of

plaquettes on the lattice. We provide a proof of this formula
in Appendix A.

C. Finite volume effect

Next we study the lattice size dependence of the internal
energy and entropy densities with ag2 ¼ 1 and jmax ¼ 1

2
.

The results are shown in Fig. 5, where it can be seen that
these two densities change little with the lattice size.
Increasing the lattice size leads to a decrease of ε at high
temperature, which indicates that one needs to increase jmax
to maintain the same energy density at a given temperature.
Both energy and entropy densities saturate at high temper-
ature, which is a finite size effect. Figure 6 shows the
energy eigenstate density on a 4 × 4 lattice with jmax ¼ 1

2

and ag2 ¼ 1. The total number of states is 216 ¼ 65536.
When the energy is below 35 (in lattice units), the state
density ρðEÞ keeps increasing with E. This is qualitatively
similar to the continuum theory. However, once the energy

(a) Internal energy density.

(b) Entropy density.

FIG. 4. Internal energy and entropy densities in lattice units as
functions of temperature for several values of jmax on a 2 × 2

lattice with ag2 ¼ 1. The dashed lines are expectations from the
continuum theory.
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exceeds 35, ρðEÞ starts to drop with E, which is an artifact
originated from the finite size of the Hilbert space.
Another way of inspecting the finite size effect is to

compare η̃ðtfÞ calculated via different methods on different
lattices. In Fig. 7(a), we compare the result of η̃ðtfÞ obtained
from the commutator ½T̃xyðtÞ; Txyð0Þ� as in the third line of
Eq. (8), where Txyð0Þ is located at ði; jÞ ¼ ð1; 1Þ, with that
from the commutator ½T̃xyðtÞ; T̃xyð0Þ�=A as in the second-to-
last line of Eq. (8) on a 4 × 4 lattice with the cutoff jmax ¼ 1

2

and ag2 ¼ 1 at β ¼ 0.3 (in lattice units). We see that η̃ðtfÞ
oscillates in both results with the ½T̃xyðtÞ; Txyð0Þ� case
oscillating more severely. The oscillation is caused by the
finite state density. Inspecting Eq. (8), we can see the
oscillating factor fðtfÞ only smooths out if the energy levels
are dense enough. Thus,we expect at lower temperatures that
the oscillating is more severe when the Hilbert space is of
fixed size. The reason why the calculation with the
½T̃xyðtÞ; Txyð0Þ� commutator oscillates more severely is the
additional nonpositive definite term in the double sums over

n, m, i.e., hnjT̃xyjmihmjTxyjni, which can be positive or
negative. On the other hand, the jhnjT̃xyjmij2 term is positive
semidefinite, so it leads to a smoother result. If we had used
periodic boundary conditions, spatial translation invariance
would have been preserved, and as a result, the two methods
would have given the same result. We use a closed boundary
condition here since it leads to a more straightforward
construction of the relevant quantum circuits due to the
absence of an overall spin-flipping degeneracy explained
earlier and long-range qubit interaction in the quantum
hardware. In the following, we will mainly use the method
with the ½T̃xyðtÞ; T̃xyð0Þ�=A commutator, unless explicitly
mentioned otherwise.
In Fig. 7(b) we compare the results of η̃ðtfÞ calculated on

two lattices of different sizes at the same conditions:
jmax ¼ 1

2
, β ¼ 0.3. We see the smaller lattice leads to a

bigger finite size effect due to themuch smaller state density.
It is expected that the physical state density will increase
exponentially with the lattice size (e.g., Np plaquettes) and

jmax as roughly
ð2jmaxþ1Þ3Np

22Np [50], where the denominator is a
rough estimate of the Gauss’s law constraint effect.
We also find that the oscillation becomes less severe at

higher temperatures due to the increase of the density of
active states, as shown in Fig. 7(c).

D. Trotter error

In this subsection, we show the effect of implementing
the Trotter decomposition in calculating the transport
coefficients. In our case, we have two possible contribu-
tions: the error deriving from applying the Trotter decom-
position in the real time evolution and that when preparing
the thermal density matrix.
In order to quantify the different Trotter errors, we

compute the Gxy
r ðtÞ, defined in Eq. (17), as a function of

time t on a 3 × 3 lattice with jmax ¼ 1
2
for different values of

the real time and imaginary time Trotter steps. We set
ag2 ¼ 1 and β ¼ 0.2 in lattice units.

(a) Internal energy density.

(b) Entropy density.

FIG. 5. Internal energy and entropy densities in lattice units as
functions of temperature for several lattice sizes with jmax ¼ 1

2

and ag2 ¼ 1. Ni and Nj specify the size of the honeycomb lattice
along the i and j axes respectively, as shown in Fig. 1.

FIG. 6. Energy eigenstate density on a 4 × 4 lattice with
jmax ¼ 1

2
and ag2 ¼ 1.
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Panel (a) of Fig. 8 depicts the behavior of Gxy
r ðtÞ as a

function of time using the exact time evolution operators
(without applying the Trotter decomposition). We constrain
the y axis range in order to have a better visual comparison
with the uncertainty plots. Panel (b) of Fig. 8 shows the
absolute difference between the exactGxy

r results3 and those
when we apply the Trotter decomposition for real time
evolution. The thermal density matrix is computed exactly.
We observe that for Δt > 0.1, we get a significant error:
The magnitude of the green line at late time in (b) is of the
order of 5 × 10−4, which is comparable with the black line
in (a). Using smaller time steps is needed to improve
accuracy, which may result in a deeper quantum circuit.
Panel (c) of Fig. 8 shows the absolute error in Gxy

r as a
function of time, when the Trotter decomposition is
implemented for preparing the thermal state. The real time
propagator is computed exactly. We observe that we have a
negligible uncertainty. Panel (d) of Fig. 8 illustrates the
results of combining the Trotter decomposition for the real
time evolution and that for preparing the thermal state. As
these plots show, the major Trotter error comes from the
real time evolution.

E. Thermal state preparation success probability

Earlier in Sec. IVA, we mentioned that in practical
application for QCD, only the deconfined temperature
regime roughly above 150 MeV is of interest. So the
exponential decay of success probability in the thermal
state preparation at low temperature may not be a problem.
However, one may worry that even at high temperature, the
success probability still decreases exponentially with the
system size, just with a small prefactor in the exponent.
Here, we provide a detailed analysis of this dependence.
The success probability of the thermal state preparation

is given by

ps ¼
1

dH

X
n

e−βðEn−E0Þ; ð38Þ

where we have chosen ET ¼ E0, and dH denotes the total
Hilbert space dimension. We plot the success probability as
a function of the lattice size on a periodic4 honeycomb
lattice with jmax ¼ 1

2
in Fig. 9, where the lattice spacing a is

fixed such that the coupling is ag2 ¼ 1. At this fixed
coupling, the first excited state has an energy of about 6.2
above the ground state, i.e., E1 − E0 ≈ 6.2, which does not

(a) Different commutators at = 0.3.

(b) Different lattice sizes at = 0.3.

(c) Different temperatures.

FIG. 7. η̃ defined in Eq. (8) as a function of time. (a) Results on
a 4 × 4 lattice with jmax ¼ 1

2
and ag2 ¼ 1 at β ¼ 0.3 in lattice

units, obtained from two ways that are equivalent if the system
obeys translational invariance. (b) Results on two lattices with
different sizes but the same jmax ¼ 1

2
and ag2 ¼ 1 at β ¼ 0.3.

(c) Results on a 4 × 4 lattice with jmax ¼ 1
2
and ag2 ¼ 1 at

different temperatures.

3We do not use the relative error because the exact curve
oscillates around zero, causing a divergent relative error even
though the difference is small.

4This is the only place where we use the periodic boundary
condition throughout the paper. It allows us to obtain all the
eigenenergies and eigenstates on a 5 × 4 honeycomb lattice.
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change much as the lattice size increases. High temperature
in this case should at least be T ≳ 1=6.2 ≈ 0.16. Three
temperatures are shown for comparison in the plot. We see
that the success probability decays exponentially with the
system size, but the high temperature case has a very small
prefactor in the exponent.
For physical application, one must make sure the energy

density ε does not change with the lattice size at fixed a and

β, since it captures the local equilibrium physics. Figure 5
and Eq. (37) imply that one has to increase jmax as the
lattice becomes bigger, in order to keep the energy density
fixed. Our current computing resources forbid us to analyze
this case so we leave it to future work.

F. Numerical integration error

The uncertainty control in numerical integration is well
known. We take it as an individual issue to discuss because
it plays an important role in practical calculations. In
quantum computing, one will calculate Gxy

r ðtÞ at many
time points and then integrate to obtain η as in Eq. (8).
Under a given accuracy, if one can reduce the number of
time points at which to compute Gxy

r ðtÞ on quantum
computers, one will reduce the amount of quantum resour-
ces needed to achieve the accuracy.
To demonstrate the integration error, we define the

Riemann sum version of η̃ðtfÞ as

η̃sumðtfÞ≡ −ðΔtÞ2
XNt

k¼1

kImGxy
r ðkΔtÞ; ð39Þ

where Nt ¼ tf=Δt. Its difference from the exact result
jη̃sumðtfÞ − η̃ðtfÞj is shown in Fig. 10 for a 4 × 4 lattice with
ag2 ¼ 1, jmax ¼ 1

2
and β ¼ 0.3 (in lattice units). Comparing

(a) (b)

(c) (d)

FIG. 8. Trotter error in computing Gxy
r ðtÞ as a function of time on a 3 × 3 lattice with jmax ¼ 1

2
and ag2 ¼ 1 for β ¼ 0.2 in lattice units.

(a) Exact Gxy
r ðtÞ results obtained from Eq. (17). (b) Uncertainty when Trotter decomposition is only applied in real time evolution.

(c) Uncertainty when Trotter decomposition is solely applied in preparing the thermal state. (d) Uncertainty when Trotter decomposition
is applied in both real time evolution and thermal state preparation.

FIG. 9. Success probability of thermal state preparation as a
function of the honeycomb lattice size for several temperatures.
The lattice spacing a is fixed corresponding to ag2 ¼ 1 and
jmax ¼ 1

2
is used.
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with Fig. 7(a), we find the relative error up to tf ¼ 300 is
less than 5% for dt ¼ 0.5 and is roughly 1% for dt ¼ 0.2.
It is clear that the error grows with Δt, and its

magnitude scales as t2f=Nt ¼ tfΔt. One can easily improve
this by using the midpoint value in the Riemann sum,
i.e., 2k−1

2
Gxy

r ð2k−1
2

ΔtÞ, whose error magnitude scales as
t3f=N

2
t ¼ tfðΔtÞ2.

G. Fitting uncertainty

Next we discuss the uncertainty when one extracts the
bare value of the shear viscosity from the infinite time limit
of η̃ðtfÞ. As we have seen in Secs. V B and V C, the result
of η̃ðtfÞ oscillates at late time due to the finite volume and
local truncation effects, and thus, the infinite time limit is
not well defined. To overcome this issue, we fit the time
dependence of η̃ðtfÞ via some function that becomes
constant at large tf. We consider two fitting functions

f1ðtfÞ ¼ a1 þ c1e−b1tf

f2ðtfÞ ¼ a2 þ
�
c2 þ

d2
tf

�
e−b2tf ; ð40Þ

where a1;2; b1;2; c1;2 and d2 are parameters.
Figure 11 shows the fitting results of η̃ðtfÞ as a function

of tf on a 4 × 4 lattice with jmax ¼ 1
2
, ag2 ¼ 0.6 and β ¼

0.2 (in lattice units), where we can observe the exponential
behavior. We use all the 500 time points up to tf ¼ 500

(two neighboring time points are separated by Δtf ¼ 1) in
the fit. The fitting is implemented through the python
scipy curve_fit function. From Eq. (8), the bare value of η
is given by the plateaus coefficient (a1;2) value. We see that
the two functions are very similar. Indeed, the ai values
fitted in Fig. 11 are identical up to fitting uncertainties:
For f1, we find a1 ¼ 0.0587ð3Þ, while for f2, we have
a2 ¼ 0.0590ð4Þ.

At late time, due to the finite volume and local truncation
effects, the signal becomes noisy. In order to reflect this real
time fluctuation in our fitting uncertainty for the plateau
value, we choose different ranges of tf used in the fit and
estimate the average and uncertainty associated with them.
For example, if we choose tf ∈ ½0; 400�; ½0; 500�; ½0; 600�;
½0; 700� or [0, 1000] in the fit, we find the values shown in
Table I when using the function f1. In the result section, we
will use the function f1 and apply this procedure to
estimate the uncertainties.5

H. Number of shots and CNOT gates

Finally, we estimate the number of times (shots) that one
needs to repeat simulating the same quantum circuit and
performing measurements, as well as the number of
CNOT gates needed. It turns out that a huge number of
shots is necessary to evaluate correctly the retarded Green’s
function from the commutator ½Txy

sumðtÞ; Txy
ij ð0Þ� because its

thermal expectation value is very small, around 10−4–10−2.
We assume that we prepare the thermal density matrix with
an efficient quantum algorithm and will neglect the thermal
state preparation part in the following estimate of the
number of shots. As we mentioned previously, the imple-
mented QITPth becomes inefficient when studying big
systems at low temperature due to the large drop of the
success probability. If we include the proposed QITPth
algorithm for the thermal state preparation, the number of
shots estimated below must be divided by the QITPth
success probability.
Given a number of shots nshot and a probability of

measuring the wave function of the quantum circuit
containing the Pauli string Σα of the sign s at time t to
be in the computational basis state jbi, i.e., Ps

αðbÞ, the

FIG. 10. Numerical integration uncertainty as a function of final
time for three different finite elements of time.

FIG. 11. η̃ðtfÞ as a function of time, fitted by two different
functional forms on a 4 × 4 lattice with jmax ¼ 1

2
, ag2 ¼ 0.6 and

β ¼ 0.2 in lattice units.

5For β0 ¼ 0.225 to be introduced in Sec. VI, we use tf ∈ ½0; tf 0�
with tf 0 ¼ 500; 600; 700; 1000 because the fitting function does
not work properly when t0f ¼ 400.
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measurement uncertainty can be computed by the binomial

distribution δPs
αðbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps
αðbÞ½1−Ps

αðbÞ�
nshot

q
. The uncertainty of

the measured retarded Green’s function can be obtained
from Eq. (30)

δGxy
r ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α

X
s¼�

X
b

½hbjTxy
sumð0ÞjbiδPs

αðbÞ�2
r

: ð41Þ

The upper bound of this equation can be obtained by
setting Ps

αðbÞ ¼ 1
dH

; ∀ bwhere dH is the dimension of the
system Hilbert space. Hence, we obtain the upper bound at
a fixed t as

max δGxy
r ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α

X
s¼�

X
b

hbjTxy
sumð0Þjbi2

1
dH

ð1 − 1
dH
Þ

nshot

vuut

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α

X
s¼�

dHd2T
dH

ð1 − 1
dH
Þ

nshot

vuut

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α

X
s¼�

d2T
nshot

s
≤

ffiffiffiffiffiffiffiffiffiffiffiffi
4

d2T
nshot

s
; ð42Þ

where, in the second line, we use that Txy
sumð0Þ is given

by a sum of Pauli-z strings, so jhbjTxy
sumð0Þjbij ≤ dT [note

hbjTxy
sumð0Þjbi is real], and in the third line, ð1 − 1

dH
Þ ≤ 1.

We estimate the absolute value upper bound of the Txy
sumð0Þ

operator to be dT ¼ 3 for a 2 × 2 lattice, dT ¼ 6 for a 3 × 3
lattice, dT ¼ 12 for a 4 × 4 lattice, dT ¼ 19 for a 5 × 5

lattice, where jmax ¼ 1
2
is used for all cases. A rough

estimation gives that dT is smaller than 2NxNy.
Given the retarded Green’s function Gxy

r ðtÞ, the required
number of shots to achieve a relative error ϵ ¼ max δGxy

r ðtÞ
Gxy

r ðtÞ is

given by

nshot ≃
4d2T

ϵ2½Gxy
r ðtÞ�2 ∼

4 × 106d2T
ϵ2

; ð43Þ

where we use that Gxy
r ðtÞ ∼ 10−3. The number of shots

needed increases polynomially with the lattice size because
of the d2T factor in Eq. (43).

The maximum number of CNOT gates that need to be
implemented for studying the real time evolution is given by
70 per time step and lattice point: 64 for implementing the
evolution driven by the magnetic part of the Hamiltonian
and six for the electric part. Implementing the π

4
Σα gate

requires two CNOT gates for one α and one sign. Hence, on
a Nx × Ny honeycomb lattice with jmax ¼ 1

2
, to implement

the π
4
Σα gate and real time evolution with a number of time

steps Nt, the number of CNOT gates we need is

#CNOT ≤ 2þ 70NtNxNy: ð44Þ

I. Classical computational resource estimate

In Appendix C, we study the computational time to
classically simulate the quantum circuit for the real time
evolution via the matrix product state method. The com-
putational time grows exponentially with the Trotter steps
when the bond dimension is large, which is expected to be
necessary to describe states with volume-law entanglement,
as is usually the case when the system thermalizes at late
time. Performing such real time calculations by exact
diagonalization on a large lattice with high jmax truncation
also requires exponentially growing resources. For exam-
ple, the Hilbert space on a 3 × 3 lattice with jmax ¼ 1 is
519233 and that on a 5 × 5 lattice with jmax ¼ 1

2
is 225,

when all external links are in j ¼ 0 states. The needed
space to store a single Txy

ij matrix in the energy eigenbasis is
about 1.1 TB and 4.5 PB, respectively (single-precision
float). Quantum computing may be able to overcome this
difficulty.

VI. RESULTS

A. Classical computing results

1. η=s in the continuum

We will show results of the ratio between the shear
viscosity η and the entropy density s as a function of
temperature in the continuum limit. The continuum limit is
taken via extrapolating toward a ¼ 0. In this work, we will
only consider the renormalization group equation of the
coupling as a varies as written in Eq. (34). Additional
operator renormalization is left for future work which may
lead to a 20% change roughly [51].
We start this procedure by fixing a “physical” temper-

ature, which is kept invariant as lattice spacing a changes.
We set this “physical” temperature T0 (β0 ¼ 1

T0
) to be the

temperature when ag2 ¼ 1, which is a number in the lattice
unit corresponding to ag2 ¼ 1. Then the temperatures at
other couplings (i.e., other lattice spacings) are T ¼ ag2T0

(β ¼ β0
ag2). It would also be useful to fix the temperature

scale by the confinement-deconfinement crossover temper-
ature, which is left for future work.

TABLE I. Different fitting results of a1 for different fitting time
ranges.

Range of tf in fitting Result of a1

[0, 400] 0.0586(4)
[0, 500] 0.0587(3)
[0, 600] 0.0590(4)
[0, 700] 0.0585(4)
[0, 1000] 0.0624(4)
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Using the procedure described in Sec. VG, we obtain the
ηðβ0; ag2Þ values as a function of ag2 for a 4 × 4 lattice with
jmax ¼ 1

2
. Then, using Eq. (36), we compute the entropy

density sðβ0; ag2Þ.
The black circles of Fig. 12 represent the obtained results

for the ratios ηðβ0;ag2Þ
sðβ0;ag2Þ at six different couplings ag2 ¼

f0.4; 0.5; 0.55; 0.6; 0.65; 0.7g for β0 ¼ 0.2. We stop at
ag2 ¼ 0.4 rather than going to smaller couplings since at
such a small coupling, the low-jmax truncation effect is very
large, signaling large oscillation of η̃ðtfÞ at late time, which
deteriorates the fitting of the plateau value. The vertical
uncertainty bars associated with the black points describe
the fitting uncertainties explained in Sec. V G. The fitting
uncertainties are very small except for ag2 ¼ 0.4. It can be
seen that an exponential function can describe the trend of
the black points,

fðag2Þ ¼ c0 þ c1ec2ag
2

; ð45Þ

where c0, c1, c2 are fitting parameters. To quantify the
systematic uncertainty of using the function fðag2Þ, we
choose three different datasets to perform the fit: fag2g1 ¼
f0.5; 0.55; 0.6; 0.65g, fag2g2 ¼ f0.4; 0.5; 0.55; 0.6; 0.65g
and fag2g3 ¼ f0.4; 0.5; 0.55; 0.6; 0.65; 0.7g, which are
shown in Fig. 12 in green, orange and blue, respectively.
The fitted parameter values are listed in Table II. The band
with the same color of the line represents the relative

uncertainty at one sigma of the fits. The band grows at large
ag2 since the fitting function grows exponentially there,
and a small uncertainty in either c1 or c2 leads to a big
uncertainty after proper error propagation.
The continuum limit for η

s at ag2 ¼ 0 is obtained as
c0 þ c1. The results for β0 ¼ 0.2 are shown in the last
column of Table II for the three different fitting ranges of
ag2. The three values are compatible within two-sigma
error bars. However, we observe a change in the continuum
limit value when the data point at ag2 ¼ 0.7 is included in
the fitting. We attribute this to the potentially larger lattice
discretization effect at bigger lattice spacing.
Iterating this procedure for different “physical” temper-

atures T0, we obtain the temperature dependence of η
s in the

continuum. We show in Fig. 13 results from all the three
fitting datasets. The blue and orange dots are slightly
shifted horizontally for better visualization. We do not
study temperatures higher than β0 ¼ 0.15 since higher jmax
truncation is needed to accurately describe highly excited
states, as discussed in Sec. V B. The uncertainty grows
rapidly at lower temperatures (e.g., β0 ¼ 0.225), since not
many states of the theory are effectively contributing to the
retarded Green’s function (suppressed by e−β0E) and then
the density of contributing states is not large enough to
suppress the real time fluctuation in η̃ðtfÞ due to our small
lattice and local Hilbert space truncation, as seen in
Sec. V C.
Our results of ηs are consistent with the holographic result

1
4π within uncertainties, which is shown as the dashed line in

FIG. 12. Results of the coupling dependence of η
s for β0 ¼ 0.2

on a 4 × 4 lattice with jmax ¼ 1
2
. Black points represent the

calculated η
s at different couplings, lines indicate the fitting results

and bands describe one sigma uncertainty of each fitting.

TABLE II. Obtained parameter values from fitting the ag2 dependence of η
s on a 4 × 4 lattice with jmax ¼ 1

2
for

β0 ¼ 0.2 using the exponential function in Eq. (45). The last column lists the obtained values in the continuum limit.

ag2 set for the fitting c0 c1 c2
η
s ðag2 ¼ 0Þ

f0.5; 0.55; 0.6; 0.65g 0.07(2) 14ð12Þ × 10−4 81ð12Þ × 10−1 0.07(2)
f0.4; 0.5; 0.55; 0.6; 0.65g 0.068(16) 14ð9Þ × 10−4 80ð8Þ × 10−1 0.070(16)
f0.4; 0.5; 0.55; 0.6; 0.65; 0.7g 0.118(14) 9ð6Þ × 10−5 12(1) 0.118(14)

FIG. 13. Obtained η
s results as a function of β0 on a 4 × 4 lattice

with jmax ¼ 1
2
. We slightly shift the data horizontally for better

visualization of the three fittings using different datasets.
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Fig. 13. We also observe a trend of decrease in η
s as

temperature increases from the blue dots. However, this
trend is not obvious from the green and orange dots. All
these should be further studied on bigger lattices with
higher jmax truncation in the future to better understand the
finite volume and local Hilbert space truncation effects.

2. Structure of spectral function

We also study the off-diagonal matrix elements of T̃xy in
small frequency ω ranges, which are related to the spectral
function that is defined as

ρxyðωÞ≡ 1

A

Z
dt eiωtTrð½T̃xyðtÞ; T̃xyð0Þ�ρTÞ

¼ 1

AZ

X
n

X
m

2πδðωþ En − EmÞjhnjT̃xyjmij2

× ðe−βEn − e−βEmÞ: ð46Þ

When ω is small, jhnjT̃xyjmij2 is closely related to ρxyðωÞ
ω :

ρxyðωÞ ¼ 1

AZ

X
n

X
m

2πδðωþ En − EmÞjhnjT̃xyjmij2

× e−βEn ½βωþOðω2Þ�: ð47Þ
Our results of jhnjT̃xyjmij on a 4 × 4 lattice with j ¼ 1

2

are shown in Fig. 14 for two values of ag2: 0.6 and 1.0,
where we use eigenstates in the energy windows 15 <
En; Em < 17 and 26 < En; Em < 28, respectively. Previous
calculations showed no structure in ρxyðωÞ

ω when ω is small
(which means it is flat in ω) for strongly coupled N ¼ 4
supersymmetric Yang-Mills theory, while there is a peak
structure in perturbative QCD results [52,53]. Our results
exhibit peak structures at small ω at the two couplings
studied. The peak is broader when the coupling is smaller
(note the x axis scale is different in the two plots in Fig. 14).
Whether these peak structures persist with higher jmax
truncation should be studied in the future.

B. Quantum computing results

We test the quantum circuit proposed in Sec. IV to
evaluateGxy

r ðtÞ on a 2 × 2 lattice with jmax ¼ 1
2
and ag2 ¼ 1

for β ¼ 0.15 (in lattice units). Parts of the thermal state
preparation and real time evolution quantum circuits can be
found in Appendix B.
We will show results of the imaginary part of the

retarded Green’s function (it is purely imaginary) at differ-
ent times, which are calculated from the commutator
½Txy

sumðtÞ; Txy
10ð0Þ�. We do not evaluate the commutator by

using Txy
sumð0Þ at t ¼ 0 because it requires 16 quantum

circuits per time step. Indeed, for a Ni × Nj lattice, the
decomposition of Txy

sum contains 2NiNj Pauli strings [see
Eqs. (20) and (26)]. Since the commutator formula in
Eq. (27) is valid only for a single Pauli string, we need to

prepare different circuits for each of the 2NiNj terms in
Txy
sum; for each commutator, we have two quantum circuits

with different signs in the exponent.
We first run the quantum circuits on the Quantinuum

H2-1E emulator [54] to compute the first two time points
with a real time Trotter step of Δt ¼ 0.025 and a single
imaginary time Trotter step of Δτ ¼ β

2
¼ 0.075. For each

quantum circuit, we measure the evolved circuit, which
collapses the wave function onto some basis state, and
repeat for a total number of nshot ¼ 500 times.6 We expect
that running the same quantum circuits on the real machine
would give us very close results because the Quantinuum
emulator is very close to the real hardware [55,56]. For the
given parameters, the success probability of obtaining the
thermal density matrix is 0.189, which means only 18.9%
of the total 500 shots give useful measurement outcomes.

FIG. 14. Magnitudes of off-diagonal matrix elements of T̃xy on
a 4 × 4 lattice with jmax ¼ 1

2
and two different couplings:

(a) ag2 ¼ 0.6, (b) ag2 ¼ 1.

6It is economically expensive to acquire more shots for the
Quantinuum emulator.
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The required number of CNOT gates to prepare the thermal
state and perform the π

4
Σα gate is 76. For each real time

step, the number of CNOT gates is 34. So the total number
of CNOT gates grow linearly as 76þ 34Nt with the total
real time steps Nt. The number of implemented CNOT
gates differs from Eq. (44) that describes the general case
when we have a seven-body term in the Hamiltonian. Here.
for a 2 × 2 lattice, we only have four-body interactions.
The results obtained from the Quantinuum H2-1E are

shown in blue squares in Fig. 15, where the exact
diagonalization results are also shown for comparison, as
well as the results obtained from the classically evolved
quantum circuits with the same real and imaginary time
Trotter steps, which we call “exact Trotter”. The perfect
agreement between the exact diagonalization results and
the classically evolved quantum circuit results show the
Trotter errors are negligible. The associated statistical
uncertainties with 500 shots are huge since the small
expectation values of the commutator (which are
10−4–10−3) require a significant number of shots (more
than a million) to reconstruct the observable from the
projective samples of the state. To confirm this, we run
the same quantum circuits on the noiseless ibmq_
qasm_simulator IBM simulator [57,58] with nshot ¼
107 and obtain results shown as green circles in Fig. 15. We
observe that the IBM simulator results obtained from 107

shots have much smaller statistical uncertainties and are
compatible with the exact results, demonstrating the val-
idity of the proposed quantum circuit in computing the
retarded Green’s function to obtain the shear viscosity.

VII. CONCLUSIONS

In this work, we considered calculating the shear viscosity
nonperturbatively by using the Hamiltonian lattice approach

for the 2þ 1-dimensional SU(2) Yang-Mills theory. The
shear viscosity is obtained from the real time retarded
Green’s function of the stress-energy tensor via the Kubo
formula. We included the renormalization of the coupling
when taking the continuum limit but not additional operator
renormalization. By exactly diagonalizing the theory on a
4 × 4 honeycomb latticewith jmax ¼ 1

2
, we found the ratio of

the shear viscosity and the entropy density is consistent with
thewell-known holographic result 1

4π at several temperatures.
On the other hand, our results showed a peak structure in the

spectral function divided by the frequency (i.e., ρ
xyðωÞ
ω ) when

the frequency is small, which is qualitatively different from
the holographic result but similar to the perturbative one.
The finite volume and local Hilbert space truncation

effects are probably large in our current studies, which
motivate future calculations with higher jmax values in the
Hilbert space truncation on bigger lattices. These calcu-
lations probably can neither be easily done by exact
diagonalization due to the memory limitation nor by the
matrix product state classical simulation method due to the
exponential growth of the computational time.
So we propose a quantum algorithm to evaluate the shear

viscosity on quantum devices. We analyzed various sys-
tematics of the calculation. We tested the reliability of the
quantum algorithm on a 2 × 2 lattice with jmax ¼ 1

2
and

found the quantum results agree with the classical ones,
despite the huge number of shots needed to accurately
evaluate the retarded Green’s function. Moreover, the
success probability of the QITPth algorithm used in
preparing the thermal state decreases with the lattice size
exponentially, with a very small prefactor in the exponent at
high temperature. Therefore, it would be desirable to
upgrade or develop more efficient methods to prepare
the thermal state for the evaluation of the retarded

FIG. 15. Imaginary part of the retarded Green’s function as a function of time, obtained from exact diagonalization (black solid line),
classically evolved quantum circuits (red dashed line), Quantinuum H2-1E emulator with nshots ¼ 500 shots (blue dots) and noiseless
IBM simulator using 107 shots (green dots). The red dashed line is obtained by connecting nearest points at intervals ofΔt ¼ 0.025with
straight lines. In the right panel, we zoom in on the y axis so the statistical uncertainty associated with the green dots can be seen.
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Green’s function. Future physical calculations of the shear
viscosity beyond our current study would probably require
robust large-scale quantum computers that are capable of
performing a large number of shots.
Future studies should also investigate the shear viscosity

calculations for ð3þ 1ÞD SU(2) pure gauge theory, theo-
ries with dynamical fermions and SU(3) theories by using
the Hamiltonians studied in Refs. [59–63]. It is also
interesting to calculate other transport coefficients such
as the bulk viscosity, heavy quark diffusion coefficient
[64–67] and quarkonium transport coefficients [68–73]. All
of these studies will deepen our understanding of the
nonperturbative real time dynamics in QCD.
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APPENDIX A: AN ESTIMATE OF jmax NEEDED

For the purpose of this estimate, we undo the energy shift
in Eq. (9) and write the Hamiltonian as

H ¼ 3
ffiffiffi
3

p
g2

4

X
links

Ea
i E

a
i þ

4
ffiffiffi
3

p

9g2a2
X
x

ð2 −⬡ðxÞÞ; ðA1Þ

where ⬡ðxÞ is the trace of six lattice Wilson lines over the
fundamental SU(2) indices. So 2 −⬡ðxÞ is positive semi-
definite for any plaquette at x.
Some of the techniques we will use have been used in

early work studying quantum computing for scalar field
theory [75]. We assume the lattice has Nl links labeled as
1; 2;…; Nl, where the electric basis is represented by ji
with i∈ ½1; 2;…; Nl�. We consider an arbitrary wave
function given in the untruncated basis as

jψi ¼
X∞
j1¼0

X∞
j2¼0

� � �
X∞
jNl

¼0

ψðj1; j2;…; jNl
Þjj1; j2;…; jNl

i:

ðA2Þ

If the electric basis is truncated at jmax, the truncated wave
function is then

jψ cuti ¼
Xjmax

j1¼0

Xjmax

j2¼0

� � �
Xjmax

jNl
¼0

ψðj1; j2;…; jNl
Þjj1; j2;…; jNl

i:

ðA3Þ

Its overlap with the untruncated wave function is

hψ jψ cuti ¼
Xjmax

j1¼0

Xjmax

j2¼0

� � �
Xjmax

jNl
¼0

jψðj1; j2;…; jNl
Þj2: ðA4Þ

The lower bound of the overlap can be estimated as

hψ jψ cuti ≥ 1 − Nl max
i∈ links

Pðji > jmaxÞ; ðA5Þ

where Pðji > jmaxÞ is the probability of ji > jmax. Using
the Markov’s inequality, we can show

Pðji > jmaxÞ ≤ Pðji ≥ jmaxÞ ≤
hjii
jmax

≤
hjiðji þ 1Þi

jmax
; ðA6Þ

where hOi denotes the expectation value of the observ-
able O.
If we want to describe all states below the energy Ẽ

[corresponding to the Hamiltonian in Eq. (A1)], we require

Ẽ ≥ hψ jHjψi ≥ hψ j 3
ffiffiffi
3

p
g2

4

X
links

Ea
i E

a
i jψi

≥
3
ffiffiffi
3

p
g2

4
hψ jEa

i E
a
i jψi ¼

3
ffiffiffi
3

p
g2

4
hjiðji þ 1Þi; ðA7Þ

where we have used the fact that in Eq. (A1), the magnetic
term is positive semidefinite and so is each electric term in
the sum over all links. Combining Eqs. (A5), (A6) and (A7)
leads to

hψ jψ cuti ≥ 1 − Nl
4Ẽ

3
ffiffiffi
3

p
g2jmax

: ðA8Þ

If we require the error of describing the wave function at
most to be ϵ, i.e., hψ jψ cuti ≥ 1 − ϵ, we find the minimum of
jmax needed is at most

jmax ¼
4NlẼ

3
ffiffiffi
3

p
g2ϵ

: ðA9Þ
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APPENDIX B: QUANTUM CIRCUIT
FOR 2 × 2 LATTICE

This appendix presents two of the implemented quantum
circuits for the magnetic Hamiltonian term at position (1,1)
when jmax ¼ 1

2
and ag2 ¼ 1 are chosen. Figure 16 shows

the quantum circuit for the QITPth algorithm when β ¼
0.15 and Fig. 17 for the real time evolution with Δt ¼ 0.05.
By implementing single qubit rotations given by the
Hadamard gate H and S ¼ Rzðπ2Þ, we can transform an
arbitrary tensor product of Pauli operators into a tensor
product of Pauli-z operators.

APPENDIX C: MATRIX PRODUCT STATE
CLASSICAL SIMULATION

Classically, one can simulate the quantum circuit by
implementing the matrix product state (MPS) algorithms
[76,77]. We simulate just the real time evolution part of the

quantum circuit on the Aer qiskit emulator with the
MPS flag activated, starting from the default initial state of
the quantum processor j000…0i on a 5 × 5 lattice with
jmax¼ 1

2
, ag2¼1 and Δt¼0.05. We investigate the depend-

ence of the computational time on the bond dimension. Its
value corresponds to a trade-off between faster calculations
(lower value) and better accuracy (higher value).
Figure 18 shows the computational time as a function of

the number of Trotter steps (ts) for different MPS qiskit
emulators [57,58] with bond dimensions BD ¼ 20, 100
and without truncation, namely BD ¼ ∞, which indicates
the exact result. All the simulations are implemented on a
laptop7 with 1024 number of shots. Increasing the number
of shots to obtain more accurate results leads to a further
increase of the computational time.
The blue, green and red circles represent the results with

BD ¼ 20, BD ¼ 100, and BD ¼ ∞, respectively. We inter-
polate these data with two different functions: a line for
BD ¼ 20, fðtsÞ ¼ c200 ts, and an exponential for BD ¼ 100

and BD ¼ ∞, fðtsÞ ¼ cBD
0 ec

BD
1

ts − cBD
0 . In both cases, we

impose that at zero time step, the computational time is 0.
The obtained fitting parameters are reported in the first two
rows of Table III.
In the same table, using the fitted parameters, we

estimate the order of magnitude of the needed computa-
tional time to perform ts time steps. We have to evolve our
system for long time in order to evaluate the shear viscosity
by integrating over time. The total computational time
would be given by the sum of computational times for all
the time steps. Moreover, we have to add the computational
time to prepare the thermal state in realistic analyses. The
exponential trend and the numbers shown in Table III
suggest that it is almost impossible to use the classical MPS
simulation of the quantum circuit to accurately calculate the
shear viscosity (imposing higher BD values).
Indeed, in the quick calculations with a lower bond

dimension in the MPS algorithm, the obtained results
become less accurate after a long evolution time. We
implement the real time evolution using the MPS qiskit
function fixing the bond dimension BD ¼ 20 and BD ¼
100 on a 5 × 5 honeycomb lattice with jmax ¼ 1

2
, ag2 ¼ 1

and Δt ¼ 0.05. Figure 19 shows the obtained relative error
defined as

FIG. 16. QITPth quantum circuit for the magnetic Hamiltonian term at (1,1) position for a 2 × 2 lattice with jmax ¼ 1
2
, ag2 ¼ 1 and

β ¼ 0.15. qi ¼ 0, 1, 2, 3 represent the qubits where we map our physical system, and the q4 qubit indicates the ancilla qubit to be
measured.

FIG. 17. Quantum circuit for the real time evolution driven by
the ði; jÞ ¼ ð1; 1Þ magnetic Hamiltonian term for a 2 × 2 lattice
with jmax ¼ 1

2
, ag2 ¼ 1, and Δt ¼ 0.05. qi ¼ 0, 1, 2, 3 represent

the qubits where we map our physical system.

FIG. 18. Computational time for 1024 shots using qiskit MPS
Aer emulator as a function of the Trotter time step (ts) on a
5 × 5 lattice with jmax ¼ 1

2
, ag2 ¼ 1. Here, we only implement the

real time evolution.Blue, green and red circles indicate the obtained
results for BD ¼ 20, BD ¼ 100 and BD ¼ ∞, respectively. Lines
with the same color represent the fitting results.

7We implement the simulations in jupyter notebook with the
multithreads options on 13th Intel Gen i7-13620H chip.
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ϵMPS
r ¼ jp100ðtÞ − p20ðtÞj

p100ðtÞ
; ðC1Þ

where pBD
ðtÞ indicates the probability of the initial state jii

at time t using BD bond dimension, i.e., pBD
ðtÞ ¼ hijUtjii.

Different lines correspond to the obtained results starting
from a random bit state, generated by random applications
of X gate on the default initial state. We can observe a rapid
increase of the relative error with the time step. Therefore,
the shear viscosity calculations that require long time
evolution would be extremely imprecise using MPS algo-
rithms with low bond dimensions.
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