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We present strong numerical evidence for the existence of an infrared fixed point in the renormalization
group flow of the SU(3) gauge-fermion system with twelve massless fermions in the fundamental
representation. Our numerical simulations using nHYP-smeared staggered fermions with Pauli-Villars
improvement do not exhibit any first-order bulk phase transition in the investigated parameter region. We
utilize an infinite volume renormalization scheme based on the gradient flow transformation to determine
the renormalization group β function. The gradient flow β function exhibits a zero at g2GF⋆ ¼ 6.60ð62Þ,
implying that the system is infrared conformal. We calculate the leading irrelevant critical exponent
γ⋆g ¼ 0.199ð32Þ. Our prediction for γ⋆g is consistent with available literature at the 1-2σ level.
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I. INTRODUCTION

The infrared properties of the SU(3) gauge-fermion system
withNf ¼ 12massless fundamental flavors has been studied
extensively using a variety of analytical and numerical
techniques. Such techniques include perturbation theory
[1–6], use of the gap equation [7,8], functional renormaliza-
tion group methods [9,10], conformal expansion [11], con-
formal bootstrap [12], the background field method [13],
perturbative non-relativistic quantum chromodynamics [14],
large-N expansion [15], and nonperturbative lattice simula-
tions [16–39]. Investigationsbasedon lattice simulationshave
utilized finite-volume step-scaling [16–25], Monte Carlo
renormalization group methods [26,27], hadron mass and
decay constant spectroscopy [29–37], and the Dirac eigen-
mode spectrum [38,39]. Many investigations suggest that the
Nf ¼ 12 system is infrared conformal,1 though a minority of
studies conclude that the system is confining with chiral
symmetry breaking, or are inconclusive, as they find neither
direct evidence of chiral symmetry breakingnor of an infrared
fixed point.2

Most lattice studies are affected by the presence of a
bulk first-order phase transition [41–46]. Such unphysical
phase transitions are triggered by strong ultraviolet

fluctuations in the fermion sector that prevent lattice
simulations from reaching deep into the infrared regime.
Even when strong couplings are reached, lattice cutoff
effects make it difficult to take the proper continuum limit,
leading to inconsistent results between different lattice
formulations. It is imperative to reduce the ultraviolet
fluctuations that trigger first-order bulk phase transitions.
Reference [47] suggested including unphysical heavy
Pauli-Villars fields to achieve the necessary improvement.
Lattice Pauli-Villars fields are similar to their continuum
analogue—they have the same action as the fermions but
possess bosonic statistics. Their mass is at the level of the
cutoff. Therefore, they decouple in the infrared limit,
while in the ultraviolet they compensate for cutoff effects
introduced by the fermions. This idea has been tested in
simulations of the SU(3) gauge-fermion system with ten
massless fundamental Dirac fermions (flavors) and the
SU(4) gauge-fermion system four massless fundamental
and four massless two-index Dirac fermions [48,49]. Both
studies extended the reach into the infrared regime
significantly, and both present clear evidence for infrared
conformality in those systems. See also Refs. [44,45] for
an alternative proposal to remove unphysical bulk phase
transitions.
In this work, we utilize Pauli-Villars (PV) improvement

to study the infrared properties of the massless SU(3)
gauge-fermion system with Nf ¼ 12 fundamental flavors.
We calculate the renormalization group (RG) β function,
defined as the logarithmic derivative of the renormalized
running coupling g2ðμÞ with respect to an energy scale μ as

βðg2Þ ¼ μ2
dg2ðμÞ
dμ2

: ð1Þ
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If the running coupling captures the infrared properties of the
system, the zeros of the β function signal fixed points. In a
conformal system it is expected that the β function vanishes
at some coupling g2⋆ ≠ 0, where the gauge coupling
becomes irrelevant and the system is infrared conformal.
On the lattice, it is convenient to use gradient flow

(GF) transformation [50–52] as a continuous smearing
operation to define an infinite-volume renormalization
scheme [28,53–57]. In the GF scheme, the renormalized
coupling g2GFðtÞ in infinite volume at flow time t ∝ 1=μ2 is
defined in terms of the Yang-Mills energy density EðtÞ as

g2GFðtÞ≡N ht2EðtÞi; ð2Þ

where N ¼ 128π2=ð3N2
c − 3Þ is a constant chosen to

match g2
MS

at tree-level and hEðtÞi is predicted using the
plaquette or other small gauge loops, like the clover
operator [51]. The corresponding RG β function is

βGFðg2GFÞ≡ −t
dg2GFðtÞ

dt
: ð3Þ

The running coupling and its RG β function are scheme
dependent. The GF scheme is known to reproduce the
universal perturbative 2-loop β function [58], but that alone
does not guarantee that it is a good probe of infrared
conformality [59]. However, the infrared properties of the
gradient flow running coupling in Eq. (2) can be related to
the nonperturbative Wilsonian renormalization group. The
gradient flow transformation can be interpreted as a real-
space renormalization group transformation and the expect-
ation values of flowed local operators correspond to RG
blocked operators [54,55]. The GF running coupling
defined in Eq. (2) is a dimensionless renormalized
quantity. If it has an overlap with the relevant coupling
that emerges from the perturbative Gaussian fixed point, it
tracks the renormalized trajectory [60]. At the same time, it
can be expressed as a combination of loops of size ≲ ffiffiffiffi

8t
p

.
As long as the system does not cross a phase boundary, it is
an analytic function of the bare gauge coupling. Wilsonian
RG considerations then imply that the GF coupling
corresponds to the relevant/leading-irrelevant scaling oper-
ator at the Gaussian/conformal fixed points in the con-
tinuum limit. While we cannot prove the above statements
rigorously, they rely on the well established and widely
studied Wilsonian renormalization group principles.
To calculate the infinite volume gradient flow β

function βGFðg2GFÞ from finite-volume simulations, we
utilize the continuous β function method (CBFM) proposed
in Refs. [28,53,56] and deployed extensively in
Refs. [48,49,61–64] to a variety of strongly-coupled
gauge-fermion systems. In this paper we follow the steps
described in [62,64]with additional extensions for improved
error estimation. We discuss the continuous β function
method and its implementation in further detail in Sec. III.

As a preview, we show our nonperturbative prediction
for βGFðg2GFÞ as a function of g2GF in Fig. 1. The predicted β
function converges to the universal 1-/2-loop and 3-loop
gradient flow perturbative β functions at small g2GF [58].
Around g2GF⋆ ¼ 6.60ð62Þ, the nonperturbative β function
unambiguously exhibits an infrared fixed point. From
the slope of βGFðg2GFÞ at g2GF⋆, we calculate the leading
irrelevant critical exponent γ⋆g ¼ 0.199ð32Þ and find
that it is consistent with the perturbative calculations of
Refs. [4,6] at the 1σ level and the lattice calculation of
Ref. [21] at the 2σ level. We control for systematic
errors in the infinite volume extrapolation step of the
CBFM using Bayesian model averaging. Additionally,
our Pauli-Villars improved simulations offer tight control
over systematics in the continuum extrapolation step of
the CBFM.
This paper is laid out as follows. In Sec. II, we

summarize details of our numerical simulations. In
Sec. III, we review the continuous β function method
and discuss our analysis. We explain our calculation of the
leading irrelevant critical exponent in Sec. IV, and wrap up
in Sec. V with conclusions.

II. NUMERICAL DETAILS

We simulate the massless twelve-flavor SU(3)
gauge-fermion system using an adjoint-plaquette gauge
action with βF=βA ¼ −0.25 (βF ≡ βb) and a massless
(amf ¼ 0.0) nHYP-smeared staggered fermion action with
four massive (amPV ¼ 0.5) Pauli-Villars (PV) fields per
staggered fermion [47,65–67]. The “pions” of these PV

fields have mass amðPVÞ
PS ≳ 1.03 and generate gauge loops in

the effective gauge action with a size that decays

FIG. 1. Our continuum prediction for βGFðg2GFÞ as a function of
g2GF (maroon band) juxtaposed against the 1- (dashed), 2- (dotted)
and 3-loop (dashed-dotted) gradient flow β function from
perturbation theory [58]. The width of the maroon band indicates
the error. Also given is our prediction for the leading irrelevant
critical exponent at the IRFP, γ⋆g ¼ 0.199ð32Þ.

3PS ¼ pseudoscalar.
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exponentially with amðPVÞ
PS [47]. As long as the volume is

much larger than 1=mðPVÞ
PS and mf ≪ mðPVÞ

PS the PV fields
decouple in the infrared. Their only effect is a modified, but
local, gauge action. One of the goals of the present work is
to illustrate the validity of this expectation.
We use antiperiodic boundary conditions in all

four directions for both the staggered fermion fields and
PV fields. Our numerical simulations are performed using
the hybrid Monte Carlo algorithm [68] implemented in a
modified version of the MILC library4 and the Quantum
EXpressions (QEX) library [69].5 We set the molecular
dynamics trajectory length to τ ¼ 1.0. Our configurations
are separated by ten trajectories (ten molecular dynamics
time units). We perform our simulations at fourteen bare
gauge couplings (9.20 ≤ βb ≤ 14.6) and five symmetric
volumes (24 ≤ L=a ≤ 40). In Table I, we list the total
number of thermalized configurations on each ensemble.
Our gradient flow measurements are performed

using either the modified MILC or QEX libraries [69].
We flow our configurations using Wilson flow [51,52],
integrating the gradient flow equations using the fourth-
order Runge-Kutta algorithm discussed in Ref. [51] with
time step dt=a2 ¼ 0.02 for t=a2 ≤ 5.0 and dt=a2 ¼ 0.1 for
t=a2 > 5.0. At each integration step, we measure the Yang-
Mills energy density EðtÞ using the Wilson (W) and clover
(C) discretizations. In the rest of this paper, we refer to
results based on Wilson flow and Wilson operator as WW,
while we refer to results based on Wilson flow and clover

operator as WC. Our data for the Yang-Mills energy density
EðtÞ from the Wilson and clover operator are available
at Ref. [70].
In Fig. 2 we plot the expectation value of the magnitude

of the gradient-flowed Polyakov loop jPj at 8t=a2 ≈
ðL=2aÞ2 against the bare gauge coupling βb for all
ensembles in Table. I. The Polyakov loop is normalized to
unity. Errors are estimated using the “Γ-method” technique
implemented by the PYERRORS package [71–74]; however,
they are likely underestimated. Nonetheless, the Polyakov
loop suggests that the system is not confining in the range
of couplings and volumes that we use in the present study.

III. NONPERTURBATIVE β FUNCTION

We measure the gradient flow coupling in finite volume
in terms of the Yang-Mills energy density EðtÞ as

g2GFðt;L; g20Þ≡ N
1þ δðt; LÞ ht2EðtÞi; ð4Þ

where δðt; LÞ corrects for gauge zero modes [75]. From
g2GFðt;L; g20Þ, we calculate the gradient flow β function in
finite volume as

βGFðt;L; g20Þ≡ −t
d
dt
g2GFðt;L; g20Þ; ð5Þ

where we discretize d=dt with a 5-point stencil. The
autocorrelation time for g2GFðt;L; g20Þ and βGFðt;L; g20Þ is
typically between 20–80 molecular dynamics time units
(MDTUs), with occasional jumps to 120-200 MDTUs.
To extract the continuum βGFðg2GFÞ as a function of g2GF,

we follow the CBFM procedure outlined in Refs. [62,64].

TABLE I. The number of thermalized configurations analyzed
at each bare coupling βb and volume L=a. The configurations are
separated by 10 MDTUs.

L=a

βb 24 28 32 36 40

9.20 340 253 188 188 133
9.40 347 262 215 273 186
9.60 244 233 251 203 166
9.80 275 329 250 297 280
10.0 271 246 312 151 134
10.2 184 209 217 221 133
10.4 283 241 299 221 142
10.8 246 220 288 208 306
11.0 236 288 156 151 156
11.4 188 194 223 193 183
12.0 182 248 200 254 167
12.8 180 179 204 254 209
13.6 251 183 168 254 228
14.6 253 191 178 251 226

FIG. 2. The gradient-flowed Polyakov loop expectation value at
flow time 8t=a2 ≈ ðL=2aÞ2 versus the bare gauge coupling βb on
each volume in Table I. The absolute value of the Polyakov loop
is shown by colored error bars: L=a ¼ 24 (blue), 28 (yellow), 32
(green), 36 (orange), and 40 (pink). The Polyakov loop is
normalized to unity.

4The modified MILC library can be found at https://github
.com/daschaich/KS_nHYP_FA.

5Our fork of QEX can be found at https://github.com/
ctpeterson/qex.
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(1) Take the infinite volume limit by independently
extrapolating both g2GFðt;L; g20Þ and βGFðt;L; g20Þ
linearly in ða=LÞ4 → 0 at fixed t=a2 and βb.

(2) Interpolate βGFðt; g20Þ in g2GFðt; g20Þ at fixed t=a2.
(3) Take the continuum limit by extrapolating βGFðt; g20Þ

linearly in a2=t → 0 at fixed g2GFðtÞ.
Correlated uncertainties are propagated throughout our
analysis using the automatic error propagation tools pro-
vided by the gvar library [76]. Fits are performed using
the SwissFit library, which integrates directly with
gvar [77]. The steps of the CBFM are detailed in the
rest of this section.

A. Infinite volume extrapolation

Because the Yang-Mills energy density is a dimension-4
operator, leading finite-volume corrections to g2GFðt;L; g20Þ
and βGFðt;L; g20Þ are expected to be Oðt2=L4Þ. Therefore,
we extrapolate both g2GFðt;L; g20Þ and βGFðt;L; g20Þ to
a=L → 0 by independently fitting them to the ansatz,

FVðL=aÞ ¼ k1ða=LÞ4 þ k2; ð6Þ

at fixed t=a2 and βb. This analysis strategy was first
outlined in Ref. [64] and subsequently applied in
Refs. [62,63]. Alternative methods are discussed in
Refs. [28,53,56,61].
We account for the systematic uncertainty that is

associated with choosing a particular subset of volumes
for the infinite volume extrapolation using Bayesian model
averaging [78–80]. We do so by first fitting over all
possible subsets of volumes L=a∈ f24; 28; 32; 36; 40g
with at least three volumes in each subset η. We calculate
the model weight wη for a particular subset η as

wη ∝ exp

�
−
1

2
ðχ2η þ 2dηÞ

�
; ð7Þ

where χ2η is the χ2 statistic of fit η and dη is the number of
data points not included in fit η from the full set of volumes
f24; 28; 32; 36; 40g. Denoting the mean of ki from fit η as

k̄ðηÞi , our model-averaged prediction for the mean k̄i of ki is

k̄i ¼
X
η

k̄ðηÞi wη; ð8Þ

where the weights wη have been normalized such thatP
η wη ¼ 1. The covariance Cij of our model-averaged

prediction for fkigi¼1;2 is

Cij ¼
X
η

CðηÞ
ij wη þ

X
η

k̄ðηÞi k̄ðηÞj wη − k̄ik̄j; ð9Þ

where CðηÞ
ij is the covariance of fkðηÞi gi¼1;2 from fit η.

In Figs. 3 and 4, we show the result of our model-
averaged infinite volume extrapolation for the W and C
discretization of EðtÞ, respectively, over a range of flow
times 2.5 ≤ t=a2 ≤ 6.0 (different colors). The left panels of
Figs. 3 and 4 show our infinite extrapolation of
g2GFðt;L; g20Þ, while the right panels show our infinite
volume extrapolation of βGFðt;L; g20Þ. The bare gauge
couplings that we chose for these plots are in the vicinity
where the continuum β function predicts an infrared fixed
point (IRFP). For all three bare gauge couplings shown in
Figs. 3 and 4, the model average is dominated by subsets
containing L=a∈ f28; 32; 36; 40g, as L=a ¼ 24 often devi-
ates from the linear trend in a4=L4, particularly as the flow
time increases. This is reflected in the model average, as fits
including L=a ¼ 24 possess small model weights wη and
contribute negligibly to the model average.

B. Intermediate interpolation

The continuum limit a2=t → 0 of βGFðt; g20Þ is taken at
fixed g2GF. We predict pairs ðt=a2; βGFðt; g20ÞÞ at a set of
fixed g2GF for the continuum extrapolation by interpolating
βGFðt; g20Þ in g2GFðt; g20Þ at fixed t=a2 using the ansatz,

INðg2GFÞ ¼ g4GF
XN−1

i¼0

png2nGF: ð10Þ

At each t=a2, we account for the uncertainty in g2GFðt; g20Þ
by including the mean and covariance of g2GFðt; g20Þ as a
Gaussian prior. We also set a Gaussian prior on each
coefficient pn with zero mean and a width of 0.1, which
helps stabilize the fit. We choose N ¼ 4, as it is the lowest
value of N that fits the data well. In Fig. 5, we show the
result of our interpolation for the W operator (top panel)
and the C operator (bottom panel) for several flow time
values in the range 2.5 ≤ t=a2 ≤ 6.0 (different colors). The
fits that enter our continuum extrapolation have p-values in
the 83%–98% range. This could indicate that we are either
overfitting or the errors in our data are overestimated.
Reducing the order makes each interpolation significantly
worse, as interpolations with N ≤ 3 are unable to
accommodate the varying curvature at weak/strong
coupling. Therefore, use N ¼ 4 for our central analysis.
We will discuss the systematic effect that is associated
with the order N in our estimate of g2GF⋆ and γ⋆g
in Sec. IV.

C. Continuum extrapolation

The final step is the continuum (a2=t → 0) limit over
a set of fixed g2GF that predicts βGFðg2GFÞ as a function of
g2GF. The range of ½tmin=a2; tmax=a2� used in the continuum
extrapolation must be chosen with care. The value of
tmin=a2 must be large enough for the RG flow to
reach the renormalized trajectory. Once this is the case,
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finite-cutoff effects are Oða2=tÞ. In practice, one can
identify when tmin=a2 is close enough to the renormalized
trajectory by the overlap between the continuum prediction
for βGFðg2GFÞ from both operators. Because finite-volume
effects are expected to be Oðt2=L4Þ, tmax=a2 must be
chosen such t=a2 < tmax=a2 has a reliable infinite volume
extrapolation. Ideally, we would apply Bayesian model
averaging to the continuum extrapolation to automatically
account for systematic effect that is associated with making
a particular choice in ½tmin=a2; tmax=a2�. However, at this
point in the analysis, we no longer have access to the full
covariance matrix, which means that we no longer have
access to a reliable estimate of the model weights. To
estimate the error in our continuum extrapolation, we use

the half-difference of the prediction from the continuum
extrapolation performed at �1σ. This approach was also
taken in Ref. [62].
Figure 6 shows examples of the continuum extrapolation

performed in the range 2.0 ≤ g2GF ≤ 6.0 (different colors)
using ½tmin=a2; tmax=a2� ¼ ½3.5; 6.0�. For t=a2 ≲ 3.5,
βðt; g20Þ has a slight curvature in a2=t, indicating emerging
higher-order cutoff effects for both the W and C operator.
For t=a2 ≳ 6.0, the data begins to deviate from a
linear trend in a2=t, indicating that the infinite volume
extrapolation is getting unreliable. Our choice of
½tmin=a2; tmax=a2� ¼ ½3.5; 6.0� avoids both of these two
regimes. In Sec. IV, we discuss the sensitivity of our
prediction for g2GF⋆ and γ⋆g to our choice of tmin=a2; tmax=a2.

FIG. 3. Result of our infinite volume extrapolation of g2GFðt;L; g20Þ (left panels) and βGFðt;L; g20Þ (right panels) for the Wilson (W)
operator at βb ¼ 9.60 (top panels), 9.80 (middle panels), and 10.2 (bottom panels). Black (×) markers with error bars are the data
included in our extrapolation. Extrapolations with errors that are predicted from Bayesian model averaging are indicated by multicolored
bands at t=a2 ¼ 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0 (light purple). We do not show the infinite volume extrapolation of
βGFðt;L; g20Þ at t=a2 ¼ 4.5 for visualization purposes.
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We show our prediction for the continuum βGFðg2GFÞ in
Fig. 7 from the WW (gold band) and WC (maroon band)
combination. The continuum predictions from both oper-
ators are consistent with one another across the entire range
of investigated renormalized couplings g2GF. At small g2GF,
the continuum βGFðg2GFÞ appears to converge to the 1-, 2-,
and 3-loop perturbative gradient flow β function [58]. At
g2GF⋆ ≈ 6.60, our continuum β function predicts an infrared
fixed point. The location of the fixed point is slightly below
the predicted IRFP from the step-scaling calculation of
Ref. [21]. Note that, because the calculation in Ref. [21]
was done in a different gradient-flow-based renormaliza-
tion scheme, the predicted g2GF⋆ values do not have to agree.
Our final result for βGFðg2GFÞ from both operators is
provided as an ASCII file.

IV. THE IRFP AND ITS LEADING IRRELEVANT
CRITICAL EXPONENT

In the vicinity of the RG fixed point g2GF⋆,

βðg2GFÞ ≈
γ⋆g
2
ðg2GF − g2GF⋆Þ; g2GF → g2GF⋆; ð11Þ

where γ⋆g is the universal critical exponent of the irrelevant
gauge coupling. The factor of 1=2 is chosen to match the
convention of Refs. [6,21]. We estimate g2GF⋆ and γ⋆g via the
following procedure.
(1) Interpolate the central value of βðg2GFÞ and the

central value of βðg2GFÞ � 1σ in g2GF using a mono-
tonic spline.

FIG. 4. Result of our infinite volume extrapolation of g2GFðt;L; g20Þ (left panels) and βGFðt;L; g20Þ (right panels) for the clover
(C) operator at βb ¼ 9.60 (top panels), 9.80 (middle panels) and 10.2 (bottom panels). Black (×) markers with error bars are the data
included in our extrapolation. Extrapolations with errors that are predicted from Bayesian model averaging are indicated by multicolored
bands at t=a2 ¼ 2.5 (red), 3.5 (light green), 4.5 (cyan), and 6.0 (light purple). We do not show the infinite volume extrapolation of
βGFðt;L; g20Þ at t=a2 ¼ 4.5 for visualization purposes.
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(2) Estimate the central value of g2GF⋆ from the root of
the spline interpolation of βðg2GFÞ in g2GF.

(3) Estimate the central value of γ⋆g from the derivative
of the spline at g2GF⋆.

(4) Repeat steps (2)–(3) with a spline interpolation of
βðg2GFÞ � 1σ in g2GF.

(5) Estimate the error in g2GF⋆ and γ⋆g from the half
difference of their predictions from the interpola-
tions in step (4).

Steps (1)–(5) yield g2GF⋆ ¼ 6.69ð35Þ; 6.60ð36Þ and γ⋆g ¼
0.206ð19Þ; 0.199ð18Þ for WW and WC, respectively. In
Fig. 8 we look at how the continuum limit predictions for
g2GF⋆ (top panels) and γ⋆g (bottom panels) vary with our
choice of tmin=a2 (x-axes) and tmax=a2 (different colors) for
the W (left panels) and C (right panels) operators. The
central values for both quantities and both operators are
stable; they vary well within error. The stability in tmin=a2 is
attributed to the linearity of the continuum extrapolation
over a wide range of a2=t, while the stability in tmax=a2 is
likely attributed to our control over the infinite volume
extrapolation.

We take the result for γ⋆g from the WC combination with
the value for ½tmin=a2; tmax=a2� ¼ ½3.5; 6.0� from Sec. V as
our central result. We estimate additional systematic errors
by varying our analysis as follows.

FIG. 5. Illustration of our interpolation of βGFðt; g20Þ in
βGFðt; g20Þ for the Wilson operator (top panel) and clover operator
(bottom panel). Interpolations at fixed t=a2 are indicated by
colored bands, with t=a2 ¼ 2.5 (red), 3.5 (light green), 4.5
(cyan), and 6.0 (light purple). The width of the band indicates
the error. The data contributing to each interpolation are indicated
by an open circular marker with both x- and y-errors. We compare
our interpolation against the continuum 1- (dashed), 2- (dotted),
and 3-loop (dashed-dotted) gradient flow β function from
perturbation theory [58].

FIG. 6. Illustration of our continuum extrapolation of βGFðt; g20Þ
at fixed g2GF ¼ 2.0 (teal), 4.0 (dark orange), 6.0 (magenta), and
8.0 (forest green). Data contributing to our extrapolation with the
W operator are shown as error bars with triangular markers and
the C operator are shown as error bars with circular markers. Our
extrapolations are shown as colored bands, where the error is
indicated by the width of the band.

FIG. 7. Our continuum prediction for βGFðg2GFÞ as a function of
g2GF for the Woperator (gold band) and C operator (maroon band).
The width of the band indicates the error. The nonperturbative
results are juxtaposed against the 1- (dashed), 2- (dotted), and 3-
loop (dashed-dotted) gradient flow β function from perturbation
theory [58]. Also shown is the step-scaling β function in the
c ¼ 0.25 scheme from Ref. [21] as a gray band.
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(i) Choosing a higher-order polynomial for the inter-
mediate interpolation in Sec. III B. The highest-order
interpolation in N that we can use before we lose
control over our continuum extrapolation due to
overfitting is N ¼ 6. This shifts the value of γ⋆g by
≈0.001, andwe take the latter difference as an estimate
for the systematic error that is associated with our
choice of N for the intermediate interpolation.

(ii) Choosing a different tmin=a2; tmax=a2 in the con-
tinuum extrapolation. We estimate the systematic
error that is associated with our choice of
tmin=a2; tmax=a2 by the difference in the most ex-
treme values of γ⋆g in our variations illustrated in
Fig. 8. This yields a systematic error of ≈0.006.

(iii) Choosing instead the prediction for γ⋆g ¼ 0.206ð19Þ
from the WW combination as our central result.
We take the difference in these predictions (≈0.007)
as an estimate of the systematic error associated
with making a particular choice of flow/operator
combination.

To be conservative, we combine the error in our analysis of
γ⋆g with the systematic error estimates above linearly. This
yields the final of prediction γ⋆g ¼ 0.199ð32Þ. Repeating
the same exercise for g2GF⋆ yields a systematic error of
≈0.12 from the interpolation order, ≈0.05 from the con-
tinuum extrapolation, and ≈0.09 from the flow/operator
combination. Including the systematic error in g2GF⋆ linearly
yields a final prediction of g2GF⋆ ¼ 6.60ð62Þ.

In Fig. 9 we compare our prediction for γ⋆g with those
available in the literature [6,21]. Our result is plotted as a
maroon star with errors indicated by an error bar. The
smaller error bar is our error estimate before accounting for
systematic effects and the larger error bar includes sys-
tematic effects. The result for γ⋆g from the perturbative
calculation of Ref. [6] (dark gold error bar) is within 1σ of
our estimate for γ�g. The lattice calculation of γ⋆g from
Ref. [21] (cyan error bar) is within 2σ of our result.

FIG. 8. Comparison of our estimated g2GF⋆ and γ⋆g for different tmin=a2 (x-axes) and tmax=a2 ¼ 5.0 (green), 5.5 (gold), 6.0 (navy) from
the continuum extrapolation.

FIG. 9. Comparison of our value for γ⋆g (maroon error bar)
against Ref. [21] (teal error bar) and Ref. [6] (dark gold error bar).
The smaller error bar on our result indicates the error without
accounting for systematic effects; the larger error bar indicates
our error after accounting for systematic effects. We indicate our
total error with a gray band for visualization.
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However, it is important to note that the lattice calculation
in Ref. [21] uses smaller volumes and very coarse lattices in
comparison to the present work. It is also worth noting the
“scheme-independent” prediction of γ⋆g ≈ 0.228 from
Ref. [4] is also within 1σ of our predicted γ⋆g ; we do not
show this result in Fig. 9 because no estimate of the
systematic error in this result is available.

V. CONCLUSIONS

We have calculated the non-perturbative β function of
the SU(3) gauge-fermion system with twelve massless
fundamental fermions using a Pauli-Villars improved
lattice action. We find strong evidence for an infrared
fixed point at g2GF⋆ ¼ 6.60ð62Þ from our gradient-flow-
based renormalization scheme. Our study utilizes a wide
range of couplings and volumes. In particular, we can reach
renormalized gauge coupling values well above the pre-
dicted IRFP without the interference of a bulk phase
transition. We include systematic effects from the infinite
volume extrapolation directly into our analysis using
Bayesian model averaging. Our data exhibit cutoff effects
that are consistent with the leading Oða2=tÞ form over a
wide range t=a2. The consistency between the W and C
operators further supports the leading order scaling behav-
ior. We believe the improved scaling is due to the additional
PV bosons that reduce cutoff effects. In contrast, we found
significantly larger cutoff effects when we reanalyzed the
data that were generated without PV fields and used in
Ref. [21]. Our data are publicly available at Ref. [70].

Overall, the systematics of our continuum extrapolation
are well controlled. Based on the continuum prediction
for βðg2GFÞ in g2GF, we estimate the leading irrelevant
critical exponent γ⋆g ¼ 0.199ð32Þ. This estimate includes
conservative systematic errors from various choices in our
analysis. Our result for γ⋆g agrees with Refs. [4,6] at the 1σ
level and Ref. [21] at the 2σ level.

Our gradient flow data is publicly available at Ref. [70]
and our final prediction for the continuum beta function is
also provided as a supplementary ASCII file [81].
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