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We present the first calculation of the pion gluon moment from lattice QCD in the continuum-physical
limit. The calculation is done using clover fermions for the valence action with three pion masses, 220,
310 and 690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm, using ensembles generated by
MILC Collaboration with 2þ 1þ 1 flavors of highly improved staggered quarks (HISQ). On the
lattice, we nonperturbatively renormalize the gluon operator in RI/MOM scheme using the cluster-
decomposition error reduction (CDER) technique to enhance the signal-to-noise ratio of the renormaliza-
tion constant. We extrapolate the pion gluon moment to the continuum-physical limit and obtain hxig ¼
0.394ð58ÞstatþNPRð39Þmixing in the MS scheme at 2 GeV, with first error being the statistical error and

uncertainties in nonperturbative renormalization, and the second being a systematic uncertainty estimating
the effect of ignoring quark mixing. Our pion gluon momentum fraction has a central value lower than two
recent single-ensemble lattice-QCD results near physical pion mass but is consistent with the recent global
fits by JAM and xFitter and with most QCD-model estimates.

DOI: 10.1103/PhysRevD.109.114509

I. INTRODUCTION

The lightest known hadron of quantum chromodynamics
(QCD), the pion is the pseudo-Nambu-Goldstone boson
associated with dynamical chiral symmetry breaking,
critical to furthering our understanding of the emergence
of physical mass. Theoretical and experimental study of
pion structure is a necessary precursor to answering some
of the highlight science questions in current QCD research;
we refer readers to recent reviews in Refs. [1–3]. Better
discerning the structure of the pion requires that we
increase our knowledge of the pion parton distribution
function (PDF), especially its gluonic content. The deter-
mination of the pion PDF from experimental data [4–8]
beyond its valence quarks is limited in scope. Since the
pion’s decay makes it inaccessible as a scattering target, its
gluon and sea-quark content remains less well constrained
empirically in comparison to nucleons. Existing analyses of
the pion PDFs primarily utilize Drell-Yan data from CERN
and Fermilab with additional constraints determined from
sources such as leading-neutron electroproduction data
from HERA [9,10]. A host of planned facilities, such as

Brookhaven National Laboratory’s Electron-Ion Collider
(EIC) [11], the Electron-Ion Collider in China (EicC) [12],
and CERN’s COMPASS++ and AMBER experiments [13],
anticipate highly advanced measurement capabilities, prob-
ing energy regimes which will facilitate experiments
uniquely useful for studying light pseudoscalar mesons,
especially the gluon structure of pion.
Lattice QCD (LQCD) provides a first-principles

approach to studying the pion PDF in a nonperturbative
context. The “quasi-PDF” approach, also called large-
momentum effective theory (LaMET), allows the x depend-
ence of PDFs to be studied using LQCD [14–18] and has
been broadly used to study pion valence-quark parton
distributions [19–25]. LaMET shows that the matrix
elements of a time-dependent light cone operator can be
extracted by utilizing large-momentum expansion of qua-
sioperators in a hadron state having large momentum.
Another commonly used approach, the “pseudo-PDF”
method [26–29], has been used to access the gluon
PDFs gðxÞ of the nucleon, pion, and kaon [30–37].
However, these methods give the ratio gðxÞ=hxgi with
hxgi ¼

R
1
0 dxxgðxÞ. The gluon moment also plays an

important role in determining the momentum, spin, and
mass decompositions of hadrons, which are important
topics of QCD research. The PDF computed via quasi-
PDF or pseudo-PDF approach can in principle be used to
derive the gluon moment associated with a particular
distribution. However, considering the limiting aspects of
this approach, such as systematic uncertainties at large- and
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small-x, there is a definite motivation to explore the gluon
moment via alternative methods.
There are only a handful of LQCD studies exploring

the gluon moment of the pion, using a variety of LQCD
configurations. An early calculation using quenched QCD
predicted hxig ¼ 0.37ð8Þð12Þ in 2007, using Wilson fer-
mion action with a lattice spacing a ¼ 0.093 fm at large
pion mass [600, 1100] MeV [38]. Then in 2018, a study by
researchers from the MIT group removed the quenched
approximation and reported hxgi ¼ 0.61ð9Þ using an Nf ¼
2þ 1 ensemble with a ¼ 0.1167ð16Þ fm and L3 × T ¼
323 × 96 [39]. Later, the Extended Twisted Mass
Collaboration (ETMC) utilized an ensemble with Nf ¼
2þ 1þ 1 dynamical twisted-mass fermions with clover
term, a lattice volume L3 × T ¼ 643 × 128, and a lattice
spacing a ¼ 0.08029ð41Þ fm [40]. Their MS-scheme
2-GeV result for the gluon momentum fraction of the pion
given these parameters is hxgi ¼ 0.52ð11Þ. Recently, in
2023, MIT published a follow-up work, reporting a much
improved gluon moment hxgi ¼ 0.55ð2Þ using a finer
lattice a ¼ 0.091ð1Þ fm with nearly physical pion mass
170 MeV [41]. Throughout these prior lattice efforts, all the
calculations have been done at only a single lattice spacing;
no attempts to remove the discretization effects on the pion
moment have been made. When computing partonic
properties of interest using a discretized spacetime, the
nonzero lattice spacing must necessarily be accounted for
in order to identify the continuum estimate. We, therefore,
present this study of the gluon moment using multiple
lattice spacings and extrapolated to the continuum limit.
In this work, we use four ensembles generated with

2þ 1þ 1 flavors of highly improved staggered quarks
(HISQ) by the MILC collaboration [42]. We construct pion
two- and three-point correlation functions using Wilson-
clover valence fermions. In Sec. II, we present the analysis
of the data generated using this clover-on-HISQ formu-
lation, including a study of excited-state contributions in
the extraction of ground-state matrix elements. We use a
simultaneous chiral-continuum fit to obtain results at the
physical point, which throughout the paper will be defined
as taking the continuum limit (a → 0) and physical light-
quark masses, as discussed in Sec. III. Our final conclu-
sions are presented in Sec. IV.

II. BARE LATTICE MATRIX ELEMENTS
FOR THE PION GLUON MOMENT

In this paper we present results on the lowest moment of
the pion gluon distribution from high-statistics calculations
done on four ensembles generated using 2þ 1þ 1 flavors
of HISQ [43] by the MILC Collaboration [42]. The data at
three lattice spacings a and three pion masses Mπ allow us
to carry out a simultaneous fit to the physical limit. We use
the same valence-quark parameters for the Wilson-clover
fermions as PNDME Collaboration; see details in Table II

of Ref. [44]. The Sheikholeslami-Wohlert coefficient used
in the clover action is fixed to its tree-level value with
tadpole improvement, csw ¼ 1=u0, where u0 is the fourth
root of the plaquette expectation value calculated on the
hypercubic (HYP) smeared [45] HISQ lattices. The mass
parameters of light and strange clover quarks are tuned so
that the clover-on-HISQ pion massesMval

π match the HISQ-
on-HISQ Goldstone ones composed from sea light and
strange quarks, respectively. For the remainder of this
paper, we drop the “val” superscript and denote the
clover-on-HISQ pion mass Mπ . The number of measure-
ments made on each ensemble is given in Table II.
The two-point correlator for a meson π calculated on the

lattice is

C2pt
π ðPz; tÞ ¼

Z
d3ye−iyzPzhχπðy⃗; tÞjχπð0⃗; 0Þi; ð1Þ

where Pz is the meson momentum in the spatial z-direction,
t is the lattice euclidean time, and χπ ¼ q1γ5q2 is the
pseudo scalar-meson interpolation operator. We average
over positive and negative momentum in the z-direction.
The quark fields are momentum-smeared via qðxÞ þ
α
P

j UjðxÞei2πLkêjqðxþ êjÞ. The three-point correlator is
calculated by combining the gluon loop with the meson
two-point correlator. We can use it to obtain the matrix
elements needed to extract the meson gluon moment. The
three point correlator is

C3pt
π ðPz;tsep;tÞ¼

Z
d3ye−iyzpzhχπðy⃗;tsepÞjOg;ttðtÞjχπð0⃗;0Þi;

ð2Þ

where tsep is the source-sink time separation, and t is the
gluon operator insertion time. The operator for the gluon
moment Og;ttðtÞ is

Og;μν ≡
X

i¼x;y;z;t

FμiFνi −
δμν
4

X
i;j¼x;y;z;t

FijFij; ð3Þ

where the field tensor,

Fμν ¼
i

8a2g
ðP½μ;ν� þ P½ν;−μ� þ P½−μ;−ν� þ P½−ν;μ�Þ; ð4Þ

with the plaquette Pμν ¼ UμðxÞUνðxþ aμ̂ÞUμ
†ðxþ

aν̂ÞUν
†ðxÞ and P½μ;ν� ¼ Pμ;ν − Pν;μ. The same gluon oper-

ator was also used in the calculations of the gluon moment
fraction by ETMC and MIT lattice collaborations [39–41].
We can fit the two- and three-point correlators to the

energy-eigenstate expansion as

C2pt
π ðPz; tÞ ¼ jAπ;0j2e−Eπ;0t þ jAπ;1j2e−Eπ;1t þ… ð5Þ
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and

C3pt
π ðz; Pz; tsep; tÞ
¼ jAπ;0j2h0jOg;ttj0ie−Eπ;0tsep

þ jAπ;0jjAπ;1jh0jOg;ttj1ie−Eπ;0ðtsep−tÞe−Eπ;1t

þ jAπ;0jjAπ;1jh1jOg;ttj0ie−Eπ;1ðtsep−tÞe−Eπ;0t

þ jAπ;1j2h1jOg;ttj1ie−Eπ;1tsep þ… ð6Þ

The ground (first excited) state amplitudes and energies,
Aπ;0, Eπ;0, ðAπ;1, Eπ;1) are obtained from the two-state fits
of the two point correlators. h0jOg;ttj0i, h0jOg;ttj1i ¼
h1jOg;ttj0i, and h1jOg;ttj1i are ground- and excited-state
matrix elements, which are extracted from the two-state
simultaneous fits or the two-sim fits to the three-point
correlator using various tsep.
To visualize the reliability of the fitted matrix elements,

we compare the fits to the ratios of the two- and three-point
correlators,

RπðPz; tsep; tÞ ¼
C3pt
π ðPz; tsep; tÞ
C2pt
π ðPz; tsepÞ

: ð7Þ

If the excited-state contamination were small, the ratios
would approach the ground-state matrix element. The bare
matrix element is related to the bare momentum fraction
through a kinematic factor,

RπðPz; tsep; tÞ⟶
tsep→∞

t≪tsep
h0jOg;ttj0i ¼

3E2
0 þ P2

z

4E0

hxibareg : ð8Þ

We carry out the fitting procedure described above for all
values of Pz on the five ensembles given in Table II.
Figure 1 shows examples of two-sim fits used to extract the
ground-state matrix elements at Pz ¼ 2 × 2π

aL on our ensem-
bles. The leftmost column shows the ratios Rπ at different
source-sink separations tsep (red to purple points), the
reconstruction bands of the fits to the ratio plots (red to
purple bands), and the fitted ground-state matrix element

TABLE II. The 2þ 1þ 1-flavor HISQ ensembles generated by the MILC Collaboration and analyzed in this
study with valence pion mass tuned to be as close as possible to the Goldstone sea HISQ pion mass. The lattice
spacing a, valence pion massMval

π and lattice size L3 × T, number of configurations Ncfg, number of total two-point

correlator measurements N2pt
meas, and source-sink separation tsep used in the three-point correlator fits are detailed in

this table.

Ensemble a09m310 a12m220 a12m310 (310 MeV) a12m310 (690 MeV) a15m310

a (fm) 0.0888(8) 0.1184(10) 0.1207(11) 0.1207(11) 0.1510(20)
L3 × T 323 × 96 323 × 64 243 × 64 243 × 64 163 × 48

Mval
π (MeV) 313.1(13) 226.6(3) 309.0(11) 687.3(6) 319.1(31)

Pz (GeV) [0, 1.75] [0, 1.64] [0, 1.71] [0, 1.71] [0, 1.54]
Ncfg 1009 957 1013 1013 900
Nmeas 387,456 1,466,944 324,160 324,160 259,200
tsep [7, 11] [5, 9] [5, 9] [4, 8] [4, 8]

TABLE I. Summary of dynamical lattice calculations of the pion gluon moment sorted by year. (Dynamical lattice studies of the
nucleon gluon moment studies can be found in Refs. [39,46–51].) The columns from left to right show for each calculation: the number
of flavors of quarks in the QCD vacuum (Nf), the lattice spacing (a) in fm, the valence pion mass (Mval

π ) in MeV, the valence fermion
action (“Fermion”), where “TM” stands for twisted-mass fermion action, the number of measurements of the nucleon correlators
(Nmeas), the renormalization method (“Renorm.”) indicating 1-loop perturbative calculations or RI-MOM nonperturbative renorm-
alization, the smearing technique used to improve the gluon signals (“G-smearing”), and the obtained gluon momentum fraction (hxig)
renormalized at 2-GeV scale in MS scheme. The lattice errors coming from different sources are marked as “stat” for statistical, “NPR”
for nonperturbative renormalization, and “mixing” for the mixing with the quark sector. Note that all the prior lattice works only study
the gluon moment at a single lattice spacing; this work (labeled as “MSULat23”) is the only one that includes lattice-discretization error
in its statistical error.

Group Nf a (fm) Mval
π (MeV) Fermion Nmeas Renorm. G-smearing hxig

MIT18 [39] 2þ 1 0.12 450 clover 572,663 RI-MOM Wilson flow 0.61ð9Þstat
ETMC21 [40] 2þ 1þ 1 0.08 139.3 TM 149,000 RI0-MOM 10-stout 0.52ð11Þstatðþ02Þmixing

MIT23 [41] 2þ 1 0.09 170 clover 2,571,264 RI-MOM Wilson flow 0.546ð18Þstat
MSULat23
(this work)

2þ 1þ 1 [0.09, 0.15] [220, 700]a clover 105–106 RI-MOM 5-HYP 0.364ð38ÞstatþNPRð36Þmixing

aclover-on-HISQ mixed action with valence pion masses tuned to lightest sea-quark ones.
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FIG. 1. Example ratio plots (left column) and summary plots for the two-sim fits (last 2 columns) of the meson correlators at pion
masses Mπ ∈ f310; 220; 310; 690; 310g MeV from the a09m310, a12m220, both a12m310, and a15m310 ensembles. The gray band
shown on each plot is the extracted ground-state matrix element from the two-sim fit that we use as our best value. From left to right, the
columns are: the ratio of the three-point to two-point correlators with the reconstructed fit bands from the two-sim fit using the final tsep
inputs, shown as functions of t − tsep=2, the two-sim fit results using tsep ∈ ½tmin

sep ; tmax
sep � varying tmin

sep and tmax
sep .
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h0jOg;ttj0i (gray band). We observe that the Rπ data points
have a tendency to increase with an increase in source-sink
separation tsep and move upward toward the true ground-
state matrix element. Equation (7) suggests that the ratios
should be symmetric towards the source and sink (start
and end of t − tsep=2) as indicated by the reconstructions
bands. We see this trend clearly in the a09m310, a12m310
(Mπ ¼ 690 MeV) and a15m310 ensembles. This is also
the case for the lower tsep data points, tsep ∈ f5; 6g for the
a12m310ðMπ ¼ 310MeVÞ and a12m220 ensembles. How-
ever, there seems to be some deviation in this trend towards
the higher source-sink separations in the a12m310ðMπ ¼
310 MeVÞ and a12m220 ensembles. This deviation could
be caused by statistical fluctuations due to increase in the
signal-to-noise ratio at larger tsep. Even though the central
value of the data points deviates, within 2 standard
deviations (90% confidence level) the ratio data points
do display symmetry around t − tsep=2 ¼ 0.
We also study the dependence of source-sink separation

choice in our simultaneous two-state fits to determine
the pion ground-state matrix elements. This enables us
to see if our extracted ground-state matrix element is stable
under various choices of tmin

sep and tmax
sep . The middle column

of Fig. 1 shows the ground-state matrix elements as we
vary tmin

sep , while keeping tmax
sep constant at 11, 9, 9, 8 and 8

for a09m310, a12m220, a12m310 (Mπ ¼ 310 MeV),
a12m310 (Mπ ¼ 690 MeV) and a15m310 ensembles,
respectively. In each row, the gray bands in the middle
and rightmost plots are obtained from the best choice of tsep
range, as shown in the leftmost plots. The colored points
show the ground-state matrix elements for different choices

of tmin
sep . The green point shows our final choice for the two-

sim fits used in the leftmost column. As the figure shows,
the ground-state matrix elements converge and are, there-
fore, consistent as we vary the tmin

sep .
The rightmost column of Fig. 1 shows how the ground-

state matrix elements change as we vary tmax
sep , while keeping

tmin
sep constant at 7, 5, 5, 4 and 4 from top to bottom in the
plots in Fig. 1. Just as in the middle column, the gray band
represents the ground-state matrix elements using the tsep
obtained from the leftmost plot of each row. We see the
ground-state matrix element converge at higher tmax

sep for all
the ensembles and at lower tmax

sep for the a09m310 and
a015m310 ensemble. However, we see a slight deviance
from the true ground-state matrix element at lower tmax

sep for
a12m220 and a12m310 (Mπ ¼ 310 MeV) ensembles. This
deviance is most significant for the lowest tmax

sep shown for
a12m310 (Mπ ¼ 690 MeV) ensemble. This is expected,
since smaller tmax

sep has more significant excited-state con-
tribution. However, this does not cause problems for our
ground-state matrix element extractions, since the final tmax

sep

we use is the green point in the plot, and we observe that the
ground-state matrix element is stable as one goes to larger
tmax
sep . Using the same process for other Pz we are able to
deduce tsep ranges for the five ensembles. Our final choices
for tsep range used for the rest of this work is given in
Table II.
To obtain the bare gluon moment matrix element hxibareg ,

we first need to multiply these matrix elements h0jOg;ttj0i
obtained from the fit to the form in Eq. (6) at various
momenta by the kinematic factor 4E0

3E2
0
þP2

z
. These are shown

FIG. 2. The bare gluon momentum fraction hxibareg as a function of the momentum Pz in GeV (orange points), along with weighted-
average fitted pion gluon moment (gray band) for each ensemble. The extent of the fit bands represents the data points used in the fit.
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as the orange data points in Fig. 2 as a function of
momentum for the four ensembles used in this work.
We note that since our two-point correlators are momen-
tum-smeared, our zero-momentum hxibareg does not have the
best signal-to-noise ratio. Rather, the best data is found in
the midmomentum region, as can be seen in each plot of
Fig. 2. We also note that the hxibareg begin to deviate from
constant at the largest momenta. This is understandable,
since as momentum increases, the discretization systematic
grows like Pza. The effect is visible in our data: for
a09m310, the data agree within 2 standard deviations,
while the size of the deviation increases at coarser lattice
spacing (see the top-row plots of Fig. 2).
To take advantage of our results at multiple momenta, we

take the ensemble weighted average for the bare gluon
momentum hxibareg all the calculated momentum data except
for the largest one. These ensemble averages are repre-
sented by the gray bands in Fig. 2. The extent of the gray
bands shows which Pz we used in the weighted average.
The largest χ2=d:o:f: for the weighted average is 2.2(16) for
the a15m310 ensemble, due to the small number of points
used. The rest of the ensembles have χ2=dof ∈ ½0.7; 1.3�.
The ensemble average gluon bare momentum fractions are
listed in Table III.

III. RESULTS AND DISCUSSION

To obtain the renormalized moment of the pion
gluon distribution using the bare results obtained in the
previous section, our first step is to determine the non-
perturbative renormalization (NPR) on the lattice in the
regularization-independent momentum-subtraction (RI/
MOM) scheme [52]. However, naive attempts to calculate
ZRI
Og

proved difficult due to signal-to-noise ratios under
100%, especially for the ensembles with finer lattice
spacing [48,51]. In order to improve the signal, we employ
a technique developed in χQCD Collaboration [48]
called “cluster-decomposition error reduction” (CDER)

to improve the signal. The motivation for this method is
that the correlators decay exponentially with the distance
between operator insertions. There is no point in integrating
beyond the correlation length, since it would only add noise
rather than signal. This can be implemented by imposing
cutoffs in the spatial integrals used to calculate the
correlators as done in Ref. [51]. For this work, we will
take the RI/MOM-scheme renormalization constants ZRI

Og

obtained on the same lattice ensembles from Ref. [51] for
the nucleon gluon moment with the same gluon operators.
To obtain renormalized gluon moments, the RI/MOM-

scheme NPR of the gluon operator is then converted to the
modified minimal-subtraction scheme MS via

hxig ¼ ZMS
Og

ðμ2; μ2RÞhxibareg ð9Þ

¼ RMSðμ2; μ2RÞZRI
Og
ðμ2RÞhxibareg ; ð10Þ

where μ and μR are the renormalization scale used in the MS
and RI/MOM schemes, respectively. The one-loop pertur-

bative-matching ratio RMSðμ; μRÞ is derived in Ref. [53] to
convert between the two renormalization schemes,

RMSðμ2; μ2RÞ ¼ 1 −
g2Nf

16π2

�
2

3
ln

�
μ2

μ2R

�
þ 10

9

�

−
g2Nc

16π2

�
4

3
− 2ξþ ξ2

4

�
; ð11Þ

where Nf ¼ 4 and Nc ¼ 3 are the number of flavors and
colors, respectively, ξ ¼ 0 selects Landau gauge, g2 ¼
4παsðμÞ is the coupling strength (with αsðμÞ the coupling

constant at μ ¼ 2 GeV). The final ZMS
Og

used in this work in
summarized in the fourth column in Table III.
The bare gluon operator from Eq. (3) mixes with singlet

quark operators through the renormalized gluon operator
via Og ¼ ZggObare

g þ Zgq
P

i¼u;d;s O
bare
q;i . We do not

TABLE III. The bare gluon momentum fraction hxibareg , renormalization constant ðZMS
Og

Þ−1, and renormalized
gluon momentum fraction hxig in the MS scheme at 2 GeV for each ensemble used in this calculation. We use the
same NPR factors for the three different pion masses for the a ≈ 0.12 fm ensembles, since the mass dependence of
the factor was found to be weak. In the final column, the first error is the statistical error from the matrix elements,
and the second error is that from the NPR factor. The last row gives the final extrapolated result for the momentum
fraction. In this result, the statistical and NPR error are combined as a result of the extrapolation process, making the
first error, and the second is an estimate of 10% mixing between the quark and gluon terms in the operator.

Ensemble Mval
π (MeV) hxibareg ðZMS

Og
Þ−1 hxig

a12m220 226.6(3) 0.477(45) 1.512(65) 0.316ð29Þstatð14ÞNPR
a09m310 313.1(13) 0.466(36) 1.336(106) 0.349ð26Þstatð28ÞNPR
a12m310 309.0(11) 0.438(40) 1.512(65) 0.290ð25Þstatð13ÞNPR

684.1(6) 0.389(18) 1.512(65) 0.257ð11Þstatð11ÞNPR
a15m310 319.1(31) 0.302(16) 1.047(41) 0.289ð15Þstatð11ÞNPR
a0m135 135 � � � � � � 0.364ð38ÞstatþNPRð36Þmixing
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calculate Zgq but instead add this as a systematic error at the
end of the process, which is described in further detail in
Sec. III B.

A. Pion gluon PDF

Using the renormalized gluon moment obtained from
this work, we can now update the gluon PDF obtained by
MSULat [32]. In Ref. [32], the authors used the “pseudo-
PDF” method [26–29] to obtain the pion gluon PDF from
overlap lattice ensembles with a ≈ 0.12 and 0.15 fm and
three pion masses Mπ ≈ 220, 310 and 690 MeV. This
work used a double ratio to remove the renormalization
factor from the matrix elements to avoid the difficulty of
calculating the gluon renormalization factors. With this
methodology, the matching kernel in Eq. (5) of Ref. [32]
(originally introduced in Ref. [28]) matches the MS-
scheme light cone PDF divided by the momentum
fraction, xgðx; μÞ=hxig, to the reduced Ioffe-time pseu-
dodistribution. The method of multiplying through by
the renormalized momentum fraction is used in several
other LQCD studies that calculate the nucleon gluon
PDF [30,36,37]. Since the pion hxig is not well known
experimentally nor widely calculated on the lattice, the
true gluon distribution of pion gðx; μÞ was never
determined on the lattice in Ref. [32]. Using the MS-
scheme renormalized pion gluon moments from our
a15m310 and a12m310 ensembles, we can extract
gðx; μÞ for the pion for the first time. We multiply
the binned xgðx; μÞ=hxig by the mean value of our hxig
for each ensemble, not propagating errors, so the error
bars on the lattice PDFs in Fig. 3 are underestimated.
The xgðx; μÞ pion PDFs are updated in Fig. 3. We

follow the convention commonly used in the global-
fitting community by weighting the PDF with additional

factor of x. The left-hand side of Fig. 3 shows pion gluon
PDF at 310 MeV with lattice spacings of 0.12 and
0.15 fm. The coarse lattice-spacing gluon PDF has
slightly higher central values but is consistent with the
one from finer lattice spacing over most x. At 0.12-fm
lattice spacing, we can study the pion-mass dependence
of the gluon PDF at 310 and 220 MeV. We find the
heavier pion mass has slightly larger central value but
remains consistent within statistical errors. All three pion
gluon PDFs are consistent with each other within the
current statistical error. We also look into potential
mixing from the total quark contributions on the lightest
pion result at 220 MeV, shown as a black solid line on
left-hand side of Fig. 3, since there is no pion sea-quark
distribution available from lattice QCD yet. Taking the
total quark distribution from global fits, we update the
a12m220 gluon PDF to include gluon-in-quark (gq)
contributions in the matching kernel, and we found the
change to be very small.
We then compare our gluon PDF result at the lightest pion

mass, 220 MeV, with the global fits [9,10,54] and phenom-
enological results from the Dyson-Schwinger equation
(DSE) [55] on the right-hand side of Fig. 3. The inset plot
weights an additional factor of x and provides a further
zoomed-in view for a large-x PDF comparison. From the
right plot of Fig. 3, we see that our gluon PDF results are
consistent with the results from JAM and the DSE for
x > 0.2. The xFitter results are consistent with ours for x >
0.15 with slight tension around 0.3 < x < 0.375. The
discrepancies in the small-x region are likely due to lack
of precision data in the small-x region on the global-fit side
and the lack of larger-momentum lattice matrix elements,
which would provide better constraint of the results. Overall,
with the current accuracy in lattice calculation and global fits,
there is reasonable agreement among them in the mid-to
large-x region.

FIG. 3. (Left) The pion gluon PDF xgðx; μ ¼ 2 GeVÞ as a function of x for two lattice spacings a ≈ f0.12; 0.15g fm and pion masses
Mπ ¼ f220; 310g MeV. These are calculated by multiplying the mean of the values of hxig from our results by the curves for
xgðx; μÞ=hxig obtained in Ref. [32]. Only the PDF errors and not the errors in hxig are represented here. (Right) A comparison of the
a ≈ 0.12 fm Mπ ≈ 220 MeV xgðx; μÞ result compared with the NLO pion gluon PDFs from xFitter’20 [54] and JAM’21 [9,10], along
with the DSE’20 [55] at μ ¼ 2 GeV in the MS scheme. The inset shows x2gðx; μÞ to highlight the agreements between the PDFs. All the
results are fairly consistent in the regions where x > 0.2.
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B. Pion gluon moment in the continuum-physical limit

With the renormalization constants and the bare
momentum fractions hxibareg obtained in Sec. II, we
summarize the renormalized hxig at the scale μ ¼
2 GeV in MS scheme in Fig. 4. Each point in the figure
has a darker and a lighter error bar, representing the
statistical and systematic error from the gluon NPR factor,
respectively. Our renormalized hxig increase slightly with
increasing pion mass but are consistent within total errors.
Similarly, we observe a small increase in the pion gluon
moment toward the continuum limit; however, the three
310-MeV data points are consistent within 2 standard
deviations. It will be interesting to study this further in the
future with even higher statistics.
To obtain the continuum-physical limit pion gluon

moment, we use two naive extrapolation functions that
are linear in ðMπÞ2 and an for n ¼ 1, 2,

hxigðMπ; aÞ ¼ hxicontg þ kMðM2
π − ðMphys

π Þ2Þ þ kaan: ð12Þ

We fit the parameters in the functions by minimizing a
goodness-of-fit,

χ2n ¼
X ðhxigðMπ; aÞ − hxilatg ðMπ; aÞÞ2

ðσðMπ; aÞÞ2
; ð13Þ

where the sum goes over the five ensembles each with
its respective ðMπ; aÞ. σðMπ; aÞ is the combined stat-
istical and NPR errors of hxilatg ðMπ; aÞ. The χ2n=dof for
OðaÞ and Oða2Þ were 0.36 and 0.43 respectively. We
apply averaging between the two models using the
Akaike information criteria (AIC) [56,57]. In our case,
we can take AICn ¼ M ln χ2n, where M ¼ 5 is the
number of ensembles, as other factors will cancel out
in the weights. The weights are then wn ¼ w0

n
w0
1
þw0

2

where w0
n ¼ exp½−AICn=2�.

We calculate the averaged extrapolated momentum
fraction to be hxicontg ¼0.394ð58Þ. The OðaÞ (Oða2Þ) mass-
dependence and lattice-spacing–dependence fit parameters

FIG. 4. The renormalized gluon momentum fraction hxig from each ensemble and the physical-continuum extrapolation as functions
of lattice spacing a (top) and pion mass M2

π (bottom) from the OðaÞ (left) and Oða2Þ (right) fits. Each data point in the plot has two
errors: the darker inner bar indicates the statistical error, while the lighter outer bar includes combined errors from both the statistical and
renormalization error. The a12m310 Mπ ≈ 310 MeV data point in the left plots is shifted 0.0015 fm to the right for clarity. The vertical
dashed lines in the bottom plots go throughM2

π ¼ ð0.135 GeVÞ2. The reconstructed fit bands at selectedMπ ∈ f135; 310; 690g MeV as
functions of a and at selected a∈ f0; 0.09; 0.12; 0.15g fm as functions of Mπ are also shown in the top and bottom plots, respectively.
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are kðπÞM ¼ −1.38ð34Þ × 10−4 GeV−2 (−1.40ð34Þ×
10−4 GeV−2) and kðπÞa ¼−0.784ð49Þ fm−1 (−3.0ð20Þ fm−2).
Using the fit parameters, we can reconstruct the moment for
Mπ ∈ f135; 310; 690g MeV (a∈ f0; 0.09; 0.12; 0.15g fm)
as a function of a (Mπ), as shown on the top (bottom)
row of Fig. 4 with theOðaÞ fit on the left and theOða2Þ fit on
the right. As expected from the χ2=d:o:f:, both fits well
describes our measured data. Similar to the data points, each
band has a statistical and total error that includes the NPR
uncertainties; however, the differences are too small to be
seen in most cases.
The top row of Fig. 4 shows the lattice-spacing depend-

ence of the momentum fraction at fixed pion mass for
each fit. In both cases, we see a similar trend towards a
slightly higher moment as the pion mass decreases. The
Mπ ≈ 310 MeV bands both have consistent moments
over the range a∈ ½0; 0.2� fm with their respective physical
pion mass bands. For each fit, the heavy pion mass Mπ ≈
690 MeV shows the strongest deviation near a ≈ 0.12 fm,
but the band is within one sigma at a ¼ 0.
In the bottom row of Fig. 4, we plot the pion-mass

dependence at each lattice spacing used in this work, 0.15,
0.12 and 0.09 fm (red, green and blue, respectively),
alongside the extrapolated band at the continuum limit, a ¼
0 (gray band). These bands move upward approaching the
continuum limit, with the OðaÞ continuum band making a
larger jump from the smallest lattice spacing compared to
the Oða2Þ continuum band. The a ¼ 0.15 fm lattice spac-
ing band has the strongest deviation from the continuum-
limit result in each case. The a ¼ 0.12 fm (a ¼ 0.09 fm)
band is consistent with the a ¼ 0 continuum band within 2
(1) standard deviation for both fits. Compared to the
nucleon gluon moment studied on similar lattice ensembles
in Ref. [51], we see that the pion gluon moment has a
stronger dependence on the lattice spacing but is still within
two sigma of zero. Compared to that of the nucleon gluon
moment, the pion-mass dependence here is larger and no
longer consistent with zero.
As mentioned before, we take the mixing between the

quark and gluon operators as a systematic error. An ETMC
study [40] on a finer lattice with no smearing found the
mixing to contribute as much as 20% to the renormalized
gluon operator in their study. The contribution decreased to
as low as 2% on a lattice with more smearing of the gluon
fields. ETMC’s earlier Nf ¼ 2 work [46], and an MIT
study [58] found the contribution to be no more than 10%.
We choose to estimate a 10% systematic error coming from
the quark mixing, since we and MIT both use clover
fermion action. Therefore, our final results for pion gluon
moment is hxig ¼ 0.394ð58ÞstatþNPRð39Þmixing in the con-
tinuum-physical limit.
In Fig. 5, we summarize the pion gluon moments

obtained from lattice-QCD calculations done near or
extrapolated to physical pion mass, renormalized at
2 GeV in MS scheme, and from global fits by taking the

first moment of their gluon PDF. Our continuum-limit
result is consistent with another Nf ¼ 2þ 1þ 1 study by
ETMC [40] at a single lattice spacing a ≈ 0.08 fm, but is a
few standard deviations away from the Nf ¼ 2þ 1 study
by MIT group [41]. While it is far less accessible to
perform such analyses for the pion as compared to the
nucleon, recently, progress has been made towards a global
QCD analysis yielding pion PDFs by the JAM [9,59] and
xFitter [54] Collaborations. The xFitter collaboration uses
Drell-Yan (DY) and prompt photon production data and
applies their nucleon-PDF fitting framework to pion PDFs.
They obtain results consistent with ours but with much
larger error bar. In the latest JAM global fit, using leading
neutron electroproduction data from HERA in addition to
data from pion-nucleus DY lepton-pair production and
imposing the momentum sum rule, infers the value of hxgi
to be 0.40(3) using next-to-leading order (NLO) and next-
to-leading logarithm (NLL) double-Mellin resummation at
μ ¼ 1.3 GeV. The moment from JAM should increase
when run to 2-GeV scale but should remain consistent with
our results. We can also compare with QCD models, such

FIG. 5. Comparison of lattice-QCD and global-fit determina-
tions of the gluon moments of the pion. The lattice-QCD results
are given at μ ¼ 2 GeV in MS scheme, and the global-fit results
near 2 GeVas shown. Lattice results are only shown if calculated
at, near or extrapolated to physical pion mass. These are this work
(MSULat’23), ETMC’21 [40] with Nf ¼ 2þ 1þ 1, and MIT’23
[41] with Nf ¼ 2þ 1, The global-fit results are JAM’18 [9] at
μ ¼ 2.2 GeV xFitter’20 [54] at 2.0 GeV and JAM’21 [59] at
1.3 GeV. Some of these numbers include systematic errors and
some do not; for those that do include them, the inner error bar is
statistical only and outer error includes the estimated systematic
errors. We refer readers to Table I for more details on the
differences in the errors. Our lattice result (labeled MSULat’23) is
consistent with the gluon momentum fraction obtained from the
global fits.
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as gauge-invariant nonlocal chiral quark model (NLχQM)
[60], which gives hxgi around 0.6. The Dyson-Schwinger
equation (DSE) framework [55,61] gives hxgi 0.41(2) at
2 GeV, consistent with our result. MAP Collaboration [62]
uses a light-front model calculation of the pion PDFs to
obtain hxgi ¼ 0.37ð5Þ at 2 GeV. Overall, our pion gluon
moment has good agreement with the global fits and most
recent QCD-model calculations.

IV. CONCLUSION

In this work, we reported the first continuum-limit
lattice calculation of the pion gluon momentum fraction,
extrapolated to physical pion mass. We used three lattice
spacings (a ≈ 0.09, 0.12 and 0.15 fm) and three pion
masses (220, 310 and 690MeV) onNf ¼ 2þ 1þ 1 highly
improved staggered quarks (HISQ) with clover fermions.
We used high-statistics pion two-point correlators with
Oð105Þ–Oð106Þ measurements. The ground-state matrix
elements are extracted using two-state fits to multiple
source-sink separations. We studied the choice of
source-sink separation and found the ground-state pion
matrix elements remain stable. We then nonperturbatively
renormalized our bare matrix elements using RI/MOM
scheme with signal-to-noise improvement from cluster-
decomposition error reduction technique. The final results
for the gluon moment calculated at each ensemble are
reported at 2 GeV in MS scheme as summarized in
Table III. We ignore mixing with the quark singlet
operators, as they have been found in other studies
[40,46,58] to be small compared to our statistical errors.
We add a 10% systematic uncertainty to our final results to
account for this.
Using our pion gluon moments, we updated the pion

gluon PDFs from an earlier study [32] using pseudo-PDF
method. The x-dependent method normalized the gluon
PDF by its moment, and only when the gluon moment is
known, one can retrieve the true gluon PDF. We compared
the gluon PDF from the a12m220, a12m310 and a15m310
ensembles, and found the pion-mass and lattice-spacing
effects to be negligible within the statistical errors. We also
compared our PDFs with the JAM and xFitter global-fit
results, and they are in good agreement within the reliable x
region x > 0.2.
We then took the continuum-physical limit by extrapo-

lating our gluon moment using a simple ansatz with linear
dependence in the square of lattice spacing and pion mass.

We found a slightly larger pion mass and lattice spacing
dependence in the pion gluon moment than the nucleon
gluon moment. Our pion gluon moment in the continuum-
physical limit is consistent with the prior Nf ¼ 2þ 1þ 1

lattice study but has tension with a prior Nf ¼ 2þ 1 lattice
study. However, both prior works near physical pion mass
were done at single lattice spacing; the difference can be
caused by different lattice actions going to the continuum
limit differently or other systematics. We found our gluon
moment to be in good agreement with those obtained from
global fits and most recent QCD model calculations. It will
be interesting for future calculations to include ensembles
at the physical pion mass and finer lattice spacing with
improved statistics, to continue to improve the lattice
calculation.
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[61] Minghui Ding, Khépani Raya, Daniele Binosi, Lei Chang,
Craig D. Roberts, and Sebastian M. Schmidt, Symmetry,
symmetry breaking, and pion parton distributions, Phys.
Rev. D 101, 054014 (2020).

[62] Barbara Pasquini, Simone Rodini, and Simone Venturini,
Valence quark, sea, and gluon content of the pion from the
parton distribution functions and the electromagnetic form
factor, Phys. Rev. D 107, 114023 (2023).

[63] Robert G. Edwards and Balint Joo, The Chroma software
system for lattice QCD, Nucl. Phys. B, Proc. Suppl. 140,
832 (2005).

GOOD, HASAN, CHEVIS, and LIN PHYS. REV. D 109, 114509 (2024)

114509-12

https://doi.org/10.1103/PhysRevD.108.074502
https://doi.org/10.1103/PhysRevD.104.094516
https://doi.org/10.1103/PhysRevD.104.094516
https://doi.org/10.1103/PhysRevD.108.094515
https://doi.org/10.1103/PhysRevD.108.094515
https://doi.org/10.1103/PhysRevD.77.037501
https://doi.org/10.1103/PhysRevD.77.037501
https://doi.org/10.1103/PhysRevD.99.014511
https://doi.org/10.1103/PhysRevD.99.014511
https://doi.org/10.1103/PhysRevLett.127.252001
https://doi.org/10.1103/PhysRevD.108.114504
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.98.034503
https://doi.org/10.1103/PhysRevD.64.034504
https://doi.org/10.1103/PhysRevD.64.034504
https://doi.org/10.1103/PhysRevD.96.054503
https://doi.org/10.1103/PhysRevLett.119.142002
https://doi.org/10.1103/PhysRevLett.119.142002
https://doi.org/10.1103/PhysRevD.98.074506
https://doi.org/10.1103/PhysRevD.98.074506
https://doi.org/10.1103/PhysRevLett.121.212001
https://doi.org/10.1103/PhysRevD.101.094513
https://doi.org/10.1103/PhysRevD.101.094513
https://doi.org/10.1103/PhysRevD.107.034505
https://doi.org/10.1016/0550-3213(95)00126-D
https://doi.org/10.1016/0550-3213(95)00126-D
https://arXiv.org/abs/1612.02855
https://doi.org/10.1103/PhysRevD.102.014040
https://doi.org/10.1103/PhysRevD.102.014040
https://doi.org/10.1140/epjc/s10052-020-08578-4
https://doi.org/10.1007/BF02480194
https://doi.org/10.1103/PhysRevD.108.114504
https://doi.org/10.1103/PhysRevLett.127.232001
https://doi.org/10.1103/PhysRevLett.127.232001
https://doi.org/10.1103/PhysRevD.109.054040
https://doi.org/10.1103/PhysRevD.109.054040
https://doi.org/10.1103/PhysRevD.101.054014
https://doi.org/10.1103/PhysRevD.101.054014
https://doi.org/10.1103/PhysRevD.107.114023
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.1016/j.nuclphysbps.2004.11.254

