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Hadron wave packets are prepared and time evolved in the Schwinger model using 112 qubits of IBM’s
133-qubit Heron quantum computer ibm_torino. The initialization of the hadron wave packet is
performed in two steps. First, the vacuum is prepared across the whole lattice using the recently developed
SC-ADAPT-VQE algorithm and workflow. SC-ADAPT-VQE is then extended to the preparation of
localized states, and used to establish a hadron wave packet on top of the vacuum. This is done by
adaptively constructing low-depth circuits that maximize the overlap with an adiabatically prepared hadron
wave packet. Due to the localized nature of the wavepacket, these circuits can be determined on a sequence
of small lattices using classical computers, and then robustly scaled to prepare wave packets on large
lattices for simulations using quantum computers. Time evolution is implemented with a second-order
Trotterization. To reduce both the required qubit connectivity and circuit depth, an approximate quasilocal
interaction is introduced. This approximation is made possible by the emergence of confinement at long
distances, and converges exponentially with increasing distance of the interactions. Using multiple error-
mitigation strategies, up to 14 Trotter steps of time evolution are performed, employing 13,858 two-qubit
gates (with a CNOT depth of 370). The propagation of hadrons is clearly identified, with results that
compare favorably with Matrix Product State simulations. Prospects for a near-term quantum advantage in
simulations of hadron scattering are discussed.
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I. INTRODUCTION

The highest-energy collisions of particles, such as those
that take place in colliders and cosmic-ray events, reveal
and provide insights into the underlying laws of nature.
They tighten constraints on the content, symmetries and
parameters of the Standard Model (SM) [1–6], and provide
opportunities to discover what may lie beyond. In searching
for new physics and emergent phenomena in exotic states
of matter, contributions from known physics must be
reliably predicted with a complete quantification of uncer-
tainties. The associated complexities, particularly from the
strong interactions described by quantum chromodynamics
(QCD), provide challenges for phenomenological model-
ing and classical simulation. Many forefront research
questions in nuclear and particle physics require simula-
tions of systems of fundamental particles that lie far beyond
the capabilities of classical computing.

In principle, the collisions of fundamental and composite
particles (hadrons) could be simulated, from the initial
state through to the final state(s), with sufficiently
capable quantum computers (for recent reviews, see e.g.,
Refs. [7–14]). Well before that point, new insights and
improvements in predictions for such processes may come
fromNISQ-era devices [15]. Progress is beginning to bemade
toward these objectives, with current focus on advancing low-
dimensional models of QCD and the electroweak sector. The
Schwinger model [16] has emerged as one of the early
workhorses for this effort. It isUð1Þ electromagnetism in one
spatial dimension, 1þ 1D, and is a simplifiedmodel of QCD
as it exhibits confinement, has a chiral condensate, and a
spectrum of hadrons that bind to form nuclei. Soon after
early proposals for quantum simulations of lattice gauge
theories appeared [17–27], the first digital quantum simu-
lation of the Schwinger model using four-qubits of a trapped-
ion quantum computer [28,29] was performed. Since then,
there has been considerable progress in simulating Uð1Þ,
SUð2Þ and SUð3Þ lattice gauge theories, predominantly
on small lattices in 1þ 1D and 2þ 1D using quantum
devices [28,30–63], classical simulations [29,64–99]
and tensor-networks [100–128], with exploratory efforts
in 3þ 1D [60]. Included in this progress are the first
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efforts toward fragmentation and hadronization [37,89],
as well as wave packet initialization and evolution
[51,54,55,68,74,75,84,88,97,99,106,107,114,118,124]. The
parallel development of quantum computers, software and
algorithms has led to the first “utility-scale” quantum sim-
ulations being performed late last year [129–137]. Progress
continues to be driven, to a significant degree, by technology
company road maps for developing quantum computing
architectures that are accessible to researchers (see, for
example, Refs. [138–141]).
In this work, the real-time dynamics of composite

particles, “hadrons”, in the lattice Schwinger model are
simulated using IBM’s superconducting-qubit quantum
computers. This work serves as a proof-of-concept, and
builds toward future simulations that will probe highly
inelastic scattering of hadrons and out-of-equilibrium
behavior of strongly interacting matter. Our quantum
simulations proceed with the following steps1:
(1) Prepare the interacting ground state (vacuum);
(2) Establish a localized hadron wave packet on this

vacuum;
(3) Evolve the system forward in time, allowing the

hadrons to propagate;
(4) Measure observables in the final state that detect

hadron propagation.
Crucial to the success of our quantum simulations is the
development of comprehensive suites of scalable tech-
niques that minimize circuit depth and two-qubit entan-
gling gate counts. The methods presented here are informed

by the symmetries and phenomenological features of the
Schwinger model. They are physics-aware techniques with
potential applicability to a broad class of lattice theories.
A significant challenge to performing quantum simu-

lations of the Schwinger model is that, in axial gauge
(Ax ¼ 0) [53], the electric interaction between fermions is
all-to-all.2 This leads to an OðL2Þ scaling in the number of
quantum gates required for time evolution, where L is the
lattice volume. It also requires quantum computers to have
all-to-all connectivity between qubits for efficient simu-
lation, a native feature in current trapped-ion devices, but
which has a large overhead on superconducting devices.
Fortunately, electric charges are screened in the Schwinger
model, causing correlations between distant fermions to
decay exponentially with separation; see Fig. 1(a). In
Sec. II, this screening is used to truncate interactions
between fermions beyond a distance, λ̄, set by the corre-
lation length and the desired level of precision of the
simulation. This improves the scaling of the number
of gates required for time evolution to Oðλ̄LÞ, with
Oðλ̄Þ-nearest neighbor qubit connectivity.
The construction of low-depth quantum circuits for state

preparation is another challenge addressed in this work. In
Ref. [132], building upon ADAPT-VQE [142], we intro-
duced the SC-ADAPT-VQE algorithm, and applied it to
the preparation of the Schwinger model vacuum on 100
qubits of ibm_cusco. SC-ADAPT-VQE uses symmetries
and hierarchies in length scales to determine low-depth

FIG. 1. (a) Mapping the L ¼ 56 lattice onto the qubits of IBM’s quantum computer ibm_torino (bottom left). The dynamical re-
arrangement of charges in the vacuum screens the interactions between electric charges in the Schwinger model, giving rise to an

exponential decay of correlations between spatial-site charges, h ˆ̄Qn
ˆ̄Qnþdi (top and bottom right). (b) The charge screening informs an

efficient construction of the quantum circuits used to simulate hadron dynamics. SC-ADAPT-VQE is used to prepare the vacuum and
wave packet, which are time-evolved using Trotterized circuits implementing e−itĤ with a truncated electric interaction.

1As this work was being completed, similar developments in
the Thirring model were reported in Ref. [99].

2Working in Weyl gauge (At ¼ 0) eliminates the need for all-
to-all connectivity, but requires additional qubits to encode the
gauge field on the links of the lattice.
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quantum circuits for state preparation. Using a hybrid
workflow, quantum circuits are determined and optimized
on a series of small and modest-sized systems using
classical computers, and then systematically scaled to
large systems to be executed on a quantum computer. In
Sec. III, SC-ADAPT-VQE is extended to the preparation of
localized states, and used to establish a hadron wave packet
on top of the interacting vacuum; see Fig. 1(b). The wave
packet preparation circuits are optimized on a series of a
small lattices by maximizing the overlap with an adiabati-
cally prepared wave packet. The locality of the target state
ensures that these circuits can be systematically extrapo-
lated to prepare hadron wave packets on large lattices.
Quantum circuits for state preparation and time evolution

are developed in Sec. IV. The circuit design minimizes the
two-qubit gate count for implementation on devices with
nearest-neighbor connectivity, such as those available from
IBM. A building block for these circuits is a new gate
decomposition for RZZ rotations acting between all pairs of
a set of qubits. This nearest-neighbor decomposition uses
the same number of two-qubit gates as decompositions for
devices with all-to-all connectivity, at the cost of an
increased circuit depth. Results from classical simulations
performed on small lattices are presented in Sec. V. These
simulations quantify the systematic errors originating from
the approximations introduced in previous sections: prepa-
ration of the hadron wave packet with SC-ADAPT-VQE,
use of a truncated Hamiltonian for time evolution, and
Trotterization of the time-evolution operator.
In Sec. VI, the techniques and ideas described in the

previous paragraphs are applied to quantum simulations of
hadron dynamics onL ¼ 56 (112 qubit) lattices using IBM’s
quantum computer ibm_torino. The initial state is pre-
pared using SC-ADAPT-VQE, and time evolution is imple-
mented with up to 14 Trotter steps, requiring 13,858 CNOTs
(CNOT depth 370). After applying a suite of error mitigation
techniques,measurements of the local chiral condensate show
clear signatures of hadron propagation. The results obtained
from ibm_torino are compared to classical simulations
using the cuQuantum Matrix Product State (MPS) simulator. In
these latter calculations, the bond dimension in the tensor
network simulations grows with the simulation time, requir-
ing increased classical computing overhead. Appendix F
provides details about the convergence of the MPS simu-
lations, and Appendix G provides details of our error
mitigation strategy, for our simulations using 112 qubits of
IBM’s quantum computers. This work points to quantum
simulations of more complex processes, such as inelastic
collisions, fragmentation and hadronization, as being strong
candidates for a near-term quantum advantage.

II. SYSTEMATIC TRUNCATION OF THE
ELECTRIC INTERACTIONS

The Schwinger model is quantum electrodynamics in
1þ 1D, the theory of electrons and positrons interacting

via photon exchange. In 1þ 1D, the photon is not a
dynamical degree of freedom, as it is completely con-
strained by Gauss’s law. As a result, the photon can be
removed as an independent field, leaving a system of
fermions interacting through a linear Coulomb potential. In
axial gauge with open boundary conditions (OBCs), zero
background electric field, and using the Jordan-Wigner
(JW) mapping, the Schwinger model Hamiltonian on a
lattice with L spatial sites (2L staggered sites) is given
by [143,144]

Ĥ ¼ Ĥm þ Ĥkin þ Ĥel

¼ m
2

X2L−1
j¼0

½ð−1ÞjẐj þ Î� þ 1

2

X2L−2
j¼0

ðσ̂þj σ̂−jþ1 þ H:c:Þ

þ g2

2

X2L−2
j¼0

�X
k≤j

Q̂k

�
2

;

Q̂k ¼ −
1

2
½Ẑk þ ð−1ÞkÎ�: ð1Þ

The (bare) mass and coupling arem and g, respectively, and
the staggered lattice spacing has been set to one. Due to the
nonperturbative mechanism of confinement, all low-energy
states (the vacuum and hadrons) have charge zero. The
parameters m ¼ 0.5, g ¼ 0.3, which give rise to a mass of
mhadron ≈ 1.1 for the lowest-lying (vector) hadron, will be
used throughout this work. The conserved quantities and
symmetries of this system are total charge, Q̂ ¼ P

k Q̂k,
time reversal and, due to the CPT theorem, the composition
of charge conjugation and parity (CP).3

Due to the removal of the gauge degrees of freedom,
the electric interactions are pair-wise between all of the
fermions. This is problematic for implementing time
evolution e−itĤ on a quantum computer as it implies an
OðL2Þ scaling in the number of gates. In addition, this
interaction requires connectivity between every pair of
qubits for efficient implementation. Fortunately, charges
are screened in confining theories like the Schwinger
model, and correlation functions decay exponentially
between charges separated by more than approximately
a correlation length, ξ. The correlation length is a scale
that emerges from the solution of the theory, and is
naturally related to the hadron mass, ξ ∼ 1=mhadron. This
motivates the construction of an effective Hamiltonian
where interactions between distant charges are removed.
Such an effective interaction is systematically improvable
with exponentially suppressed errors, and only requires
OðξLÞ gates acting between qubits with maximum sepa-
ration ∼ξ.

3The CP symmetry is realized in the Q ¼ 0 sector as the
composition of a spin-flip and a reflection through the midpoint
of the lattice.
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To form the effective interactions, it is beneficial to first
specialize to the Q ¼ 0 sector with zero background
electric field. There are many equivalent ways to express
the interaction due to the freedom of integrating Gauss’s
law from the left or right side of the lattice when
constraining the electric field. However, the desire to
preserve CP symmetry in the truncated theory motivates
starting from a manifestly CP-symmetric interaction,

ĤðQ¼0Þ
el ¼ g2

2

8<
:
XL−2
j¼0

�Xj

k¼0

Q̂k

�2

þ
X2L−1

j¼Lþ1

�X2L−1
k¼j

Q̂k

�2

þ 1

2

��XL−1
j¼0

Q̂j

�2

þ
�X2L−1

j¼L

Q̂j

�2�9=
;: ð2Þ

This has decoupled the interactions between charges on
different halves of the lattice. The most straightforward
way to form the effective interactions would be to
remove Q̂jQ̂jþd terms with d≳ ξ. However, this is inef-
fective because it is only the connected correlations that

decay exponentially; on a staggered lattice, hQ̂ji ≠ 0 and
hQ̂jQ̂jþdi ¼ hQ̂jihQ̂jþdi þOðe−d=ξÞ.
In order to remove the effects of disconnected correla-

tions, consider charges and dipole moments defined on
spatial sites,

ˆ̄Qn ¼ Q̂2n þ Q̂2nþ1; δ̂n ¼ Q̂2n − Q̂2nþ1: ð3Þ

Unlike charges on staggered sites, the expectation value of
a charge on a spatial site is zero, up to exponentially
suppressed boundary effects, see Appendix B of Ref. [132].
Of relevance to constructing the effective Hamiltonian is
that correlations between spatial charges, and between
spatial charges and dipole moments, decay exponentially,

h ˆ̄Qn
ˆ̄Qnþdi ∼ e−d=ξ̄; h ˆ̄Qnδ̂nþdi ∼ e−d=ξ̄; ð4Þ

for d≳ ξ̄,4 where ξ̄ ¼ ξ=2 is the correlation length in units

of spatial sites. Rewriting ĤðQ¼0Þ
el in terms of spatial charges

and dipole moments, and truncating interactions beyond λ̄
spatial sites, it is found that

ĤðQ¼0Þ
el ðλ̄Þ ¼ g2

2
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��
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4
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�
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1

2
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4
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�
3

4
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L
2
þn −

1
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2
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1

4
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2
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XL2−2
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2
−1;nþλ̄Þ

m¼nþ1

�
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2
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ˆ̄QL
2
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þmδ̂L
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This expression holds for even L, and the analogous expression for odd L can be found in Appendix C. For m ¼ 0.5,
g ¼ 0.3, ξ̄ ∼ 0.5, and λ̄ ¼ 1 will be used for demonstration purposes in the remainder of this work. Expressed in terms of
spin operators, the λ̄ ¼ 1 interaction is

ĤðQ¼0Þ
el ð1Þ ¼ g2

2
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4
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ẐLþ2nẐLþ2nþ1
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4
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;: ð6Þ

Factors of the identity have been dropped as they do not impact time evolution, and this expression only holds for even
L ≥ 4. The effects of these truncations on qubit connectivity, number of two-qubit Ẑ Ẑ terms, and the low-lying spectrum
are illustrated in Fig. 2. The number of two-qubit operations required for time evolution now scales linearly with volume
Oðλ̄LÞ, and there are only operations between qubits separated by at most ð2λ̄þ 1Þ staggered sites. This interaction will be

4Dipole-dipole interactions between spatial sites vanish since the Coulomb potential is linear in one dimension.
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used to time evolve a wave packet of single hadrons, and it
is important that the impact of these truncations is small on
the low-lying hadron states. This is illustrated in panel c)
of Fig. 2, where the low-lying spectrum is shown to
rapidly converge with increasing λ̄. There is some transient
behavior presumably due to tunneling beyond the trunca-
tion range. It is important to stress that the exponentially
converging truncations that are made possible by confine-
ment are not obvious at the level of the spin Hamiltonian in

Eq. (1) due, in part, to ˆ̄Qn
ˆ̄Qm having conspiring single Ẑ

and double Ẑ Ẑ terms.

III. SC-ADAPT-VQE FOR STATE PREPARATION

In previous work [132], we introduced the Scalable
Circuits-ADAPT-VQE (SC-ADAPT-VQE) algorithm and
workflow, and used it to prepare the vacuum of the
Schwinger model on 100 qubits of IBM’s quantum com-
puters. Here, SC-ADAPT-VQE will be detailed in
general, and subsequent sections will apply it to prepare
both the vacuum and a hadron wave packet. The goal of
SC-ADAPT-VQE is to determine low-depth circuits for
preparing a target wavefunction that are systematically
scalable to any lattice size. This scalability enables a hybrid
workflow where circuits determined using classical com-
puters are scaled and executed on a quantum computer.
This eliminates the difficult task of optimizing parame-
trized quantum circuits on a quantum computer that has
both statistical noise from a finite number of shots and
device errors [145–147].
The initial steps of SC-ADAPT-VQE parallel those of

ADAPT-VQE [142], and can be summarized as follows:

(1) Define a pool of operators fÔg that respect the
symmetries of the prepared state. Scalability and
phenomenological considerations are used to inform
which operators are included in the pool;

(2) Initialize a state jψ ansatzi with the quantum numbers
of the target state jψ targeti;

(3) Determine a quantity that measures the quality
of the ansatz state. For demonstration, consider
the infidelity between the ansatz and target states,
I ¼ 1 − jhψ targetjψ ansatzij2;

(4) For each operator in the pool Ôi determine
the gradient of the infidelity between the target
and evolved ansatz states, ∂

∂θi
I jθi¼0 ¼ ∂

∂θi
ð1−

jhψ targetjeiθiÔi jψ ansatzij2Þjθi¼0. This is one way of

ranking the relative impact of Ôi on the infidelity;
(5) Identify the operator Ôn with the largest magnitude

gradient. Update the ansatz with the parametrized
evolution of the operator jψ ansatzi → eiθnÔn jψ ansatzi;

(6) Optimize the variational parameters to minimize the
infidelity. The previously optimized values for
θ1;…;n−1 and θn ¼ 0, are used as initial conditions;

(7) Return to step 4 until the desired tolerance is achieved.
ADAPT-VQE returns an ordered sequence of unitary
operators fÛig ¼ fexpðiθiÔiÞg that prepares the target
state up to a desired tolerance. For use on a quantum
computer, the sequence of unitaries can be converted to a
sequence of gates through, for example, Trotterization.
If this introduces Trotter errors, the unitaries in steps 4
and 5 should be replaced by their Trotterized versions,

expðiθiÔiÞ →
Q

j Û
ðiÞ
j . In SC-ADAPT-VQE, the previous

steps are supplemented with the following:

(a) (c)

(b)

FIG. 2. (a) The qubit coupling matrix for select electric Hamiltonians with L ¼ 12: (i) shows the coupling matrix without truncation
[Eq. (1)], ðiiÞ shows the impact of restricting to the Q ¼ 0 sector [Eq. (2)], and ðiiiÞ corresponds to additionally truncating the
interaction between charges separated by more than λ̄ ¼ 1 spatial sites [Eq. (6)]. (b) The number of Ẑ Ẑ terms in different versions of the
electric Hamiltonian as a function of L, showing the quadratic L2 and linear λ̄L growth. (c) The effects of truncating the electric
interaction on the low-lying CP-even andQ ¼ 0 spectrum as a function of λ̄ for L ¼ 12. The transparency of the lines connecting energy
levels is proportional to the overlap of their corresponding eigenstates.
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(8) Repeat ADAPT-VQE for a series of lattice volumes
fL1; L2;…; LNg using a classical computer (or a
small partition of a quantum computer);

(9) Extrapolate the sequence of unitary operators
ffÛigL1

; fÛigL2
;…; fÛigLN

g to the desired L. This
sequence is expected to converge for states with
localized correlations. L can be arbitrarily large
and beyond what is accessible using a classical
computer.

The sequence of extrapolated unitaries fÛigL can then be
used to prepare the target state on a quantum computer.
This provides an explicit implementation of systematically-
localizable [148] and fixed-point [149] quantum operators
and circuits.

A. Vacuum preparation

This section will review the use of SC-ADAPT-VQE to
prepare the vacuum presented in Ref. [132]. The operator
pool is constrained by the symmetries and conserved
charges of the Schwinger model vacuum; total charge,
CP and time reversal. In addition, there is an approximate
translational symmetry in the volume if L ≫ ξ, that is
broken by the boundaries. This motivates organizing the
pool into volume operators, ÔV , that are translationally
invariant, and surface operators, ÔS, whose support is
restricted to the boundary. For the range of m and g
explored in Ref. [132], including m ¼ 0.5, g ¼ 0.3, an
effective pool of operators is

fÔgvac ¼ fÔV
mhðdÞ; ÔS

mhð0; dÞ; ÔS
mhð1; dÞg;

ÔV
mhðdÞ≡ i½Θ̂V

m; Θ̂V
h ðdÞ� ¼

1

2

X2L−1−d
n¼0

ð−1ÞnðX̂nẐ
d−1Ŷnþd − ŶnẐ

d−1X̂nþdÞ;

ÔS
mhð0; dÞ≡ i½Θ̂S

mð0Þ; Θ̂V
h ðdÞ� ¼

1

4
ðX̂0Ẑ

d−1Ŷd − Ŷ0Ẑ
d−1X̂d − Ŷ2L−1−dẐ

d−1X̂2L−1 þ X̂2L−1−dẐ
d−1Ŷ2L−1Þ;

ÔS
mhð1; dÞ≡ i½Θ̂S

mð1Þ; Θ̂S
hðdÞ� ¼

1

4
ðŶ1Ẑ

d−1X̂dþ1 − X̂1Ẑ
d−1Ŷdþ1 þ Ŷ2L−2−dẐ

d−1X̂2L−2 − X̂2L−2−dẐ
d−1Ŷ2L−2Þ: ð7Þ

Time reversal invariance implies that thewavefunction is real,
and constrains the pool operators to be imaginary and
antisymmetric, e.g., i times the commutators of orthogonal
operators Θ̂. Here, Θ̂V

m (Θ̂S
m) is a volume (surface) mass term

and Θ̂V
h ðdÞ (Θ̂S

hðdÞ) is a generalized volume (surface) hopping
term that spans an odd-number of fermion sites,d. Onlyd odd
is kept as d even breaks CP. Unlabeled Ẑs act on the qubits
between leftmost and rightmost Pauli operators.5

The individual terms in each operator do not all commute,
and they are converted to gates through a first-order
Trotterization, expðiθiÔiÞ →

Q
j Û

ðiÞ
j , introducing (higher-

order) systematic deviations from the target unitary operator.
The initial state for SC-ADAPT-VQE is chosen to be the
strong-coupling vacuum jΩ0i ¼ j↑↓↑↓…↑↓i where every
fermion site is unoccupied. To determine the quality of the
ansatz state in step-3 of SC-ADAPT-VQE, the expectation
value of the Hamiltonian E ¼ hψ ansatzjĤjψ ansatzi is deter-
mined, with the gradient in step-4 being computed via
∂

∂θi
Ejθi¼0 ¼ ihψ ansatzj½Ĥ; Ôi�jψ ansatzi. The convergence of

this algorithm and workflow was studied in detail in
Ref. [132] as a function of the number of SC-ADAPT-
VQE steps. For m ¼ 0.5, g ¼ 0.3, it was found that two
steps of SC-ADAPT-VQE, was sufficient to achieve percent-
level precision in relevant observables. Both 2-step (7.8
CNOTs/qubit) and 3-step (21 CNOTs/qubit) preparations

have been performed on up to 100 qubits of IBM’s quantum
computers.

B. Hadron wave packet preparation

SC-ADAPT-VQE can be used to prepare a state that has
large overlap with an adiabatically prepared hadron wave
packet. An alternative method for preparing wave packets
is discussed in Appendix E. In a lattice theory of interacting
scalar fields, a complete procedure for preparing single
particle wave packets has been proposed by Jordan, Lee
and Preskill [150,151].6 In their method, wave packets are
first prepared in free scalar field theory, and then the λϕ4

interaction is adiabatically “turned on”. This method runs
into difficulty in the Schwinger model because the single
particle states (hadrons) of the interacting theory are
nonperturbatively different from the single particle states
of the noninteracting theory (electrons). To overcome this,
consider starting in the interacting theory withm ¼ 0.5 and
g ¼ 0.3, and adiabatically turning on the kinetic term. The
initial Hamiltonian is diagonal in the computational z-basis,
and the ground state is the same as the infinite coupling
(antiferromagnetic) vacuum jΩ0i. The infinite-coupling
vacuum provides a suitable starting configuration upon

5For ÔV
mhðdÞ and ÔS

mhð0; dÞ, the range of d is d∈
f1; 3;…2L − 3g, and for ÔS

mhð1; dÞ it is d∈ f1; 3;…2L − 5g.

6Other proposals for creating initial states
and wave packets can be found in
Refs. [51,54,55,68,74,75,84,88,97,99,106,107,114,118,152], in-
cluding recent work on creating hadronic sources in the boson-
ized form of the Schwinger model using circuit-QED [124].
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which to build the wave packet as it correctly encodes the
long-distance correlations that characterize this confining
theory.7 On this vacuum, a hadron can be excited by
creating an e−eþ pair on adjacent staggered sites. By
preparing a superposition of such hadrons at different
locations, an arbitrary wave packet can be prepared.
Here, the focus will be on preparing a localized hadron
wavepacket that is centered in the middle of the lattice to

preserve CP and minimize boundary effects. A suitable
initial state is

jψWPiinit ¼ X̂L−1X̂LjΩ0i: ð8Þ

To transition to a hadron wave packet in the full theory, this
state is taken through two steps of adiabatic evolution with
a time-dependent Hamiltonian (illustrated in Fig. 3),

ĤadðtÞ ¼
8<
:

Ĥm þ Ĥel þ t
T1

h
Ĥkin − 1

2
ðσþL−2σ−L−1 þ σþLσ

−
Lþ1 þ H:c:Þ

i
0 < t ≤ T1;

Ĥm þ Ĥel þ Ĥkin −
�
1 − t−T1

T2

�
1
2
ðσþL−2σ−L−1 þ σþLσ

−
Lþ1 þ H:c:Þ T1 < t ≤ T1 þ T2:

ð9Þ

For t∈ ð0; T1�, the kinetic term is adiabatically turned on
everywhere except for the links connecting the initial wave
packet to the rest of the lattice. This mitigates spatial
spreading of the initial wave packet (see times ta;b;c;d in
Fig. 3). Next, for t∈ ðT1; T2�, the remaining two links are
adiabatically turned on. These remaining links are spatially
localized (act over a pair of staggered sites), and therefore
primarily couple to high-momentum (energy) states. This
implies that the energy gap relevant for the adiabatic

evolution is large, and the second evolution can be per-
formed much faster than the first evolution. There is a small
amount of wave packet spreading (times te;f), which is
undone by evolving backwards in time for a duration TB ¼
T2=2 with the full Hamiltonian Ĥ from Eq. (1) (time tg).
Explicitly, the hadron wave packet is given by

jψWPi ¼ eiTBĤT e−i
R

T1þT2
0

dtĤadðtÞjψWPiinit; ð10Þ

where T denotes time ordering. For practical implementa-
tion, the evolution of the time-dependent Hamiltonian can be
accomplished with Trotterization,

FIG. 3. Adiabatic state preparation for L ¼ 12. Upper panels: The lowest 200 eigenenergies of ĤadðtÞ as a function of adiabatic turn-
on time, the energy of the state jψWPðtÞi, and the final overlap between jψWPi and the eigenstates of Ĥ, jEii. Lower panels: Evolution of
the chiral condensate hχ̂ji, defined in Eq. (17), of jψWPðtÞi for a selection of times, ta − tg, with the empty markers showing the hχ̂ji of
the vacuum jψvaci of Ĥ.

7The strong-coupling limit has been extensively studied,
particularly in the context of lattice QCD. See, for example,
Ref. [153] and references therein.
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T e−i
R

T1þT2
0

dtĤadðtÞ ≈ T e−i
P

NT−1
n¼0

δtĤad½ðnþ0.5Þδt�

≈ T
YNT−1

n¼0

e−iðδtÞĤad½ðnþ0.5Þδt�; ð11Þ

whereNT is the number of Trotter steps and δt ¼ T1þT2

NT
is the

step size. For the simulation parameters chosen in this work,
we find that T1 ¼ 200, T2 ¼ 10 and δt ¼ 0.2 are sufficient
for adiabatic evolution. The final state is localized (within a
few sites), and primarily consists of single-hadron states (see
overlaps in Fig. 3).
In principle, this adiabatic procedure could be used to

prepare a hadronic wave packet on a quantum computer.
In practice, the required circuits are too deep to run on

current devices. To address this, SC-ADAPT-VQE is used
to find low-depth circuits that prepare an approximation to
the adiabatically determined wave packet. These low-depth
circuits act on the vacuum, whose preparation was outlined
in the previous section. Scalability of the state preparation
circuits is expected because the constructed wave packet is
localized away from the boundaries, and is built on top of
a vacuum state that has converged exponentially in L to its
infinite-volume form [132]. As both the initial state
(vacuum) and target state (single hadron) are CP even
and charge zero, the operators in the pool must conserve
charge and CP. An operator pool that is found to produce
a wavefunction that converges exponentially fast in circuit
depth is,

fÔgWP ¼ fÔmhðn; dÞ; Ôhðn; dÞ; ÔmðnÞg;

Ômhðn; dÞ ¼
1

2
½X̂L−nẐ

d−1ŶL−nþd − ŶL−nẐ
d−1X̂L−nþd þ ð−1Þdþ1ð1 − δL−n;γÞðX̂γẐ

d−1Ŷγþd − ŶγẐ
d−1X̂γþdÞ�;

Ôhðn; dÞ ¼
1

2
½X̂L−nẐ

d−1X̂L−nþd þ ŶL−nẐ
d−1ŶL−nþd þ ð−1Þdþ1ð1 − δL−n;γÞðX̂γẐ

d−1X̂γþd þ ŶγẐ
d−1ŶγþdÞ�;

ÔmðnÞ ¼ ẐL−n − ẐL−1þn; ð12Þ

where γ ¼ L − 1þ n − d, n∈ f1;…; Lg, and the ð1 −
δL−n;γÞ coefficients prevent double counting operators that
are already CP-symmetric. The pool operators are inspired
by the Hamiltonian, with ÔmðnÞ being a masslike operator,
Ôhðn; dÞ a generalized hopping operator spanning d
staggered sites, and Ômhðn; dÞ being proportional to their
commutator. Note that unlike the operator pool used to
prepare the vacuum, fÔgWP is not constrained by time
reversal or translational symmetry, and the individual
terms in each operator commute. Thus, there are no Trotter
errors when the corresponding unitaries are converted to
circuits.

The initial state for SC-ADAPT-VQE is chosen to be
jψ ansatzi ¼ jψvaci, as this correctly reproduces the vacuum
outside of the support of the hadron wave packet. In this
section, all calculations are performed with exact diago-
nalization, and the initial state is the exact vacuum. In
Secs. IV and VI, the initial state will be the SC-ADAPT-
VQE prepared vacuum. Using the exact vacuum instead of
the SC-ADAPT-VQE vacuum prevents operators from
being chosen that improve the vacuum but do not build
out the local profile of the wave packet. The quality
of the prepared state is determined by the infidelity of
the ansatz state with the adiabatically prepared state from
Eq. (10),

I ¼ 1 − jhψWPjψ ansatzij2: ð13Þ

Results obtained from performing the steps in SC-ADAPT-
VQE (outlined in the introduction of Sec. III) for L ¼ 7–14
are shown in Fig. 4 and Table I.8 Up to the tolerance of the
optimizer, the variational parameters have converged in L,

FIG. 4. Infidelity of the wave packet, defined in Eq. (13),
prepared with multiple steps of SC-ADAPT-VQE for a range
of L.

8The vacuum maximizes the infidelity (has I ¼ 1) with the
adiabatically determined state as there is no overlap between the
vacuum and the single-hadron states that make up the wave
packet. This presents a problem in step 4 of SC-ADAPT-VQE
since ∂

∂θi
I is zero for all operators in the pool. To overcome this,

for the first iteration of SC-ADAPT-VQE, the parametrized
evolution of the ansatz with each operator is determined sepa-
rately. The operator that minimizes the infidelity is chosen for the
first operator in the SC-ADAPT-VQE ansatz.
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and therefore the L ¼ 14 parameters and operator ordering
can be used to prepare a hadron wave packet for any L > 14.
Initially, short-range operators localized around the center of
the wave packet are selected by SC-ADAPT-VQE.9 This is
as expected for a wave packet composed of single hadron
states with short correlation lengths, that is approximately a
delta function in position space.10 The convergence of the
infidelity is found to be exponential in the step of the
algorithm (circuit depth), and independent of L. This is in
agreement with previous discussions on localized states
being built on top of an exponentially converged vacuum.
Note that the convergence in L is smoother for the SC-
ADAPT-VQE wave packet than for the vacuum as the
boundary effects are much smaller (see Fig. 5 in Ref. [132]).
Two steps of SC-ADAPT-VQE reaches an infidelity of 0.05,
and will be used in the remainder of the work to prepare the
wave packet.

IV. QUANTUM CIRCUITS

In this section, the quantum circuits that prepare hadron
wave packets and implement time evolution are developed.

These circuits are constructed to minimize CNOT
count and circuit depth in order to reduce the effects of
device errors. In addition, with the goal of running on
IBM’s quantum computers, the circuits are optimized for
nearest-neighbor connectivity. These circuits are verified
using the QISKIT classical simulator, and the systematic
errors arising from the approximations used in this work are
quantified.

A. Quantum circuits for vacuum and hadron wave
packet preparation

In order to prepare the SC-ADAPT-VQE vacuum on a
quantum computer, the Trotterized exponentials of the pool
operators in Eq. (7) are converted to sequences of gates,
which was treated in detail in previous work [132]. The
circuit building technique follows the strategy of
Ref. [168], where an “X”-shaped construction is used to
minimize circuit depth and CNOT gate count. Preparing the
SC-ADAPT-VQE hadron wave packet requires converting
the exponential of the pool operators in Eq. (12) to
sequences of gates. The individual terms in each operator
in the wave packet pool commute, and therefore first-order
Trotterization is exact. The corresponding circuits extend
those used for preparing the vacuum, and are shown in
Figs. 5 and 6 for the 2-step SC-ADAPT-VQE wave packet
used in subsequent sections (see Appendix D for the
10-step SC-ADAPT-VQE circuits). These circuits are
arranged to maximize cancellations between CNOTs,
and minimize the circuit depth.

B. Quantum circuits for time evolution

To perform time evolution, a second-order Trotterization
of the time-evolution operator with the λ̄ ¼ 1 truncated
electric interaction will be used,

ÛðTrotÞ
2 ðtÞ ¼ e−i

t
2
Ĥkin‐1e−i

t
2
Ĥkin‐0e−itĤme−itĤ

ðQ¼0Þ
el ð1Þ

× e−i
t
2
Ĥkin‐0e−i

t
2
Ĥkin‐1 ; ð14Þ

where Ĥkin‐0 (Ĥkin‐1) are the hopping terms between
even (odd) staggered sites. This ordering was chosen to

TABLE I. The operator ordering and variational parameters that prepare the ten step SC-ADAPT-VQE hadron wave packet. Results
are shown for L ¼ 7 – 14, and were obtained from a classical simulation using exact exponentiation.

θi

L Ômhð1; 1Þ Ômhð2; 2Þ Ômhð3; 2Þ Ômhð3; 1Þ Ômhð5; 4Þ Ôhð2; 2Þ Ômhð4; 4Þ Ômhð4; 5Þ Ôhð4; 4Þ Ômhð2; 3Þ
7 1.6370 −0.3154 −0.0978 0.0590 −0.0513 −0.0494 −0.0518 −0.0389 0.0359 0.0528
8 −1.6371 −0.3157 −0.0976 −0.0615 −0.0499 0.0493 −0.0515 0.0391 −0.0360 −0.0529
9 1.6370 −0.3155 −0.0980 0.0609 −0.0509 −0.0493 −0.0515 −0.0390 0.0361 0.0527
10 −1.6370 −0.3154 −0.0984 −0.0598 −0.0501 0.0493 −0.0515 0.0389 −0.0360 −0.0527
11 1.6370 −0.3155 −0.0984 0.0598 −0.0507 −0.0492 −0.0515 −0.0390 0.0360 0.0527
12 −1.6371 −0.3156 −0.0975 −0.0616 −0.0505 0.0493 −0.0516 0.0391 −0.0361 −0.0528
13 1.6371 −0.3157 −0.0973 0.0617 −0.0506 −0.0494 −0.0516 −0.0391 0.0359 0.0529
14 −1.6370 −0.3155 −0.0981 −0.0602 −0.0506 0.0493 −0.0515 0.0390 −0.0359 −0.0527

9It is interesting to note the similarities between this wave packet
construction, and the construction of hadronic sources and sinks in
Euclidean-space lattice QCD calculation. Here, the initial interpolat-
ing operator for the hadronic wave packet is being “dressed” by an
increasing number of operators with exponentially improving
precision. In Euclidean-space lattice QCD, a matrix of correlation
functions between a set of sources and sinks is diagonalized to
provide a set of correlators with extended plateaus toward shorter
times, corresponding to the lowest-lying levels in the spectrum that
have overlap with the operator set. This “variational method”, e.g.,
Refs. [154–156], provides upper bounds to the energies of the states
in the spectrum. The sources and sinks for hadrons are operators
constructed in terms of quark and gluon fields, and correlation
functions are formed by contracting field operators of the sinks with
those of the sources (or with themselves when both quark and anti-
quark operators are present). This becomes computationally chal-
lenging with increasingly complex operator structures, as required,
for instance, to study nuclei, see for example Refs. [157–167].

10The variational parameters change sign between even- and
odd-values of L if d is odd (even) in Ômh (Ôh). Also, note that Ôm
is not chosen until after step 10 in the SC-ADAPT-VQE ansatz.
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maximize the cancellations between neighboring CNOTs.
A second-order Trotterization is used as it provides
a good balance between minimizing both circuit depth
and Trotter errors. In addition, the property of second-order

Trotterization ÛðTrotÞ
2 ðtÞÛðTrotÞ

2 ð−tÞ ¼ 1̂ enables a powerful
error-mitigation technique [50], see Sec. VI.
The Trotterization of Ĥm only involves single qubit Ẑ

rotations, which has a straightforward circuit implementa-
tion. The Trotterization of the kinetic terms uses the right
circuit in Fig. 5 arranged in a brickwall pattern to minimize
circuit depth, and requires 4ð2L − 1Þ CNOTs per second-
order Trotter step. The Trotterization of ĤðQ¼0Þ

el ð1Þ in
Eq. (6) requires nearest-neighbor, next-to-nearest-neighbor
and next-to-next-to-nearest-neighbor entangling RZZ ¼
e−i

θ
2
Ẑ Ẑ operations acting between qubits on adjacent spatial

sites. Organizing into blocks of adjacent spatial sites, the
problem is to find a nearest-neighbor CNOT decomposition
for RZZs between all pairs of Nq ¼ 4 qubits. Generalizing

to any Nq ≥ 3, a strategy for constructing these circuits,
depicted in Fig. 7, is
(1) Group all the rotations that share the top qubit;
(2) For each block of grouped rotations, use the bridge

decomposition to convert the long-range CNOTs
into nearest neighbor ones. Simplify the CNOTs
within each block;

(3) Simplify the CNOTs from neighboring blocks.
These circuits have a total number of CNOTs N and circuit
depth D given by

N ¼ 2

�
Nq

2

�
; D ¼ NqðNq − 2Þ þ 3: ð15Þ

Compared to the circuits before the nearest-neighbor
decomposition (e.g., using the circuits in step 1.), this
does not introduce any additional CNOTs, but has a depth
that scales as OðN2

qÞ compared to OðNqÞ. The Nq ¼ 4

FIG. 5. Circuits implementing RðXYÞ
� ðθÞ ¼ exp½−i θ

2
ðŶ X̂ � X̂ ŶÞ� (left) and RðXXÞ

� ðθÞ ¼ exp½−i θ
2
ðX̂ X̂ � Ŷ ŶÞ� (right).

FIG. 6. Circuits implementing the unitaries that prepare the 2-step SC-ADAPT-VQE wave packet. The circuits for the individual
blocks RðXYÞ

� ðθÞ and RðXXÞ
� ðθÞ are shown in Fig. 5.

FIG. 7. An efficient nearest-neighbor CNOT decomposition for RZZs between all pairs of Nq qubits.
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circuit used for the λ̄ ¼ 1 interaction contributes 12ðL − 2Þ
CNOTs per second-order Trotter step. Circuits implement-
ing a full second-order Trotter steps are shown in Fig. 8.
Taking into account the CNOT cancellations between the
electric and kinetic terms, as well as between adjacent
Trotter steps, the total number of CNOTs required is

# of CNOTs for NT 2
nd order Trotter steps with

λ̄ ¼ 1∶ 19L − 28þ ð17L − 26ÞðNT − 1Þ: ð16Þ

For L ¼ 56, this is 926 CNOTs per additional second-order
Trotter step, comparable to the 890 CNOTs required for the
2-step SC-ADAPT-VQE vacuum and hadron wave packet
preparation.

V. QUANTIFYINGTHE SYSTEMATIC ERRORSOF
THE APPROXIMATIONS

The systematic errors that are introduced by the approx-
imations we have employed can be analyzed and quantified
by performing end-to-end classical simulations using
QISKIT. The approximations are as follows:
(1) The vacuum is prepared using the 2-step

SC-ADAPT-VQE circuits. This furnishes an infidel-
ity density of IL ¼ I=L ¼ 0.01 with the exact
vacuum11;

(2) A hadron wave packet is prepared using the 2-step
SC-ADAPT-VQE circuits. This furnishes an infidel-
ity of I ¼ 0.05 with an adiabatically prepared wave
packet;

(3) A Hamiltonian with the electric interactions trun-
cated beyond λ̄ ¼ 1 spatial sites is used to evolve the
prepared wave packet forward in time;

(4) The time-evolution operator is implemented in
quantum circuits using a second-order Trotteri-
zation.

This section will focus on a system size of L ¼ 12, where
the classical simulations can be performed exactly. The
circuit structure and variational parameters for the 2-step
SC-ADAPT-VQE vacuum and wave packet preparation are
given in Table II. Note that the (2-step) wave packet
parameters differ slightly from those in Table I, which
are for the 10-step SC-ADAPT-VQE ansatz.

FIG. 8. A quantum circuit that implements a single second-order Trotter step associated with the λ̄ ¼ 1 truncated Hamiltonian in
Eq. (6) for L ¼ 8. The orange boxes implement the kinetic term (the right circuit in Fig. 5) and the blue “barbells” are Ẑ Ẑ rotations. With
this ordering, some of the CNOTs in the barbells can be combined with the ones in the kinetic terms. The αi angles can be derived from
Eq. (6) and are given in Appendix D.

TABLE II. The structure of the SC-ADAPT-VQE preparation
circuits for the vacuum and wave packet. The pool operators in
the second row are defined in Eqs. (7) and (12). The parameters
for the L ¼ 12 vacuum were determined in Ref. [132], and for the
L ¼ 12 wave packet in Sec. III B. The wave packet parameters
for L ¼ 56 are the same as those for L ¼ 14, and the vacuum
parameters are extrapolated via an exponential fit (in L).

Vacuum Wave packet

ÔV
mhð1Þ ÔV

mhð3Þ Ômhð1; 1Þ Ômhð2; 2Þ
L ¼ 12 0.30738 −0.04059 −1.6492 −0.3281
L ¼ 56 0.30604 −0.03975 −1.6494 −0.3282

11The infidelity density IL is a relevant measure for the
vacuum as the state is being established across the whole lattice,
whereas the infidelity is a relevant figure of merit for the
(localized) hadron wave packet.
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To identify the propagation of hadrons, we choose to
measure the local chiral condensate,

χ̂j ¼ ð−1ÞjẐj þ Î; ð17Þ

with eigenvalues of 0 (staggered site j is empty) and 2
(staggered site j is occupied by a fermion). It is useful to
define the expectation value of the local chiral condensate
relative to its vacuum expectation value,

X jðtÞ ¼ hψWPjχ̂jðtÞjψWPi − hψvacjχ̂jðtÞjψvaci: ð18Þ

Here, χ̂jðtÞ is the time-evolved observable; with exact
exponentiation of the full Hamiltonian this would be
χ̂jðtÞ ¼ eitĤ χ̂je−itĤ. When using a truncated interaction
and/or Trotterization, the time-evolution operator changes.
The states jψvaci and jψWPi represent the prepared vacuum
and wave packet, either exact or using the SC-ADAPT-
VQE approximation. The subtraction of the vacuum
expectation value is also time dependent because, for
example, the SC-ADAPT-VQE prepared vacuum is not
an eigenstate of the truncated Hamiltonian. This time-
dependent subtraction removes systematic errors that are
present in both the wave packet and vacuum time evolution.

It also proves to be an effective way to mitigate some effects
of device errors, see Sec. VI.
Results obtained for the time evolved chiral condensate

are shown in Fig. 9 with four different levels of approxi-
mation. Small errors are introduced with each approxima-
tion, but the results are found to recover expectations within
the uncertainties of the approximations. Panel ðivÞ in Fig. 9
shows the time-evolution operator approximated with 2⌈ t

2
⌉

second-order Trotter steps, giving a maximum step size of
δt ¼ 1. These step sizes introduce minimal (Trotter) errors,
and will be used for the time evolution using a digital
quantum computer presented in the next section. The
propagation of hadrons outward from an initially localized
wave packet is clearly identified in deviations of the local
chiral condensate from its vacuum expectation value. The
oscillations of the condensate at the center of the wave
packet are consistent with expectations, and are discussed
further in Appendix A. Due to the symmetry of the initial
state, the hadron has equal amplitude to propagate in either
direction, with a profile that is bounded by the speed of light
(1 staggered site per unit time).
The (composite) hadrons that make up the wave packet

are (bosonic) vector particles, and some features of the
hadron dynamics can be qualitatively understood in the
simpler setting of noninteracting 1þ 1D scalar field theory.

FIG. 9. The effects of the approximations introduced in this work on the time evolution of the local chiral condensate X jðtÞ, given in
Eq. (18). (i) Without approximations: time evolution of the adiabatically-prepared hadron wave packet with exact exponentiation of the
full Hamiltonian, Ĥ in Eq. (1). ðiiÞ Approximate initial state preparation; time evolution of the 2-step SC-ADAPT-VQE hadron wave
packet built on top of the 2-step SC-ADAPT-VQE vacuum with exact exponentiation of the full Hamiltonian. ðiiiÞ The same as ðiiÞ, but
with the electric interaction replaced with the λ̄ ¼ 1 truncated interaction in Eq. (6). ðivÞ The same as ðiiiÞ, but with time evolution
implemented with 2⌈ t

2
⌉ second-order Trotter steps (maximum step size of δt ¼ 1).
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In particular, the light cone structure of propagating
hadrons, the damped oscillations at the origin of the wave
packet and the effects of OBCs in both theories are similar.
This is treated in detail in Appendix A, where the (text-
book) example of a localized classical source coupled to a
scalar field in 1þ 1D is treated in the continuum and on the
lattice, and in Appendix B, where OBCs are compared to
periodic boundary conditions (PBCs).

VI. REAL-TIME SIMULATIONS USING IBM’S
DIGITAL QUANTUM COMPUTERS

The end-to-end simulations performed in the previous
section using QISKIT and classical computers are scaled up
to L ¼ 56 (112 qubits) and executed on IBM’s 133-qubit
ibm_torino Heron processor. The scalability of the
SC-ADAPT-VQE vacuum preparation circuits was dem-
onstrated in Ref. [132], where it was shown that the
variational parameters are reproduced well by an exponen-
tial in L. This enables the extrapolation of the state
preparation circuits, determined for L ≤ 14, to arbitrarily
large L. In principle, a similar exponential convergence of
parameters for the hadronic wave packet preparation
circuits is expected. However, as shown in Sec. III B,
the operator ordering and variational parameters of the SC-
ADAPT-VQE wave packet preparation have converged up
to the tolerance of the optimizer by L ¼ 14. Therefore, the
circuit structure and parameters determined for L ¼ 14 can
be used to initialize the L ¼ 56 hadron wave packet. The
operator ordering and parameters used to prepare the 2-step
SC-ADAPT-VQE vacuum and 2-step SC-ADAPT-VQE
hadron wave packet for L ¼ 56 are given in Table II.
Error mitigation is essential for successful simulations

utilizing large quantum volumes [130]. Here, our error
mitigation methods are outlined, and a more detailed
discussion can be found in Appendix G. Through cloud-
access, the circuits are sent to ibm_torino using the
QISKIT sampler primitive, which includes both dynamical
decoupling [169–171] and M3 measurement mitigation
[172]. To mitigate coherent two-qubit gate errors,
Pauli twirling [173] is used on the native two-qubit gates,
control-Z for ibm_torino. After twirling, we assume that
the coherent two-qubit gate errors are transformed into
statistically independent and unbiased incoherent errors,
which can bemodeled by a Pauli noise channel. Observables
are then estimated using operator decoherence renormaliza-
tion (ODR) [132], which extends decoherence renormaliza-
tion [50,53,60,174] to large systems.12 To implement ODR,
two kinds of circuits are run on the device; a “physics”
circuit, and a “mitigation” circuit. For a simulation of wave
packet dynamics, the physics circuit implements the time
evolution of either the wave packet or the vacuum [to

compute X jðtÞ in Eq. (18)]. The mitigation circuit(s), with
a priori known error-free (predicted) results, and the physics
circuits have similar structures and similar error profiles.
From themitigation circuits, deviations ofmeasured observ-
ables hÔimeas from their predicted values hÔipred are used to
compute the depolarizing noise parameters,

ηO ¼ 1 −
hÔimeas

hÔipred
: ð19Þ

These ηO are used to estimate the expectationvalues from the
physics circuits (using the same relation). For wave packet
(vacuum) time evolution, we choose a mitigation circuit that
creates the wave packet (vacuum), time evolves with half of
the Trotter steps until t=2 and then evolves for−t=2with the
remaining Trotter steps [50]. This forwards-backwards time
evolution corresponds to the identity operator in the absence
of device errors, and restricts our simulations to an even
number of Trotter steps. To determine the ηO, the prediction
of a desired observable from the mitigation circuit must be
known. In our case, this requires classically computing hχ̂ji
in both the SC-ADAPT-VQE vacuum and wave packet.
This can be accomplished even for large systems using the
QISKIT or cuQuantum MPS simulator, as was demonstrated in
Ref. [132] for the SC-ADAPT-VQE vacuum up toL ¼ 500.
Interestingly, our numerical calculations highlight that it is
the time evolution, and not the state preparation, that is
difficult for classical MPS techniques.
We implement time evolution for t ¼ f1; 2;…; 14g with

2⌈ t
2
⌉ second-order Trotter steps (a maximum step size of

δt ¼ 1). As shown in the previous section, this step size
does not introduce significant Trotter errors. The number of
CNOTs and corresponding CNOT depth for each simu-
lation time are given in Table III, and range from 2,746
CNOTs (depth 70) for two Trotter steps to 13,858 CNOTs
(depth 370) for 14 Trotter steps. The results for X jðtÞ
obtained from ibm_torino and the MPS simulator are
shown in Fig. 10, with a breakdown of each t given in
Fig. 11 (the separate evolutions of the wave packet
and vacuum are shown in Fig. 18). For each time four
circuits are run; time evolution of the wave packet, time
evolution of the vacuum, forward-backward time evolution
of the wave packet and forward-backward time evolution
of the vacuum. For t ¼ 1 – 8, 480 twirled instances of each
circuit are run, and for t ¼ 9 – 14, 160 twirled instances
are run. Each twirled instance has 8,000 shots, using a total
of ∼1.5 × 108 shots for the complete production. We
have estimated the uncertainties in the results from the
quantum computer using bootstrap-mean resampling.13

12Instead of setting the single-qubit rotations to zero in the
mitigation circuits [53,60,132], they could be replaced by
Clifford gates [175,176].

13Due to the noisy nature of the device, the utility of the
Hodges-Lehmann (HL) estimator was studied, and consistent
results were obtained. The HL estimator has been considered in
lattice QCD studies to mitigate the impact of outliers in nuclear
correlation functions [177–179].

QUANTUM SIMULATIONS OF HADRON DYNAMICS IN THE … PHYS. REV. D 109, 114510 (2024)

114510-13



The expected results are determined by using the cuQuantum

MPS simulator with maximum bond dimension 200. The
run time and convergence of the MPS simulations are
discussed in Appendix F.
The individual time evolutions of the wave packet and

vacuum, used to compute X jðtÞ, are shown in Fig. 18 of
Appendix G. A systematic error in the chiral condensate
away from the center of the lattice is seen to increase with
simulation time. Fortunately, it is similar for the wave
packet and vacuum evolution, and largely cancels in the
subtraction to form X jðtÞ, as shown in Fig. 11. The origin
of this systematic error is currently unknown to us, and
either stems from a deficiency in our error-mitigation
techniques, or from insufficient convergence in the MPS
simulations. Without the approximations in the state
preparation and time evolution, the chiral condensate would
not evolve in regions that are locally the vacuum. This
qualitatively holds for smaller systems with L ≤ 14 that can

be simulated exactly. The results from the quantum
computer agree with these expectations, showing little
evolution of the chiral condensate in the vacuum (right
column of Fig. 18). The MPS simulations, on the other
hand, show significant evolution of the vacuum chiral
condensate. For the range of maximum bond dimensions
we have been able to explore, it appears that the chiral
condensate has converged at the level of 10−2 for late times.
However, these results are not exact, and at this point we
cannot rule out systematic errors being present in the MPS
simulations. From preliminary investigations, it appears
that the vacuum evolution is due to λ̄ ¼ 1 being too small
for exponential convergence. This is not surprising since
the relevant ratio for exponential convergence is ∝ λ̄=ξ̄,
with possibly a prefactor proportional to, for example, 2π.
However, the maximum bond dimension required for
convergence becomes significantly larger with increasing
λ̄, and it is unclear if this conclusion is consistent. A future

TABLE III. Details of our quantum simulations performed using 112 qubits of IBM’s ibm_torino Heron processor. For a given
simulation time, t (first column), the second column gives the number of employed Trotter steps NT . The third and fourth columns give
the number of CNOTs and corresponding CNOT depth. The CNOT totals given in the third column include the cancellations that occur
during transpilation, and the CNOT depth should be compared to the minimum depth that is equal to twice the number of CNOTs/qubit
(49, 82, 115, 148, 181, 214, 247 for increasing NT) to assess the sparsity of the circuits. The fifth column gives the number of distinct
circuits per t (this number does not include the circuits needed for readout mitigation) and the sixth column gives the number of Pauli
twirls executed per distinct circuit. For each twirl, 8,000 shots are performed (seventh column). The total number of executed CNOT
gates are given in the eighth column, and the total number of shots are given in the ninth column. The total number of CNOT gates
applied in this production is one trillion, and the total number of shots is 154 million.

t NT

Number of
CNOTs (per t)

CNOT
depth (per t)

Number of distinct
circuits (per t)

Number of twirls
(per circuit)

Number of shots
(per twirl)

Executed
CNOTs (×109)

Total number of
shots (×106)

1 & 2 2 2,746 70 4 480 8,000 4 × 2 × 10.5 4 × 2 × 3.8
3 & 4 4 4,598 120 4 480 8,000 4 × 2 × 17.7 4 × 2 × 3.8
5 & 6 6 6,450 170 4 480 8,000 4 × 2 × 24.8 4 × 2 × 3.8
7 & 8 8 8,302 220 4 480 8,000 4 × 2 × 31.9 4 × 2 × 3.8
9 & 10 10 10,154 270 4 160 8,000 4 × 2 × 13.0 4 × 2 × 1.3
11 & 12 12 12,006 320 4 160 8,000 4 × 2 × 15.4 4 × 2 × 1.3
13 & 14 14 13,858 370 4 160 8,000 4 × 2 × 17.7 4 × 2 × 1.3

Totals 1.05 × 1012 1.54 × 108

FIG. 10. The time evolution of the vacuum subtracted chiral condensate X jðtÞ, defined in Eq. (18), for a L ¼ 56 (112 qubits) spatial-
site lattice. The initial state is prepared using the 2-step SC-ADAPT-VQE vacuum and wave packet preparation circuits. Time evolution
is implemented using a second-order Trotterization of the Hamiltonian with the λ̄ ¼ 1 truncated electric interaction. The left side shows
the results of error-free classical simulations from the cuQuantum MPS simulator, while the right side shows the CP-averaged results
obtained using IBM’s superconducting-qubit digital quantum computer ibm_torino (both sides show the MPS result for t ¼ 0). Due
to CP symmetry, the right and left halves would be mirror images of each other in the absence of device errors. A more detailed view for
each time slice is given in Fig. 11, and discussions of the error-mitigation techniques are presented in the main text and Appendix G.
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FIG. 11. A detailed view of the time evolution of the vacuum subtracted chiral condensate shown in Fig. 10 for each simulation time.
The open circles are CP averaged results obtained using IBM’s superconducting-qubit digital quantum computer ibm_torino. The
black dashes are the error-free expectations obtained from the cuQuantum MPS classical simulator. A complete discussion of the error-
mitigation techniques, post processing and statistical uncertainties is presented in the main text and Appendix G. The results are
tabulated in Appendix H.
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detailed study of the effects of increasing the precision of
the state preparation, increasing λ̄, and increasing the
number of Trotter steps will be needed to determine if
this discrepancy is due to errors in the MPS simulation or
from imperfect error mitigation.
The results shown in Figs. 10 and 11 demonstrate that,

by implementing a series of exponentially convergent
approximations (beyond Trotterization), wave packets of
hadrons can be prepared and evolved forward in time with
available quantum computers. Propagating hadrons are
clearly identified as a disturbance in the chiral condensate,
with random fluctuations due to device errors outside of
the hadron’s light cone. It should be emphasized that
obtaining XnðtÞ ¼ 0 outside of the light cone using IBM’s
device is a nontrivial result, as it requires cancellations
between the wave packet and vacuum evolutions. The
simulations performed using ibm_torino show quali-
tative agreement with classical MPS results, but degrade
with increasing number of Trotter steps (circuit depth).
The simulations highlight that device errors dominate over
the systematic errors due to approximate state preparation
and time evolution. The results qualitatively recover
expectations, but often differ by many standard deviations
from classical expectations, indicating that we do not have
a complete quantification of uncertainties. This is not
surprising given the simplicity and limitations of the
assumed error model. Despite the device errors, it is clear
that current hardware is capable of creating and possibly
colliding (composite) hadrons over a meaningful time
interval. Such simulations could provide first glimpses
of inelastic hadron scattering and fragmentation in the
Schwinger model that are beyond present capabilities of
classical computing.

VII. SUMMARY AND OUTLOOK

Quantum computing offers the potential of reliably
simulating the collisions of high-energy hadrons and
nuclei directly from quantum chromodynamics, the quan-
tum field theory describing the strong interactions. First
steps are being taken to develop scalable techniques and
algorithms for QCD simulations by working with the
Schwinger model defined in 1þ 1D. Towards these goals,
this work develops protocols for quantum simulations of
hadron dynamics that are demonstrated on a L ¼ 56 (112
qubit) lattice using IBM’s superconducting-qubit digital
quantum computer, ibm_torino. These simulations
start with establishing a wave packet of hadrons in the
center of the lattice on top of the vacuum. The necessary
quantum circuits for the creation of this wave packet are
determined using the SC-ADAPT-VQE algorithm that
was recently introduced by the authors in Ref. [132].
In SC-ADAPT-VQE, low-depth circuits for state prepa-
ration are determined on a series of small lattices using
classical computers, and then systematically scaled up to
prepare states on a quantum computer. For the present

purposes, the SC-ADAPT-VQE circuits are variationally
optimized to have maximal overlap with an adiabatically
prepared hadron wave packet. The vacuum and hadronic
wave packet that are initialized on the quantum computer
are then time evolved using a second-order Trotterization
of the time-evolution operator. Naively, the electric
interaction between fermions is all-to-all, giving rise
to a prohibitive OðL2Þ scaling in the number of two-
qubit gates needed for time evolution. Motivated by
confinement, an approximation that truncates the electric
interaction between distant charges is introduced. This
interaction converges exponentially with increasing inter-
action distance, and improves the scaling of the number of
two-qubit gates required for time evolution to Oðλ̄LÞ,
where λ̄ is proportional to the confinement length scale.
These new methods for state preparation are verified on
small systems using a classical simulator, and then applied
to time evolve hadron wave packets on a L ¼ 56 (112
qubit) lattice using ibm_torino. Our digital quantum
simulations utilize some of the largest quantum volumes
to date [129–135,137], with up to 13,858 two-qubit
entangling gates applied (CNOT depth of 370). A large
number of shots with which to implement the error
mitigation techniques is found to be essential to the
success of our simulations. Our results show clear sig-
natures of hadron propagation through modifications of
the local chiral condensate.
Real-time dynamics typically explore highly entangled

regions of Hilbert space and, as a result, classical methods
scale unfavorably with simulation time t, lattice volume L,
and energy. To explore this in more detail, our quantum
simulations have been compared to classical MPS circuit
simulations using QISKIT and cuQuantum. We have found
that our initial-state preparation circuits can be simulated
relatively easily with these simulators. However, the bond
dimension needed for proper convergence grows rapidly
as more steps of Trotterized time evolution are added to
the quantum circuit. All of this points to a potential near-
term quantum advantage for the simulation of hadronic
dynamics. In particular, it is likely that the simulation of
high-energy hadronic collisions will exceed the capabil-
ities of classical computing for simulation times and
volumes that are not excessively large. Exactly where
such a quantum advantage can be realized remains to be
established.
On this path, future work will use the hadron wave

packet preparation and time evolution circuits that we
have presented here to simulate hadron scattering.
Evolving out to later times will require time-evolution
methods that improve upon Trotterization. A promising
direction is to use SC-ADAPT-VQE to find low-depth
circuits for simulating over the early times. The light cone
restricts early-time dynamics to only a modest number
of qubits, and scalable low-depth circuits can likely be
found with classical computing. Another direction worth
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pursuing is to approach the continuum by taking m and g
smaller, increasing the correlation length. These longer
correlation lengths will require deeper state-preparation
circuits and larger truncations of the electric interaction to
reach a target simulation quality. Further into the future,
improved methods for hadron detection will also be
needed. Finally, it will be necessary to extend these
techniques to non-Abelian gauge theories and higher
dimensions to perform more realistic simulations of QCD.
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APPENDIX A: THE CLASSICAL DYNAMICS OF
A SOURCED NONINTERACTING SCALAR FIELD

The spectrum of the Schwinger model consists of
composite hadrons due to confinement. Unlike the under-
lying electron and positron degrees of freedom, which are
fermions, the hadrons are bosonic scalar and vector
particles. Important features of the hadronic dynamics
simulated in this work can be understood in the simpler
setting of a noninteracting scalar field evolving from a
localized source. The framework for the latter is well-
known, and can be found in quantum field theory text-
books, for example, Ref. [199]. The spatial and temporal
extents of the hadron wave packet (in the Schwinger
model) that we work with are approximately determined
by the correlation length, ξ, and we model this by a
Gaussian source for the scalar field (describing the
Schwinger model vector hadron). The Klein-Gordon equa-
tion in the presence of a classical source,

ð∂μ∂μ þm2Þϕðx; tÞ ¼ jðx; tÞ; ðA1Þ

is solved in 1þ 1D in infinite volume and with vanishing
lattice spacing by

ϕjðx; tÞ ¼ ϕj¼0ðx; tÞ þ i
Z

dydt0GRðx − y; t − t0Þjðy; t0Þ;

ðA2Þ

where GRða; bÞ is the retarded Green’s function and
ϕj¼0ðx; tÞ is the field in the absence of the source. The
effective source we consider is

jðx;tÞ¼J0

ffiffiffi
α

π

r
e−αx

2

δðtÞ;
Z

dxdtjðx;tÞ¼J0: ðA3Þ

After writing the propagator in momentum space, and using
the spatial symmetry of the source, the field in the presence
of the source is given by

ϕjðx;tÞ¼ϕj¼0ðx;tÞþ2J0

Z
∞

0

dp
2π

e−p
2=ð4αÞ

ωp
cospx sinωpt;

ðA4Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. In a finite volume with a discrete

set of uniformly spaced lattice points, it is straightforward
to derive the appropriate analogous relation. Spatial inte-
grals are replaced by a discrete sum over the finite number
lattice sites, and momentum integrals are replaced by sums
over momentum modes within the first Brillouin zone (the
exact set of modes are determined by the selected boundary
conditions imposed on the field). Figure 12 shows the
downstream field in spacetime from the source given
in Eq. (A3), with parameters m ¼ 0.1 and α ¼ J0 ¼ 1.
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The light cone at x ¼ t is clear, with the field decaying
exponentially beyond these lines. Importantly, the field
near the origin is seen to “ring down”, continuing to emit
particles until the initially localized energy density is
dispersed via particle production.
The total energy injected into the field by the source is

hĤi ¼
ffiffiffiffiffiffi
α

8π

r
J20; ðA5Þ

where Ĥ is the free Hamiltonian without the source, and the
energy of the vacuum has been set to zero. The probability
of creating a particle in the jpimomentum state, ProbðjpiÞ,
and the expectation value of the total number of particles
produced in such an event, Nϕ, are

ProbðjpiÞ ¼ J20
2ωp

e−
p2

2α ; Nϕ ¼ J20
4π

e
m2

4αK0

�
m2

4α

�
; ðA6Þ

with K0 being the modified Bessel function of the second
kind of order zero.

APPENDIX B: ASPECTS OF OPEN BOUNDARY
CONDITIONS

Ideally, quantum simulations of lattice field theories
would utilize periodic boundary conditions (PBCs) in order
to maintain the translation invariance of free space (in the
continuum limit). However, without connectivity between
the initial and final lattice sites, as is the case in some
quantum computers, simulations can be performed with
OBCs. In this appendix, we demonstrate some key features
of OBCs in the context of scalar field theory, and make
connections to the Schwinger model.
The Hamiltonian describing noninteracting lattice scalar

field theory with continuous fields at each lattice site and
with OBCs is given by

Ĥlsft ¼
1

2

XL−1
j¼0

Π̂2
j þ

1

2

XL−1
j¼0

m2
0ϕ̂

2
j −

1

2

XL−1
j¼0

j−1≥0
jþ1≤L−1

ϕ̂jðϕ̂jþ1 þ ϕ̂j−1 − 2ϕ̂jÞ ¼
1

2
Π̂2 þ 1

2
ΦT ½m2

0Î þ G�Φ; ðB1Þ

where

G ¼

0
BBBBBBBBBB@

2 −1 0 0 � � � 0

−1 2 −1 0 � � � 0

0 −1 2 −1 � � � 0

..

. ..
.

0 0 0 0 � � � −1
0 0 0 0 � � � 2

1
CCCCCCCCCCA
; ΦT ¼ ðϕ0;ϕ1;…;ϕL−1Þ; ðB2Þ

and where Π̂ is the conjugate-momentum operator. The only difference between this expression and that for PBCs is the
absence of terms in the extreme antidiagonal entries in G, which renders the matrix noncirculant, reflecting the lack of
discrete translational invariance. An orthogonal transformation can be applied to the fields to diagonalize the Hamiltonian
matrix,

FIG. 12. (a) The free scalar field downstream from a Gaussian source given in Eq. (A3) with m ¼ 0.1 and α ¼ J0 ¼ 1, determined by
Eq. (A4). (b) Profile of the scalar field at x ¼ 0.
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Φ ¼ VΨ; Ĥ ¼ 1

2
Π̂2 þ 1

2
ΨTΩ2Ψ; ðB3Þ

where Ω is a L × L diagonal matrix with eigenvalues ωi.
Therefore, the L towers of single-particle energy eigenval-
ues of these systems are

Ei ¼
�
ni þ

1

2

�
ωi; ðB4Þ

where ni are the number of bosons with energy ωi, with a
vacuum energy that is the sum of zero-point energies,

Evac ¼
1

2

X
i

ωi: ðB5Þ

1. OBCs and PBCs for L= 4

It is instructive to consider the similarities and differences
between OBCs and PBCs for noninteracting scalar field
theory on L ¼ 4 lattice sites. It is well known that the
structure of the Hamiltonian in Eq. (B1) indicates that this
(and other such systems) can be diagonalized by the
eigenvectors of G, and are hence independent of the mass
and conjugatemomentum (as these are both local operators).
For OBCs, the ωi are

ωi ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0 þ

1

2
ð3 −

ffiffiffi
5

p
Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
1

2
ð5 −

ffiffiffi
5

p
Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
1

2
ð3þ

ffiffiffi
5

p
Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
1

2
ð5þ

ffiffiffi
5

p
Þ

r )

¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0 þ

1

2
ð3 −

ffiffiffi
5

p
Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 2þ 1

2
ð1 −

ffiffiffi
5

p
Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 2 −
1

2
ð1 −

ffiffiffi
5

p
Þ

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 4 −
1

2
ð3 −

ffiffiffi
5

p
Þ

r )

¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
0 þ 0.3819

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 1.3819
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 2.6180
q

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 3.6180
q o

; ðB6Þ

which are to be compared with those from PBCs,

ωi ¼
(
m0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 4 sin2
π

4

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 4 sin2
π

4

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 4 sin2
π

2

r )

¼
	
m0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 2

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 2

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 4

q 

: ðB7Þ

The kinetic contributions to the energies in Eq. (B6)
correspond to “momentum modes” with k ¼ nπ=5 with
n ¼ f1; 2; 3; 4g, and generalizes to k ¼ nπ=ðLþ 1Þ with
n ¼ f1;…; Lg.14 The energies of the OBC states are split
around the energies of the PBC states, with the lowest is
raised, and highest lowered. This splits the degeneracies of
the left- and right-moving momentum eigenstates associ-
ated with PBCs. These features extend to larger values of L,
with the splittings reducing with increasing L.
The eigenstates can all be made real by global phase

rotations, and identification of these states with the asso-
ciated states with PBCs can be made by forming linear
combinations of the degenerate PBC states. Figure 13
shows the eigenstates for PBCs and OBCs. Even for L ¼ 4,

the difference between the eigenstates is not large, and
diminishes with increasing L.

2. Matching the Schwinger model to noninteracting
scalar field theory for L= 8 and L= 14 with OBCs

In large enough spatial volumes, it is expected that the
low-lying continuum states of the Schwinger model will be
approximately recovered by an effective field theory (EFT)
of scalar and vector particles [200–206]. To explore this
more with OBC simulations, the mass of the scalar particle
needs to be determined from the spectrum of the Schwinger
model. As the energies of the states of the scalar field
depend in a nontrivial way on the mass of the scalar
particle, this is accomplished numerically.
In the Schwinger model, fermions are discretized on a

lattice with 2L staggered sites, corresponding to L spatial
sites. To match to the spectrum of lattice scalar field theory,
a conversion must be performed to switch from units of

14A more direct comparison between Eqs. (B6) and (B7) can
be made using relations such as 4 sin2 π

10
¼ ð3 − ffiffiffi

5
p Þ=2.
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staggered lattice spacing, ast, to units of spatial lattice
spacing, asp. A dimensionless energy, Δst, in the
Schwinger model is related to a physical energy by
Δst ¼ astE=ðℏcÞ, where ℏc ¼ 197.32 MeV fm, and E is
an energy in units of MeV. The corresponding quantity in
terms of the spatial lattice spacing is Δsp ¼ aspE=ðℏcÞ ¼
2astE=ðℏcÞ ¼ 2Δst.
Exact diagonalization of the Schwinger model

Hamiltonian with parameters m ¼ 0.5; g ¼ 0.3; L ¼ 8
gives a gap to the first excited state (vector hadron mass)
of astE1 ¼ astmhadron ¼ 1.15334. In the L ¼ 8 noninter-
acting scalar field theory, this corresponds to an excitation
of aspω1 ¼ 2mhadron ¼ 2.30668. Fitting the bare scalar

field mass m0 to this value gives m
ðfitÞ
0 ¼ 2.28039 in spatial

lattice units, which can be then used to predict higher-lying
states in the Schwinger model spectrum. Converting back
to the staggered lattice spacing gives the values of astωi to
be compared with the exact results from the Schwinger
model, astEi, shown in Table IV. Each of the energies astωi
can be identified with an energy in the Schwinger model,
within ∼2%, indicating that the low-lying spectrum is
largely from the motion of a single hadron on the lattice.

We assume that the two states that do not correspond to
states in the scalar theory result from internal excitations of
the single particle state in the Schwinger model. This
analysis can be repeated for L ¼ 14 where it is found that

astE1 ¼ astmhadron ¼ 1.1452 and mðfitÞ
0 ¼ 2.28096 (spatial

lattice units). These quantities are very similar to the L ¼ 8
ones, as expected since mhadron ≪ L and finite-size effects
are small. Table V shows the energy levels in the Schwinger
model compared with those predicted from noninteracting
scalar field theory fit to the lowest level. Good agreement
is again found, supporting the identification of the
excited states in the Schwinger model with OBC momen-
tum modes.

3. Sources with OBCs

The analysis in Appendix A related to source dynamics
in noninteracting scalar field theory is performed in infinite
volume and in the continuum limit. To better understand the
impact of finite-volume and OBCs, it is helpful to consider
the retarded-Green’s function on such lattices. The Green’s
function in Eq. (A2) in 3þ 1D is given by

DRðx; y; t; 0Þ ¼ θðtÞ
Z

d3k
ð2πÞ3

1

2ωk
ðe−iðωkt−k·ðx−yÞÞ − eþiðωkt−k·ðx−yÞÞÞ

¼ −iθðtÞ
Z

d3k
ð2πÞ3

1

ωk
sinωkteik·ðx−yÞ: ðB8Þ

In a 3þ 1D finite volume with PBCs, this becomes

DRðx; y; t; 0Þ → −iθðtÞ 1

L3

X
k

1

ωk
sinωkteik·ðx−yÞ ¼ −iθðtÞ

X
n

1

ωn
sinωntψ

†
nðyÞψnðxÞ; ðB9Þ

where ψnðxÞ is an appropriately normalized lattice eigenstate subject to PBCs, defined by a triplet of integers n,

FIG. 13. The eigenvectors of the L ¼ 4 lattice scalar field theory with PBCs (purple) and OBCs (orange).

TABLE IV. The lowest-lying energies, astEi, of the Schwinger model with Hamiltonian parameters m ¼ 0.5, g ¼ 0.3 and L ¼ 8.
These are compared with the lowest-lying eigenvalues of a noninteracting scalar field theory with OBCs, astωi, with a scalar mass
parameter fit to reproduce astE1.

Quantity State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10

astEi 1.15334 1.19133 1.25209 1.33035 1.33728 1.38401 1.41968 1.44693 1.47535 1.51249
astωi 1.15334 1.19039 1.24501 1.30890 � � � 1.37363 1.43180 � � � 1.47752 1.50662
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ψnðxÞ¼
1

L3=2e
ik·x;

X
x

ψ†
nðxÞψmðxÞ¼δð3Þn;m;

X
n

ψ†
nðyÞψnðxÞ¼δð3Þx;y; ðB10Þ

with k ¼ 2πn=L. To transition to OBCs, the OBC eigen-
states ψmðxÞ are used. For simulations in 1þ 1D with
OBCs, the relevant retarded Green’s function is

DRðx; y; t; 0Þ ¼ −iθðtÞ
X
n

sinωnt
ωn

ψ†
nðyÞψnðxÞ; ðB11Þ

with appropriately orthonormalized wavefunctions, such as
those shown in Fig. 13.
Consider a source with a Gaussian profile, as was

considered earlier, on a lattice of length L,

jLðyÞ ¼ η
XL−1
n¼0

δðy − nÞe−αðy−L−1
2
Þ2 : ðB12Þ

where η is the appropriate normalization factor determined
by requiring,

Z þ∞

−∞
dy jLðyÞ ¼ J0 ¼ η

XL−1
n¼0

e−αðL−1−2n2
Þ2

≈ η

ffiffiffi
π

α

r �
1þ 2

X∞
p¼1

ð−Þpe−π2p2=α

�

≡ η

ffiffiffi
π

α

r
SðαÞ: ðB13Þ

The approximate equality holds for a well-localized source
with large L and small α (in which case the bounds of the
sum can extended to �∞ with exponentially-suppressed
errors, and the Poisson resummation formula can be used).
The function SðαÞ rapidly approaches the continuum result
of unity, for decreasing α. Therefore, the sources can be
written as

jLðyÞ ¼ J0

ffiffiffi
α

π

r
1

SðαÞ
XL−1
n¼0

δðy − nÞe−αðy−L−1
2
Þ2 ; ðB14Þ

which is the discrete version of Eq. (A3). The expression
for the downstream field from the source is given by
Eq. (A2), and can be written as

ϕjðx; tÞ ¼ ϕj¼0ðx; tÞ þ J0

ffiffiffi
α

π

r
1

SðαÞ
XL
n¼1

�XL−1
y¼0

ψ†
nðyÞe−αðy−L−1

2
Þ2
�
sinωnt
ωn

ψnðxÞ: ðB15Þ

The expression in Eq. (B15) is the corresponding result to Eq. (A4) but in a finite volume with OBCs. Numerically,
evaluating the field evolution from the source are the same until boundary effects become important.

APPENDIX C: TRUNCATED ELECTRIC IINTERACTIONS FOR ODD L

The Hamiltonian corresponding to Eq. (5) for odd L is

ĤðQ¼0Þ
el ðλ̄Þ ¼ g2

2

	XL−32
n¼0

��
L −

5

4
− 2n

�
ˆ̄Q2
n þ

1

2
ˆ̄Qnδ̂n þ

1

4
δ̂2n þ

�
7

4
þ 2n

�
ˆ̄Q2

Lþ1
2
þn −

1

2
ˆ̄QLþ1

2
þnδ̂Lþ1

2
þn þ

1

4
δ̂2Lþ1

2
þn

�

þ 1

4

�
ˆ̄Q2

L−1
2
þ δ̂2L−1

2

�

þ 2
XL−52
n¼0

XminðL−3
2
;nþλ̄Þ

m¼nþ1

�
ðL − 1 − 2mÞ ˆ̄Qn

ˆ̄Qm þ 1

2
ˆ̄Qnδ̂m þ ð2þ 2nÞ ˆ̄QLþ1

2
þn

ˆ̄QLþ1
2
þm −

1

2
ˆ̄QLþ1

2
þmδ̂Lþ1

2
þn

�

þ 1

2

XminðL−1
2
;λ̄Þ

n¼1

½ ˆ̄QL−1
2
−n

ˆ̄QL−1
2
þ ˆ̄QL−1

2
−nδ̂L−1

2
þ ˆ̄QL−1

2
þn

ˆ̄QL−1
2
− ˆ̄QL−1

2
þnδ̂L−1

2
�


: ðC1Þ

TABLE V. The same as Table IV but for L ¼ 14.

Quantity State 1 State 2 State 3 State 4 State 5

astEi 1.1452 1.1588 1.1812 1.2118 1.2496
astωi 1.1452 1.1592 1.1816 1.2108 1.2452
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APPENDIX D: FURTHER DETAILS ON CIRCUIT CONSTRUCTION

The circuit implementation of the operators from the wave packet pool in Eq. (12) for d ≤ 5 is shown in Fig. 14.
What follows next is a code snippet for constructing the Trotterized time evolution of the electric interaction. Specifically,

this code computes the angles αi in the barbells used to implement the two-qubit RZZ rotations in Fig. 8. For a single Trotter
step of size t, the circuit construction code is

circ = QuantumCircuit(2*L)
if np. floor(L/4) == np. floor((L-2)/4):
for n in range(0,int((L-2)/2),2):
if n==0:
a1=(g**2*t)*(1þ n*4)/4
a2=(g**2*t)*(3þ n*4)/4
a3=0
a4=a1
a5=a2
a6=a1
circ.append(barbell(a1,a2,a3,a4,a5,a6), [Lþ 2*n,Lþ 1þ 2*n,Lþ 2þ 2

*n,Lþ 3þ 2*n])
circ.append(barbell(a3,a2,a1,a5,a4,a6), [L − 4 − 2*n,L − 3 − 2*n,L − 2 − 2

*n,L − 1 − 2*n])
else:
a1=0
a2=(g**2*t)*(3þ n*4)/4
a3=0
a4=(g**2*t)*(1þ n*4)/4
a5=a2
a6=a4
circ.append(barbell(a1,a2,a3,a4,a5,a6), [Lþ 2*n,Lþ 1þ 2*n,Lþ 2þ 2

*n,Lþ 3þ 2*n])
circ.append(barbell(a3,a2,a1,a5,a4,a6), [L − 4 − 2*n,L − 3 − 2*n,L − 2 − 2

*n,L − 1 − 2*n])
for n in range(1,int((L-2)/2),2):
a1=(g**2*t)*(1þ n*4)/4
a2=(g**2*t)*(3þ n*4)/4
a3=(g**2*t)*(5þ n*4)/4
a4=a1
a5=a2
a6=a1
circ.append(barbell(a1,a2,a3,a4,a5,a6), [Lþ 2*n,Lþ 1þ 2*n,Lþ 2þ 2

*n,Lþ 3þ 2*n])
circ.append(barbell(a3,a2,a1,a5,a4,a6), [L − 4 − 2*n,L − 3 − 2*n,L − 2 − 2

*n,L − 1 − 2*n])
else:
for n in range(0,int((L-2)/2),2):
a1=(g**2*t)*(1þ n*4)/4
a2=(g**2*t)*(3þ n*4)/4
a3=(g**2*t)*(5þ n*4)/4
a4=a1
a5=a2
a6=a1
circ.append(barbell(a1,a2,a3,a4,a5,a6), [Lþ 2*n,Lþ 1þ 2*n,Lþ 2þ 2

*n,Lþ 3þ 2*n])
circ.append(barbell(a3,a2,a1,a5,a4,a6), [L − 4 − 2*n,L − 3 − 2*n,L − 2 − 2

*n,L − 1 − 2*n])
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for n in range(1,int((L-2)/2),2):
a1=0
a2=(g**2*t)*(3þ n*4)/4
a3=0
a4=(g**2*t)*(1þ n*4)/4
a5=a2
a6=a4
circ.append(barbell(a1,a2,a3,a4,a5,a6), [Lþ 2*n,Lþ 1þ 2*n,Lþ 2þ 2

*n,Lþ 3þ 2*n])
circ.append(barbell(a3,a2,a1,a5,a4,a6), [L − 4 − 2*n,L − 3 − 2*n,L − 2 − 2

*n,L − 1 − 2*n])

In this code, barbell(a1,a2,a3,a4,a5,a6) is
the circuit block shown in Fig. 8, with ai being the
angles αi, and each block is being appended to the
circuit circ, starting from the center of the lattice and
progressing outwards. CP symmetry is used to relate the
angles from the first half of the lattice (labeled as 1st) to
the second half (labeled as 2nd) through the following
relations: α1j1st ¼ α3j2nd, α3j1st ¼ α1j2nd, α4j1st ¼ α5j2nd,
and α5j1st ¼ α4j2nd. Also, the angles within a block are
not all independent; α1j2nd ¼ α4j2nd ¼ α6j2nd and
α2j2nd ¼ α5j2nd. The blocks that start at qubit 2þ 4n with
n∈ f0; 1;…g (or end at 2L − 2 − 4n) have α1 ¼ α3 ¼ 0 to
avoid repeating rotations from the blocks starting at 4n
(or ending at 2L − 4n). There is an exception when
bL
4
c ¼ bL−2

4
c, and only α3j2nd ¼ α1j1st ¼ 0.

APPENDIX E: ANOTHER WAY TO CREATE
HADRON WAVE PACKETS

In the main text, circuits are constructed that optimize the
overlap with an adiabatically prepared hadron wave packet.
Here, an alternative method for preparing hadron wave
packets is presented based on minimizing the energy in the
single-hadron sector. Desirable features of a hadronic wave
packet are that it is localized (i.e., outside of the wave
packet profile, the system is locally in the vacuum), and that
it is composed of single hadrons. When establishing a wave
packet on top of the interacting vacuum, as is done in the
main text, localizability can be implemented at the level of
the operator pool. For example, by only including operators
in the pool that have support over a predefined spatial
interval, l, it is guaranteed that outside of l is vacuum.

FIG. 14. Efficient circuits implementing the unitaries corresponding to the wave packet pool operators in Eq. (12). The circuits for the
individual blocks RðXYÞ

� ðθÞ and RðXXÞ
� ðθÞ are shown in Fig. 5.
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To ensure that the wave packet is composed of single
hadron states, consider adding a vacuum chemical poten-
tial, μ, to the Hamiltonian,

Ĥ1−hadron ¼ Ĥ þ μjψvacihψvacj: ðE1Þ

For μ > mhadron, the ground state of Ĥ1−hadron in the Q ¼ 0
sector is the lowest-energy state of a single hadron.
The strategy for building a wave packet is to minimize
hψ ansatzjĤ1−hadronjψ ansatzi, where jψ ansatzi is adaptively built
using a localized operator pool. The resulting state will be
the lowest-energy configuration orthogonal to the vacuum
that is localized within the interval l. The prepared state will
primarily be a superposition of single hadrons, with multi-
hadron contributions decreasing as l increases.
As an example, consider using this procedure to con-

struct a single-hadron wave packet with an operator pool
localized to l ¼ 2 sites on either side of the midpoint of the
lattice. Starting from the operator pool in Eq. (12), the l ¼ 2

pool consists of Ômð1Þ, Ômð2Þ, Ômhð1; 1Þ, Ôhð1; 1Þ,
Ômhð2; dÞ and Ôhð2; dÞ with d ¼ f1; 2; 3g. Choosing
μ ¼ 2.5mhadron pushes the energy of the vacuum above
two-particle threshold (which is slightly below 2mhadron
due to the presence of a two-hadron bound state), and is
found to be effective for our purposes. To update the
SC-ADAPT-VQE ansatz, the gradient can be computed with

∂

∂θi
hψ ansatzje−iθiÔi Ĥ1−hadroneiθiÔi jψ ansatzijθi¼0

¼ −Im½hψ ansatzjð½Ĥ; Ôi� þ 2μjψvacihψvacjÔiÞjψ ansatzi�:
ðE2Þ

Note that it can be necessary to bias the initial parameters
to avoid the optimizer choosing θi ¼ 0 because the
initial state is a local maxima of energy (and second
derivatives are then required). Due to the limited size of
the operator pool, the SC-ADAPT-VQEalgorithmconverges
relatively well after 4 steps, with the optimal operators and
associated variational parameters shown in Table VI. The
resulting state has an L-independent energy expectation

value of hψ ansatzjĤjψ ansatzi ¼ 1.18mhadron, and overlap onto
the vacuum state of jhψvacjψ ansatzij2 ¼
8.5 × 10−5. These results show that the prepared wave
packet is primarily composed of single-hadron states, and
both hψ ansatzjĤjψ ansatzi and jhψvacjψ ansatzij2 can be further
reduced by increasing l, i.e., delocalizing the prepared wave
packet.

APPENDIX F: DETAILS ON THE 112-QUBIT MPS
SIMULATIONS

The 112-qubit quantum simulations in Sec. VI are
compared to the expected, error-free, results determined
using the QISKIT and cuQuantum MPS circuit simulators.
MPS techniques are approximations that can be improved
by increasing the bond dimension in the MPS ansatz. A
higher bond dimension increases the maximum amount of
entanglement in the ansatz state, at the cost of longer
runtime on a classical computer. As a result, simulations
that explore highly entangled states are promising candi-
dates for a near-term quantum advantage. Our numerical
investigations have found a large contrast between the
bond dimension needed for state preparation and time
evolution. The initial hadron wave packet coincides with
the vacuum state outside of the few sites where the wave
packet has support. This state has a low amount of
entanglement as the ground states of gapped 1D systems
have area-law entanglement [207–209]. Therefore, a
relatively small bond dimension can be used in the
MPS simulations to faithfully reproduce the preparation
of the vacuum and initial hadron wave packet. Time
evolution, on the other hand, involves a superposition of
many single-hadron states, which disturb the vacuum as
they propagate. This produces a significant amount of
entanglement, and subsequently requires a larger bond
dimension.
The bond dimension needed for convergence

of the chiral condensate for different simulation times
is shown in Fig. 15. It is seen that a relatively small bond
dimension is sufficient for convergence, even out to late
times. This should be compared to the convergence of
hψWPjχ̂jjψWPi in the left panel of Fig. 16, where the
quantity

Δi ¼
X
j

jhψMPSi
WP jχ̂jðtÞjψMPSi

WP i − hψMPSiþ10

WP jχ̂jðtÞjψMPSiþ10

WP ij;

ðF1Þ

is computed for different bond dimensions. This quantity
determines how much the local chiral condensate of the
evolved wave packet changes as the maximum bond
dimension is increased from i to iþ 10. This reveals that
MPS calculation of the chiral condensate of (a) the initial
state can be done very efficiently (results with a maximum
bond dimension of 10 have already converged below a

TABLE VI. The operator ordering and variational parameters
that minimize Ĥ1−hadron, and prepare a hadron wave packet for
L ¼ 7 – 13.

θi

L Ômhð1; 1Þ Ômhð2; 3Þ Ômhð2; 2Þ Ômhð2; 1Þ
7 −2.4342 −0.9785 0.0819 0.2599
8 2.4343 0.9778 0.0808 −0.2591
9 −2.4342 −0.9780 0.0812 0.2594
10 2.4340 0.9778 0.0811 −0.2595
11 −2.4339 −0.9776 0.0810 0.2593
12 2.4321 0.9781 0.0837 −0.2605
13 −2.4343 −0.9780 0.0810 0.2593
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10−5 precision), and (b) the evolved wave packet con-
verges slowly, especially at late times. Indeed, the
quick convergence of XnðtÞ in Fig. 15 is due to the
cancellations of errors between the MPS simulation of
the wave packet and vacuum evolution. These MPS
simulations take increasingly more compute run-time as
the bond dimension increases. This is illustrated in the

right panel of Fig. 16, where the run-time for a selection of
times and various bond dimensions are shown. In this
panel, we compare the performance of the CPU-based
QISKIT MPS simulator, run on a single 40-core CPU-node
on Hyak, and the GPU-based cuQuantum MPS simulator,
run on a single NVIDIA RTX A5000 through the
OSG Pool.

FIG. 16. The left panel shows the relative convergence of the chiral condensate, Δi, defined in Eq. (F1), for a selection of times as a
function of maximum bond dimension, while the right panel shows the computational runtime using the QISKIT MPS simulator on a
single 40-core CPU node and the cuQuantum MPS simulator on a single NVIDIA RTX A5000, for t ¼ f0; 1;…; 14g with different
maximum bond dimension.

FIG. 15. Convergence of the vacuum subtracted local chiral condensate, X jðtÞ, with different maximum bond dimension in the
cuQuantum MPS simulator. Results are shown for L ¼ 56, and are focused around the center of the lattice where the convergence is the
slowest.
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APPENDIX G: FURTHER DETAILS ABOUT THE
ERROR MITIGATION AND ANALYSIS

For each time t ¼ f1; 2;…; 14g, four kinds of circuits
are run on the quantum computer: time evolution of the
vacuum, time evolution of the wave packet, and the
corresponding forward-backward evolution for ODR error
mitigation, see Fig. 17. Each circuit for t ¼ 1 – 8 is run
with 480 twirls and each circuit for t ¼ 9 – 14 is run with
160 twirls; each twirl with 8,000 shots, as displayed in
Table III. The longest continuous one-dimensional chain on
ibm_torino that we utilize is 112 qubits, corresponding
to a L ¼ 56 lattice (see layout in Fig. 1). We use two lattice-
to-qubit mappings to minimize the effects of poorly
performing qubits. Half of the twirls assign staggered
site 0 to the top-right device qubit, and the other half
assign staggered site 0 to the bottom-left device qubit.
Averaging over multiple layouts mitigates some of the
effects of qubit-specific noise. Indeed, in our simulations
there are twirled instances where qubits perform poorly,
either due to decoherence or to readout errors. Such
errors can be identified and removed from analysis by
filtering out measurements where hẐjimeas=hẐjipred < ϵ in

the mitigation runs, with ϵ some predetermined threshold.15

If this ratio is negative, then the qubit has flipped, and if it is
0 then the qubit has completely decohered, i.e., it has
become a maximally mixed state. We choose ϵ ¼ 0.01, and
do not see much difference varying up to ϵ ¼ 0.05. Our
scheduling of jobs interleaves physics and mitigation
circuits with the same twirl. Poorly performing qubits,
identified from measuring the mitigation circuit, are cut
from both the ensemble of mitigation and associated
physics measurements.16

The results of measurements related by CP symmetry
are combined. For Ẑj, this means combining hẐji and
−hẐ2L−1−ji (for runs with 480 twirls, this can lead to up
to 960 independent measurements for hẐji). The central
values and corresponding uncertainties are determined
from bootstrap re-sampling over twirls. Due to the filtering
procedure, hẐji for each qubit can have a different number of

contributing twirls,NðmeasÞ
j . For each sample in the bootstrap

ensemble, NðmeasÞ
j random integers with replacement

fxg∈ f1; 2;…; NðmeasÞ
j g are generated, with the prediction

for the error-free physics expectation value for that sample
given by

hẐjipredjphys¼
�X

i∈fxg
hẐjiðiÞmeasjphys

�
×

�X
i∈fxg

hẐjipred
hẐjiðiÞmeas

����
mit

�
;

ðG1Þ

where the superscript (i) labels the twirl. This is performed
for the wave packet and for the vacuum evolution, with the
vacuum subtracted chiral condensate given by

X j ¼ ð−1Þj
�
hẐjipredj

ðWPÞ
phys

− hẐjipredj
ðVacÞ
phys

�
: ðG2Þ

This process is repeatedNBoot times, withNBoot large enough
for themean and standard deviation of the bootstrap ensemble
fX jg to have converged. This mean and standard deviation
are used to produce the points with error bars in Figs. 11
and 18.17

FIG. 17. The four types of circuits run on ibm_torino. Blue
boxes denote SC-ADAPT-VQE circuits, and green boxes denote
Trotterized time-evolution circuits. Shown are examples for four
Trotter steps of time evolution, with straightforward extension to
other even number of Trotter steps. (Lower) upper-left show the
circuits used for the time evolution of the (vacuum) wave packet.
(Lower) upper-right are the forwards-backwards time-evolution
circuits used for ODR error mitigation of the wave packet
(vacuum). The θi ¼ 0 in the wave packet circuit box denotes
that the SC-ADAPT-VQE parameters are set to zero, i.e., it is the
identity operator in the absence of device errors.

15This type of event postselection, requiring device perfor-
mance to exceed a specified level in interleaved calibration
circuits, has been employed previously, for example, Ref. [210].

16Note that 160 of the 480 twirls for t ¼ 1 – 7 do not interleave
physics and mitigation. Instead, they are sent in batches of 40
circuits with uncorrelated twirls between mitigation and physics
circuits. In this case a qubit measurement of physics circuit n in
the batch is cut if the corresponding qubit measurement in
mitigation circuit n is cut. Surprisingly, no improvement is found
when correlating the twirls and interleaving mitigation and
physics circuits.

17The two sums in Eq. (G1) compute the mean of the bootstrap
sample. If instead the median is used, larger error bars are found.
This is likely due to there being correlations in the tails of both the
ensembles of physics and mitigation measurements that are
captured by the mean, but suppressed by the median.
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We have found that larger angles in the circuits lead to
larger systematic errors, independent of circuit depth. This is
likely due to cross-talk errors between gates acting on
neighboring qubits when large rotations are applied. These
kinds of errors are not corrected by ODR. Thus, there is a
trade-off between increased number of Trotter steps with
smaller angles, and the associated increased circuit depth. A
full determination of this trade off remains to be explored.
The different stages of error mitigation are displayed in

Fig. 19. Two times, t ¼ 3 (CNOT depth 120) and t ¼ 9
(CNOT depth 270), are chosen for the purpose of demon-
stration. Note that in these plots, the decohered value of the
chiral condensate is hχ̂ji ¼ 1 (with X j ¼ 0). The first row
of Fig. 19 shows the “raw” results obtained from the device
(with dynamical decoupling and readout error mitigation)
after averaging over all Pauli twirls. The device errors for
the wave packet and vacuum evolution outside of the wave
packet region are very similar, and cancel to a large degree
in forming the subtraction in X jðtÞ. It is striking that, for
t ¼ 9, there is no discernible sign of the presence of a wave
packet in the raw results. The second row of Fig. 19 shows
the effect of applying ODR. This helps recover the chiral
condensate, being more effective for t ¼ 3 than t ¼ 9, but
can also lead to large error bars when the qubit is close to
being completely decohered (hẐjimeasjmit close to zero).
The third row of Fig. 19 shows the effects of filtering out
runs where hẐjimeas=hẐjipredjmit < 0.01. This removes
most of the runs contributing to the large error bars, and

is more significant for t ¼ 9 than t ¼ 3. It also leads to
different numbers of twirls surviving the filtering for
different qubits. Sometimes only a small number survive,
compromising the assumption of a depolarizing channel for
ODR (and also compromising the error estimates from
bootstrap resampling). The fourth row of Fig. 19 shows the
effects of using the CP symmetry to combine the mea-
surements of hẐji and −hẐ2L−1−ji. This reduces the effects
of poorly performing qubits, and gives the final results
presented in Figs. 10, 11, and 18.

APPENDIX H: TABLES

In this appendix, the tabulated numbers plotted in Figs. 11
and 18, for both MPS simulators and ibm_torino,
are displayed. Due to the slow convergence of the MPS
results for late times (as discussed in Appendix F), the
precision for the columns showing hψWPjχ̂jðtÞjψWPi and
hψvacjχ̂jðtÞjψvaci can be estimated for each time: for t ¼ 1

(Table VII) below 10−10, t ¼ 2 (Table VIII) below 10−10,
t ¼ 3 (Table IX) around 10−6, t ¼ 4 (Table X) around 10−4,
t ¼ 5 (Table XI) around 10−3, t ¼ 6 (Table XII) around
10−3, t ¼ 7 (Table XIII) around 10−3, t ¼ 8 (Table XIV)
around 10−2, t ¼ 9 (Table XV) around 10−2, t ¼ 10

(Table XVI) around 10−2, t ¼ 11 (Table XVII) around 10−2,
t ¼ 12 (Table XVIII) around 10−2, t ¼ 13 (Table XIX)
around 10−2, and t ¼ 14 (Table XX) around 10−2.
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FIG. 18. CP-averaged local chiral condensate for the time-evolved wave packet (left subpanels) and vacuum (right subpanels). The
points are obtained from ibm_torino, and the black lines from the cuQuantum MPS circuit simulator.
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FIG. 19. The results obtained from ibm_torino after different stages of error mitigation. Results for t ¼ 3 and t ¼ 9 are shown for
the chiral condensate of the wave packet and vacuum evolution, and their subtraction. The four rows give raw results, after applying
ODR, after filtering out the decohered qubits, and after CP averaging. Note that after the filtering procedure, different qubits have
different numbers of twirls contributing (and hence different sized errors bars).
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TABLE VII. Numerical values for the t ¼ 1 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 1ÞjψWPi hψvacjχ̂jðt ¼ 1Þjψvaci X jðt ¼ 1Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.213 0.273(10) 0.213 0.270(11) 0.000 0.002(14)
1 0.386 0.522(11) 0.386 0.510(12) 0.000 0.013(16)
2 0.3360 0.4186(58) 0.3360 0.4110(55) 0.0000 0.0074(80)
3 0.336 0.510(14) 0.336 0.515(13) 0.000 −0.004ð17Þ
4 0.3364 0.4674(83) 0.3364 0.4878(99) 0.000 −0.021ð11Þ
5 0.3716 0.4859(76) 0.3716 0.4925(77) 0.0000 −0.0068ð90Þ
6 0.3722 0.4398(42) 0.3722 0.4384(38) 0.0000 0.0012(54)
7 0.3727 0.4412(31) 0.3727 0.4389(31) 0.0000 0.0022(44)
8 0.3724 0.4405(30) 0.3724 0.4382(27) 0.0000 0.0022(38)
9 0.3722 0.4493(38) 0.3722 0.4471(40) 0.0000 0.0021(55)
10 0.3719 0.4396(48) 0.3719 0.4409(47) 0.0000 −0.0008ð67Þ
11 0.3725 0.4372(40) 0.3725 0.4306(36) 0.0000 0.0068(52)
12 0.3723 0.4391(43) 0.3723 0.4393(38) 0.0000 −0.0000ð58Þ
13 0.3727 0.4427(48) 0.3727 0.4440(46) 0.0000 −0.0016ð62Þ
14 0.3725 0.4471(43) 0.3725 0.4410(44) 0.0000 0.0062(63)
15 0.3727 0.4308(36) 0.3727 0.4255(36) 0.0000 0.0053(48)
16 0.3725 0.4544(75) 0.3725 0.4553(77) 0.000 −0.001ð11Þ
17 0.3724 0.4517(38) 0.3724 0.4447(37) 0.0000 0.0070(52)
18 0.3722 0.4421(30) 0.3722 0.4429(29) 0.0000 −0.0007ð42Þ
19 0.3717 0.4393(30) 0.3717 0.4459(31) 0.0000 −0.0067ð41Þ
20 0.3715 0.4467(37) 0.3715 0.4543(36) 0.0000 −0.0077ð50Þ
21 0.3706 0.4450(46) 0.3706 0.4482(44) 0.0000 −0.0036ð59Þ
22 0.3704 0.4204(29) 0.3704 0.4176(28) 0.0000 0.0030(37)
23 0.3688 0.4204(30) 0.3688 0.4214(28) 0.0000 −0.0010ð40Þ
24 0.3687 0.4209(36) 0.3687 0.4202(34) 0.0000 0.0006(47)
25 0.3665 0.4183(28) 0.3665 0.4170(31) 0.0000 0.0016(41)
26 0.3663 0.4169(29) 0.3663 0.4083(31) 0.0000 0.0086(42)
27 0.3635 0.4099(28) 0.3635 0.4138(29) 0.0000 −0.0039ð39Þ
28 0.3633 0.4187(33) 0.3633 0.4228(33) 0.0000 −0.0040ð48Þ
29 0.3598 0.4085(34) 0.3598 0.4092(32) 0.0000 −0.0008ð46Þ
30 0.3597 0.4113(45) 0.3597 0.4133(43) 0.0000 −0.0019ð61Þ
31 0.3556 0.4101(44) 0.3556 0.4106(40) 0.0000 −0.0004ð56Þ
32 0.3555 0.4070(35) 0.3555 0.4044(34) 0.0000 0.0027(49)
33 0.3510 0.3967(36) 0.3510 0.3919(36) 0.0000 0.0047(51)
34 0.3509 0.4142(40) 0.3509 0.4112(43) 0.0000 0.0028(60)
35 0.3460 0.4091(43) 0.3460 0.4098(41) 0.0000 −0.0007ð57Þ
36 0.3459 0.4348(58) 0.3459 0.4266(54) 0.0000 0.0078(75)
37 0.3410 0.4210(38) 0.3410 0.4152(37) 0.0000 0.0058(49)
38 0.3409 0.4200(44) 0.3409 0.4199(43) 0.0000 −0.0001ð61Þ
39 0.3360 0.4162(47) 0.3360 0.4222(50) 0.0000 −0.0064ð72Þ
40 0.3359 0.4123(36) 0.3359 0.4101(36) 0.0000 0.0023(50)
41 0.3314 0.4183(45) 0.3314 0.4142(39) 0.0000 0.0039(55)
42 0.3313 0.4299(54) 0.3313 0.4246(51) 0.0000 0.0052(67)
43 0.3273 0.4263(58) 0.3273 0.4222(54) 0.0000 0.0044(82)
44 0.3272 0.3867(35) 0.3272 0.3988(34) 0.0000 −0.0120ð52Þ
45 0.3239 0.3854(39) 0.3239 0.3972(38) 0.0000 −0.0117ð54Þ
46 0.3239 0.3913(58) 0.3239 0.3981(63) 0.0000 −0.0072ð88Þ
47 0.3215 0.3716(43) 0.3215 0.3820(41) 0.0000 −0.0104ð59Þ
48 0.3215 0.3765(36) 0.3215 0.3752(36) 0.0000 0.0012(52)
49 0.3204 0.3806(37) 0.3200 0.3736(39) 0.0004 0.0070(54)
50 0.3201 0.3786(40) 0.3200 0.3794(39) 0.0000 −0.0007ð56Þ
51 0.3282 0.3826(36) 0.3196 0.3786(37) 0.0086 0.0041(51)
52 0.3234 0.3861(31) 0.3196 0.3773(33) 0.0039 0.0086(44)

(Table continued)
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TABLE VII. (Continued)

hψWPjχ̂jðt ¼ 1ÞjψWPi hψvacjχ̂jðt ¼ 1Þjψvaci X jðt ¼ 1Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

53 0.3996 0.4497(33) 0.3232 0.3793(33) 0.0764 0.0705(44)
54 0.2547 0.2660(23) 0.3231 0.3833(31) −0.0684 −0.1175ð39Þ
55 1.7270 1.7250(24) 0.3234 0.3874(34) 1.4040 1.3380(39)

TABLE VIII. Numerical values for the t ¼ 2 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 2ÞjψWPi hψvacjχ̂jðt ¼ 2Þjψvaci X jðt ¼ 2Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.193 0.287(10) 0.193 0.278(10) 0.000 0.009(14)
1 0.4420 0.6254(95) 0.4420 0.6106(99) 0.000 0.015(12)
2 0.3580 0.4712(59) 0.3580 0.4743(63) 0.0000 −0.0028ð83Þ
3 0.4992 0.6406(97) 0.499 0.639(10) 0.000 0.002(11)
4 0.4912 0.6371(70) 0.4912 0.6285(63) 0.0000 0.0084(82)
5 0.5138 0.6365(79) 0.5138 0.6444(86) 0.000 −0.008ð10Þ
6 0.5171 0.5501(34) 0.5171 0.5475(36) 0.0000 0.0030(48)
7 0.5365 0.6007(29) 0.5365 0.6004(29) 0.0000 0.0005(38)
8 0.5351 0.5856(30) 0.5351 0.5878(27) 0.0000 −0.0022ð32Þ
9 0.5621 0.6202(37) 0.5621 0.6266(36) 0.0000 −0.0067ð46Þ
10 0.5606 0.6048(41) 0.5606 0.6119(40) 0.0000 −0.0071ð49Þ
11 0.5794 0.6639(33) 0.5794 0.6633(29) 0.0000 0.0008(43)
12 0.5779 0.6438(38) 0.5779 0.6449(36) 0.0000 −0.0007ð43Þ
13 0.5908 0.6428(41) 0.5908 0.6442(44) 0.0000 −0.0014ð52Þ
14 0.5894 0.6521(32) 0.5894 0.6463(33) 0.0000 0.0057(40)
15 0.5973 0.5952(31) 0.5973 0.5954(32) 0.0000 −0.0003ð40Þ
16 0.5959 0.6708(62) 0.5959 0.6533(67) 0.0000 0.0176(87)
17 0.5994 0.6260(31) 0.5994 0.6247(30) 0.0000 0.0015(42)
18 0.5982 0.6077(25) 0.5982 0.6064(24) 0.0000 0.0014(33)
19 0.5975 0.6184(23) 0.5975 0.6151(22) 0.0000 0.0033(32)
20 0.5966 0.6306(30) 0.5966 0.6270(30) 0.0000 0.0035(38)
21 0.5917 0.6525(33) 0.5917 0.6544(33) 0.0000 −0.0020ð46Þ
22 0.5910 0.5941(22) 0.5910 0.5948(21) 0.0000 −0.0006ð30Þ
23 0.5814 0.6091(22) 0.5814 0.6135(25) 0.0000 −0.0045ð33Þ
24 0.5812 0.6140(25) 0.5812 0.6158(25) 0.0000 −0.0018ð35Þ
25 0.5662 0.5993(23) 0.5662 0.6035(22) 0.0000 −0.0041ð32Þ
26 0.5664 0.6059(24) 0.5664 0.6073(24) 0.0000 −0.0013ð32Þ
27 0.5456 0.5773(25) 0.5456 0.5803(24) 0.0000 −0.0028ð33Þ
28 0.5463 0.6038(38) 0.5463 0.5947(37) 0.0000 0.0089(36)
29 0.5199 0.5813(26) 0.5199 0.5834(27) 0.0000 −0.0022ð33Þ
30 0.5212 0.5825(31) 0.5212 0.5849(32) 0.0000 −0.0024ð43Þ
31 0.4899 0.5673(34) 0.4899 0.5639(32) 0.0000 0.0036(46)
32 0.4917 0.5575(27) 0.4917 0.5640(27) 0.0000 −0.0064ð36Þ
33 0.4568 0.5225(29) 0.4568 0.5314(29) 0.0000 −0.0089ð41Þ
34 0.4591 0.5863(36) 0.4591 0.5938(35) 0.0000 −0.0074ð48Þ
35 0.4220 0.5110(34) 0.4220 0.5227(35) 0.0000 −0.0115ð49Þ
36 0.4247 0.5616(46) 0.4247 0.5611(47) 0.0000 0.0005(64)
37 0.3867 0.5452(40) 0.3867 0.5497(37) 0.0000 −0.0044ð46Þ
38 0.3896 0.5487(36) 0.3896 0.5580(37) 0.0000 −0.0094ð50Þ
39 0.3522 0.5393(46) 0.3522 0.5393(43) 0.0000 0.0000(58)
40 0.3553 0.5238(35) 0.3553 0.5206(40) 0.0000 0.0032(50)
41 0.3201 0.4987(42) 0.3201 0.4934(45) 0.0000 0.0053(55)

(Table continued)
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TABLE VIII. (Continued)

hψWPjχ̂jðt ¼ 2ÞjψWPi hψvacjχ̂jðt ¼ 2Þjψvaci X jðt ¼ 2Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

42 0.3231 0.5283(48) 0.3231 0.5076(46) 0.0000 0.0208(63)
43 0.2916 0.4974(57) 0.2916 0.4831(56) 0.0000 0.0139(70)
44 0.2944 0.4420(31) 0.2944 0.4357(33) 0.0000 0.0063(44)
45 0.2683 0.4321(38) 0.2683 0.4259(40) 0.0000 0.0059(55)
46 0.2707 0.4078(61) 0.2707 0.4059(63) 0.0000 0.0018(86)
47 0.2518 0.3743(45) 0.2510 0.3753(46) 0.0008 −0.0008ð64Þ
48 0.2536 0.3768(35) 0.2529 0.3752(37) 0.0007 0.0014(50)
49 0.2439 0.3631(36) 0.2403 0.3631(39) 0.0037 0.0002(49)
50 0.2424 0.3554(37) 0.2416 0.3673(35) 0.0008 −0.0117ð52Þ
51 0.2514 0.3536(35) 0.2354 0.3518(36) 0.0160 0.0021(48)
52 0.2288 0.3391(32) 0.2347 0.3537(33) −0.0060 −0.0148ð43Þ
53 0.4049 0.4757(28) 0.2407 0.3370(30) 0.1642 0.1386(38)
54 0.3315 0.3531(24) 0.2394 0.3393(29) 0.0921 0.0137(39)
55 1.6280 1.6150(23) 0.2397 0.3348(28) 1.3880 1.2800(38)

TABLE IX. Numerical values for the t ¼ 3 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 3ÞjψWPi hψvacjχ̂jðt ¼ 3Þjψvaci X jðt ¼ 3Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.213 0.326(12) 0.213 0.304(13) 0.000 0.022(17)
1 0.604 0.640(15) 0.604 0.623(16) 0.000 0.017(21)
2 0.4454 0.4572(90) 0.4454 0.4729(92) 0.000 −0.015ð12Þ
3 0.595 0.564(12) 0.595 0.581(13) 0.000 −0.018ð17Þ
4 0.565 0.571(11) 0.565 0.540(10) 0.000 0.032(13)
5 0.597 0.579(15) 0.597 0.572(14) 0.000 0.007(17)
6 0.6111 0.4961(56) 0.6111 0.4963(54) 0.0000 −0.0002ð72Þ
7 0.5884 0.5321(42) 0.5884 0.5294(44) 0.0000 0.0026(56)
8 0.6025 0.5192(40) 0.6025 0.5155(39) 0.0000 0.0038(54)
9 0.6059 0.5107(63) 0.6059 0.5035(59) 0.0000 0.0071(79)
10 0.6153 0.5182(68) 0.6153 0.5104(72) 0.0000 0.0071(94)
11 0.6231 0.5620(58) 0.6231 0.5535(54) 0.0000 0.0085(72)
12 0.6310 0.5216(52) 0.6310 0.5221(52) 0.0000 −0.0005ð68Þ
13 0.6336 0.5060(55) 0.6336 0.4938(55) 0.0000 0.0125(77)
14 0.6419 0.5669(61) 0.6419 0.5618(65) 0.0000 0.0046(80)
15 0.6410 0.5355(45) 0.6410 0.5318(45) 0.0000 0.0036(58)
16 0.648 0.575(12) 0.648 0.564(11) 0.000 0.011(16)
17 0.6455 0.5466(48) 0.6455 0.5459(48) 0.0000 0.0004(67)
18 0.6503 0.5495(36) 0.6503 0.5422(35) 0.0000 0.0073(49)
19 0.6477 0.5669(34) 0.6477 0.5663(40) 0.0000 0.0008(51)
20 0.6497 0.5699(46) 0.6497 0.5656(48) 0.0000 0.0041(64)
21 0.6480 0.6309(54) 0.6480 0.6245(56) 0.0000 0.0064(77)
22 0.6476 0.5446(30) 0.6476 0.5530(32) 0.0000 −0.0085ð46Þ
23 0.6460 0.5888(30) 0.6460 0.6001(30) 0.0000 −0.0114ð42Þ
24 0.6443 0.5787(38) 0.6443 0.5731(37) 0.0000 0.0056(52)
25 0.6414 0.5868(30) 0.6414 0.5907(34) 0.0000 −0.0040ð45Þ
26 0.6394 0.5966(31) 0.6394 0.5939(34) 0.0000 0.0027(45)
27 0.6331 0.5877(33) 0.6331 0.5845(35) 0.0000 0.0029(49)
28 0.6320 0.5957(51) 0.6320 0.5843(52) 0.0000 0.0109(61)

(Table continued)
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TABLE IX. (Continued)

hψWPjχ̂jðt ¼ 3ÞjψWPi hψvacjχ̂jðt ¼ 3Þjψvaci X jðt ¼ 3Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

29 0.6199 0.5877(35) 0.6199 0.5931(34) 0.0000 −0.0053ð46Þ
30 0.6203 0.5904(40) 0.6203 0.5874(45) 0.0000 0.0032(61)
31 0.6002 0.5880(41) 0.6002 0.5901(40) 0.0000 −0.0022ð55Þ
32 0.6023 0.5879(37) 0.6023 0.5872(35) 0.0000 0.0008(48)
33 0.5718 0.5369(38) 0.5718 0.5350(37) 0.0000 0.0017(52)
34 0.5759 0.6315(48) 0.5759 0.6156(54) 0.0000 0.0161(67)
35 0.5334 0.5319(46) 0.5334 0.5238(49) 0.0000 0.0081(62)
36 0.5395 0.6081(67) 0.5395 0.5965(65) 0.0000 0.0120(95)
37 0.4861 0.5667(43) 0.4861 0.5692(47) 0.0000 −0.0025ð62Þ
38 0.4944 0.5651(52) 0.4944 0.5724(51) 0.0000 −0.0072ð68Þ
39 0.4355 0.5586(71) 0.4355 0.5713(66) 0.0000 −0.0127ð82Þ
40 0.4457 0.5633(47) 0.4457 0.5551(47) 0.0000 0.0081(59)
41 0.3902 0.4891(50) 0.3902 0.4716(43) 0.0000 0.0178(62)
42 0.4017 0.5117(79) 0.4016 0.5387(87) 0.000 −0.028ð11Þ
43 0.3570 0.5089(95) 0.3568 0.5227(94) 0.000 −0.014ð12Þ
44 0.3686 0.4634(43) 0.3684 0.4727(43) 0.0001 −0.0092ð56Þ
45 0.3378 0.4843(47) 0.3372 0.4775(46) 0.0005 0.0068(66)
46 0.3479 0.5020(64) 0.3477 0.4862(66) 0.0002 0.0159(87)
47 0.3298 0.4258(57) 0.3284 0.4235(55) 0.0015 0.0022(78)
48 0.3363 0.4346(51) 0.3366 0.4271(50) −0.0003 0.0079(70)
49 0.3355 0.4175(53) 0.3260 0.4070(52) 0.0095 0.0103(71)
50 0.3340 0.3933(53) 0.3315 0.3833(58) 0.0026 0.0100(74)
51 0.3471 0.3920(48) 0.3267 0.3704(50) 0.0204 0.0213(68)
52 0.3111 0.3543(46) 0.3274 0.3756(42) −0.0164 −0.0216ð65Þ
53 0.5753 0.5695(36) 0.3299 0.3764(40) 0.2454 0.1931(53)
54 0.4864 0.4546(28) 0.3285 0.3840(34) 0.1579 0.0705(42)
55 1.2810 1.3510(33) 0.3296 0.3816(40) 0.9519 0.9691(54)

TABLE X. Numerical values for the t ¼ 4 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 4ÞjψWPi hψvacjχ̂jðt ¼ 4Þjψvaci X jðt ¼ 4Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.165 0.270(13) 0.165 0.248(13) 0.000 0.021(18)
1 0.557 0.700(13) 0.557 0.696(12) 0.000 0.004(18)
2 0.3967 0.5149(81) 0.3967 0.5116(88) 0.000 0.003(12)
3 0.604 0.633(11) 0.604 0.601(11) 0.000 0.032(14)
4 0.558 0.620(13) 0.558 0.584(12) 0.000 0.036(16)
5 0.630 0.566(15) 0.630 0.567(15) 0.000 −0.000ð18Þ
6 0.6487 0.5540(56) 0.6487 0.5462(57) 0.0000 0.0079(77)
7 0.6804 0.6632(54) 0.6804 0.6649(57) 0.0000 −0.0013ð58Þ
8 0.6800 0.6357(48) 0.6800 0.6380(52) 0.0000 −0.0022ð56Þ
9 0.7330 0.6070(83) 0.7330 0.6220(79) 0.0000 −0.0149ð91Þ
10 0.7236 0.5532(65) 0.7236 0.5567(62) 0.0000 −0.0037ð83Þ
11 0.7675 0.6858(63) 0.7675 0.6608(64) 0.0000 0.0250(77)
12 0.7627 0.6358(60) 0.7627 0.6356(61) 0.0000 0.0003(83)
13 0.7789 0.5513(66) 0.7789 0.5364(64) 0.0000 0.0155(70)
14 0.7774 0.6687(68) 0.7774 0.6545(70) 0.0000 0.0143(81)
15 0.7822 0.5853(54) 0.7822 0.5988(58) 0.0000 −0.0137ð70Þ
16 0.783 0.679(13) 0.783 0.658(13) 0.000 0.021(18)
17 0.7844 0.5993(55) 0.7844 0.6098(54) 0.0000 −0.0107ð67Þ

(Table continued)
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TABLE X. (Continued)

hψWPjχ̂jðt ¼ 4ÞjψWPi hψvacjχ̂jðt ¼ 4Þjψvaci X jðt ¼ 4Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

18 0.7879 0.6088(43) 0.7879 0.6018(42) 0.0000 0.0070(59)
19 0.7869 0.6411(36) 0.7869 0.6277(40) 0.0000 0.0138(50)
20 0.7940 0.5910(55) 0.7940 0.6012(54) 0.0000 −0.0105ð73Þ
21 0.7899 0.7007(59) 0.7899 0.6951(64) 0.0000 0.0060(79)
22 0.8009 0.5965(31) 0.8009 0.5940(30) 0.0000 0.0022(41)
23 0.7912 0.6633(29) 0.7912 0.6654(29) 0.0000 −0.0021ð39Þ
24 0.8056 0.6441(37) 0.8056 0.6402(36) 0.0000 0.0037(50)
25 0.7853 0.6700(31) 0.7853 0.6538(29) 0.0000 0.0163(38)
26 0.8010 0.6788(28) 0.8010 0.6813(29) 0.0000 −0.0025ð39Þ
27 0.7663 0.6505(32) 0.7663 0.6391(33) 0.0000 0.0115(45)
28 0.7807 0.6528(65) 0.7807 0.6214(64) 0.0000 0.0313(76)
29 0.7347 0.6635(35) 0.7347 0.6531(37) 0.0000 0.0104(41)
30 0.7458 0.6706(38) 0.7458 0.6685(42) 0.0000 0.0016(54)
31 0.6970 0.6425(41) 0.6970 0.6390(41) 0.0000 0.0034(55)
32 0.7052 0.6562(34) 0.7052 0.6559(36) 0.0000 0.0002(43)
33 0.6546 0.5612(42) 0.6546 0.5681(44) 0.0000 −0.0072ð58Þ
34 0.6622 0.6779(61) 0.6622 0.6737(58) 0.0000 0.0040(67)
35 0.5990 0.5169(48) 0.5990 0.5273(51) 0.0000 −0.0102ð75Þ
36 0.6091 0.6516(66) 0.6091 0.6284(67) 0.0000 0.0236(89)
37 0.5261 0.5650(51) 0.5261 0.5686(50) 0.0000 −0.0037ð60Þ
38 0.5402 0.5657(59) 0.5402 0.5707(57) 0.0000 −0.0052ð80Þ
39 0.4480 0.5337(79) 0.4480 0.5256(81) 0.000 0.008(11)
40 0.4653 0.5466(50) 0.4653 0.5469(51) 0.0000 −0.0007ð67Þ
41 0.3843 0.4474(53) 0.3842 0.4512(53) 0.0000 −0.0039ð69Þ
42 0.4019 0.4358(95) 0.402 0.449(10) 0.000 −0.013ð13Þ
43 0.344 0.420(11) 0.344 0.435(10) 0.000 −0.015ð13Þ
44 0.3587 0.4256(42) 0.3586 0.4369(43) 0.0001 −0.0112ð61Þ
45 0.3235 0.4426(47) 0.3222 0.4403(48) 0.0014 0.0023(67)
46 0.3331 0.4268(65) 0.3323 0.4214(65) 0.0008 0.0056(91)
47 0.3111 0.3491(57) 0.3096 0.3484(61) 0.0016 0.0006(77)
48 0.3134 0.3817(46) 0.3151 0.3856(51) −0.0017 −0.0040ð71Þ
49 0.3123 0.3679(48) 0.3002 0.3599(50) 0.0122 0.0081(73)
50 0.3105 0.3268(54) 0.3023 0.3270(57) 0.0082 −0.0003ð81Þ
51 0.3278 0.3465(49) 0.2930 0.3207(49) 0.0349 0.0261(69)
52 0.3101 0.3160(45) 0.2937 0.3194(44) 0.0165 −0.0032ð60Þ
53 0.6792 0.6304(43) 0.2906 0.3164(41) 0.3886 0.3140(60)
54 0.5870 0.5440(29) 0.2909 0.3429(35) 0.2961 0.2009(44)
55 0.9879 1.1380(39) 0.2897 0.3391(39) 0.6982 0.7991(52)

TABLE XI. Numerical values for the t ¼ 5 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 5ÞjψWPi hψvacjχ̂jðt ¼ 5Þjψvaci X jðt ¼ 5Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.145 0.264(16) 0.145 0.286(15) 0.000 −0.023ð20Þ
1 0.841 0.651(20) 0.841 0.692(22) 0.000 −0.041ð27Þ
2 0.6258 0.4054(70) 0.6258 0.3913(66) 0.0000 0.0144(97)
3 0.929 0.609(13) 0.929 0.601(13) 0.000 0.008(16)
4 0.940 0.489(15) 0.940 0.510(15) 0.000 −0.020ð18Þ
5 0.772 0.448(15) 0.772 0.445(14) 0.000 0.002(18)
6 0.7991 0.4874(79) 0.7991 0.4923(83) 0.000 −0.005ð11Þ

(Table continued)
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TABLE XI. (Continued)

hψWPjχ̂jðt ¼ 5ÞjψWPi hψvacjχ̂jðt ¼ 5Þjψvaci X jðt ¼ 5Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

7 0.6817 0.5100(69) 0.6817 0.5313(74) 0.0000 −0.0207ð91Þ
8 0.7127 0.5034(72) 0.7127 0.5154(73) 0.0000 −0.0120ð95Þ
9 0.715 0.442(11) 0.715 0.464(10) 0.000 −0.021ð14Þ
10 0.7161 0.4513(91) 0.716 0.439(10) 0.000 0.012(14)
11 0.7240 0.4984(91) 0.7240 0.5082(94) 0.000 −0.009ð13Þ
12 0.7230 0.4795(81) 0.7230 0.4530(84) 0.000 0.027(12)
13 0.7425 0.4051(63) 0.7425 0.4008(65) 0.0000 0.0047(78)
14 0.751 0.521(12) 0.751 0.539(12) 0.000 −0.018ð16Þ
15 0.7591 0.4958(87) 0.7591 0.4925(83) 0.000 0.003(11)
16 0.774 0.570(19) 0.774 0.586(20) 0.000 −0.016ð23Þ
17 0.774 0.533(10) 0.7740 0.5050(92) 0.000 0.028(12)
18 0.7874 0.5141(66) 0.7874 0.5334(66) 0.0000 −0.0194ð90Þ
19 0.7849 0.5633(67) 0.7849 0.5588(60) 0.0000 0.0046(92)
20 0.7921 0.5228(85) 0.7921 0.5154(91) 0.000 0.007(12)
21 0.7975 0.6371(93) 0.797 0.670(11) 0.000 −0.033ð15Þ
22 0.7985 0.5126(48) 0.7985 0.5166(46) 0.0000 −0.0041ð67Þ
23 0.8181 0.5762(47) 0.8181 0.5787(49) 0.0000 −0.0027ð65Þ
24 0.8160 0.5614(60) 0.8160 0.5581(63) 0.0000 0.0035(84)
25 0.8263 0.5724(47) 0.8263 0.5885(46) 0.0000 −0.0161ð66Þ
26 0.8249 0.6006(48) 0.8249 0.5957(46) 0.0000 0.0053(64)
27 0.8081 0.5675(49) 0.8081 0.5783(50) 0.0000 −0.0109ð66Þ
28 0.8097 0.4747(53) 0.8097 0.4943(56) 0.0000 −0.0200ð63Þ
29 0.7809 0.5685(55) 0.7809 0.5940(55) 0.0000 −0.0253ð61Þ
30 0.7858 0.5935(61) 0.7858 0.5872(50) 0.0000 0.0064(76)
31 0.7474 0.5655(62) 0.7474 0.5681(57) 0.0000 −0.0024ð77Þ
32 0.7540 0.5889(57) 0.7540 0.5921(51) 0.0000 −0.0030ð66Þ
33 0.7100 0.5033(56) 0.7100 0.5053(54) 0.0000 −0.0021ð71Þ
34 0.7182 0.5413(81) 0.7182 0.5292(84) 0.000 0.012(10)
35 0.6675 0.4862(63) 0.6675 0.4856(73) 0.0000 0.0002(97)
36 0.6795 0.5980(98) 0.680 0.622(10) 0.000 −0.024ð14Þ
37 0.6001 0.5175(69) 0.6000 0.5159(71) 0.0000 0.0013(98)
38 0.6171 0.5316(88) 0.6170 0.5531(96) 0.000 −0.022ð12Þ
39 0.503 0.497(11) 0.503 0.491(12) 0.000 0.006(15)
40 0.5224 0.5228(70) 0.5224 0.5139(74) 0.0000 0.0093(88)
41 0.4097 0.3880(49) 0.4093 0.4033(64) 0.0004 −0.0154ð74Þ
42 0.426 0.465(17) 0.426 0.416(14) 0.000 0.049(23)
43 0.347 0.395(14) 0.347 0.411(13) 0.000 −0.016ð18Þ
44 0.3566 0.4354(51) 0.3567 0.4318(58) −0.0000 0.0034(74)
45 0.3137 0.4366(61) 0.3118 0.4325(66) 0.0020 0.0044(85)
46 0.3167 0.4266(76) 0.3154 0.4205(74) 0.0013 0.0061(10)
47 0.2946 0.3667(62) 0.2907 0.3477(69) 0.0039 0.0186(94)
48 0.2926 0.3986(57) 0.2916 0.3893(55) 0.0010 0.0093(82)
49 0.2965 0.3743(60) 0.2793 0.3659(60) 0.0172 0.0086(86)
50 0.2949 0.3110(74) 0.2800 0.3084(72) 0.015 0.002(10)
51 0.3508 0.3688(61) 0.2759 0.3223(62) 0.0749 0.0468(83)
52 0.3241 0.3342(56) 0.2783 0.3053(57) 0.0457 0.0293(83)
53 0.7820 0.7346(68) 0.2820 0.3100(50) 0.5001 0.4246(80)
54 0.7535 0.6642(37) 0.2842 0.3440(44) 0.4693 0.3200(58)
55 0.7182 0.9745(60) 0.2832 0.3363(43) 0.4350 0.6383(77)
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TABLE XII. Numerical values for the t ¼ 6 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 6ÞjψWPi hψvacjχ̂jðt ¼ 6Þjψvaci X jðt ¼ 6Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.194 0.318(14) 0.194 0.310(16) 0.000 0.008(21)
1 0.704 0.831(19) 0.704 0.848(22) 0.000 −0.018ð28Þ
2 0.4283 0.4284(68) 0.4283 0.4412(63) 0.0000 −0.0134ð88Þ
3 0.654 0.634(14) 0.654 0.657(14) 0.000 −0.022ð15Þ
4 0.604 0.540(14) 0.604 0.619(17) 0.000 −0.078ð18Þ
5 0.646 0.482(14) 0.646 0.470(15) 0.000 0.013(19)
6 0.6823 0.6009(98) 0.6823 0.5815(91) 0.000 0.020(13)
7 0.7163 0.6321(97) 0.7163 0.6383(96) 0.000 −0.007ð11Þ
8 0.7426 0.5896(90) 0.7426 0.6157(93) 0.000 −0.026ð12Þ
9 0.784 0.603(12) 0.784 0.594(11) 0.000 0.010(17)
10 0.799 0.573(11) 0.799 0.536(12) 0.000 0.036(15)
11 0.849 0.597(11) 0.849 0.626(13) 0.000 −0.029ð15Þ
12 0.857 0.549(10) 0.857 0.564(11) 0.000 −0.014ð13Þ
13 0.8827 0.4507(71) 0.8827 0.4529(75) 0.0000 −0.0021ð96Þ
14 0.894 0.697(16) 0.894 0.671(15) 0.000 0.026(20)
15 0.909 0.566(10) 0.9088 0.5789(90) 0.000 −0.013ð13Þ
16 0.918 0.644(21) 0.918 0.715(22) 0.000 −0.071ð29Þ
17 0.931 0.630(12) 0.931 0.641(13) 0.000 −0.012ð16Þ
18 0.9354 0.6682(87) 0.9354 0.6793(82) 0.000 −0.010ð11Þ
19 0.9437 0.7206(75) 0.9437 0.7147(75) 0.000 0.006(11)
20 0.949 0.632(11) 0.949 0.638(11) 0.000 −0.006ð15Þ
21 0.946 0.913(13) 0.946 0.865(14) 0.000 0.049(19)
22 0.9543 0.6166(60) 0.9543 0.5960(59) 0.0000 0.0204(82)
23 0.9402 0.7308(67) 0.9402 0.7150(69) 0.0000 0.0160(78)
24 0.9483 0.7086(79) 0.9483 0.7099(90) 0.0000 −0.0011ð98Þ
25 0.9215 0.7102(54) 0.9215 0.7092(72) 0.0000 0.0009(74)
26 0.9306 0.7387(53) 0.9306 0.7310(55) 0.0000 0.0081(78)
27 0.8847 0.7045(59) 0.8847 0.6855(58) 0.0000 0.0192(74)
28 0.8956 0.5512(72) 0.8956 0.5535(73) 0.0000 −0.0024ð61Þ
29 0.8467 0.7076(68) 0.8467 0.6960(64) 0.0000 0.0118(66)
30 0.8574 0.6980(52) 0.8574 0.7016(56) 0.0000 −0.0037ð65Þ
31 0.8116 0.6657(77) 0.8116 0.6516(79) 0.0000 0.0138(84)
32 0.8243 0.6839(67) 0.8243 0.6854(71) 0.0000 −0.0014ð72Þ
33 0.7641 0.5399(62) 0.7641 0.5586(62) 0.0000 −0.0186ð77Þ
34 0.780 0.636(10) 0.780 0.613(11) 0.000 0.024(13)
35 0.7091 0.4956(78) 0.7091 0.5022(72) 0.0000 −0.0063ð92Þ
36 0.724 0.724(11) 0.724 0.722(12) 0.000 0.002(16)
37 0.6423 0.5366(80) 0.6423 0.5332(77) 0.000 0.003(10)
38 0.657 0.599(10) 0.6570 0.6146(98) 0.000 −0.016ð14Þ
39 0.549 0.485(12) 0.549 0.449(11) 0.000 0.036(16)
40 0.5655 0.5099(81) 0.5655 0.5204(92) 0.000 −0.011ð11Þ
41 0.4493 0.4003(56) 0.4488 0.3933(59) 0.0005 0.0065(77)
42 0.465 0.456(15) 0.465 0.480(16) 0.000 −0.025ð23Þ
43 0.372 0.368(13) 0.372 0.389(12) 0.000 −0.021ð17Þ
44 0.3844 0.4413(56) 0.3845 0.4388(56) 0.0000 0.0024(78)
45 0.3244 0.4182(65) 0.3229 0.4318(63) 0.0015 −0.0133ð88Þ
46 0.3330 0.4406(73) 0.3325 0.4347(70) 0.0005 0.0058(95)
47 0.3041 0.3746(68) 0.2977 0.3594(72) 0.0064 0.0157(98)
48 0.3084 0.4013(61) 0.3038 0.4044(57) 0.0046 −0.0032ð81Þ
49 0.3138 0.3862(57) 0.2895 0.3810(61) 0.0243 0.0052(86)
50 0.3101 0.3287(71) 0.2925 0.3244(71) 0.018 0.004(10)
51 0.4177 0.4262(58) 0.2891 0.3244(64) 0.1287 0.1015(88)
52 0.3667 0.3540(55) 0.2885 0.3123(59) 0.0782 0.0422(77)
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TABLE XII. (Continued)

hψWPjχ̂jðt ¼ 6ÞjψWPi hψvacjχ̂jðt ¼ 6Þjψvaci X jðt ¼ 6Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

53 0.8215 0.7384(70) 0.2947 0.3289(48) 0.5268 0.4099(81)
54 0.8200 0.7282(45) 0.2941 0.3438(49) 0.5259 0.3842(65)
55 0.5170 0.7533(81) 0.2946 0.3490(44) 0.2224 0.4041(94)

TABLE XIII. Numerical values for the t ¼ 7 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 7ÞjψWPi hψvacjχ̂jðt ¼ 7Þjψvaci X jðt ¼ 7Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.193 0.329(16) 0.193 0.327(15) 0.000 0.003(21)
1 0.909 0.782(29) 0.909 0.744(26) 0.000 0.040(33)
2 0.6241 0.3999(72) 0.6241 0.3610(48) 0.0000 0.0393(84)
3 1.030 0.565(15) 1.030 0.560(15) 0.000 0.005(20)
4 0.977 0.516(17) 0.977 0.601(19) 0.000 −0.087ð25Þ
5 0.981 0.432(12) 0.981 0.436(13) 0.000 −0.003ð16Þ
6 1.030 0.568(15) 1.030 0.608(13) 0.000 −0.039ð18Þ
7 0.8174 0.4806(95) 0.817 0.493(10) 0.000 −0.012ð13Þ
8 0.864 0.456(10) 0.8644 0.4678(93) 0.000 −0.012ð13Þ
9 0.798 0.517(15) 0.798 0.510(13) 0.000 0.008(17)
10 0.806 0.468(13) 0.806 0.503(14) 0.000 −0.035ð19Þ
11 0.810 0.498(12) 0.810 0.474(11) 0.000 0.023(16)
12 0.788 0.440(10) 0.788 0.463(11) 0.000 −0.023ð12Þ
13 0.8021 0.4004(73) 0.8021 0.3697(73) 0.0000 0.0300(98)
14 0.793 0.547(15) 0.793 0.549(14) 0.000 −0.002ð19Þ
15 0.811 0.487(11) 0.811 0.485(10) 0.000 0.003(14)
16 0.822 0.541(23) 0.822 0.518(19) 0.000 0.022(28)
17 0.822 0.500(16) 0.822 0.483(14) 0.000 0.016(22)
18 0.842 0.580(12) 0.842 0.601(12) 0.000 −0.021ð15Þ
19 0.836 0.647(13) 0.836 0.645(12) 0.000 0.002(17)
20 0.858 0.559(14) 0.858 0.602(15) 0.000 −0.043ð21Þ
21 0.849 0.793(19) 0.849 0.879(21) 0.000 −0.086ð28Þ
22 0.8692 0.5612(81) 0.8692 0.5696(79) 0.000 −0.008ð12Þ
23 0.876 0.628(11) 0.876 0.633(10) 0.000 −0.004ð13Þ
24 0.883 0.578(11) 0.883 0.622(12) 0.000 −0.044ð14Þ
25 0.8871 0.6122(92) 0.8871 0.6126(95) 0.000 −0.000ð12Þ
26 0.8947 0.6452(92) 0.8947 0.6581(86) 0.000 −0.013ð12Þ
27 0.8526 0.5770(93) 0.8526 0.5935(94) 0.000 −0.016ð11Þ
28 0.8661 0.4649(71) 0.8661 0.4635(74) 0.0000 0.0009(86)
29 0.8515 0.5702(92) 0.8515 0.5796(94) 0.000 −0.009ð11Þ
30 0.8617 0.5945(82) 0.8617 0.5954(81) 0.000 −0.000ð11Þ
31 0.8154 0.5219(98) 0.8154 0.5290(93) 0.000 −0.007ð11Þ
32 0.8241 0.5408(87) 0.8241 0.5607(80) 0.000 −0.020ð10Þ
33 0.7746 0.4751(69) 0.7746 0.4853(72) 0.0000 −0.0100ð92Þ
34 0.784 0.463(12) 0.784 0.452(12) 0.000 0.012(15)
35 0.7044 0.4409(92) 0.7043 0.4498(92) 0.000 −0.009ð12Þ
36 0.716 0.617(16) 0.716 0.645(17) 0.000 −0.027ð25Þ
37 0.642 0.507(12) 0.642 0.515(12) 0.000 −0.009ð15Þ
38 0.651 0.585(16) 0.651 0.580(15) 0.000 0.005(20)
39 0.569 0.483(15) 0.569 0.435(18) 0.000 0.048(22)
40 0.580 0.455(11) 0.5804 0.4459(95) 0.000 0.009(12)
41 0.4716 0.3866(59) 0.4712 0.3829(62) 0.0004 0.0036(78)
42 0.490 0.556(23) 0.490 0.543(23) 0.000 0.013(33)

(Table continued)
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TABLE XIII. (Continued)

hψWPjχ̂jðt ¼ 7ÞjψWPi hψvacjχ̂jðt ¼ 7Þjψvaci X jðt ¼ 7Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

43 0.386 0.408(19) 0.385 0.385(21) 0.001 0.021(27)
44 0.4057 0.4110(79) 0.4046 0.4276(75) 0.001 −0.017ð11Þ
45 0.3366 0.3966(76) 0.3341 0.3938(82) 0.002 0.003(11)
46 0.3500 0.4140(79) 0.3492 0.4099(83) 0.000 0.004(12)
47 0.3245 0.3807(72) 0.3126 0.3812(67) 0.012 −0.000ð10Þ
48 0.3298 0.4127(63) 0.3206 0.4194(65) 0.0092 −0.0065ð89Þ
49 0.3428 0.4176(63) 0.3041 0.3946(64) 0.0387 0.0229(89)
50 0.3263 0.3374(83) 0.3066 0.3422(80) 0.020 −0.005ð12Þ
51 0.5011 0.4781(69) 0.2993 0.3611(73) 0.202 0.117(10)
52 0.4783 0.4170(61) 0.2962 0.3108(70) 0.1821 0.1062(92)
53 0.8321 0.7622(79) 0.2982 0.3225(54) 0.5339 0.4398(99)
54 0.8392 0.7919(50) 0.2947 0.3787(53) 0.5445 0.4134(76)
55 0.331 0.525(11) 0.2964 0.3916(50) 0.034 0.133(12)

TABLE XIV. Numerical values for the t ¼ 8 chiral condensate of the wavepacket, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 8ÞjψWPi hψvacjχ̂jðt ¼ 8Þjψvaci X jðt ¼ 8Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.184 0.344(20) 0.184 0.241(13) 0.000 0.104(23)
1 0.791 0.825(34) 0.791 0.692(19) 0.000 0.133(38)
2 0.456 0.488(22) 0.4564 0.3586(74) 0.000 0.129(24)
3 0.774 0.585(18) 0.774 0.543(12) 0.000 0.041(20)
4 0.689 0.607(25) 0.689 0.597(16) 0.000 0.009(29)
5 0.697 0.454(14) 0.6969 0.4378(97) 0.000 0.017(16)
6 0.775 0.595(16) 0.775 0.607(14) 0.000 −0.012ð20Þ
7 0.747 0.496(11) 0.747 0.495(10) 0.000 0.001(15)
8 0.802 0.453(11) 0.802 0.440(10) 0.000 0.013(15)
9 0.816 0.564(16) 0.816 0.544(16) 0.000 0.020(21)
10 0.845 0.461(13) 0.845 0.447(13) 0.000 0.014(17)
11 0.881 0.521(13) 0.881 0.475(11) 0.000 0.047(16)
12 0.896 0.625(16) 0.896 0.628(17) 0.000 −0.003ð20Þ
13 0.9167 0.4238(89) 0.9167 0.4092(93) 0.000 0.015(12)
14 0.916 0.574(15) 0.916 0.524(16) 0.000 0.050(22)
15 0.935 0.527(11) 0.935 0.542(14) 0.000 −0.015ð15Þ
16 0.922 0.600(22) 0.922 0.511(20) 0.000 0.087(30)
17 0.938 0.599(15) 0.938 0.583(16) 0.000 0.016(21)
18 0.928 0.654(15) 0.928 0.644(14) 0.000 0.009(17)
19 0.937 0.718(14) 0.937 0.705(14) 0.000 0.014(19)
20 0.940 0.694(18) 0.940 0.652(17) 0.000 0.042(25)
21 0.939 0.740(27) 0.939 0.887(23) 0.000 −0.146ð34Þ
22 0.9557 0.5871(99) 0.956 0.631(10) 0.000 −0.044ð14Þ
23 0.934 0.635(13) 0.934 0.602(12) 0.000 0.032(17)
24 0.963 0.584(13) 0.963 0.639(14) 0.000 −0.055ð17Þ
25 0.920 0.625(11) 0.920 0.650(11) 0.000 −0.026ð14Þ
26 0.951 0.742(14) 0.951 0.741(13) 0.000 0.000(18)
27 0.899 0.614(13) 0.899 0.632(12) 0.000 −0.018ð15Þ
28 0.9184 0.4767(76) 0.9184 0.4372(72) 0.0000 0.0398(84)
29 0.872 0.585(11) 0.872 0.592(12) 0.000 −0.008ð12Þ
30 0.880 0.644(10) 0.8801 0.6878(98) 0.000 −0.043ð13Þ
31 0.833 0.508(10) 0.833 0.516(11) 0.000 −0.008ð13Þ
32 0.8438 0.5459(95) 0.8438 0.5548(10) 0.000 −0.009ð12Þ
33 0.7901 0.4811(89) 0.7901 0.4914(78) 0.000 −0.010ð11Þ

(Table continued)
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TABLE XIV. (Continued)

hψWPjχ̂jðt ¼ 8ÞjψWPi hψvacjχ̂jðt ¼ 8Þjψvaci X jðt ¼ 8Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

34 0.803 0.499(13) 0.803 0.474(12) 0.000 0.024(17)
35 0.724 0.526(12) 0.724 0.513(11) 0.000 0.011(16)
36 0.735 0.723(23) 0.735 0.785(21) 0.000 −0.063ð31Þ
37 0.657 0.518(14) 0.657 0.520(15) 0.000 −0.001ð18Þ
38 0.667 0.564(18) 0.667 0.553(17) 0.000 0.011(22)
39 0.577 0.423(13) 0.577 0.463(17) 0.000 −0.040ð21Þ
40 0.588 0.427(12) 0.588 0.428(12) 0.000 −0.001ð16Þ
41 0.4892 0.3931(72) 0.4889 0.3807(69) 0.0003 0.0127(91)
42 0.505 0.496(21) 0.505 0.522(20) 0.000 −0.024ð30Þ
43 0.404 0.397(14) 0.402 0.373(19) 0.002 0.024(23)
44 0.4193 0.4046(84) 0.4174 0.4098(85) 0.002 −0.005ð11Þ
45 0.3409 0.3913(73) 0.3359 0.4037(78) 0.005 −0.012ð11Þ
46 0.3498 0.4012(87) 0.347 0.380(10) 0.003 0.021(13)
47 0.3164 0.3698(75) 0.2965 0.3644(82) 0.020 0.006(11)
48 0.3161 0.4129(70) 0.3026 0.4196(66) 0.0136 −0.0066ð96Þ
49 0.3342 0.4143(62) 0.2761 0.3980(65) 0.0581 0.0162(90)
50 0.3162 0.3384(81) 0.2795 0.3479(89) 0.037 −0.010ð12Þ
51 0.5189 0.5082(70) 0.2689 0.3536(82) 0.250 0.154(11)
52 0.5254 0.4554(62) 0.2716 0.2787(76) 0.2538 0.1764(98)
53 0.7800 0.7705(86) 0.2720 0.3263(66) 0.508 0.444(11)
54 0.7790 0.8261(50) 0.2721 0.3724(51) 0.5069 0.4537(76)
55 0.267 0.352(14) 0.2720 0.3826(47) −0.005 −0.031ð14Þ

TABLE XV. Numerical values for the t ¼ 9 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 9ÞjψWPi hψvacjχ̂jðt ¼ 9Þjψvaci X jðt ¼ 9Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.185 0.266(19) 0.185 0.230(20) 0.000 0.037(28)
1 0.831 0.535(28) 0.831 0.526(25) 0.000 0.007(37)
2 0.508 0.367(12) 0.508 0.356(12) 0.000 0.012(19)
3 0.842 0.491(29) 0.842 0.499(24) 0.000 −0.009ð33Þ
4 0.763 0.633(44) 0.763 0.619(40) 0.000 0.014(62)
5 0.883 0.474(29) 0.883 0.480(26) 0.000 −0.006ð33Þ
6 0.926 0.501(26) 0.926 0.507(27) 0.000 −0.008ð36Þ
7 0.875 0.447(17) 0.875 0.442(20) 0.000 0.005(27)
8 0.925 0.364(20) 0.925 0.406(22) 0.000 −0.042ð29Þ
9 0.854 0.533(27) 0.854 0.548(32) 0.000 −0.014ð41Þ
10 0.879 0.422(25) 0.879 0.414(18) 0.000 0.007(30)
11 0.877 0.480(22) 0.877 0.450(20) 0.000 0.031(29)
12 0.869 0.489(28) 0.869 0.575(36) 0.000 −0.085ð48Þ
13 0.862 0.370(12) 0.862 0.347(13) 0.000 0.023(18)
14 0.867 0.415(28) 0.867 0.400(36) 0.000 0.013(43)
15 0.879 0.534(27) 0.879 0.481(22) 0.000 0.052(31)
16 0.888 0.458(32) 0.888 0.626(47) 0.000 −0.167ð55Þ
17 0.888 0.564(32) 0.888 0.539(30) 0.000 0.025(42)
18 0.917 0.564(31) 0.917 0.547(32) 0.000 0.019(40)
19 0.899 0.628(33) 0.899 0.674(32) 0.000 −0.043ð44Þ
20 0.927 0.652(34) 0.927 0.600(41) 0.000 0.051(55)
21 0.909 0.810(47) 0.909 0.897(52) 0.000 −0.086ð73Þ

(Table continued)
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TABLE XV. (Continued)

hψWPjχ̂jðt ¼ 9ÞjψWPi hψvacjχ̂jðt ¼ 9Þjψvaci X jðt ¼ 9Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

22 0.926 0.564(21) 0.926 0.627(22) 0.000 −0.063ð33Þ
23 0.903 0.561(26) 0.903 0.571(25) 0.000 −0.008ð32Þ
24 0.917 0.536(23) 0.917 0.502(22) 0.000 0.033(31)
25 0.906 0.504(21) 0.906 0.616(28) 0.000 −0.112ð32Þ
26 0.928 0.775(30) 0.928 0.748(32) 0.000 0.027(43)
27 0.875 0.514(20) 0.875 0.520(23) 0.000 −0.008ð27Þ
28 0.879 0.386(12) 0.879 0.390(10) 0.000 −0.005ð15Þ
29 0.891 0.470(22) 0.891 0.468(18) 0.000 0.003(27)
30 0.895 0.547(21) 0.895 0.533(24) 0.000 0.015(30)
31 0.797 0.399(20) 0.797 0.439(18) 0.000 −0.040ð22Þ
32 0.814 0.476(18) 0.814 0.463(17) 0.000 0.014(20)
33 0.809 0.441(15) 0.809 0.434(17) 0.000 0.007(20)
34 0.816 0.400(23) 0.816 0.393(23) 0.000 0.007(30)
35 0.713 0.420(17) 0.713 0.518(23) 0.000 −0.097ð27Þ
36 0.730 0.517(34) 0.730 0.793(41) 0.000 −0.277ð54Þ
37 0.656 0.467(24) 0.655 0.443(29) 0.000 0.023(35)
38 0.681 0.563(39) 0.680 0.531(41) 0.000 0.034(52)
39 0.575 0.601(42) 0.574 0.441(25) 0.000 0.161(47)
40 0.588 0.404(23) 0.587 0.399(22) 0.000 0.005(30)
41 0.501 0.391(13) 0.500 0.387(11) 0.001 0.004(16)
42 0.507 0.706(42) 0.506 0.707(42) 0.000 0.001(61)
43 0.422 0.613(45) 0.418 0.430(39) 0.004 0.184(59)
44 0.431 0.439(21) 0.429 0.431(21) 0.002 0.007(28)
45 0.361 0.431(15) 0.352 0.393(16) 0.009 0.037(22)
46 0.369 0.385(18) 0.364 0.412(19) 0.005 −0.025ð26Þ
47 0.345 0.406(18) 0.316 0.395(16) 0.029 0.011(22)
48 0.343 0.424(16) 0.325 0.450(15) 0.017 −0.025ð21Þ
49 0.385 0.443(13) 0.303 0.444(14) 0.082 −0.001ð19Þ
50 0.390 0.408(18) 0.307 0.378(20) 0.083 0.030(27)
51 0.613 0.539(17) 0.298 0.389(18) 0.315 0.151(23)
52 0.622 0.536(14) 0.301 0.317(18) 0.321 0.218(22)
53 0.677 0.656(16) 0.302 0.322(13) 0.375 0.334(20)
54 0.656 0.808(12) 0.305 0.393(11) 0.351 0.416(17)
55 0.293 0.362(38) 0.303 0.443(10) −0.009 −0.081ð39Þ

TABLE XVI. Numerical values for the t ¼ 10 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 10ÞjψWPi hψvacjχ̂jðt ¼ 10Þjψvaci X jðt ¼ 10Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.199 0.328(21) 0.199 0.259(22) 0.000 0.068(30)
1 0.850 0.521(26) 0.850 0.467(32) 0.000 0.055(42)
2 0.436 0.377(14) 0.436 0.403(14) 0.000 −0.026ð20Þ
3 0.837 0.402(20) 0.837 0.428(23) 0.000 −0.027ð32Þ
4 0.677 0.419(21) 0.677 0.377(17) 0.000 0.042(25)
5 0.696 0.420(18) 0.696 0.417(17) 0.000 0.003(21)
6 0.829 0.503(40) 0.829 0.463(30) 0.000 0.039(48)
7 0.736 0.406(20) 0.736 0.358(21) 0.000 0.049(30)
8 0.831 0.368(20) 0.831 0.343(24) 0.000 0.026(31)
9 0.816 0.492(30) 0.816 0.566(27) 0.000 −0.075ð39Þ
10 0.853 0.410(21) 0.853 0.436(31) 0.000 −0.026ð37Þ

(Table continued)
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TABLE XVI. (Continued)

hψWPjχ̂jðt ¼ 10ÞjψWPi hψvacjχ̂jðt ¼ 10Þjψvaci X jðt ¼ 10Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

11 0.885 0.412(23) 0.885 0.464(22) 0.000 −0.053ð32Þ
12 0.899 0.573(33) 0.899 0.457(32) 0.000 0.118(47)
13 0.924 0.346(16) 0.924 0.334(15) 0.000 0.013(21)
14 0.927 0.432(32) 0.927 0.438(24) 0.000 −0.004ð39Þ
15 0.944 0.531(25) 0.944 0.491(33) 0.000 0.043(37)
16 0.950 0.524(40) 0.950 0.443(36) 0.000 0.081(51)
17 0.970 0.618(35) 0.970 0.594(35) 0.000 0.023(45)
18 0.978 0.550(37) 0.978 0.498(31) 0.000 0.053(48)
19 0.978 0.627(36) 0.978 0.655(36) 0.000 −0.029ð49Þ
20 0.989 0.533(37) 0.989 0.691(39) 0.000 −0.159ð53Þ
21 0.974 0.906(70) 0.974 0.798(52) 0.000 0.105(89)
22 0.995 0.642(25) 0.995 0.527(28) 0.000 0.114(36)
23 0.962 0.626(34) 0.962 0.584(29) 0.000 0.042(42)
24 0.992 0.522(31) 0.992 0.516(25) 0.000 0.009(35)
25 0.943 0.537(26) 0.943 0.560(28) 0.000 −0.025ð37Þ
26 0.962 0.823(35) 0.962 0.889(37) 0.000 −0.066ð49Þ
27 0.909 0.545(24) 0.909 0.575(26) 0.000 −0.030ð33Þ
28 0.925 0.387(12) 0.925 0.419(13) 0.000 −0.032ð15Þ
29 0.886 0.406(21) 0.886 0.476(20) 0.000 −0.070ð29Þ
30 0.895 0.575(26) 0.895 0.532(27) 0.000 0.043(37)
31 0.856 0.421(20) 0.856 0.406(19) 0.000 0.014(27)
32 0.857 0.447(17) 0.857 0.473(18) 0.000 −0.026ð22Þ
33 0.804 0.448(15) 0.804 0.451(17) 0.000 −0.003ð22Þ
34 0.818 0.394(23) 0.818 0.425(22) 0.000 −0.030ð32Þ
35 0.739 0.433(27) 0.739 0.433(20) 0.000 0.000(34)
36 0.754 0.826(46) 0.754 0.635(48) 0.000 0.192(70)
37 0.669 0.435(29) 0.669 0.429(24) 0.000 0.006(36)
38 0.692 0.624(42) 0.692 0.647(43) 0.000 −0.023ð57Þ
39 0.579 0.438(24) 0.578 0.496(29) 0.000 −0.056ð35Þ
40 0.605 0.386(27) 0.605 0.321(30) 0.000 0.066(38)
41 0.502 0.395(13) 0.501 0.381(16) 0.001 0.013(21)
42 0.516 0.642(41) 0.515 0.453(43) 0.000 0.188(61)
43 0.419 0.318(25) 0.415 0.359(22) 0.004 −0.040ð32Þ
44 0.427 0.406(21) 0.425 0.424(21) 0.002 −0.018ð28Þ
45 0.355 0.404(16) 0.342 0.413(17) 0.013 −0.009ð22Þ
46 0.360 0.414(18) 0.353 0.406(17) 0.007 0.007(24)
47 0.341 0.426(16) 0.304 0.404(17) 0.036 0.022(22)
48 0.340 0.435(16) 0.311 0.446(17) 0.029 −0.011ð21Þ
49 0.394 0.432(16) 0.290 0.434(15) 0.104 −0.000ð23Þ
50 0.403 0.399(18) 0.291 0.355(18) 0.113 0.045(25)
51 0.650 0.566(21) 0.283 0.366(18) 0.367 0.199(27)
52 0.649 0.566(13) 0.279 0.299(17) 0.371 0.267(24)
53 0.570 0.525(17) 0.282 0.310(18) 0.288 0.216(25)
54 0.547 0.759(12) 0.282 0.391(12) 0.265 0.367(16)
55 0.336 0.231(41) 0.2807 0.4427(10) 0.055 −0.212ð41Þ

QUANTUM SIMULATIONS OF HADRON DYNAMICS IN THE … PHYS. REV. D 109, 114510 (2024)

114510-41



TABLE XVII. Numerical values for the t ¼ 11 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 11ÞjψWPi hψvacjχ̂jðt ¼ 11Þjψvaci X jðt ¼ 11Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.238 0.294(16) 0.238 0.275(17) 0.000 0.021(23)
1 0.912 0.473(23) 0.912 0.494(30) 0.000 −0.020ð37Þ
2 0.479 0.372(12) 0.479 0.365(15) 0.000 0.008(19)
3 0.765 0.364(20) 0.765 0.364(22) 0.000 −0.000ð30Þ
4 0.768 0.487(28) 0.768 0.411(24) 0.000 0.077(28)
5 0.793 0.391(18) 0.793 0.423(15) 0.000 −0.033ð19Þ
6 0.833 0.423(38) 0.833 0.476(37) 0.000 −0.053ð58Þ
7 0.885 0.330(18) 0.885 0.381(22) 0.000 −0.051ð29Þ
8 0.901 0.353(21) 0.901 0.389(25) 0.000 −0.037ð35Þ
9 0.911 0.425(25) 0.911 0.420(26) 0.000 0.006(34)
10 0.946 0.380(24) 0.946 0.343(28) 0.000 0.036(38)
11 0.925 0.433(20) 0.925 0.437(22) 0.000 −0.005ð28Þ
12 0.926 0.437(27) 0.926 0.413(31) 0.000 0.024(43)
13 0.905 0.352(15) 0.905 0.373(15) 0.000 −0.021ð22Þ
14 0.906 0.312(32) 0.906 0.464(31) 0.000 −0.152ð46Þ
15 0.902 0.469(33) 0.902 0.483(29) 0.000 −0.014ð40Þ
16 0.897 0.489(37) 0.897 0.480(35) 0.000 0.009(48)
17 0.906 0.605(34) 0.906 0.491(42) 0.000 0.117(50)
18 0.918 0.511(32) 0.918 0.454(37) 0.000 0.057(48)
19 0.909 0.570(41) 0.909 0.675(51) 0.000 −0.104ð62Þ
20 0.929 0.779(44) 0.929 0.668(46) 0.000 0.114(64)
21 0.909 0.542(51) 0.909 0.809(53) 0.000 −0.266ð73Þ
22 0.937 0.644(41) 0.937 0.667(37) 0.000 −0.024ð54Þ
23 0.896 0.504(33) 0.896 0.534(31) 0.000 −0.029ð38Þ
24 0.925 0.447(28) 0.925 0.411(29) 0.000 0.036(40)
25 0.920 0.508(31) 0.920 0.462(30) 0.000 0.046(42)
26 0.941 0.779(58) 0.941 0.730(47) 0.000 0.049(75)
27 0.891 0.418(25) 0.891 0.389(28) 0.000 0.029(37)
28 0.9015 0.3596(93) 0.9016 0.3570(88) 0.000 0.002(13)
29 0.906 0.428(22) 0.906 0.406(25) 0.000 0.023(31)
30 0.916 0.403(30) 0.916 0.537(27) 0.000 −0.134ð40Þ
31 0.827 0.374(17) 0.827 0.401(22) 0.000 −0.028ð27Þ
32 0.842 0.355(17) 0.843 0.368(17) 0.000 −0.013ð24Þ
33 0.828 0.371(14) 0.828 0.358(17) 0.000 0.011(21)
34 0.838 0.381(19) 0.838 0.377(18) 0.000 0.004(26)
35 0.714 0.488(25) 0.714 0.475(28) 0.000 0.013(34)
36 0.731 0.505(36) 0.731 0.635(39) 0.000 −0.129ð50Þ
37 0.676 0.364(27) 0.676 0.401(25) 0.000 −0.037ð35Þ
38 0.695 0.477(40) 0.694 0.495(36) 0.000 −0.017ð51Þ
39 0.546 0.426(23) 0.545 0.482(31) 0.001 −0.058ð38Þ
40 0.574 0.360(26) 0.573 0.351(30) 0.000 0.010(40)
41 0.497 0.371(12) 0.494 0.391(13) 0.002 −0.020ð18Þ
42 0.517 0.660(46) 0.516 0.557(38) 0.000 0.106(56)
43 0.410 0.453(37) 0.404 0.415(34) 0.006 0.038(49)
44 0.413 0.454(26) 0.410 0.427(29) 0.003 0.027(38)
45 0.356 0.370(20) 0.340 0.408(21) 0.016 −0.040ð27Þ
46 0.353 0.429(19) 0.342 0.380(20) 0.011 0.049(28)
47 0.347 0.433(16) 0.297 0.405(16) 0.050 0.028(22)
48 0.350 0.433(19) 0.298 0.429(18) 0.052 0.003(25)
49 0.424 0.456(17) 0.279 0.454(18) 0.145 0.003(24)
50 0.434 0.422(26) 0.282 0.332(27) 0.152 0.090(38)
51 0.660 0.480(20) 0.280 0.338(20) 0.380 0.143(30)
52 0.665 0.673(16) 0.281 0.337(19) 0.384 0.337(25)
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TABLE XVII. (Continued)

hψWPjχ̂jðt ¼ 11ÞjψWPi hψvacjχ̂jðt ¼ 11Þjψvaci X jðt ¼ 11Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

53 0.454 0.441(16) 0.288 0.319(11) 0.167 0.124(21)
54 0.442 0.668(16) 0.286 0.434(12) 0.157 0.236(20)
55 0.450 0.457(46) 0.289 0.426(12) 0.161 0.030(48)

TABLE XVIII. Numerical values for the t ¼ 12 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 12ÞjψWPi hψvacjχ̂jðt ¼ 12Þjψvaci X jðt ¼ 12Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.214 0.396(41) 0.214 0.313(36) 0.000 0.082(54)
1 0.838 0.505(36) 0.838 0.440(29) 0.000 0.066(44)
2 0.419 0.369(11) 0.419 0.377(13) 0.000 −0.008ð16Þ
3 0.879 0.360(25) 0.879 0.406(29) 0.000 −0.049ð39Þ
4 0.675 0.401(22) 0.675 0.457(25) 0.000 −0.056ð34Þ
5 0.730 0.361(12) 0.730 0.412(17) 0.000 −0.051ð19Þ
6 0.859 0.482(42) 0.859 0.381(30) 0.000 0.099(56)
7 0.736 0.323(19) 0.736 0.331(21) 0.000 −0.007ð30Þ
8 0.861 0.321(25) 0.861 0.340(18) 0.000 −0.019ð32Þ
9 0.818 0.435(23) 0.818 0.416(28) 0.000 0.021(38)
10 0.860 0.377(17) 0.860 0.345(27) 0.000 0.030(29)
11 0.895 0.384(24) 0.895 0.441(27) 0.000 −0.058ð36Þ
12 0.906 0.438(35) 0.906 0.420(26) 0.000 0.019(44)
13 0.934 0.342(10) 0.934 0.347(13) 0.000 −0.005ð16Þ
14 0.944 0.408(29) 0.944 0.394(32) 0.000 0.015(41)
15 0.954 0.411(35) 0.954 0.541(37) 0.000 −0.130ð52Þ
16 0.954 0.519(40) 0.954 0.464(36) 0.000 0.054(50)
17 0.972 0.640(38) 0.972 0.465(33) 0.000 0.173(52)
18 0.965 0.541(33) 0.965 0.447(34) 0.000 0.094(48)
19 0.962 0.668(47) 0.962 0.672(52) 0.000 −0.002ð72Þ
20 0.968 0.813(49) 0.968 0.682(50) 0.000 0.133(70)
21 0.951 0.809(48) 0.951 0.675(50) 0.000 0.132(71)
22 0.978 0.793(47) 0.978 0.841(38) 0.000 −0.045ð59Þ
23 0.932 0.453(34) 0.932 0.456(31) 0.000 −0.002ð43Þ
24 0.969 0.416(34) 0.969 0.421(29) 0.000 −0.001ð46Þ
25 0.940 0.555(31) 0.940 0.630(34) 0.000 −0.075ð44Þ
26 0.967 0.918(56) 0.967 0.706(64) 0.000 0.212(82)
27 0.922 0.396(27) 0.922 0.452(28) 0.000 −0.058ð41Þ
28 0.939 0.397(12) 0.9391 0.3693(96) 0.000 0.028(15)
29 0.901 0.370(26) 0.901 0.393(28) 0.000 −0.021ð38Þ
30 0.903 0.543(35) 0.903 0.520(29) 0.000 0.023(39)
31 0.870 0.352(21) 0.870 0.332(23) 0.000 0.020(31)
32 0.872 0.423(18) 0.872 0.403(20) 0.000 0.020(26)
33 0.808 0.359(18) 0.808 0.381(17) 0.000 −0.022ð24Þ
34 0.831 0.432(24) 0.831 0.436(23) 0.000 −0.005ð35Þ
35 0.739 0.452(29) 0.739 0.489(31) 0.000 −0.038ð44Þ
36 0.758 0.583(47) 0.758 0.567(40) 0.000 0.016(61)
37 0.673 0.436(26) 0.673 0.387(29) 0.000 0.048(35)
38 0.691 0.453(37) 0.690 0.430(40) 0.000 0.026(53)
39 0.577 0.497(26) 0.576 0.510(36) 0.001 −0.014ð40Þ
40 0.599 0.373(33) 0.598 0.392(29) 0.000 −0.020ð43Þ
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TABLE XVIII. (Continued)

hψWPjχ̂jðt ¼ 12ÞjψWPi hψvacjχ̂jðt ¼ 12Þjψvaci X jðt ¼ 12Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

41 0.510 0.381(12) 0.508 0.413(21) 0.003 −0.031ð22Þ
42 0.534 0.696(39) 0.533 0.491(36) 0.000 0.210(55)
43 0.429 0.385(22) 0.422 0.305(26) 0.007 0.080(35)
44 0.445 0.451(33) 0.440 0.454(31) 0.004 −0.003ð45Þ
45 0.382 0.416(21) 0.364 0.405(21) 0.019 0.010(29)
46 0.384 0.416(23) 0.370 0.432(23) 0.014 −0.016ð32Þ
47 0.371 0.446(18) 0.312 0.414(19) 0.058 0.031(25)
48 0.370 0.431(18) 0.316 0.388(20) 0.054 0.044(27)
49 0.463 0.491(18) 0.292 0.447(20) 0.172 0.044(26)
50 0.485 0.471(23) 0.292 0.385(24) 0.193 0.086(32)
51 0.660 0.536(21) 0.284 0.359(20) 0.375 0.177(28)
52 0.653 0.598(18) 0.285 0.350(21) 0.369 0.247(28)
53 0.381 0.433(16) 0.289 0.321(13) 0.092 0.111(22)
54 0.358 0.467(17) 0.287 0.449(14) 0.072 0.017(22)
55 0.510 0.843(39) 0.290 0.429(18) 0.220 0.415(42)

TABLE XIX. Numerical values for the t ¼ 13 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 13ÞjψWPi hψvacjχ̂jðt ¼ 13Þjψvaci X jðt ¼ 13Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.217 0.250(19) 0.217 0.290(26) 0.000 −0.040ð32Þ
1 0.929 0.407(20) 0.929 0.432(26) 0.000 −0.024ð35Þ
2 0.496 0.365(19) 0.4956 0.3520(99) 0.000 0.012(23)
3 0.817 0.355(18) 0.817 0.338(19) 0.000 0.018(25)
4 0.818 0.441(30) 0.818 0.542(53) 0.000 −0.100ð60Þ
5 0.7731 0.3620(95) 0.773 0.382(14) 0.000 −0.021ð17Þ
6 0.836 0.472(42) 0.836 0.428(40) 0.000 0.045(59)
7 0.835 0.328(21) 0.835 0.367(16) 0.000 −0.040ð25Þ
8 0.866 0.342(28) 0.866 0.337(26) 0.000 0.004(39)
9 0.918 0.521(38) 0.918 0.439(27) 0.000 0.082(45)
10 0.916 0.323(18) 0.916 0.341(23) 0.000 −0.018ð28Þ
11 0.942 0.465(36) 0.942 0.399(24) 0.000 0.067(43)
12 0.928 0.401(29) 0.928 0.345(26) 0.000 0.057(41)
13 0.927 0.344(10) 0.927 0.338(12) 0.000 0.005(16)
14 0.919 0.362(27) 0.919 0.371(32) 0.000 −0.009ð43Þ
15 0.900 0.473(33) 0.900 0.543(40) 0.000 −0.069ð49Þ
16 0.897 0.553(65) 0.897 0.495(33) 0.000 0.055(77)
17 0.907 0.828(82) 0.907 0.541(36) 0.000 0.287(89)
18 0.919 0.501(42) 0.919 0.494(31) 0.000 0.007(53)
19 0.919 0.578(40) 0.919 0.491(43) 0.000 0.085(58)
20 0.951 0.650(42) 0.951 0.617(55) 0.000 0.031(71)
21 0.918 0.717(81) 0.918 0.465(38) 0.000 0.253(88)
22 0.962 0.873(43) 0.962 0.710(38) 0.000 0.163(60)
23 0.912 0.576(51) 0.912 0.475(31) 0.000 0.102(58)
24 0.941 0.481(37) 0.941 0.431(26) 0.000 0.050(45)
25 0.946 0.571(51) 0.946 0.491(34) 0.000 0.080(60)
26 0.970 0.766(58) 0.970 0.811(58) 0.000 −0.046ð73Þ
27 0.899 0.377(24) 0.899 0.413(28) 0.000 −0.036ð35Þ
28 0.914 0.340(12) 0.914 0.375(10) 0.000 −0.035ð16Þ
29 0.909 0.420(23) 0.909 0.395(27) 0.000 0.024(34)

(Table continued)
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TABLE XIX. (Continued)

hψWPjχ̂jðt ¼ 13ÞjψWPi hψvacjχ̂jðt ¼ 13Þjψvaci X jðt ¼ 13Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

30 0.915 0.454(32) 0.915 0.428(31) 0.000 0.026(45)
31 0.844 0.328(19) 0.844 0.350(21) 0.000 −0.023ð29Þ
32 0.864 0.385(16) 0.864 0.309(19) 0.000 0.076(26)
33 0.823 0.362(18) 0.822 0.372(16) 0.000 −0.010ð21Þ
34 0.834 0.478(34) 0.834 0.391(24) 0.000 0.089(42)
35 0.716 0.454(46) 0.715 0.434(28) 0.000 0.022(54)
36 0.726 0.533(46) 0.726 0.393(31) 0.000 0.143(56)
37 0.674 0.369(21) 0.673 0.388(31) 0.001 −0.019ð36Þ
38 0.704 0.403(44) 0.703 0.361(36) 0.000 0.040(55)
39 0.566 0.411(36) 0.564 0.448(30) 0.002 −0.038ð49Þ
40 0.587 0.381(29) 0.586 0.309(31) 0.001 0.073(44)
41 0.522 0.491(30) 0.519 0.409(21) 0.004 0.083(37)
42 0.534 0.536(43) 0.532 0.720(60) 0.002 −0.181ð73Þ
43 0.426 0.431(24) 0.417 0.492(31) 0.009 −0.061ð39Þ
44 0.440 0.572(35) 0.434 0.431(36) 0.005 0.142(53)
45 0.393 0.489(37) 0.366 0.393(23) 0.027 0.096(42)
46 0.397 0.492(26) 0.377 0.402(28) 0.020 0.089(36)
47 0.388 0.441(18) 0.315 0.436(18) 0.073 0.005(22)
48 0.392 0.453(19) 0.323 0.429(20) 0.068 0.025(26)
49 0.495 0.534(26) 0.304 0.458(24) 0.191 0.076(35)
50 0.556 0.599(31) 0.303 0.462(29) 0.253 0.137(42)
51 0.648 0.476(29) 0.291 0.397(22) 0.357 0.078(33)
52 0.617 0.654(24) 0.287 0.354(26) 0.330 0.299(33)
53 0.330 0.357(22) 0.288 0.353(16) 0.043 0.004(28)
54 0.293 0.506(24) 0.286 0.471(17) 0.006 0.036(29)
55 0.573 1.210(23) 0.284 0.433(18) 0.288 0.773(28)

TABLE XX. Numerical values for the t ¼ 14 chiral condensate of the wave packet, the vacuum, and their subtraction, from the MPS
simulator and ibm_torino, as shown in Figs. 11 and 18 (only the first half of the lattice is shown due to CP symmetry).

hψWPjχ̂jðt ¼ 14ÞjψWPi hψvacjχ̂jðt ¼ 14Þjψvaci X jðt ¼ 14Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

0 0.216 0.250(25) 0.216 0.253(25) 0.000 −0.003ð36Þ
1 0.822 0.458(25) 0.822 0.439(23) 0.000 0.019(32)
2 0.435 0.333(12) 0.435 0.375(13) 0.000 −0.042ð18Þ
3 0.928 0.313(24) 0.928 0.352(21) 0.000 −0.038ð32Þ
4 0.669 0.392(18) 0.669 0.441(28) 0.000 −0.048ð34Þ
5 0.749 0.387(13) 0.749 0.392(14) 0.000 −0.006ð17Þ
6 0.861 0.436(33) 0.861 0.421(32) 0.000 0.017(46)
7 0.727 0.308(17) 0.727 0.338(20) 0.000 −0.030ð25Þ
8 0.878 0.366(21) 0.878 0.353(18) 0.000 0.012(27)
9 0.819 0.453(27) 0.819 0.346(23) 0.000 0.106(34)
10 0.863 0.348(26) 0.863 0.327(20) 0.000 0.021(32)
11 0.892 0.332(18) 0.892 0.371(20) 0.000 −0.039ð25Þ
12 0.898 0.380(31) 0.898 0.376(30) 0.000 0.005(42)
13 0.932 0.376(14) 0.9325 0.3378(85) 0.000 0.038(18)
14 0.933 0.389(34) 0.933 0.370(30) 0.000 0.020(44)
15 0.954 0.487(34) 0.954 0.384(35) 0.000 0.105(50)
16 0.938 0.468(39) 0.938 0.536(54) 0.000 −0.070ð68Þ
17 0.956 0.568(49) 0.956 0.609(46) 0.000 −0.040ð58Þ

(Table continued)

QUANTUM SIMULATIONS OF HADRON DYNAMICS IN THE … PHYS. REV. D 109, 114510 (2024)

114510-45



[1] S. Glashow, Partial symmetries of weak interactions, Nucl.
Phys. 22, 579 (1961).

[2] P. W. Higgs, Broken symmetries and the masses of gauge
bosons, Phys. Rev. Lett. 13, 508 (1964).

[3] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19, 1264
(1967).

[4] A. Salam, Weak and electromagnetic interactions, Conf.
Proc. C 680519, 367 (1968).

[5] H. Politzer, Reliable perturbative results for strong inter-
actions?, Phys. Rev. Lett. 30, 1346 (1973).

[6] D. J. Gross and F. Wilczek, Ultraviolet behavior of
nonabelian gauge theories, Phys. Rev. Lett. 30, 1343
(1973).

[7] M. C. Bañuls et al., Simulating lattice gauge theories
within quantum technologies, Eur. Phys. J. D 74, 165
(2020).

TABLE XX. (Continued)

hψWPjχ̂jðt ¼ 14ÞjψWPi hψvacjχ̂jðt ¼ 14Þjψvaci X jðt ¼ 14Þ
Fermion staggered site j MPS ibm_torino MPS ibm_torino MPS ibm_torino

18 0.955 0.485(37) 0.955 0.475(34) 0.000 0.009(54)
19 0.950 0.587(38) 0.950 0.578(48) 0.000 0.009(55)
20 0.958 0.642(48) 0.958 0.875(55) 0.000 −0.237ð70Þ
21 0.944 0.438(32) 0.944 0.686(53) 0.000 −0.249ð60Þ
22 0.989 0.825(46) 0.989 0.726(50) 0.000 0.097(70)
23 0.924 0.483(32) 0.924 0.491(37) 0.000 −0.010ð48Þ
24 0.973 0.396(22) 0.973 0.420(23) 0.000 −0.024ð32Þ
25 0.946 0.395(42) 0.946 0.462(36) 0.000 −0.067ð54Þ
26 0.966 0.846(58) 0.967 0.849(55) 0.000 −0.004ð77Þ
27 0.919 0.353(21) 0.919 0.383(21) 0.000 −0.028ð29Þ
28 0.939 0.358(10) 0.939 0.352(16) 0.000 0.006(19)
29 0.891 0.405(34) 0.891 0.339(20) 0.000 0.064(40)
30 0.896 0.400(31) 0.896 0.449(30) 0.000 −0.046ð42Þ
31 0.874 0.352(19) 0.874 0.316(21) 0.000 0.037(30)
32 0.873 0.373(22) 0.873 0.371(17) 0.000 0.002(25)
33 0.815 0.325(16) 0.815 0.341(15) 0.000 −0.016ð23Þ
34 0.833 0.374(18) 0.833 0.403(16) 0.000 −0.030ð24Þ
35 0.735 0.352(30) 0.735 0.496(33) 0.000 −0.147ð44Þ
36 0.755 0.443(35) 0.755 0.438(41) 0.000 0.004(57)
37 0.664 0.319(30) 0.664 0.348(23) 0.000 −0.031ð40Þ
38 0.687 0.521(33) 0.687 0.396(34) 0.000 0.127(48)
39 0.590 0.519(36) 0.589 0.419(20) 0.001 0.098(43)
40 0.611 0.388(26) 0.610 0.372(28) 0.000 0.017(36)
41 0.521 0.397(17) 0.517 0.401(15) 0.004 −0.005ð22Þ
42 0.537 0.695(56) 0.535 0.624(53) 0.002 0.073(78)
43 0.443 0.369(30) 0.431 0.458(38) 0.012 −0.093ð50Þ
44 0.445 0.489(33) 0.439 0.537(38) 0.006 −0.049ð47Þ
45 0.377 0.394(22) 0.341 0.366(22) 0.036 0.028(29)
46 0.375 0.546(31) 0.349 0.415(30) 0.026 0.132(38)
47 0.380 0.417(25) 0.291 0.399(29) 0.089 0.019(38)
48 0.405 0.397(24) 0.298 0.403(21) 0.107 −0.005ð30Þ
49 0.488 0.602(25) 0.274 0.528(22) 0.214 0.073(34)
50 0.557 0.640(32) 0.280 0.462(31) 0.276 0.179(43)
51 0.600 0.422(23) 0.275 0.367(22) 0.325 0.054(29)
52 0.547 0.670(22) 0.277 0.347(28) 0.270 0.324(35)
53 0.314 0.374(25) 0.280 0.391(22) 0.035 −0.018ð36Þ
54 0.286 0.387(21) 0.282 0.476(17) 0.004 −0.090ð26Þ
55 0.590 1.180(26) 0.279 0.457(21) 0.311 0.723(32)

FARRELL, ILLA, CIAVARELLA, and SAVAGE PHYS. REV. D 109, 114510 (2024)

114510-46

https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1142/9789812795915_0034
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1140/epjd/e2020-100571-8


[8] W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S.
Vallecorsa, and J.-R. Vlimant, Quantum machine learning
in high energy physics, Mach. Learn. Sci. Technol. 2,
011003 (2021).

[9] N. Klco, A. Roggero, and M. J. Savage, Standard model
physics and the digital quantum revolution: Thoughts
about the interface, Rep. Prog. Phys. 85, 064301 (2022).

[10] A. Delgado et al., Quantum computing for data analysis in
high-energy physics, in Snowmass 2021 (2022), arXiv:
2203.08805.

[11] C. W. Bauer et al., Quantum simulation for high-energy
physics, PRX Quantum 4, 027001 (2023).

[12] C. W. Bauer, Z. Davoudi, N. Klco, and M. J. Savage,
Quantum simulation of fundamental particles and forces,
Nat. Rev. Phys. 5, 420 (2023).

[13] D. Beck et al., Quantum information science and tech-
nology for nuclear physics. Input into U.S. long-range
planning, arXiv:2303.00113.

[14] A. Di Meglio et al., Quantum computing for high-energy
physics: State of the art and challenges. Summary of the
QC4HEP Working Group, arXiv:2307.03236.

[15] J. Preskill, Quantum computing in the NISQ era and
beyond, Quantum 2, 79 (2018).

[16] J. S. Schwinger, Gauge invariance and mass. II, Phys. Rev.
128, 2425 (1962).

[17] J. Ignacio Cirac, P. Maraner, and J. K. Pachos, Cold atom
simulation of interacting relativistic quantum field theories,
Phys. Rev. Lett. 105, 190403 (2010).

[18] A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M.
Lewenstein, and M. A. Martin-Delgado, Wilson fermions
and axion electrodynamics in optical lattices, Phys. Rev.
Lett. 105, 190404 (2010).

[19] O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein, Dirac
equation for cold atoms in artificial curved spacetimes,
New J. Phys. 13, 035002 (2011).

[20] E. Zohar, J. I. Cirac, and B. Reznik, Simulating compact
quantum electrodynamics with ultracold atoms: Probing
confinement and nonperturbative effects, Phys. Rev. Lett.
109, 125302 (2012).

[21] L. Tagliacozzo, A. Celi, A. Zamora, and M. Lewenstein,
Optical Abelian lattice gauge theories, Ann. Phys. (N.Y.)
330, 160 (2013).

[22] D. Banerjee, M. Dalmonte, M. Muller, E. Rico, P. Stebler,
U. J. Wiese, and P. Zoller, Atomic quantum simulation of
dynamical gauge fields coupled to fermionic matter: From
string breaking to evolution after a quench, Phys. Rev. Lett.
109, 175302 (2012).

[23] E. Zohar, J. I. Cirac, and B. Reznik, Simulating (2þ 1)-
dimensional lattice QED with dynamical matter using
ultracold atoms, Phys. Rev. Lett. 110, 055302 (2013).

[24] L. Tagliacozzo, A. Celi, P. Orland, and M. Lewenstein,
Simulations of non-Abelian gauge theories with optical
lattices, Nat. Commun. 4, 2615 (2013).

[25] E. Zohar, J. I. Cirac, and B. Reznik, Quantum simulations
of gauge theories with ultracold atoms: Local gauge
invariance from angular momentum conservation, Phys.
Rev. A 88, 023617 (2013).

[26] D. Marcos, P. Rabl, E. Rico, and P. Zoller, Superconduct-
ing circuits for quantum simulation of dynamical gauge
fields, Phys. Rev. Lett. 111, 110504 (2013).

[27] P. Hauke, D. Marcos, M. Dalmonte, and P. Zoller,
Quantum simulation of a lattice Schwinger model in a
chain of trapped ions, Phys. Rev. X 3, 041018 (2013).

[28] E. A. Martinez et al., Real-time dynamics of lattice gauge
theories with a few-qubit quantum computer, Nature
(London) 534, 516 (2016).

[29] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler,
B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller,
U(1) Wilson lattice gauge theories in digital quantum
simulators, New J. Phys. 19, 103020 (2017).

[30] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris,
R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J.
Savage, Quantum-classical computation of Schwinger
model dynamics using quantum computers, Phys. Rev.
A 98, 032331 (2018).

[31] C. Kokail, C.Maier, R. van Bijnen, T. Brydges,M. K. Joshi,
P. Jurcevic, C. A.Muschik, P. Silvi, R. Blatt, C. F. Roos, and
P. Zoller, Self-verifying variational quantum simulation of
lattice models, Nature (London) 569, 355 (2019).

[32] H.-H. Lu, N. Klco, J. M. Lukens, T. D. Morris, A. Bansal,
A. Ekström, G. Hagen, T. Papenbrock, A. M. Weiner, M. J.
Savage, and P. Lougovski, Simulations of subatomic
many-body physics on a quantum frequency processor,
Phys. Rev. A 100, 012320 (2019).

[33] N. Klco, J. R. Stryker, and M. J. Savage, SU(2) non-
Abelian gauge field theory in one dimension on
digital quantum computers, Phys. Rev. D 101, 074512
(2020).

[34] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A.
Gambassi, and M. Dalmonte, Lattice gauge theories and
string dynamics in Rydberg atom quantum simulators,
Phys. Rev. X 10, 021041 (2020).

[35] A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K.
Oberthaler, P. Hauke, J. Berges, and F. Jendrzejewski, A
scalable realization of local U(1) gauge invariance in cold
atomic mixtures, Science 367, 1128 (2020).

[36] B. Yang, H. Sun, R. Ott, H.-Y. Wang, T. V. Zache, J. C.
Halimeh, Z.-S. Yuan, P. Hauke, and J.-W. Pan, Observation
of gauge invariance in a 71-site Bose–Hubbard quantum
simulator, Nature (London) 587, 392 (2020).

[37] C. W. Bauer, M. Freytsis, and B. Nachman, Simulating
collider physics on quantum computers using effective
field theories, Phys. Rev. Lett. 127, 212001 (2021).

[38] Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P.
Hauke, B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan,
Thermalization dynamics of a gauge theory on a quantum
simulator, Science 377, 311 (2022).

[39] N. H. Nguyen, M. C. Tran, Y. Zhu, A. M. Green, C. H.
Alderete, Z. Davoudi, and N. M. Linke, Digital quantum
simulation of the Schwinger model and symmetry
protection with trapped ions, PRX Quantum 3, 020324
(2022).

[40] A. Ciavarella, N. Klco, and M. J. Savage, Trailhead for
quantum simulation of SU(3) Yang-Mills lattice gauge
theory in the local multiplet basis, Phys. Rev. D 103,
094501 (2021).

[41] W. Gong, G. Parida, Z. Tu, and R. Venugopalan, Meas-
urement of Bell-type inequalities and quantum entangle-
ment from Λ-hyperon spin correlations at high energy
colliders, Phys. Rev. D 106, L031501 (2022).

QUANTUM SIMULATIONS OF HADRON DYNAMICS IN THE … PHYS. REV. D 109, 114510 (2024)

114510-47

https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1088/1361-6633/ac58a4
https://arXiv.org/abs/2203.08805
https://arXiv.org/abs/2203.08805
https://doi.org/10.1103/PRXQuantum.4.027001
https://doi.org/10.1038/s42254-023-00599-8
https://arXiv.org/abs/2303.00113
https://arXiv.org/abs/2307.03236
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRev.128.2425
https://doi.org/10.1103/PhysRevLett.105.190403
https://doi.org/10.1103/PhysRevLett.105.190404
https://doi.org/10.1103/PhysRevLett.105.190404
https://doi.org/10.1088/1367-2630/13/3/035002
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1103/PhysRevLett.109.125302
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1016/j.aop.2012.11.009
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1103/PhysRevLett.110.055302
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevA.88.023617
https://doi.org/10.1103/PhysRevLett.111.110504
https://doi.org/10.1103/PhysRevX.3.041018
https://doi.org/10.1038/nature18318
https://doi.org/10.1038/nature18318
https://doi.org/10.1088/1367-2630/aa89ab
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1103/PhysRevA.98.032331
https://doi.org/10.1038/s41586-019-1177-4
https://doi.org/10.1103/PhysRevA.100.012320
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevD.101.074512
https://doi.org/10.1103/PhysRevX.10.021041
https://doi.org/10.1126/science.aaz5312
https://doi.org/10.1038/s41586-020-2910-8
https://doi.org/10.1103/PhysRevLett.127.212001
https://doi.org/10.1126/science.abl6277
https://doi.org/10.1103/PRXQuantum.3.020324
https://doi.org/10.1103/PRXQuantum.3.020324
https://doi.org/10.1103/PhysRevD.103.094501
https://doi.org/10.1103/PhysRevD.103.094501
https://doi.org/10.1103/PhysRevD.106.L031501


[42] S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, SU
(2) lattice gauge theory on a quantum annealer, Phys. Rev.
D 104, 034501 (2021).

[43] G. Mazzola, S. V. Mathis, G. Mazzola, and I. Tavernelli,
Gauge-invariant quantum circuits for U(1) and Yang-Mills
lattice gauge theories, Phys. Rev. Res. 3, 043209
(2021).

[44] W. A. de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer,
and X. Yao, Quantum simulation of nonequilibrium
dynamics and thermalization in the Schwinger model,
Phys. Rev. D 106, 054508 (2022).

[45] H. Riechert, J. C. Halimeh, V. Kasper, L. Bretheau, E.
Zohar, P. Hauke, and F. Jendrzejewski, Engineering a U(1)
lattice gauge theory in classical electric circuits, Phys. Rev.
B 105, 205141 (2022).

[46] Y. Y. Atas, J. Zhang, R. Lewis, A. Jahanpour, J. F. Haase,
and C. A. Muschik, SU(2) hadrons on a quantum computer
via a variational approach, Nat. Commun. 12, 6499 (2021).

[47] A. N. Ciavarella and I. A. Chernyshev, Preparation of the
SU(3) lattice Yang-Mills vacuum with variational quantum
methods, Phys. Rev. D 105, 074504 (2022).

[48] J. Mildenberger, W. Mruczkiewicz, J. C. Halimeh, Z.
Jiang, and P. Hauke, Probing confinement in a Z2 lattice
gauge theory on a quantum computer, arXiv:2203.08905.

[49] A. Ciavarella, N. Klco, and M. J. Savage, Some conceptual
aspects of operator design for quantum simulations of non-
Abelian lattice gauge theories, in Proceedings of the 2021
Quantum Simulation for Strong Interactions (QuaSi)
Workshops at the InQubator for Quantum Simulation
(IQuS) (2022), arXiv:2203.11988.

[50] S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Self-
mitigating Trotter circuits for SU(2) lattice gauge theory on
a quantum computer, Phys. Rev. D 106, 074502 (2022).

[51] M. Asaduzzaman, S. Catterall, G. C. Toga, Y. Meurice, and
R. Sakai, Quantum simulation of the N-flavor Gross-
Neveu model, Phys. Rev. D 106, 114515 (2022).

[52] N. Mueller, J. A. Carolan, A. Connelly, Z. Davoudi, E. F.
Dumitrescu, and K. Yeter-Aydeniz, Quantum computation
of dynamical quantum phase transitions and entanglement
tomography in a lattice gauge theory, PRX Quantum 4,
030323 (2023).

[53] R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A.
Zemlevskiy, M. Illa, and M. J. Savage, Preparations
for quantum simulations of quantum chromodynamics
in 1þ 1 dimensions: (I) axial gauge, Phys. Rev. D 107,
054512 (2023).

[54] Y. Y. Atas, J. F. Haase, J. Zhang, V. Wei, S. M. L.
Pfaendler, R. Lewis, and C. A. Muschik, Simulating
one-dimensional quantum chromodynamics on a quantum
computer: Real-time evolutions of tetra- and pentaquarks,
Phys. Rev. Res. 5, 033184 (2023).

[55] R. C. Farrell, I. A. Chernyshev, S. J. M. Powell, N. A.
Zemlevskiy, M. Illa, and M. J. Savage, Preparations for
quantum simulations of quantum chromodynamics in
1þ 1 dimensions. II. Single-baryon β-decay in real time,
Phys. Rev. D 107, 054513 (2023).

[56] C. Charles, E. J. Gustafson, E. Hardt, F. Herren, N. Hogan,
H. Lamm, S. Starecheski, R. S. Van de Water, and M. L.
Wagman, Simulating Z2 lattice gauge theory on a quantum
computer, Phys. Rev. E 109, 015307 (2024).

[57] D. Pomarico, L. Cosmai, P. Facchi, C. Lupo, S. Pascazio,
and F. V. Pepe, Dynamical quantum phase transitions of
the Schwinger model: Real-time dynamics on IBM quan-
tum, Entropy 25, 608 (2023).

[58] G.-X. Su, H. Sun, A. Hudomal, J.-Y. Desaules, Z.-Y. Zhou,
B. Yang, J. C. Halimeh, Z.-S. Yuan, Z. Papić, and
J.-W. Pan, Observation of many-body scarring in a Bose-
Hubbard quantum simulator, Phys. Rev. Res. 5, 023010
(2023).

[59] W.-Y. Zhang, Y. Liu, Y. Cheng, M.-G. He, H.-Y. Wang, T.-
Y. Wang, Z.-H. Zhu, G.-X. Su, Z.-Y. Zhou, Y.-G. Zheng,
H. Sun, B. Yang, P. Hauke, W. Zheng, J. C. Halimeh, Z.-S.
Yuan, and J.-W. Pan, Observation of microscopic confine-
ment dynamics by a tunable topological θ-angle, arXiv:
2306.11794.

[60] A. N. Ciavarella, Quantum simulation of lattice QCD
with improved hamiltonians, Phys. Rev. D 108, 094513
(2023).

[61] O. V. Borzenkova, G. I. Struchalin, I. Kondratyev, A.
Moiseevskiy, I. V. Dyakonov, and S. S. Straupe, Error
mitigated variational algorithm on a photonic processor,
arXiv:2311.13985.

[62] S. Schuster, S. Kühn, L. Funcke, T. Hartung, M.-O.
Pleinert, J. von Zanthier, and K. Jansen, Studying the
phase diagram of the three-flavor Schwinger model in the
presence of a chemical potential with measurement- and
gate-based quantum computing, arXiv:2311.14825.

[63] T. Angelides, P. Naredi, A. Crippa, K. Jansen, S. Kühn, I.
Tavernelli, and D. S. Wang, First-order phase transition of
the Schwinger model with a quantum computer, arXiv:
2312.12831.

[64] D. Yang, G. S. Giri, M. Johanning, C. Wunderlich, P.
Zoller, and P. Hauke, Analog quantum simulation of
(1þ 1)-dimensional lattice QED with trapped ions, Phys.
Rev. A 94, 052321 (2016).

[65] V. Kasper, F. Hebenstreit, F. Jendrzejewski, M. K.
Oberthaler, and J. Berges, Implementing quantum electro-
dynamics with ultracold atomic systems, New J. Phys. 19,
023030 (2017).

[66] S. Notarnicola, M. Collura, and S. Montangero, Real-time-
dynamics quantum simulation of (1þ 1)-dimensional
lattice QED with Rydberg atoms, Phys. Rev. Res. 2,
013288 (2020).

[67] Z. Davoudi, M. Hafezi, C. Monroe, G. Pagano, A. Seif,
and A. Shaw, Towards analog quantum simulations of
lattice gauge theories with trapped ions, Phys. Rev. Res. 2,
023015 (2020).

[68] A. Avkhadiev, P. E. Shanahan, and R. D. Young, Accel-
erating lattice quantum field theory calculations via inter-
polator optimization using noisy intermediate-scale
quantum computing, Phys. Rev. Lett. 124, 080501 (2020).

[69] R. Verdel, F. Liu, S. Whitsitt, A. V. Gorshkov, and M.
Heyl, Real-time dynamics of string breaking in quantum
spin chains, Phys. Rev. B 102, 014308 (2020).

[70] D. Luo, J. Shen, M. Highman, B. K. Clark, B. DeMarco,
A. X. El-Khadra, and B. Gadway, Framework for simulat-
ing gauge theories with dipolar spin systems, Phys. Rev. A
102, 032617 (2020).

[71] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A.
Tomiya, Classically emulated digital quantum simulation

FARRELL, ILLA, CIAVARELLA, and SAVAGE PHYS. REV. D 109, 114510 (2024)

114510-48

https://doi.org/10.1103/PhysRevD.104.034501
https://doi.org/10.1103/PhysRevD.104.034501
https://doi.org/10.1103/PhysRevResearch.3.043209
https://doi.org/10.1103/PhysRevResearch.3.043209
https://doi.org/10.1103/PhysRevD.106.054508
https://doi.org/10.1103/PhysRevB.105.205141
https://doi.org/10.1103/PhysRevB.105.205141
https://doi.org/10.1038/s41467-021-26825-4
https://doi.org/10.1103/PhysRevD.105.074504
https://arXiv.org/abs/2203.08905
https://arXiv.org/abs/2203.11988
https://doi.org/10.1103/PhysRevD.106.074502
https://doi.org/10.1103/PhysRevD.106.114515
https://doi.org/10.1103/PRXQuantum.4.030323
https://doi.org/10.1103/PRXQuantum.4.030323
https://doi.org/10.1103/PhysRevD.107.054512
https://doi.org/10.1103/PhysRevD.107.054512
https://doi.org/10.1103/PhysRevResearch.5.033184
https://doi.org/10.1103/PhysRevD.107.054513
https://doi.org/10.1103/PhysRevE.109.015307
https://doi.org/10.3390/e25040608
https://doi.org/10.1103/PhysRevResearch.5.023010
https://doi.org/10.1103/PhysRevResearch.5.023010
https://arXiv.org/abs/2306.11794
https://arXiv.org/abs/2306.11794
https://doi.org/10.1103/PhysRevD.108.094513
https://doi.org/10.1103/PhysRevD.108.094513
https://arXiv.org/abs/2311.13985
https://arXiv.org/abs/2311.14825
https://arXiv.org/abs/2312.12831
https://arXiv.org/abs/2312.12831
https://doi.org/10.1103/PhysRevA.94.052321
https://doi.org/10.1103/PhysRevA.94.052321
https://doi.org/10.1088/1367-2630/aa54e0
https://doi.org/10.1088/1367-2630/aa54e0
https://doi.org/10.1103/PhysRevResearch.2.013288
https://doi.org/10.1103/PhysRevResearch.2.013288
https://doi.org/10.1103/PhysRevResearch.2.023015
https://doi.org/10.1103/PhysRevResearch.2.023015
https://doi.org/10.1103/PhysRevLett.124.080501
https://doi.org/10.1103/PhysRevB.102.014308
https://doi.org/10.1103/PhysRevA.102.032617
https://doi.org/10.1103/PhysRevA.102.032617


of the Schwinger model with a topological term via
adiabatic state preparation, Phys. Rev. D 105, 094503
(2022).

[72] M. C. Tran, Y. Su, D. Carney, and J. M. Taylor, Faster
digital quantum simulation by symmetry protection, PRX
Quantum 2, 010323 (2021).

[73] R. R. Ferguson, L. Dellantonio, K. Jansen, A. A. Balushi,
W. Dür, and C. A. Muschik, Measurement-based varia-
tional quantum eigensolver, Phys. Rev. Lett. 126, 220501
(2021).

[74] F. M. Surace and A. Lerose, Scattering of mesons in
quantum simulators, New J. Phys. 23, 062001 (2021).

[75] P. I. Karpov, G. Y. Zhu, M. P. Heller, and M. Heyl,
Spatiotemporal dynamics of particle collisions in quantum
spin chains, Phys. Rev. Res. 4, L032001 (2022).

[76] Z. Davoudi, N. M. Linke, and G. Pagano, Toward simu-
lating quantum field theories with controlled phonon-ion
dynamics: A hybrid analog-digital approach, Phys. Rev.
Res. 3, 043072 (2021).

[77] A. Yamamoto, Quantum variational approach to lattice
gauge theory at nonzero density, Phys. Rev. D 104, 014506
(2021).

[78] M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda,
Classically emulated digital quantum simulation for
screening and confinement in the Schwinger model with
a topological term, Phys. Rev. D 105, 014504 (2022).

[79] E. R. Bennewitz, F. Hopfmueller, B. Kulchytskyy, J.
Carrasquilla, and P. Ronagh, Neural error mitigation of
near-term quantum simulations, Nat. Mach. Intell. 4, 618
(2022).

[80] J. Shen, D. Luo, C. Huang, B. K. Clark, A. X. El-Khadra,
B. Gadway, and P. Draper, Simulating quantum mechanics
with a θ-term and an ’t Hooft anomaly on a synthetic
dimension, Phys. Rev. D 105, 074505 (2022).

[81] B. Andrade, Z. Davoudi, T. Graß, M. Hafezi, G. Pagano,
and A. Seif, Engineering an effective three-spin Hamil-
tonian in trapped-ion systems for applications in quantum
simulation, Quantum Sci. Technol. 7, 034001 (2022).

[82] M. Honda, E. Itou, Y. Kikuchi, and Y. Tanizaki, Negative
string tension of a higher-charge Schwinger model via
digital quantum simulation, Prog. Theor. Exp. Phys. 2022,
033B01 (2022).

[83] R. B. Jensen, S. P. Pedersen, and N. T. Zinner, Dynamical
quantum phase transitions in a noisy lattice gauge theory,
Phys. Rev. B 105, 224309 (2022).

[84] J. Vovrosh, R. Mukherjee, A. Bastianello, and J. Knolle,
Dynamical hadron formation in long-range interacting
quantum spin chains, PRX Quantum 3, 040309 (2022).

[85] J. C. Halimeh, I. P. McCulloch, B. Yang, and P. Hauke,
Tuning the topological θ-angle in cold-atom quantum
simulators of gauge theories, PRX Quantum 3, 040316
(2022).

[86] X.-D. Xie, X. Guo, H. Xing, Z.-Y. Xue, D.-B. Zhang, and
S.-L. Zhu (QuNu Collaboration), Variational thermal
quantum simulation of the lattice Schwinger model, Phys.
Rev. D 106, 054509 (2022).

[87] Z. Davoudi, N. Mueller, and C. Powers, Toward quantum
computing phase diagrams of gauge theories with thermal
pure quantum states, Phys. Rev. Lett. 131, 081901 (2023).

[88] A. Avkhadiev, P. E. Shanahan, and R. D. Young, Strategies
for quantum-optimized construction of interpolating oper-
ators in classical simulations of lattice quantum field
theories, Phys. Rev. D 107, 054507 (2023).

[89] A. Florio, D. Frenklakh, K. Ikeda, D. Kharzeev, V.
Korepin, S. Shi, and K. Yu, Real-time nonperturbative
dynamics of jet production in Schwinger model: Quantum
entanglement and vacuum modification, Phys. Rev. Lett.
131, 021902 (2023).

[90] L. Nagano, A. Bapat, and C.W. Bauer, Quench dynamics
of the Schwinger model via variational quantum algo-
rithms, Phys. Rev. D 108, 034501 (2023).

[91] K. Ikeda, D. E. Kharzeev, R. Meyer, and S. Shi, Detecting
the critical point through entanglement in the Schwinger
model, Phys. Rev. D 108, L091501 (2023).

[92] L. Nagano, A. Miessen, T. Onodera, I. Tavernelli, F.
Tacchino, and K. Terashi, Quantum data learning for
quantum simulations in high-energy physics, Phys. Rev.
Res. 5, 043250 (2023).

[93] P. P. Popov, M. Meth, M. Lewenstein, P. Hauke, M.
Ringbauer, E. Zohar, and V. Kasper, Variational quantum
simulation of U(1) lattice gauge theories with qudit
systems, Phys. Rev. Res. 6, 013202 (2024).

[94] K. Lee, J. Mulligan, F. Ringer, and X. Yao, Liouvillian
dynamics of the open Schwinger model: String breaking
and kinetic dissipation in a thermal medium, Phys. Rev. D
108, 094518 (2023).

[95] K. Oshima, Twirling operations to produce energy eigen-
states of a Hamiltonian by classically emulated quantum
simulation, arXiv:2309.04933.

[96] M. Meth et al., Simulating 2D lattice gauge theories on a
qudit quantum computer, arXiv:2310.12110.

[97] M. Kreshchuk, J. P. Vary, and P. J. Love, Simulating
scattering of composite particles, arXiv:2310.13742.

[98] K. Sakamoto, H. Morisaki, J. Haruna, E. Itou, K. Fujii, and
K. Mitarai, End-to-end complexity for simulating the
Schwinger model on quantum computers, arXiv:2311.
17388.

[99] Y. Chai, A. Crippa, K. Jansen, S. Kühn, V. R. Pascuzzi,
F. Tacchino, and I. Tavernelli, Entanglement production
from scattering of fermionic wave packets: A quantum
computing approach, arXiv:2312.02272.

[100] T. Byrnes, P. Sriganesh, R. J. Bursill, and C. J. Hamer,
Density matrix renormalization group approach to the
massive Schwinger model, Phys. Rev. D 66, 013002
(2002).

[101] M. C. Bañuls, K. Cichy, K. Jansen, and J. I. Cirac, The
mass spectrum of the Schwinger model with matrix
product states, J. High Energy Phys. 11 (2013) 158.

[102] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S.
Montangero, Tensor networks for lattice gauge theories
and atomic quantum simulation, Phys. Rev. Lett. 112,
201601 (2014).

[103] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde,
and F. Verstraete, Matrix product states for gauge field
theories, Phys. Rev. Lett. 113, 091601 (2014).

[104] S. Kühn, J. I. Cirac, and M.-C. Bañuls, Quantum simu-
lation of the Schwinger model: A study of feasibility,
Phys. Rev. A 90, 042305 (2014).

QUANTUM SIMULATIONS OF HADRON DYNAMICS IN THE … PHYS. REV. D 109, 114510 (2024)

114510-49

https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.1103/PhysRevD.105.094503
https://doi.org/10.1103/PRXQuantum.2.010323
https://doi.org/10.1103/PRXQuantum.2.010323
https://doi.org/10.1103/PhysRevLett.126.220501
https://doi.org/10.1103/PhysRevLett.126.220501
https://doi.org/10.1088/1367-2630/abfc40
https://doi.org/10.1103/PhysRevResearch.4.L032001
https://doi.org/10.1103/PhysRevResearch.3.043072
https://doi.org/10.1103/PhysRevResearch.3.043072
https://doi.org/10.1103/PhysRevD.104.014506
https://doi.org/10.1103/PhysRevD.104.014506
https://doi.org/10.1103/PhysRevD.105.014504
https://doi.org/10.1038/s42256-022-00509-0
https://doi.org/10.1038/s42256-022-00509-0
https://doi.org/10.1103/PhysRevD.105.074505
https://doi.org/10.1088/2058-9565/ac5f5b
https://doi.org/10.1093/ptep/ptac007
https://doi.org/10.1093/ptep/ptac007
https://doi.org/10.1103/PhysRevB.105.224309
https://doi.org/10.1103/PRXQuantum.3.040309
https://doi.org/10.1103/PRXQuantum.3.040316
https://doi.org/10.1103/PRXQuantum.3.040316
https://doi.org/10.1103/PhysRevD.106.054509
https://doi.org/10.1103/PhysRevD.106.054509
https://doi.org/10.1103/PhysRevLett.131.081901
https://doi.org/10.1103/PhysRevD.107.054507
https://doi.org/10.1103/PhysRevLett.131.021902
https://doi.org/10.1103/PhysRevLett.131.021902
https://doi.org/10.1103/PhysRevD.108.034501
https://doi.org/10.1103/PhysRevD.108.L091501
https://doi.org/10.1103/PhysRevResearch.5.043250
https://doi.org/10.1103/PhysRevResearch.5.043250
https://doi.org/10.1103/PhysRevResearch.6.013202
https://doi.org/10.1103/PhysRevD.108.094518
https://doi.org/10.1103/PhysRevD.108.094518
https://arXiv.org/abs/2309.04933
https://arXiv.org/abs/2310.12110
https://arXiv.org/abs/2310.13742
https://arXiv.org/abs/2311.17388
https://arXiv.org/abs/2311.17388
https://arXiv.org/abs/2312.02272
https://doi.org/10.1103/PhysRevD.66.013002
https://doi.org/10.1103/PhysRevD.66.013002
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1103/PhysRevLett.112.201601
https://doi.org/10.1103/PhysRevLett.112.201601
https://doi.org/10.1103/PhysRevLett.113.091601
https://doi.org/10.1103/PhysRevA.90.042305


[105] M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and
H. Saito, Thermal evolution of the Schwinger model
with matrix product operators, Phys. Rev. D 92, 034519
(2015).

[106] T. Pichler, M. Dalmonte, E. Rico, P. Zoller, and S.
Montangero, Real-time dynamics in U(1) lattice gauge
theories with tensor networks, Phys. Rev. X 6, 011023
(2016).

[107] S. Kühn, E. Zohar, J. I. Cirac, and M. C. Bañuls, Non-
Abelian string breaking phenomena with matrix product
states, J. High Energy Phys. 07 (2015) 130.

[108] B. Buyens, J. Haegeman, H. Verschelde, F. Verstraete, and
K. Van Acoleyen, Confinement and string breaking for
QED2 in the Hamiltonian picture, Phys. Rev. X 6, 041040
(2016).

[109] M. C. Bañuls, K. Cichy, K. Jansen, and H. Saito, Chiral
condensate in the Schwinger model with matrix product
operators, Phys. Rev. D 93, 094512 (2016).

[110] B. Buyens, J. Haegeman, F. Hebenstreit, F. Verstraete, and
K. Van Acoleyen, Real-time simulation of the Schwinger
effect with matrix product states, Phys. Rev. D 96, 114501
(2017).

[111] K. Zapp and R. Orus, Tensor network simulation of QED
on infinite lattices: Learning from ð1þ 1Þd, and prospects
for ð2þ 1Þd, Phys. Rev. D 95, 114508 (2017).

[112] E. Ercolessi, P. Facchi, G. Magnifico, S. Pascazio, and F. V.
Pepe, Phase transitions in Zn gauge models: Towards
quantum simulations of the Schwinger-Weyl QED, Phys.
Rev. D 98, 074503 (2018).

[113] P. Sala, T. Shi, S. Kühn, M. C. Bañuls, E. Demler, and J. I.
Cirac, Variational study of U(1) and SU(2) lattice gauge
theories with Gaussian states in 1þ 1 dimensions, Phys.
Rev. D 98, 034505 (2018).

[114] M. Van Damme, L. Vanderstraeten, J. De Nardis, J.
Haegeman, and F. Verstraete, Real-time scattering of
interacting quasiparticles in quantum spin chains, Phys.
Rev. Res. 3, 013078 (2021).

[115] L. Funcke, K. Jansen, and S. Kühn, Topological vacuum
structure of the Schwinger model with matrix product
states, Phys. Rev. D 101, 054507 (2020).

[116] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V.
Pepe, and E. Ercolessi, Real time dynamics and confine-
ment in the Zn Schwinger-Weyl lattice model for 1þ 1

QED, Quantum 4, 281 (2020).
[117] N. Butt, S. Catterall, Y. Meurice, R. Sakai, and J. Unmuth-

Yockey, Tensor network formulation of the massless
Schwinger model with staggered fermions, Phys. Rev. D
101, 094509 (2020).

[118] A. Milsted, J. Liu, J. Preskill, and G. Vidal, Collisions of
false-vacuum bubble walls in a quantum spin chain, PRX
Quantum 3, 020316 (2022).

[119] M. Rigobello, S. Notarnicola, G. Magnifico, and S.
Montangero, Entanglement generation in ð1þ 1ÞD
QED scattering processes, Phys. Rev. D 104, 114501
(2021).

[120] T. Okuda, Schwinger model on an interval: Analytic results
and DMRG, Phys. Rev. D 107, 054506 (2023).

[121] M. Honda, E. Itou, and Y. Tanizaki, DMRG study of the
higher-charge Schwinger model and its ’t Hooft anomaly,
J. High Energy Phys. 11 (2022) 141.

[122] J.-Y. Desaules, G.-X. Su, I. P. McCulloch, B. Yang, Z.
Papić, and J. C. Halimeh, Ergodicity breaking under
confinement in cold-atom quantum simulators, Quantum
8, 1274 (2024).

[123] T. Angelides, L. Funcke, K. Jansen, and S. Kühn,
Computing the mass shift of Wilson and staggered
fermions in the lattice Schwinger model with matrix
product states, Phys. Rev. D 108, 014516 (2023).

[124] R. Belyansky, S. Whitsitt, N. Mueller, A. Fahimniya, E. R.
Bennewitz, Z. Davoudi, and A. V. Gorshkov, High-energy
collision of quarks and hadrons in the Schwinger model:
From tensor networks to circuit QED, Phys. Rev. Lett. 132,
091903 (2024).

[125] M. Rigobello, G. Magnifico, P. Silvi, and S. Montangero,
Hadrons in ð1þ 1ÞD Hamiltonian hardcore lattice QCD,
arXiv:2308.04488.

[126] J. a. Barata, W. Gong, and R. Venugopalan, Realtime
dynamics of hyperon spin correlations from string frag-
mentation in a deformed four-flavor Schwinger model,
arXiv:2308.13596.

[127] T. Hayata, Y. Hidaka, and K. Nishimura, Dense QCD2 with
matrix product states, arXiv:2311.11643.

[128] G.-X. Su, J. Osborne, and J. C. Halimeh, A cold-atom
particle collider, arXiv:2401.05489.

[129] H. Yu, Y. Zhao, and T.-C. Wei, Simulating large-size
quantum spin chains on cloud-based superconducting
quantum computers, Phys. Rev. Res. 5, 013183 (2023).

[130] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg,
S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme,
and A. Kandala, Evidence for the utility of quantum
computing before fault tolerance, Nature (London) 618,
500 (2023).

[131] O. Shtanko, D. S. Wang, H. Zhang, N. Harle, A. Seif,
R. Movassagh, and Z. Minev, Uncovering local integra-
bility in quantum many-body dynamics, arXiv:2307
.07552.

[132] R. C. Farrell, M. Illa, A. N. Ciavarella, and M. J. Savage,
Scalable circuits for preparing ground states on digital
quantum computers: The Schwinger model vacuum on 100
qubits, PRX Quantum 5, 2 (2024).

[133] E. Bäumer, V. Tripathi, D. S. Wang, P. Rall, E. H. Chen, S.
Majumder, A. Seif, and Z. K. Minev, Efficient long-range
entanglement using dynamic circuits, arXiv:2308.13065.

[134] E. H. Chen et al., Realizing the Nishimori transition across
the error threshold for constant-depth quantum circuits,
arXiv:2309.02863.

[135] H. Liao, D. S. Wang, I. Sitdikov, C. Salcedo, A. Seif, and
Z. K. Minev, Machine learning for practical quantum error
mitigation, arXiv:2309.17368.

[136] D. Bluvstein et al., Logical quantum processor based on
reconfigurable atom arrays, Nature (London) 626, 58
(2024).

[137] T. A. Chowdhury, K. Yu, M. A. Shamim, M. L. Kabir, and
R. S. Sufian, Enhancing quantum utility: Simulating large-
scale quantum spin chains on superconducting quantum
computers, arXiv:2312.12427.

[138] IBM Quantum Summit 2023 (2024), https://www.ibm
.com/quantum/summit-2023.

[139] Quantinuum hardware (2024), https://www.quantinuum
.com/hardware.

FARRELL, ILLA, CIAVARELLA, and SAVAGE PHYS. REV. D 109, 114510 (2024)

114510-50

https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevD.92.034519
https://doi.org/10.1103/PhysRevX.6.011023
https://doi.org/10.1103/PhysRevX.6.011023
https://doi.org/10.1007/JHEP07(2015)130
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.1103/PhysRevX.6.041040
https://doi.org/10.1103/PhysRevD.93.094512
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.96.114501
https://doi.org/10.1103/PhysRevD.95.114508
https://doi.org/10.1103/PhysRevD.98.074503
https://doi.org/10.1103/PhysRevD.98.074503
https://doi.org/10.1103/PhysRevD.98.034505
https://doi.org/10.1103/PhysRevD.98.034505
https://doi.org/10.1103/PhysRevResearch.3.013078
https://doi.org/10.1103/PhysRevResearch.3.013078
https://doi.org/10.1103/PhysRevD.101.054507
https://doi.org/10.22331/q-2020-06-15-281
https://doi.org/10.1103/PhysRevD.101.094509
https://doi.org/10.1103/PhysRevD.101.094509
https://doi.org/10.1103/PRXQuantum.3.020316
https://doi.org/10.1103/PRXQuantum.3.020316
https://doi.org/10.1103/PhysRevD.104.114501
https://doi.org/10.1103/PhysRevD.104.114501
https://doi.org/10.1103/PhysRevD.107.054506
https://doi.org/10.1007/JHEP11(2022)141
https://doi.org/10.22331/q-2024-02-29-1274
https://doi.org/10.22331/q-2024-02-29-1274
https://doi.org/10.1103/PhysRevD.108.014516
https://doi.org/10.1103/PhysRevLett.132.091903
https://doi.org/10.1103/PhysRevLett.132.091903
https://arXiv.org/abs/2308.04488
https://arXiv.org/abs/2308.13596
https://arXiv.org/abs/2311.11643
https://arXiv.org/abs/2401.05489
https://doi.org/10.1103/PhysRevResearch.5.013183
https://doi.org/10.1038/s41586-023-06096-3
https://doi.org/10.1038/s41586-023-06096-3
https://arXiv.org/abs/2307.07552
https://arXiv.org/abs/2307.07552
https://doi.org/10.1103/PRXQuantum.5.020315
https://arXiv.org/abs/2308.13065
https://arXiv.org/abs/2309.02863
https://arXiv.org/abs/2309.17368
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-023-06927-3
https://arXiv.org/abs/2312.12427
https://www.ibm.com/quantum/summit-2023
https://www.ibm.com/quantum/summit-2023
https://www.ibm.com/quantum/summit-2023
https://www.quantinuum.com/hardware
https://www.quantinuum.com/hardware
https://www.quantinuum.com/hardware


[140] IonQ Technical Roadmap (2024), https://ionq.com/
resources/technical-roadmap-webinar-getting-ready-for-
the-era-of-enterprise-grade.

[141] QuEra’s Quantum Roadmap (2024), https://www.quera
.com/events/queras-quantum-roadmap.

[142] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J.
Mayhall, An adaptive variational algorithm for exact
molecular simulations on a quantum computer, Nat.
Commun. 10, 3007 (2019).

[143] J. B. Kogut and L. Susskind, Hamiltonian formulation of
Wilson’s lattice gauge theories, Phys. Rev. D 11, 395
(1975).

[144] T. Banks, L. Susskind, and J. B. Kogut, Strong coupling
calculations of lattice gauge theories: (1þ 1)-dimensional
exercises, Phys. Rev. D 13, 1043 (1976).

[145] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L.
Cincio, and P. J. Coles, Noise-induced barren plateaus in
variational quantum algorithms, Nat. Commun. 12, 6961
(2021).

[146] G. Scriva, N. Astrakhantsev, S. Pilati, and G. Mazzola,
Challenges of variational quantum optimization with
measurement shot noise, Phys. Rev. A 109, 032408
(2024).

[147] M. Cerezo et al., Does provable absence of barren plateaus
imply classical simulability? Or, why we need to rethink
variational quantum computing, arXiv:2312.09121.

[148] N. Klco and M. J. Savage, Systematically localizable
operators for quantum simulations of quantum field
theories, Phys. Rev. A 102, 012619 (2020).

[149] N. Klco and M. J. Savage, Fixed-point quantum circuits for
quantum field theories, Phys. Rev. A 102, 052422 (2020).

[150] S. P. Jordan, H. Krovi, K. S. M. Lee, and J. Preskill, BQP-
completeness of scattering in scalar quantum field theory,
Quantum 2, 44 (2018).

[151] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum
computation of scattering in scalar quantum field theories,
Quantum Inf. Comput. 14, 1014 (2014).

[152] A. Roy, S. Erramilli, and R. M. Konik, Efficient quantum
circuits based on the quantum natural gradient, arXiv:
2310.10538.

[153] M. Fromm and P. de Forcrand, Nuclear physics from
strong coupling QCD, Proc. Sci. LAT2009 (2009) 193.

[154] C. Michael and I. Teasdale, Extracting glueball masses
from lattice QCD, Nucl. Phys. B215, 433 (1983).

[155] M. Lüscher and U. Wolff, How to calculate the elastic
scatteringmatrix in two-dimensional quantum field theories
by numerical simulation, Nucl. Phys. B339, 222 (1990).

[156] B. Blossier, G. von Hippel, T. Mendes, R. Sommer, and
M. D. Morte, Efficient use of the generalized eigenvalue
problem, Proc. Sci. LAT2008 (2008) 135.

[157] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A.
Parreño, M. J. Savage, A. Torok, and A. Walker-Loud
(NPLQCD Collaboration), High statistics analysis using
anisotropic clover lattices. II. Three-baryon systems, Phys.
Rev. D 80, 074501 (2009).

[158] S. R. Beane, W. Detmold, H.-W. Lin, T. C. Luu, K.
Orginos, M. J. Savage, A. Torok, and A. Walker-Loud
(NPLQCD Collaboration), High statistics analysis using
anisotropic clover lattices: (III) Baryon-baryon inter-
actions, Phys. Rev. D 81, 054505 (2010).

[159] S. Aoki, From quarks to nuclei: Challenges of lattice QCD,
Nucl. Phys. B, Proc. Suppl. 195, 281 (2009).

[160] S. R. Beane, W. Detmold, K. Orginos, and M. J. Savage
(NPLQCD Collaboration), Nuclear physics from lattice
QCD, Prog. Part. Nucl. Phys. 66, 1 (2011).

[161] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W.
Lin, T. C. Luu, K. Orginos, A. Parreño, M. J. Savage, and
A. Walker-Loud (NPLQCD Collaboration), Light nuclei
and hypernuclei from quantum chromodynamics in the
limit of SU(3) flavor symmetry, Phys. Rev. D 87, 034506
(2013).

[162] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa,
Helium nuclei, deuteron and dineutron in 2þ 1 flavor
lattice QCD, Phys. Rev. D 86, 074514 (2012).

[163] T. Yamazaki (PACS Collaboration), Light nuclei and
nucleon form factors in Nf ¼ 2þ 1 lattice QCD, Proc.
Sci. LATTICE2015 (2016) 081.

[164] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa,
Study of quark mass dependence of binding energy for
light nuclei in 2þ 1 flavor lattice QCD, Phys. Rev. D 92,
014501 (2015).

[165] C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A.
Nicholson, P. Vranas, and A. Walker-Loud, Towards
grounding nuclear physics in QCD, Prog. Part. Nucl.
Phys. 121, 103888 (2021).

[166] Z. Davoudi, W. Detmold, K. Orginos, A. Parreño, M. J.
Savage, P. Shanahan, and M. L. Wagman (NPLQCD
Collaboration), Nuclear matrix elements from lattice
QCD for electroweak and beyond-standard-model proc-
esses, Phys. Rep. 900, 1 (2021).

[167] S. Amarasinghe, R. Baghdadi, Z. Davoudi, W. Detmold,
M. Illa, A. Parreño, A. V. Pochinsky, P. E. Shanahan, and
M. L. Wagman (NPLQCD Collaboration), Variational
study of two-nucleon systems with lattice QCD, Phys.
Rev. D 107, 094508 (2023).

[168] M. G. Algaba, P. V. Sriluckshmy, M. Leib, and F.
Simkovic, Low-depth simulations of fermionic systems
on square-grid quantum hardware, arXiv:2302.01862.

[169] L. Viola and S. Lloyd, Dynamical suppression of
decoherence in two-state quantum systems, Phys. Rev.
A 58, 2733 (1998).

[170] A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynami-
cal decoupling, Phil. Trans. R. Soc. A 370, 4748 (2012).

[171] N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A.
Lidar, Dynamical decoupling for superconducting qubits:
A performance survey, Phys. Rev. Appl. 20, 064027
(2023).

[172] P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta,
Scalable mitigation of measurement errors on quantum
computers, PRX Quantum 2, 040326 (2021).

[173] J. J. Wallman and J. Emerson, Noise tailoring for scalable
quantum computation via randomized compiling, Phys.
Rev. A 94, 052325 (2016).

[174] M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W.
Bauer, andW. A. de Jong, Mitigating depolarizing noise on
quantum computers with noise-estimation circuits, Phys.
Rev. Lett. 127, 270502 (2021).

[175] D. Qin, Y. Chen, and Y. Li, Error statistics and scalability
of quantum error mitigation formulas, npj Quantum Inf. 9,
35 (2023).

QUANTUM SIMULATIONS OF HADRON DYNAMICS IN THE … PHYS. REV. D 109, 114510 (2024)

114510-51

https://ionq.com/resources/technical-roadmap-webinar-getting-ready-for-the-era-of-enterprise-grade
https://ionq.com/resources/technical-roadmap-webinar-getting-ready-for-the-era-of-enterprise-grade
https://ionq.com/resources/technical-roadmap-webinar-getting-ready-for-the-era-of-enterprise-grade
https://ionq.com/resources/technical-roadmap-webinar-getting-ready-for-the-era-of-enterprise-grade
https://www.quera.com/events/queras-quantum-roadmap
https://www.quera.com/events/queras-quantum-roadmap
https://www.quera.com/events/queras-quantum-roadmap
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.13.1043
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1103/PhysRevA.109.032408
https://doi.org/10.1103/PhysRevA.109.032408
https://arXiv.org/abs/2312.09121
https://doi.org/10.1103/PhysRevA.102.012619
https://doi.org/10.1103/PhysRevA.102.052422
https://doi.org/10.22331/q-2018-01-08-44
https://doi.org/10.26421/QIC14.11-12-8
https://arXiv.org/abs/2310.10538
https://arXiv.org/abs/2310.10538
https://doi.org/10.22323/1.091.0193
https://doi.org/10.1016/0550-3213(83)90674-0
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.22323/1.066.0135
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevD.80.074501
https://doi.org/10.1103/PhysRevD.81.054505
https://doi.org/10.1016/j.nuclphysbps.2009.10.021
https://doi.org/10.1016/j.ppnp.2010.08.002
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.87.034506
https://doi.org/10.1103/PhysRevD.86.074514
https://doi.org/10.22323/1.251.0081
https://doi.org/10.22323/1.251.0081
https://doi.org/10.1103/PhysRevD.92.014501
https://doi.org/10.1103/PhysRevD.92.014501
https://doi.org/10.1016/j.ppnp.2021.103888
https://doi.org/10.1016/j.ppnp.2021.103888
https://doi.org/10.1016/j.physrep.2020.10.004
https://doi.org/10.1103/PhysRevD.107.094508
https://doi.org/10.1103/PhysRevD.107.094508
https://arXiv.org/abs/2302.01862
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1103/PhysRevA.58.2733
https://doi.org/10.1098/rsta.2011.0355
https://doi.org/10.1103/PhysRevApplied.20.064027
https://doi.org/10.1103/PhysRevApplied.20.064027
https://doi.org/10.1103/PRXQuantum.2.040326
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1103/PhysRevA.94.052325
https://doi.org/10.1103/PhysRevLett.127.270502
https://doi.org/10.1103/PhysRevLett.127.270502
https://doi.org/10.1038/s41534-023-00707-7
https://doi.org/10.1038/s41534-023-00707-7


[176] M. Robbiati, A. Sopena, A. Papaluca, and S. Carrazza,
Real-time error mitigation for variational optimization on
quantum hardware, arXiv:2311.05680.

[177] S. R. Beane, W. Detmold, K. Orginos, and M. J. Savage
(NPLQCD Collaboration), Uncertainty quantification in
lattice QCD calculations for nuclear physics, J. Phys. G 42,
034022 (2015).

[178] K. Orginos, A. Parreño, M. J. Savage, S. R. Beane, E.
Chang, and W. Detmold (NPLQCD Collaboration), Two
nucleon systems at mπ ∼ 450 MeV from lattice QCD,
Phys. Rev. D 92, 114512 (2015); 102, 039903(E) (2020).

[179] M. Illa et al. (NPLQCD Collaboration), Low-energy
scattering and effective interactions of two baryons
at mπ ∼ 450 MeV from lattice quantum chromodynamics,
Phys. Rev. D 103, 054508 (2021).

[180] https://iqus.uw.edu/.
[181] https://science.osti.gov/np/Research/Quantum-

Information-Science.
[182] https://qscience.org.
[183] https://phys.washington.edu.
[184] https://www.artsci.washington.edu.
[185] https://itconnect.uw.edu/research/hpc.
[186] R. Pordes et al., The open science grid, J. Phys. Conf. Ser.

78, 012057 (2007).
[187] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S.

Padhi, and F. Wurthwein, The pilot way to grid resources
using glideinwms, in 2009 WRI World Congress on
Computer Science and Information Engineering (IEEE
Computer Society, Los Alamitos, 2009), Vol. 2, pp. 428–
432.

[188] OSG Collaboration, OSPool (2006), https://doi.org/10
.21231/906P-4D78.

[189] OSG Collaboration, Open Science Data Federation
(2015), https://doi.org/10.21231/0KVZ-VE57.

[190] Wolfram Research, Inc., Mathematica, Version 13.0.1,
Champaign, IL (2022), https://www.wolfram.com/
mathematica.

[191] G. Van Rossum and F. L. Drake, PYTHON3 Reference
Manual (CreateSpace, Scotts Valley, CA, 2009).

[192] J. D. Hunter, MATPLOTLIB: A 2D graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

[193] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
Julia: A fresh approach to numerical computing, SIAM
Rev. 59, 65 (2017).
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