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We determine, by means of lattice QCD calculations, the local form factors describing the Bs → μþμ−γ
decay, in the so-called electroquenched approximation. For this analysis we make use of the gauge
configurations produced by the ETM Collaboration with Nf ¼ 2þ 1þ 1 flavor of Wilson-Clover twisted-
mass fermions at maximal twist. To obtain the Bs meson form factors, we perform simulations for several
heavy-strange meson massesmHs

in the rangemHs
∈ ½mDs

; 2mDs
�, and extrapolate to the physical Bs meson

point mBs
≃ 5.367 GeV making use of the HQET scaling laws. We cover the region of large dimuon

invariant masses
ffiffiffiffiffi
q2

p
> 4.16 GeV, and use our results to determine the branching fraction for

Bs → μþμ−γ, which has been recently measured by LHCb in the region
ffiffiffiffiffi
q2

p
> 4.9 GeV. The largest

contribution to the uncertainty in the partial branching fractions at values of
ffiffiffiffiffi
q2

p
< 4.8 GeV is now due to

resonance and other long-distance effects, including those from “charming penguins,” which we estimate
by summing over the contributions from the JP ¼ 1− charmonium resonances.

DOI: 10.1103/PhysRevD.109.114506

I. INTRODUCTION

The flavor-changing neutral current (FCNC) transition
Bs → μþμ−γ, being strongly suppressed in the Standard
Model (SM), represents an ideal channel to look for signals
of new physics (NP). Although there is an additional factor
of αem in the amplitude for this process compared to that for
the widely studied Bs → μþμ− decay, the presence of the
final state energetic photon removes the helicity suppres-
sion making the rates for the two processes approximately

comparable. The LHCb Collaboration has recently
searched for signals of this process [1,2] but found no
significant events resulting in an upper limit for the
branching ratio of BðBs → μþμ−γÞ < 2.0 × 10−9 for pho-
tons γ emitted by the quarks1 (the so-called initial-state
radiation contribution, or ISR) and for dimuon invariant
masses

ffiffiffiffiffi
q2

p
> 4.9 GeV. Future measurements will be able

to reduce the experimental uncertainties and cover a larger
portion of the phase space reaching lower values of q2. On
the other hand, a first-principles theoretical prediction of
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the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The final-state radiation (FSR) contribution, in which the
photon is emitted from a final-state muon, dominates at small
photon energies and has been subtracted in Ref. [1]. The
interference between FSR and ISR is instead found to be
negligible.
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the Bs → μþμ−γ decay rate is currently missing. While the
leading hadronic effects in the Bs → lþl− (l ¼ e, μ, τ)
decay amplitude depend only on the Bs-meson decay
constant fBs

, which is known to subpercent precision from
lattice computations, the determination of the amplitude for
the Bs → μþμ−γ decay is much more complex. In this case
the nonperturbative hadronic effects depend not only on
local form factors, but also on resonance contributions.
Existing estimates of the rate are based on light-cone sum
rules (LCSR) [3], on model/effective-theory calculations,
such as the relativistic dispersion approach based on the
constituent-quark picture [4] and, more recently, on the use
of existing lattice QCD results for the radiative leptonic
form factors of the Ds meson to estimate some of the Bs →
μþμ−γ transition form factors assuming vector-meson
dominance (VMD) [5].
The aim of this paper is to provide a first-principles

determination, using lattice QCD, of the local form
factors FV , FA, FTV , FTA, and F̄T , which represent the
only nonperturbative QCD input in the determination
of the B̄s → μþμ−γ transition matrix elements2

hγðεÞμþμ−jO7;9;10jB̄si, where ε is the photon’s polarization
vector, and the Oi are the standard operators appearing
in the effective weak Hamiltonian Hb→s

eff describing the
FCNC b → s transition and are defined in Eq. (3) below.
We work in the so-called electroquenched approximation,
and explore the region of large dimuon invariant massesffiffiffiffiffi
q2

p
> 4.16 GeV. In this region, the impact of the con-

tributions from the operatorsO1−6;8 (which are neglected at
present) stemming from the four-quark operators and from
the chromomagnetic penguin operator in Hb→s

eff is expected
to be modest [6], and the rate can be reliably computed
from the knowledge of the local form factors only. As an
estimate of the systematic error induced by this approxi-
mation, we employ a phenomenological description of the
charming-penguin contribution, illustrated in Fig. 4 below,
which is expected to be among the largest of the contri-
butions we have neglected because of the presence of broad
charmonium resonances which are near or within the region
of q2 we consider. While we find that the differential
branching fractions themselves are dominated by the form
factors (in particular by FV), the dominant uncertainty forffiffiffiffiffi
q2

p
< 4.8 GeV is that due to charming penguin contri-

butions (see Fig. 22) and therefore in order to improve the
precision and to be able to reach lower values of q2 the
development of a rigorous treatment of the contributions
from O1−6;8 will be necessary.
For this calculation we employ the same set of gauge

configurations which have recently been used in our work
on the radiative leptonic form factors of the Ds meson [7].
The configurations have been generated by the Extended

Twisted Mass Collaboration (ETMC) with Nf ¼ 2þ 1þ 1

flavors of Wilson-clover twisted-mass fermions at maximal
twist, and sea-quark masses tuned very close to their
physical values for all quark flavors. The ensembles
correspond to four values of the lattice spacing a in the
range [0.056,0.09] fm.
Our strategy for obtaining results for the physical B̄s

meson, is to perform simulations at a series of unphysical
(lighter) heavy-strange pseudoscalar mesons H̄s, con-
sisting of a heavy quark (h) and a strange antiquark (s̄),
with mHs

∈ ½mDs
; 2mDs

�. We then use heavy quark effective
theory (HQET) relations to guide the extrapolation of the
results to the physical B̄s meson. For each heavy-quark
mass we evaluate the form factors at four different values of
the energy of the photon Eγ (as measured in the rest frame
of the decaying meson), which we keep fixed in units of the
heavy-strange meson mass mHs

. The values are given by
xγ ≡ 2Eγ=mHs

¼ 0.1; 0.2; 0.3 and 0.4, and for mHs
¼ mBs

this corresponds to q2 > ð4.16 GeVÞ2. Our main result
is the calculation of BSDðxcutγ Þ, which is the ISR contribu-
tion (to which we refer to in the paper as the structure-
dependent contribution) to the branching fraction for
q2 > m2

Bs
ð1 − xcutγ Þ, and is given in Table VI. Our result

at xcutγ ¼ 0.166 (i.e. q2 > ð4.9 GeVÞ2) is

BSDðxcutγ ¼ 0.166Þ ¼ 6.9ð9Þ × 10−11; ð1Þ

which is well within the current upper bound set by the
LHCb, Bðxcutγ ¼ 0.166Þ < 2.0 × 10−9. Anticipating that
future experiments will be able to access values of q2

below ð4.9 GeVÞ2, we present in Table VI the partial
branching fractions corresponding to values of the lower
cutoff

ffiffiffiffiffiffiffi
q2cut

p
¼ mBs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcutγ

p
from 4.1 to 5.2 GeV in steps

of 0.1 GeV. We find that the partial branching fractions in
the q2 region we explored is dominated by the contribution
of the vector form factor FV ; the combined contribution of
all other local form factors FA, FTV , FTA, F̄T is of the order
of Oð10%Þ.
The plan for the remainder of this paper is as follows. In

Sec. II we briefly recall the definition of the local form
factors in terms of matrix elements of the operators in the
effective weak Hamiltonian. In Sec. III we explain our
strategy for the determination of the local form factors FV ,
FA, FTV , and FTA, and present the results of the continuum
extrapolation for each value of the simulated heavy-strange
meson mass. We also discuss the heavy-quark scaling
relations, which are then used to extrapolate the results to
the mass of the physical Bs meson. In Sec. IV we present
our strategy for evaluating the local form factor F̄T, whose
lattice determination is complicated by the problem of the
analytic continuation to Euclidean space-time of the rel-
evant Minkowski correlation functions. We tackle this
problem using the spectral reconstruction technique devel-
oped in Ref. [8]. In Sec. V we provide our determination of

2The text and diagrams here and below correspond to the
decay of the B̄s meson, which contains a valence b-quark.
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the differential cross section for Bs → μþμ−γ as well as the
total differential rate for different q2 intervals. We then
compare our results with existing estimates as well as
with the LHCb measurement [1,2] corresponding to the
interval q2 > ð4.9 GeVÞ2. Finally, in Sec. VI we present
our conclusions and outlook for future improvements.

II. THE EFFECTIVE WEAK HAMILTONIAN
AND LOCAL FORM FACTORS

The low-energy effective weak Hamiltonian descri-
bing the b → s transition, neglecting doubly Cabibbo-
suppressed contributions, is given by [9]

Hb→s
eff ¼ 2

ffiffiffi
2

p
GFVtbV�

ts

�X
i¼1;2

CiðμÞOc
i þ

X6
i¼3

CiðμÞOi þ
αem
4π

X10
i¼7

CiðμÞOi

�
; ð2Þ

where GF is the Fermi constant, Ci are the Wilson coefficients, and Oi are local operators renormalized at the scale μ. The
latter are given by (PLðRÞ ¼ ð1 ∓ γ5Þ=2)

Oc
1 ¼ ðs̄iγμPLcjÞðc̄jγμPLbiÞ; Oc

2 ¼ ðs̄γμPLcÞðc̄γμPLbÞ; ð3Þ

O7 ¼ −
mb

e
s̄σμνFμνPRb; O8 ¼ −

gsmb

4παem
s̄σμνGμνPRb; ð4Þ

O9 ¼ ðs̄γμPLbÞðμ̄γμμÞ; O10 ¼ ðs̄γμPLbÞðμ̄γμγ5μÞ; ð5Þ

while the operators O3−6 are the QCD penguins. In the previous equations i, j are color indices, while Fμν and Gμν are the
electromagnetic and gluonic field strength tensor, respectively. In the following, for the CKM matrix elements we use the
PDG values jV tbj ¼ 1.014ð29Þ and jV tsj ¼ 4.15ð9Þ × 10−2 [10]. Our conventions for the gamma matrices are

γ5 ¼ iγ0γ1γ2γ3; σμν ¼ i
2
½γμ; γν�; ð6Þ

while for the Levi-Civita tensor we adopt the convention ε0123 ¼ −1. The transition amplitude for the decay of the B̄s meson
is given by

A½B̄s → μþμ−γ� ¼ hγðk; εÞμþðp1Þμ−ðp2Þj −Hb→s
eff jB̄sðpÞiQCDþQED; ð7Þ

where k ¼ ðEγ ¼ jkj; kÞ and p ¼ ðEBs
; pÞ are the momenta of the photon and B̄s meson respectively, ε is the photon’s

polarization vector, and p1 and p2 the momenta of the μþ and μ− respectively. The dimuon four-momentum is then
q ¼ p1 þ p2 ¼ p − k. The amplitude A is then expanded to leading nonvanishing order ðOðα3=2em ÞÞ in the electromagnetic
coupling αem, and can be expressed as [9]

A½B̄s → μþμ−γ� ¼ −e
αemffiffiffi
2

p
π
GFV tbV�

tsε
�
μ

�X9
i¼1

CiH
μν
i LVν þ C10

�
Hμν

10LAν −
i
2
fBs

Lμν
A pν

��
ð8Þ

where we have defined

Lν
V ¼ ūðp2Þγνvðp1Þ; Lν

A ¼ ūðp2Þγνγ5vðp1Þ: ð9Þ
The last term in Eq. (8), which only depends on the leptonic tensor (mμ is the muon mass)

Lμν
A ¼ −iūðp2Þ

�
γμ

=p − =p1 þmμ

ðp − p1Þ2 −m2
μ
γνγ5 − γν

=p − =p2 þmμ

ðp − p2Þ2 −m2
μ
γμγ5

�
vðp1Þ; ð10Þ

and on the decay constant fBs
of the Bs meson, corresponds to the FSR contribution (to which we refer in the following as to

the pointlike contribution). The nonperturbative contribution to the structure-dependent part of the amplitude is instead
encoded in the hadronic tensors Hμν

i , which can be grouped into three different categories: the contribution from the
semileptonic operatorsO9−10, the contribution from the photon penguin operatorO7, and finally the contributions from the
four-fermion operators O1−6 and from the chromomagnetic penguin operator O8.
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The contributions from the semileptonic operators are depicted graphically in Fig. 1. For these contributions the real
photon γ is emitted directly from one of the two quarks. The corresponding tensors Hμν

9−10 are given by

Hμν
9 ðp; kÞ ¼ Hμν

10ðp; kÞ ¼ i
Z

d4yeikyT̂h0j½s̄γνPLb�ð0ÞJμemðyÞjB̄sðpÞi

¼ −i½gμνðk · qÞ − qμkν� FA

2mBs

þ εμνρσkρqσ
FV

2mBs

; ð11Þ

where Jμem is the electromagnetic (e.m.) current, and T̂ represents “time-ordered.” The two tensors are parametrized by
vector (FV) and axial (FA) form factors, which are scalar functions of the single invariant of the process, namely the dimuon
invariant mass q2 ¼ ðp − kÞ2. In the following, as in our previous papers, we present the form factors as functions of the
dimensionless variable

xγ ¼
2p · k
m2

Bs

¼ 1 −
q2

m2
Bs

; 0 ≤ xγ ≤ 1 −
4m2

μ

m2
Bs

; ð12Þ

which in the decaying meson rest frame reduces to xγ ¼ 2Eγ=mBs
, where Eγ is the energy of the emitted photon.

FIG. 1. Graphical representation of the contribution to the B̄s → μþμ−γ decay amplitude from the semileptonic operatorsO9 andO10.

FIG. 2. Graphical representation of the contribution to the B̄s → μþμ−γ decay amplitude from the photon penguin operator O7 in
which the final-state photon is emitted directly from one of the valence quarks.

FIG. 3. Graphical representation of the contribution to the B̄s → μþμ−γ amplitude from the photon penguin operator O7 in which the
final-state photon is emitted from the penguin operator.
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The contribution from the photon penguin operatorO7 is
illustrated in Figs. 2 and 3. In this case there are two types
of contribution: those in which the final-state real photon is
emitted by the valence quarks (Fig. 2), and those in which
the real photon is emitted by the penguin vertex (Fig. 3). We
indicate by Hμν

7A and Hμν
7B the hadronic tensor correspon-

ding to the first and second contribution respectively, with
Hμν

7 ¼ Hμν
7A þHμν

7B. The hadronic tensor Hμν
7A is given by

Hμν
7Aðp; kÞ

¼ i
2mb

q2

Z
d4yeikyT̂h0j½−is̄σνρqρPRb�ð0ÞJμemðyÞjB̄sðpÞi

¼ −i½gμνðk · qÞ − qμkν�FTAmb

q2
þ εμνρσkρqσ

FTVmb

q2
ð13Þ

where the two tensor form factors FTV and FTA are again
scalar functions of xγ . Exploiting the relation γ5σμν ¼
−iεμνρσσρσ=2 one can show that the two tensor form factors
obey the kinematical constraint FTVð1Þ ¼ FTAð1Þ (see
also Ref. [4]). The hadronic tensor Hμν

7B, corresponding
to the emission of the real photon from the FCNC vertex is
instead given by

Hμν
7Bðp; kÞ

¼ i
2mb

q2

Z
d4yeiqyT̂h0j½−is̄σμρkρPRb�ð0ÞJνemðyÞjB̄sðpÞi

¼ −i½gμνðk · qÞ − qμkν� F̄TAmb

q2
þ εμνρσkρqσ

F̄TVmb

q2
: ð14Þ

In this case, as discussed in Ref. [4], the two form factors
obey F̄TVðxγÞ ¼ F̄TAðxγÞ≡ F̄TðxγÞ.3 Moreover at xγ ¼ 1,
i.e. at q2 ¼ k2 ¼ 0 one has

FTVð1Þ ¼ FTAð1Þ ¼ F̄Tð1Þ: ð15Þ

The form factor F̄TðxγÞ is the most difficult to determine
on the lattice. When the virtual photon γ� is emitted
by a valence strange quark, the presence of intermediate
JP ¼ 1− ss̄ resonance states forbids the analytic continu-
ation to Euclidean spacetime of the relevant Minkowskian
correlation functions needed to evaluate F̄TðxγÞ. In this
case, in order to evaluate the form factor F̄T, we rely on
the spectral density reconstruction technique developed in
Ref. [8]. It is the form factors FV , FA, FTV , FTA, and F̄T
which we evaluate from first principles via lattice QCD
simulations. In the following we sometimes refer to them as
local form factors.
The remaining contributions to the amplitude A½B̄s →

μþμ−γ� are those corresponding to the four-quark operators

and to the chromomagnetic penguin operator. The corre-
sponding hadronic tensors Hμν

i¼1–6;8 are given by

Hμν
i¼1−6;8ðp; kÞ ¼

ð4πÞ2
q2

Z
d4yd4xeikyeiqxT̂

× h0jJμemðyÞJνemðxÞOið0ÞjB̄sðpÞi: ð16Þ

In the high-q2 region which we consider, as discussed in
Ref. [6], the contribution of the presently neglected
terms from Oi¼1–6;8 is expected to be small, since they
are of higher order in the 1=mb expansion. Among
them, one of the most important contributions is that of
the charming-penguin diagram depicted in Fig. 4, due
to the presence of broad charmonium resonance con-
tributions, which are near or within the region of q2 we
have explored.4

To take into account this contribution, we follow
Refs. [4–6] and include the charming-penguin diagram
in Fig. 4 as a q2-dependent shift of the Wilson coefficient
C9, namely

C9 → Ceff
9 ðq2Þ ¼ C9 þ ΔC9ðq2Þ; ð17Þ

where ΔC9ðq2Þ can be phenomenologically modeled as a
sum over the contributions from all the JP ¼ 1− charmo-
nium resonances [4,5,11]

ΔC9ðq2Þ ¼ −
9π

α2em

�
C1 þ

C2

3

�X
V

jkV jeiδV

×
mVBðV → μþμ−ÞΓV

q2 −m2
V þ imVΓV

; ð18Þ

FIG. 4. Graphical representation of the contribution to the
B̄s → μþμ−γ amplitude from the four-quarks operators Oc

1 and
Oc

2 with the virtual photon γ� emitted by the charm loop (the
corresponding diagram with the real photon emitted from the
strange valence quark is not shown).

3Again this can be shown making use of the relation
γ5σμν ¼ −iεμνρσσρσ=2.

4Charming-penguin diagrams of the type shown in Fig. 4
also arise from the QCD penguin operators O3−6. However,
these contributions are further suppressed by the small
Wilson coefficients C3−6 and we neglect them in this first
study.
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where ΓV is the total decay width of the resonance V,mV its
mass, and BðV → μþμ−Þ the branching fraction for the
decay into a dimuon.5 The coefficient kV and the phase shift
δV take into account deviations from the factorization
approximation, which corresponds to δV ¼ jkV j − 1 ¼ 0.
The values of (some of) the parameters entering Eq. (18),
for the low-lying resonances, can be taken from experi-
ments, but clearly this introduces a systematic error in our
prediction. In the evaluation of the rate, we will use
Eq. (18), and estimate the associated systematic error in
a conservative way by varying the input parameters over a
sufficiently broad range. The conservative systematic we
associate to the missing charming-penguin diagram in
Fig. 4 is expected to be sufficiently large to cover the
uncertainty of all the other missing contributions from

Eq. (16). In the future, in order to remove this source of
systematic uncertainty and reduce the theory error, it will be
extremely important to evaluate Hμν

i¼1–6;8 on the lattice, in
particular the charming-penguin contribution of Fig. 4,
which we plan to do. We now turn to the discussion of the
calculation of the local form factors FV , FA, FTV , FTA,
and F̄T .

III. THE LOCAL FORM FACTORS FV , FA, FTV ,
AND FTA

As illustrated in the previous section, the form factors
FWðxγÞ, W ¼ fV; A; TV; TAg can be computed from
QCD matrix elements involving the e.m. and the following
currents

JνA ¼ ZVs̄γνγ5b; JνV ¼ ZAs̄γνb; JνTA ¼ −iZTðμÞs̄σνργ5b
qρ
mBs

; JνTV ¼ −iZTðμÞs̄σνρb
qρ
mBs

; ð19Þ

where, as already stated, qν ¼ pν − kν is the four-momentum of the charged muon pair. In the previous equation we have
introduced the scheme- and scale-dependent renormalization constant (RC) ZTðμÞ of the tensor current, and the (finite) RCs
of the axial and vector currents that in twisted-mass QCD are chirally rotated with respect to the ones of standard Wilson
fermions. From now on, we work in the rest frame of the decaying meson and thus set p ¼ ðmBs

; 0Þ. In terms of the
hadronic tensors

Hμν
W ðp; kÞ≡ i

Z
d4yeikyT̂h0jJνWð0ÞJμemðyÞjB̄sð0Þi; W ¼ fV; A; TV; TAg; ð20Þ

and recalling the definitions given in Eqs. (11)–(13), one has that

Hμν
A ðp; kÞ ¼ i½ðk · qÞgμν − qμkν� FA

mBs

; Hμν
V ðp; kÞ ¼ ϵμνρσkρpσ

FV

mBs

Hμν
TAðp; kÞ ¼ −i½ðk · qÞgμν − qμkν�FTA

mBs

; Hμν
TVðp; kÞ ¼ ϵμνρσkρpσ

FTV

mBs

: ð21Þ

In Sec. III and Appendix B of Ref. [12] we show in detail that for the emission of a real photon, the hadronic tensorHμν
W can

be extracted for all values of xγ from the Euclidean three-point correlation function:

Bμν
W ðt; kÞ ¼ a

XT
ty¼0

a3
X
y

a3
X
x

ðθðT=2 − tyÞ þ θðty − T=2Þe−EγTÞetyEγ−ik·yh0jT̂½JνWðt; 0ÞJμemðty; yÞϕ†
Bs
ð0; xÞ�j0i; ð22Þ

where T is the temporal extent of the lattice ,6 a is the lattice spacing, and ϕ†
Bs

is an interpolating operator with the quantum
numbers to create the B̄s meson which, as in Ref. [7], we smear using Gaussian smearing. For the electromagnetic current
Jμem we use the exactly conserved point-split lattice operator

JμemðxÞ ¼
X
f

Jμf ¼ −
X
f

qf

�
ψ̄fðxÞ

irfγ5 − γμ

2
UμðxÞψfðxþ μ̂Þ − ψ̄fðxþ μ̂Þ irfγ5 þ γμ

2
UμðxÞ†ψfðxÞ

�
: ð23Þ

5The result in Eq. (18) depends upon the choice of the scheme and scale at which theWilson coefficients, and in particular C1 þ C2=3,
are evaluated. In a first principles calculation of charming penguin contributions, this dependence is cancelled by the corresponding
dependence of the matrix elements of the renormalized four-quarks operators.

6T is not to be confused with T̂ which represents time-ordered.
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In the forward half of the lattice 0 ≪ t ≪ T=2 one has

Rμν
W ðt; kÞ≡ 2mBs

e−tðmBs−EγÞhB̄sð0Þjϕ†
Bs
ð0Þj0iB

μν
W ðt; kÞ ¼ Hμν

W ðp; kÞ þ � � � ; ð24Þ

where the ellipsis indicates terms that vanish exponen-
tially in the large t limit. Equation (22) is valid for
t < T=2, however, as explained in Appendix B of
Ref. [12], Hμν

W ðp; kÞ can also be obtained from the
backward half of the lattice T=2 ≪ t ≪ T exploiting
time-reversal symmetry. The Wick contractions of the
correlation function in Eq. (22) give rise to two distinct
topologies of Feynman diagrams, namely to quark-line
connected and quark-line disconnected diagrams; these
are illustrated in Fig. 5. In the disconnected diagrams
the photon is emitted from a sea quark. This contribu-
tion vanishes in the SU(3)-symmetric limit, and when
loops of charmed and heavier quarks are omitted, and is
neglected in the present study; this is the so-called
electroquenched approximation. We focus instead on
the calculation of the dominant, quark-connected con-
tributions for which only the strange- and bottom-
quark components of the electromagnetic current Jμem
contribute.
As explained in Ref. [12], it is possible to use twisted

boundary conditions to assign arbitrary values to
momenta of the photon and B̄s-meson, k and p respec-
tively, at the price of violations of unitarity which vanish
exponentially with the lattice extent L [13–15]. This is
achieved by treating the two quark propagators beginning
or ending at y, i.e. the point at which the electromag-
netic current is inserted in the right-hand diagram of
Fig. 5, as corresponding to two distinct quark fields
ψ0;ψ t having the same mass and quantum number, but
satisfying different spatial boundary conditions. Defining
ψ s to be the spectator quark field in the right-hand

diagram of Fig. 5, we set the spatial boundary conditions
of the three quark fields ψ0, ψ t, ψ s as follows:

ψ rðxþ nLÞ ¼ exp ð2πin · θrÞψ rðxÞ; r ¼ f0; t; sg; ð25Þ

where θf0;t;sg are arbitrary spatial vectors of angles, in
terms of which the photon and meson lattice momenta
can be written as

p ¼ 2

a
sin

�
aπ
L

ðθ0 − θsÞ
�
; k ¼ 2

a
sin

�
aπ
L

ðθ0 − θtÞ
�
:

ð26Þ

We choose the photon momentum to be in the z
direction, k ¼ ð0; 0; kzÞ, and set

θ0 ¼ θs ¼ 0; θt ¼ ð0; 0; θtÞ: ð27Þ

With such a choice of kinematics, the form factors can be
obtained from the large time behavior, 0 ≪ t ≪ T=2, of
the following estimators:

RVðt; kÞ≡ 1

2kz
ðR12

V ðt; kÞ − R21
V ðt; kÞÞ; ð28Þ

RAðt; kÞ≡ i
2Eγ

ðR11
A ðt; kÞ þ R22

A ðt; kÞÞ⟶
0≪t≪T=2

FAðxγÞ;

ð29Þ
RTVðt; kÞ≡ 1

2kz
ðR12

TVðt; kÞ − R21
TVðt; kÞÞ⟶

0≪t≪T=2
FTVðxγÞ;

ð30Þ

FIG. 5. The diagram on the left represents the quark-line disconnected contributions to the correlation function Bμν
W in which the

photon is emitted by a sea quark. In our numerical simulations we work in the electroquenched approximation and neglect such
diagrams. The diagram on the right represents the quark-line connected contributions and illustrates our choice of the spatial boundary
conditions, which allow us to set arbitrary values for the meson and photon spatial momenta. The spatial momenta of the valence quarks
in terms of the twisting angles are as indicated. Each diagram implicitly includes all orders in QCD.
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RTAðt;kÞ≡−
i

2Eγ
ðR11

TAðt;kÞ þR22
TAðt;kÞÞ⟶

0≪t≪T=2
FTAðxγÞ:

ð31Þ
For each form factor it is useful to distinguish the two
contributions due to the emission of the real photon from
the bottom and strange quarks (left and right diagrams in
Figs. 1 and 2). We denote the two contributions by Fb

W and
Fs
W for W ¼ fV; A; TV; TAg. They are simply obtained by

setting respectively the electric chargesqs ¼ 0 andqb ¼ 0 in
all the previous formulas. A minor complication arises in the
axial channel W ¼ A due to the presence of a pointlike
contribution, proportional to qbfBs

and −qsfBs
respectively

in Fb
A and Fs

A, which then cancels in the sum of the two
contributions due to qb ¼ qs. This pointlike contribution,
which is always present in the radiative leptonic decays of
charged pseudoscalar mesons [12], can however, be easily
removed by calculating the following zero-momentum-
subtracted estimator:

Rðs;bÞ
A ðt; kÞ≡ i

2Eγ

	
R11;ðs;bÞ
A ðt; kÞ − R11;ðs;bÞ

A ðt; 0Þ

þ R22;ðs;bÞ
A ðt; kÞ − R22;ðs;bÞ

A ðt; 0Þ



⟶
0≪t≪T=2

Fðs;bÞ
A ðxγÞ: ð32Þ

We refer the reader to Ref. [12] for more details on the
removal of the pointlike contribution.

A. Numerical results for FV , FA, FTV , FTA

We now turn to the discussion of our numerical results
for FV, FA, FTV , and FTA. They have been obtained using
the gauge field configurations generated by the ETMC
employing the Iwasaki gluon action [16] and Nf ¼ 2þ
1þ 1 flavors of Wilson-Clover twisted-mass fermions
at maximal twist [17]. This framework guarantees the
automatic OðaÞ improvement of parity-even observables
[18,19]. Moreover, the introduction of the clover term
significantly reduces the cutoff effects (see Ref. [20] and
references therein). A detailed description of the ETMC
ensembles can be found in Refs. [20–23], and we also refer

to Ref. [7] for additional information on the tuning of the
sea and valence quark masses. In Table I we present the
parameters of the ETMC ensembles that have been used in
the present computation, while in Table II we collect the
relevant RCs used to renormalize the vector, axial, and
tensor currents. The presently available lattice spacings are
not small enough to perform simulations at the physical
bottom quark mass. For this reason our strategy to reach the
physical Bs meson mass, is to perform simulations for a
series of heavy-strange quark masses, and then extrapolate
to the physical point using HQET scaling relations, to be
discussed in the next sections. For each of the ensembles
of Table I, we have performed simulations at five dif-
ferent values of mHs

, the mass of the lightest pseudoscalar
meson composed of a valence heavy quark of mass mh and
a strange antiquark with mass ms. The five values cor-
respond to the following five mh=mc ratios (mc is the
mass of the charm quark determined by the condition
mηc ¼ 2.984ð4Þ GeV, see Refs. [8,22]):

mh

mc
≃ 1; 1.5; 2; 2.5; 3: ð33Þ

Such values of the heavy quark masses mh give rise
to heavy-strange meson masses mHs

in the range
mHs

=mDs
∈ ½1; 2�. The highest values of the bare heavy

quark masses which we have used for each gauge ensemble
are ammax

h ¼ 0.83; 0.72; 0.61; 0.51 for the A48, B64, C80,

TABLE I. Parameters of the ETMC ensembles used in this work. We present the light-quark bare mass,
aμl ¼ aμu ¼ aμd, the lattice spacing a, the pion massmπ , the lattice size L and the number of gauge configurations
Ng that have been used for each ensemble. The values of the lattice spacing are determined as explained in

Appendix B of Ref. [22] using the value fisoQCDπ ¼ 130.4ð2Þ MeV for the pion decay constant.

Ensemble β V=a4 a (fm) aμl mπ (MeV) L (fm) Ng

A48 1.726 483 × 128 0.09075(54) 0.00120 174.5(1.1) 4.36 109
B64 1.778 643 × 128 0.07957(13) 0.00072 140.2(0.2) 5.09 400
C80 1.836 803 × 160 0.06821(13) 0.00060 136.7(0.2) 5.46 72
D96 1.900 963 × 192 0.05692(12) 0.00054 140.8(0.2) 5.46 100

TABLE II. The values of the vector (ZV), axial (ZA), and tensor
(ZT ) renormalization constants, for the ETMC ensembles of
Table I. ZT values were kindly provided to us by the ETMC
and are from a preliminary analysis [24]. For the present work,
we increased their uncertainties by a factor of 3. The scale-
independent renormalization constants ZV and ZA have been
determined in Ref. [22] using Ward-identity methods.

Ensemble ZV ZA ZTðMS; 5 GeVÞ
A48 0.68700(15) 0.7284(18) 0.7541(98)
B64 0.706379(24) 0.74294(24) 0.7735(93)
C80 0.725404(19) 0.75830(16) 0.7928(85)
D96 0.744108(12) 0.77395(12) 0.8141(74)
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and D96 ensembles respectively. For each ensemble and
heavy quark mass mh, we evaluate the Euclidean three-
point function Bμν

W ðt; k; pÞ at four evenly spaced values of
the dimensionless variable xγ:

xγ ¼
2Eγ

mHs

¼ 0.1; 0.2; 0.3; 0.4: ð34Þ

For an illustration of the quality of the plateaus, we present in

Fig. 6 the estimators Rðs;bÞ
W ðt; xγÞ≡ Rðs;bÞ

W ðt; ð0; 0; kzðxγÞÞ,
W ¼ fV; A; TV; TAg, obtained at xγ ¼ 0.2 on the finest
lattice spacing ensemble (D96) formh=mc ≃ 2. In each figure
the blue band shows our estimate of the corresponding
form factor, obtained from a constant fit in the region where

the estimators Rðs;bÞ
W ðt; xγÞ display a plateau. The band

already includes the systematic error due to the choice
of the fit interval, which is estimated by performing a
second fit shifting the fit interval forward in time by an
amount ΔT ¼ 0.4; 0.35; 0.30; 0.27; 0.25 fm, respectively
formh=mc ≃ 1; 1.5; 2; 2.5; 3, and then adding the difference
between the central values obtained in the two different

fits as a systematic error.7 For the tensor form factors the
results are obtained using the preliminary values of ZTðμÞ in
the MS scheme at μ ¼ 5 GeV, provided to us by the
ETMC [24].
The ensembles of Table I all correspond to lattices with a

spatial extent in the range L ≃ 4.4–5.4 fm. These volumes
are expected to be large enough for the finite size effects
(FSEs) on the form factors to be small. For the smallest
heavy quark mass considered, mh ¼ mc, and for the form
factors FA and FV , this has been explicitly checked in
Ref. [7] using an additional ensemble, the B96, which has a
large spatial extent L of more than 7.5 fm. Here, using the
B96 ensemble, we have checked that FSEs are very small
(at the level of our statistical uncertainty or smaller) also for
the tensorial form factors FTV and FTA, and we therefore
consider our results on the ensembles listed in Table I as
infinite-volume quantities.

FIG. 6. The estimators Rs
Wðt; xγÞ (left) and Rb

Wðt; xγÞ (right) for W ¼ fV; A; TV; TAg. The data corresponds to the D96 ensemble at
xγ ¼ 0.2 and for mh ≃ 2mc. The blue bands show our estimates of the form factors from a constant fit in the region where the estimators

Rðs;bÞ
W ðt; xγÞ display a plateau.

7The choice of ΔT, for each value of mh, has been adjusted so
that this is small enough to avoid the region of large times where
the signal-to-noise ratio of the estimator Rs;b

W is very small, and
at the same time large enough to provide a reasonable estimate of
the systematics due to the choice of the fit interval.
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Next we consider the cutoff effects. For each value of xγ
and mHs

, the extrapolation to the continuum limit is
performed using the following Ansatz:

Fðb;sÞ
W ðxγ; mHs

; aÞ ¼ Fðb;sÞ
W ðxγ; mHs

Þð1þDðb;sÞ
W ðxγ; mHs

Þa2Þ;
W ¼ fV; A; TV; TAg; ð35Þ

where Fðb;sÞ
W ðxγ; mHs

Þ and Dðb;sÞ
W ðxγ; mHs

Þ are fit parameters
which depend on xγ and mHs

, and are different for the four
channelsW ¼ fV; A; TV; TAg and for the two contributions
Fs
W and Fb

W . Statistical correlations are taken into account
performing a full jackknife analysis of all our data. We esti-
mate the systematic uncertainty due to the continuum-limit
extrapolation by performing two different linear extrapola-
tions: in the first one we include the full dataset, and in the
second one we remove the measurements on the ensemble
with the largest lattice spacing (A48). The two results are
combined as follows: let fA and fB represent generically the
continuumvalues ofFWðxγÞ, for a givenW¼fV;A;TV;TAg
and xγ ∈ f0.1;…; 0.4g, obtained respectively from the linear
fit by including or omitting the result at the coarsest lattice
spacing. We determine the final central value f̄ through a
weighted average of the form

f̄ ¼ wAfA þ wBfB; wA þ wB ¼ 1: ð36Þ
Our estimate of the systematic error, which is added (linearly
to be conservative) to the statistical uncertainty, is then
obtained using

σ2syst ¼
X
i¼A;B

wiðfi − f̄Þ2: ð37Þ

Theweightswi, with i ¼ fA; Bg, are chosen according to the
akaike information criterion [25] (AIC), namely

wi ∝ e−ðχ
2
iþ2NðiÞ

pars−N
ðiÞ
dataÞ=2; ð38Þ

where χ2i is the total χ
2 obtained in the ith fit, and NðiÞ

pars and

NðiÞ
meas are the corresponding number of fit parameters and

measurements.
In Figs. 7 and 8 we show the results of our continuum fits,

for the smallest (xγ ¼ 0.1) and largest (xγ ¼ 0.4) simulated
values of xγ . The fits shown in the figures are those for which
the full dataset has been used. Clearly for large quark masses
mh, as a consequence of the Parisi-Lepage theorem [26,27],
the statistical noise of the data rapidly increases. The quality
of the fits is very good, and inFig. 9we show the histogramof
the reduced χ2 distribution corresponding to the 160 con-
tinuum extrapolations we have performed.8

B. Extrapolating the results for the local form factors
FV , FA, FTV , FTA to the physical Bs meson

In this section we discuss the asymptotic formulas
used to extrapolate the form factors, computed for
mHs

∈ ½mDs
; 2mDs

�, to the physical point mHs
¼ mBs

≃
5.367 GeV. For heavy quark masses mh and energetic
photons, there are elegant and simple relations relating
the four form factors. In Ref. [28] (see also [29–32]), the
authors studied in detail the behavior of the axial and
vector form factors contributing to the radiative B → γlν
decay amplitude in the framework of the HQET and
large-photon-energy expansions. The relations derived in
Ref. [28] imply that up to (and including) order
Oð1=mHs

; 1=EγÞ terms in the heavy-quark and large-
photon-energy expansion, the axial and vector form
factors FA and FV are given by

FVðxγ; mHs
Þ

fHs

¼ jqsj
xγ

�
RðEγ; μÞ
λBðμÞ

þ ξðxγ; mHs
Þ

þ 1

mHs
xγ

þ jqbj
jqsj

1

mh

�
; ð39Þ

FAðxγ; mHs
Þ

fHs

¼ jqsj
xγ

�
RðEγ; μÞ
λBðμÞ

þ ξðxγ; mHs
Þ

−
1

mHs
xγ

−
jqbj
jqsj

1

mh

�
; ð40Þ

where fHs
is the decay constant of the H̄s ¼ s̄h pseu-

doscalar meson of mass mHs
, λBðμÞ is the first inverse

moment of the Bs-meson light-cone distribution ampli-
tude (LCDA), and RðEγ; μÞ ¼ 1þOðαsÞ is a radiative
correction factor that is the same for FV and FA. Finally,
ξðxγ; mHs

Þ is a power-suppressed term, common to both
form factors, that can be written as [33]

ξðxγ; mHs
Þ ¼ A

mHs

þ B
mHs

xγ
: ð41Þ

In Eqs. (39) and (40), perturbative radiative corrections to
the subleading terms and Oðms=ðm2

Hs
ÞÞ terms have been

neglected. The leading contribution to the form factors
comes from the emission of the photon from the strange
quark. Radiation from the heavy quark is suppressed by a
factor proportional to 1=mHs

and the corresponding
subleading terms are proportional to jqbj in Eqs. (39)
and (40).
The large mass/photon-energy behavior of the tensor

form factors FTA and FTV including orderOð1=mHs
; 1=EγÞ

corrections has been investigated in Ref. [9] and is
given by

8We have performed separate continuum extrapolations for
each xγ (four in total), for each simulated heavy-strange meson
mass mHs

(five in total) and for each form factor (four form
factors times the two subcontributions due to photon emission by
the strange or the heavy quark). This gives a total of 4 × 5 ×
4 × 2 ¼ 160 continuum extrapolations.
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FTVðxγ; mHs
; μÞ

fHs

¼ jqsj
xγ

�
RTðEγ; μÞ
λBðμÞ

þ ξðxγ; mHs
Þ

þ 1 − xγ
mHs

xγ
þ jqbj

jqsj
1

mHs

�
; ð42Þ

FTAðxγ; mHs
; μÞ

fHs

¼ jqsj
xγ

�
RTðEγ; μÞ
λBðμÞ

þ ξðxγ; mHs
Þ

−
1 − xγ
mHs

xγ
þ jqbj

jqsj
1

mHs

�
; ð43Þ

where RTðEγ; μÞ ¼ 1þOðαsÞ is the radiative correc-
tion. Again, perturbative radiative corrections to the
subleading terms and Oðms=ðm2

Hs
ÞÞ terms have been

neglected. In Eqs. (42) and (43) we have explicitly
inserted in the left-hand side the dependence on the
renormalization scale μ, which is instead absent

in FV and FA which are scale-independent quantities.
The previous relations imply that, neglecting power sup-
pressed contributions and radiative corrections, one has
FTVðxγÞ ¼ FTAðxγÞ ¼ FVðxγÞ ¼ FAðxγÞ.
We now explain that the above asymptotic relations for

the form factors, being valid in the limit of large Eγ ,
are not sufficient to describe their behavior in the range
of the simulated values of mHs

and xγ because of the
presence of sizeable nonasymptotic contributions from
resonances. To highlight this point, we start from the
canonical decomposition of the form factors in terms of
intermediate-state contributions. The hadronic tensor
Hμν

W ðp; kÞ in Eq. (20)

Hμν
W ðp; k;mHs

Þ≡ i
Z

d4yeikyT̂h0jJνWð0ÞJμemðyÞjH̄sð0Þi;

ð44Þ

FIG. 7. Continuum limit extrapolation of the lattice data for Fs
W (left) and Fb

W (right) for xγ ¼ 0.1. The transparent bands correspond to
the best-fit function obtained in the linear a2 fit employing the full dataset. In the panels, the different colors correspond to different
values of the heavy quark mass mh.
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FIG. 8. Same as in Fig. 7 for xγ ¼ 0.4.

FIG. 9. Histograms of the χ2=dof distribution corresponding to the 160 continuum limit extrapolations we have performed using the
full dataset (left) and excluding the coarsest lattice spacing ensemble, the A48 (right).
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can be decomposed as

Hμν
W ðp; k;mHs

Þ ¼ i
Z

0

−∞
dteiEγth0jJνWð0ÞJμemðt; kÞjH̄sð0Þi þ i

Z
∞

0

dteiEγth0jJμemðt; kÞJνWð0ÞjH̄sð0Þi

≡Hμν
W;1ðp; k;mHs

Þ þHμν
W;2ðp; k;mHs

Þ; ð45Þ

where

Jμemðt; kÞ≡
Z

d3xe−ikxJμemðt; xÞ: ð46Þ

We now focus on the contribution from the first time ordering, Hμν
W;1, which can be written as

Hμν
W;1ðp; k;mHs

Þ ¼ i
Z

0

−∞
dteiEγth0jJνWð0ÞeiðĤ−mHs−iεÞtJμemð0; kÞjH̄sð0Þi

¼ h0jJνWð0Þ
1

Ĥ þ Eγ −mHs
− iε

Jμemð0; kÞjH̄sð0Þi ¼
X
n

h0jJνWð0ÞjnihnjJμemð0; kÞjH̄sð0Þi
2Enð−kÞðEnð−kÞ þ Eγ −mHs

Þ ; ð47Þ

where Ĥ is the QCD Hamiltonian. The contributing intermediate states jni are B ¼ −1, S ¼ 1 states with JP ¼ 1− for

W ¼ fV; TVg and JP ¼ 1þ for W ¼ fA; TAg. Their energies are given by Enð−kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n þ E2
γ

q
. In the following, in

order to model the xγ and mass behavior of the form factors, we only consider the contributions coming from the
resonances that we treat as stable particles. Using the following relations (ηn is the polarization of the vector meson jni,
kn ¼ ðEn;−kÞ, pγ ¼ kn − p):

h0jJνV jni ¼ ηνnmnfVn ; h0jJνTV jni ¼ fTVn

�
ηνn
mHs

ðkn · qÞ −
kνn
mHs

ðηn · qÞ
�

h0jJνAjni ¼ iηνnmnfAn ; h0jJνTAjni ¼ −ifTAn
�
ηνn
mHs

ðkn · qÞ −
kνn
mHs

ðηn · qÞ
�

hnjJμemjH̄sð0Þi ¼ gnεμνγβðη�nÞνkn;γpβ W ¼ fV; TVg;
hnjJμemjH̄sð0Þi ¼ g0n½ðη�nÞμðp · pγÞ − ðη�n · pγÞpμ� þOðp2

γÞ; W ¼ fA; TAg; ð48Þ

and given that at leading order in mHs
one has fWn ∝ fHs

, and assuming that at leading order the form factors gn and g0n
are constant, one obtains that each of the intermediate states in Eq. (47) gives a contribution FW;nðxγÞ to the form factor
FWðxγÞ which scales as (rn ≡mn=mHs

)

FW;nðxγÞ ∝
fHsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2n þ x2γ
4

q
þ xγ

2
− 1

: ð49Þ

In the static limit, since rn approaches one, the scaling relations in Eqs. (39)–(43) are recovered. However, it is
important to notice that for xγ ¼ 0 the denominator in Eq. (49) develops a pole for rn → 1, signalling the fact that the
scaling laws are different at xγ ¼ 0 and xγ ≠ 0 (in this last case the denominator approaches a nonzero value xγ=2þ
Oðx2γÞ in the mh → ∞ limit). For small enough values of xγ , the presence of a quasipole may generate large corrections
to the scaling relations in Eqs. (39)–(43), which we now discuss. We start by recalling the following HQET relations for
the masses mH̄�

s
and mHs1

of the lowest-lying vector mesons H̄�
s and H̄s1 in the JP ¼ 1− and JP ¼ 1þ channel [34]

m2
H̄�

s
−m2

H̄s
¼ 2λ2 þO

�
1

mh

�
; λ2 ≃ 0.24 GeV2; ð50Þ

mH̄s1
−mH̄s

¼ Λ1 þO
�

1

mh

�
; Λ1 ≃ 0.5 GeV: ð51Þ
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As is well known, the first relation comes from the fact that the ground-state pseudoscalar (JP ¼ 0−) and vector (JP ¼ 1−)
mesons, are members of the same HQET spin-doublet, and so they become degenerate in the infinite heavy-quark mass limit.
The mass-splitting between the ground-state pseudoscalar and axial-vector meson is instead of orderOðΛQCDÞ. This implies
that for the lowest-lying intermediate state (n ¼ 1) contributing to FW , for W ¼ fV; TVg, one has

r1 ¼
mH�

s

mHs

≃ 1þ λ2
m2

Hs

⟹

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ

x2γ
4

s
þ xγ

2
− 1 ≃

λ2
m2

Hs

þ xγ
2
þ…; ð52Þ

where the ellipses indicate subleading corrections at large mh and small xγ . For W ¼ fA; TAg, one has instead

r1 ¼
mHs1

mHs

≃ 1þ Λ1

mHs

⟹

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ

x2γ
4

s
þ xγ

2
− 1 ≃

Λ1

mHs

þ xγ
2
þ…: ð53Þ

The previous equations show that for small values of xγ the quasipole produces an enhancement of the form factor of order
Oðm2

hÞ andOðmhÞ, respectively in thevectorlike and axial-like channels. In the following sectionwewill combine the leading-
order relations Eqs. (39)–(43), with the quasipole behavior described by Eqs. (52) and (53) in order to extrapolate the form
factors to the physical Bs meson mass.

C. Numerical results at the physical Bs mass

Guided by the analysis in the previous section, we introduce some model-dependent interpolating formulas for the form
factors which describe their q2 dependence in the resonance region and have the correct asymptotic behavior in the limit of
large mh. We have extrapolated our results for FW, W ¼ fV; A; TV; TAg, obtained at the five different simulated values of
the heavy quark mass mh in Eq. (33), employing the following fit Ansatz (z ¼ 1=mHs

):

FVðxγ; zÞ
fHs

¼ jqsj
xγ

1

1þ CV
2z2
xγ

�
K þ ð1þ δzÞ

z
xγ

þ 1

z−1 − ΛH
þ Amzþ Axγ

z
xγ

þ BV
mz2 þ BV

xγ

z2

xγ

�
; ð54Þ

FAðxγ; zÞ
fHs

¼ jqsj
xγ

1

1þ CA
2z
xγ

�
K − ð1þ δzÞ

z
xγ

−
1

z−1 − ΛH
þ Amzþ ðAxγ þ 2KCAÞ

z
xγ

þ BA
mz2 þ BA

xγ

z2

xγ

�
; ð55Þ

FTVðxγ; zÞ
fHs

¼ jqsj
xγ

1þ 2CVz2

1þ CV
2z2
xγ

�
KT þ ðAT

m þ 1Þzþ AT
xγ

z
xγ

þ ð1þ δ0zÞz
1 − xγ
xγ

þ BT
mz2 þ BTV

xγ ð1 − xγÞ
z2

xγ

�
; ð56Þ

FTAðxγ; zÞ
fHs

¼ jqsj
xγ

1þ 2CT
Az

1þ CT
A
2z
xγ

�
KT þ ðAT

m þ 1Þzþ AT
xγ

z
xγ

− ð1þ δ0z − 2KTCT
AÞz

1 − xγ
xγ

þ BT
mz2 þ BTA

xγ ð1 − xγÞ
z2

xγ

�
; ð57Þ

where CT
A ¼ CA þ δCT

A, KT ¼ K þ δKT , and K, δKT , δz,
ΛH, CV , CA, δCT

A, Am=xγ , AT
m, AT

xγ , δ0z, and BW
m=xγ

(W ¼ fV; A; TV; TAg) are free fit parameters. Our strategy
to extrapolate the form factors to the physical Bs-meson
consists in a simultaneous global fit of the mass and xγ
dependence of all four form factors. The phenomenological
fit Ansatz described by Eqs. (54)–(57) takes into account
the constraints discussed in the previous section, and
contains the quasipole corrections to the asymptotic scaling
described by Eqs. (39), (40), (42), and (43). We however
relaxed the constraint AT

m ¼ Am and Axγ ¼ AT
xγ due to the

presence of the same function ξðxγ; mHs
Þ in the expres-

sion for the tensorlike and vectorlike form factors in
Eqs (39)–(43). The position of the pole is taken to be
the same in the vector and tensor-vector channel, while we

allow for the possibility of having a different pole in FA and
FTA (i.e. δCT

A ≠ 0). This is due to the fact that while in the
vector channel vector-meson dominance is expected to
work well since the vector (H�

s) and pseudoscalar (Hs)
ground-state mesons become degenerate in the static limit,
this is not the case in the axial channel where many
resonances with masses of order mHs

þOðΛQCDÞ are
present. The axial pole should be considered to be an
effective pole, and its position can therefore be slightly
different in the axial and tensor-axial channel due to the
different couplings to the excited states. Moreover, in order
to account for the fact that the tree-level equality between
tensorlike and vectorlike form factors is spoiled by the
radiative corrections, we also allow for the possibility that
δKT ≠ 0. Notice that in the tensor form factors, the
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numerator in the pole term is inserted to ensure the validity
of the kinematical constraint FTAð1Þ ¼ FTVð1Þ. Finally, we
have included a parameter ΛH to account for the fact that
the hadron massmHs

differs from the heavy quark massmh

by an amount of order OðΛQCDÞ [see the last terms in
Eqs. (39) and (40)], and two parameter δz; δ0z to account for
violations of the relations in Eqs. (39)–(43) which are only
exactly valid in the limit of a massless strange quark and
neglecting radiative corrections to the power suppressed
terms. Our determination of the decay constant fHs

, on the
same configurations used for the computation of the form
factors, is discussed in detail in the Appendix. In the same
Appendix we also discuss our determination of fBs

, for
which we get the value

fBs
¼ 224.5ð5.0Þ MeV: ð58Þ

Our determination of fBs
agrees with the Nf ¼ 2þ 1þ 1

FLAG average fFLAGBs
¼ 230.3ð1.3Þ MeV at the level of

1.1σ, although our uncertainty is larger. Using the Ansätze
in Eqs. (54)–(57) we have performed a total of N ≃Oð500Þ
fits which differ on whether the fit parameters δKT , δCT

A, δz,
δ0z are set to zero or not, and on whether we include or not
the fit parameters describing the Oð1=m2

Hs
Þ corrections.

The total number of measurements is 80 and the maximum
number of fit parameters used is 14. To stabilize the fits,
large Gaussian priors are imposed on the fit parameters
δKT , δCT

A, δz, δ
0
z, ΛH, and BW

m=xγ
. These are9

δKT ¼ 0� 0.4 GeV−1; δð0Þz ¼ 0� 1; δCT
A ¼ 0� 0.4 GeV;

ΛH ¼ 0.75� 0.5 GeV; BW
m=xγ

¼ 0� 2.5 GeV: ð59Þ

Weminimize a correlated χ2 function which takes fully into
account the correlations between the values of a given form
factor at the different simulated values of xγ and mHs

.
However, in order to avoid having an ill-conditioned
covariance matrix, we assume, in the construction of the
χ2, that the different form factors are instead uncorrelated.
This reduces the full 80 × 80 covariance matrix, to a block
diagonal matrix having four 20 × 20 blocks. We remark
that the error on the fit parameters are always estimated by
properly taking into account the correlated dispersion
results, through a jackknife analysis.
Many of the fit parameters entering Eqs. (54)–(56) are

not needed in order to obtain a good χ2=dof, and a good
description of the data is already obtained by setting δKT ¼
δCT

A ¼ δz ¼ δ0z ¼ 0 and neglecting the Oð1=m2
Hs
Þ correc-

tions. However, in order to estimate correctly the systematic

errors due to the mass extrapolation, it is important to span
over a sufficiently large number of fit Ansätze.
We combine the results of the N different fits using two

different criteria. The first one is based on the AIC
discussed in Sec. III A, i.e. we assign to each of the N
fits a weight wi given by

wi ∝ expð−ðχ2ðiÞ þ 2NðiÞ
pars − NðiÞ

dataÞ=2Þ;
XN
i¼1

wi ¼ 1; ð60Þ

where χ2ðiÞ is the total χ
2 of the ith fit, and NðiÞ

pars and NðiÞ
meas

are the corresponding number of fit parameters and
measurements. The second criterion consists in selecting
only those fits leading to a good χ2=dof and assigning them
a uniform weight, i.e. using

wi ∝ θðc − χ2ðiÞ=N
ðiÞ
dofÞ;

XN
i¼1

wi ¼ 1; ð61Þ

and we set c ¼ 1.4 which corresponds approximately to

1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=NðiÞ

dof

q
, where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=NðiÞ

dof

q
is the standard deviation

of the reduced χ2 distribution withNðiÞ
dof degrees of freedom.

Then, with a given choice for the weights wi, the final
central value x̄ is obtained from a weighted average:

x̄ ¼
XN
i¼1

wixi; ð62Þ

where xi is the result obtained from the ith fit. The sum in
Eq. (62) is evaluated in a correlated way, so that the
statistical errors of the xi are correctly propagated to x̄.
The systematic error, which is added in quadrature to the
statistical error of x̄, is then given by

σ2x;syst ¼
XN
i¼1

wiðxi − x̄Þ2: ð63Þ

We have found that the results obtained using the weights in
Eqs. (60) and (61) are consistent well within the uncer-
tainties. However, at small xγ the errors obtained using
the AIC are typically smaller than those obtained using
Eq. (61). In order to be conservative, we take the results
obtained using the weights in Eq. (61) to obtain our final
results for the form factors.
The results of the extrapolation are collected in the plots

of Fig. 10. The continuum bands in the figure correspond to
the best-fit function obtained after applying the above
procedure with the weights in Eq. (61). We obtain for the
pole coefficients CV , CA, and CA þ δCT

A the values

CV ¼ ð0.57ð3Þ GeVÞ2; CA ¼ 0.70ð7Þ GeV;
CA þ δCT

A ¼ 0.77ð4Þ GeV: ð64Þ

9At an initial stage of the analysis we performed the global fit
using a set of priors having widths two times smaller than the
ones given in Eq. (59). We have then increased the prior widths
by a factor of two, and found no differences in the final results.
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The result for CV can be compared with the value
expected from the HQET relation in Eq. (50), namely
CV ≃ λ2 ≃ ð0.5 GeVÞ2. Although slightly larger (recall that
the Ansatz we use is a phenomenological description of the
full form factors where excited-states contributions are
always present), our determination is in line with expect-
ations, and provides nice evidence that the reason behind
the steep rise of the vector form factors at small xγ is due to
the presence of the quasipole. Concerning the position
of the axial pole, the value we obtained for CA and
δCT

A is also qualitatively in line with the expectations
CA; CA þ δCT

A ≃OðΛ1Þ. We did not find clear evidences
of nonzero values of δz, δ0z, and δKT . We obtain

1þ δz ¼ 1.02ð9Þ; 1þ δ0z ¼ 1.06ð8Þ;
K ¼ 1.46ð10Þ GeV−1; K þ δKT ¼ 1.39ð6Þ GeV−1;

ð65Þ

and for the fit parameter ΛH we obtain the value
ΛH ¼ 0.70ð17Þ GeV. Finally, for the parameters Am, AT

m,
Axγ , and AT

xγ we obtain

Am ¼ 0.8ð5Þ; AT
m ¼ 1.4ð3Þ;

Axγ ¼ −1.0ð1Þ; AT
xγ ¼ −1.0ð1Þ: ð66Þ

The relation Axγ ¼ AT
xγ which holds in the HQET and

large-photon-energy expansion neglecting perturbative
radiative corrections and nonzero strange-quark mass

effects, appears to be well reproduced by our data. As
for the relation Am ¼ AT

m, we find that the fitted values of
Am and AT

m are slightly different, which can be attributed to
radiative corrections and/or Oðms=mHs

Þ effects as well as
to statistical fluctuations. In Table III we provide our results
for the four form factors, extrapolated to the physical
mass mBs

and for the four simulated values of xγ. The fit
parameters, including their correlations, are available upon
request from the authors.
Our results for the form factors can be compared with

available phenomenological and model estimates. The form
factors FW , W ¼ fV; A; TV; TAg have been previously
obtained using relativistic dispersion relations [4], light-
cone sum rules [3], and recently a hybrid approach [5] in
which the existing lattice results for the form factors FV
and FA in Ds → lνγ decays are used to obtain the form
factors FV and FA entering Bs → μþμ−γ decays using a
VMD-inspired Ansatz. The comparison between our deter-
mination of FW , W ¼ fV; A; TV; TAg and the existing

FIG. 10. Extrapolation to the physical Bs meson of the four form factors FA (top left), FTA (top right), FV (bottom left), and FTV
(bottom right). The form factors are divided by the decay constant fHs

of the heavy-strange pseudoscalar meson. The different colors
correspond to the different simulated values of the Lorentz invariant xγ . Finally, the continuum bands correspond to the best-fit function
obtained after applying the model-averaged procedure described by Eqs. (62) and (63) using the weights in Eq. (61).

TABLE III. Our results for the form factors FV , FA, FTV , and
FTA extrapolated to the physical mass mBs

, for the four simulated
values of xγ ¼ 0.1; 0.2; 0.3; 0.4.

xγ FV FA FTV FTA

0.1 1.103(38) 0.290(13) 1.026(35) 0.413(17)
0.2 0.610(13) 0.226(8) 0.564(15) 0.326(8)
0.3 0.422(8) 0.186(6) 0.389(10) 0.270(6)
0.4 0.322(6) 0.157(5) 0.297(8) 0.230(5)
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model-dependent results is shown in Fig. 11. Our results
are given by the red curves, and outside the region of
measured xγ are obtained by using the best-fit function
obtained in the global fits discussed above. Our results for
FTV and FTA turn out to be in rather good agreement with
the estimate of Ref. [4], taking into account that the results
of the relativistic dispersion approach contain a systematic
uncertainty which is difficult to quantify. However we
find significant differences with respect to the results of
Ref. [3] for FTV and FTA. For the axial form factor FA, the
differences between our results and those of Ref. [4] are of
similar size as the one present for FTV, while more
significant deviations are observed for the vector form
factor FV. Moreover, we disagree with both the estimates
given in Refs. [3] and [5] for FV and FA. The disagreement
with the light-cone sum rule calculation was somehow
expected, given that large differences with respect to lattice
QCD calculations have been already observed in the
radiative leptonic decays of the Ds meson [7]. The smaller
value of FV obtained in Ref. [5] could be, at least partially,
traced back to the fact that their estimate of the strange-
quark contribution to the coupling gD�

sDsγ , an essential input
parameter of their VMD-inspired approach, turns out to be
substantially smaller than the one obtained by the HPQCD
Collaboration in Ref. [35] and in our recent paper [7]
(which are instead in very nice agreement with each other).
The strange-quark contribution to gD�

sDsγ has been obtained
in Ref. [5], making use of the lattice data produced in
Ref. [12] forDs → lνγ in the limited range xγ ≤ 0.4, and of
a quark-model-inspired fit Ansatz to separate the strange-
and charm-quark contributions to the vector form factor FV

entering Ds → lνγ, which were not given separately in
Ref. [12], and for which actually a strong cancellation
occurs, as noticed in Ref. [7]. Concerning FA, instead,
VMD is not expected to be a good approximation in the
axial channel. Before discussing the implications of our
results for the branching fraction BðBs → μþμ−γÞ, we
present now our results for the form factor F̄T.

IV. THE LOCAL FORM FACTOR F̄T

The form factor F̄T can be computed from the knowl-
edge of the hadronic tensor

Hμν
T̄ ðp; kÞ ¼ i

Z
d4xeiðp−kÞxT̂h0jJνT̄ð0ÞJμemðxÞjB̄sð0Þi

¼ −εμνρσkρpσ
F̄T

mBs

; ð67Þ

where

JνT̄ ¼ −iZTðμÞs̄σνρb
kρ
mBs

: ð68Þ

As in the case of the currents JνTV and JνTA, we renormalize
the tensor current JT̄ using the nonperturbative determi-
nation of ZTðμÞ in the MS scheme at the scale μ ¼ 5 GeV
given in Table II. Note that Hμν

T̄ ðp; kÞ ¼ Hμν
TVðp; p − kÞ,

and recall that F̄Tð1Þ ¼ FTVð1Þ ¼ FTAð1Þ [see Eq. (15)].
A significant complication is that the hadronic tensor
Hμν

T̄ ðp; kÞ suffers from problems of analytic continuation

FIG. 11. Comparison between our results for the form factors FW with W ¼ fV; A; TV; TAg (shown in the figure by the red bands),
and existing model-dependent results [3–5]. The region between the vertical red dashed lines corresponds to the region of simulated xγ ,
and therefore within this region our results are obtained through an interpolation of our lattice data.
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to Euclidean spacetime. To demonstrate this, we start by
writing explicitly the contributions to the hadronic tensor
Hμν

T̄ from the two time orderings, namely

Hμν
T̄ ðp;kÞ ¼ i

Z
0

−∞
dteiðmBs−EγÞth0jJνT̄ð0ÞJμemðt;−kÞjB̄sð0Þi

þ i
Z

∞

0

dteiðmBs−EγÞth0jJμemðt;−kÞJνT̄ð0ÞjB̄sð0Þi:

ð69Þ

Making use of

Jμemðt; kÞ ¼ eiðĤ−iεÞtJμemð0; kÞe−iðĤ−iεÞt; ð70Þ

where Ĥ is the QCD Hamiltonian, one has Hμν
T̄ ðp; kÞ ¼

Hμν
T̄;1ðp; kÞ þHμν

T̄;2ðp; kÞ with

Hμν
T̄;1ðp;kÞ¼ h0jJνT̄ð0Þ

1

Ĥ−Eγ − iε
Jμemð0;−kÞjB̄sð0Þi;

Hμν
T̄;2ðp;kÞ¼ h0jJμemð0;−kÞ 1

ĤþEγ −mBs
− iε

JνT̄ð0ÞjB̄sð0Þi:

ð71Þ

The two integrals in Eq. (69) can only beWick-rotated from
Minkowskian time t to Euclidean time τ ¼ it if the
following positivity conditions are met:

hnjĤ − Eγjni > 0; hmjĤ þ Eγ −mBs
jmi > 0; ð72Þ

where jni and jmi are the intermediate states contributing
respectively to the first and second time ordering in
Eq. (71). In the rest frame of the B̄s meson in which we
work, all intermediate states contributing to the hadronic
tensor have three momentum jkj ¼ Eγ; therefore, the
condition hnjĤ − Eγjni > 0 is always satisfied and one
can safely set ε ¼ 0 in the first contribution on the right-
hand side of Eq. (71). This is not the case for the second
condition in Eq. (72) due to the presence of light
unflavored JP ¼ 1− intermediate states. Indeed, defining
mV0

to be the mass of the lightest hadronic state
contributing to the second time ordering, the analytic
continuation is obstructed if the photon energy Eγ

satisfies

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V0
þ E2

γ

q
þ Eγ < mBs

⟹ xγ < 1 −
�
mV0

mBs

�
2

: ð73Þ

As in the case of the local form factors FW ,
W ¼ fV; A; TV; TAg, we can distinguish the two con-
tributions F̄b

T and F̄s
T to the form factor F̄T, correspond-

ing respectively to the emission of the virtual photon γ�
from the bottom (Fig. 3 left) and strange (Fig. 3 right)

quark line.10 The lightest hadronic intermediate states in
the second time ordering are given, respectively, for the
bottom- and strange-quark contributions, by the ϒð1SÞ
resonance and by KþK− states in a P-wave.11 Given that
mϒ ≃ 9460 MeV > mBs

, the bottom quark contribution is
not affected by the problem of analytic continuation,
which is only present in the strange quark contribution.
Indeed, with 2mK ≃ 1 GeV, one finds that analytic
continuation is obstructed for

xγ < xthγ ≡ 1 −
�
2mK

mBs

�
2

≃ 0.96; ð74Þ

i.e. for all the values of xγ that we are considering.
Recently, some of us have proposed a novel strategy [8]

to circumvent the problem of analytic continuation of
electroweak amplitudes of the type present in Eq. (69),
i.e. involving an hadron-to-vacuum QCD matrix element
of the product of two currents. In order to briefly sum-
marize the strategy, we focus on the strange-quark con-
tribution to Hμν

T;2ðp; kÞ. To keep the notation simple, we set
E≡mBs

− Eγ and define

Cμν
q;2ðt; kÞ≡ h0jJμqðt;−kÞJνT̄ð0ÞjB̄sð0Þi;

Hμν
T̄q;2

ðE; kÞ≡ i
Z

∞

0

dteiEtCμν
q;2ðt; kÞ; q ¼ s; b; ð75Þ

so that Hμν
T̄;2ðp; kÞ ¼ Hμν

T̄b;2
ðE; kÞ þHμν

T̄s;2
ðE; kÞ. The main

idea for circumventing the problem of the analytic con-
tinuation of Hμν

T̄s;2
ðE; kÞ is to consider the spectral-density

representation of the time-dependent correlation function
Cμν
s;2ðt; kÞ,

Cμν
s;2ðt; kÞ ¼

Z
∞

E�

dE0

2π
e−iE

0tρμνðE0; kÞ; ð76Þ

where ½E�;∞Þ is the support of the spectral density

ρμνðE0; kÞ, and in our case E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

V0
þ E2

γ

q
with

mV0
¼ 2mK . Combining Eqs. (75) and (76) it follows that

(see Ref. [8] for details)

Hμν
T̄s;2

ðE; kÞ ¼ lim
ε→0þ

Z
∞

E�

dE0

2π

ρμνðE0; kÞ
E0 − E − iε

¼ PV
Z

∞

E�

dE0

2π

ρμνðE0; kÞ
E0 − E

þ i
2
ρμνðE; kÞ; ð77Þ

where PV denotes the principal value of the integral. The
Minkowski correlator Cμν

q;2ðt; kÞ can always be analytically

10The two contributions are obtained by the replacements
Jμem → Jμb and Jμem → Jμs in Eqs. (69)–(71) [see Eq. (23)].

11In the electroquenched approximation in which we work the
Zweig-suppressed contributions from uū, dd̄, and cc̄ resonances
are absent.
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continued to Euclidean spacetime. The Euclidean correlator
C̄μν
s;2ðt; kÞ≡ Cμν

s;2ð−it; kÞ is then related to the spectral
density ρμνðE0; kÞ via

C̄μν
s;2ðt; kÞ ¼

Z
∞

E�

dE0

2π
e−E

0tρμνðE0; kÞ: ð78Þ

Since C̄μν
s;2ðt; kÞ can be computed using Monte Carlo

simulations, we have formally solved the problem of
analytic continuation; by inverting the relation in
Eq. (78) to determine ρμνðE0Þ we can then obtain
Hμν

T̄s;2
ðE; kÞ using Eq. (77). However, in order to determine

ρμνðE0; kÞ using Eq. (78), an inverse Laplace transform of
the Euclidean correlator C̄μν

s;2ðt; kÞ is required. This is a
well-known ill-posed numerical problem when C̄μν

s;2ðt; kÞ is
only known on a finite set of points in time and is affected
by uncertainties, which is the typical situation encountered
in a lattice calculation. In Ref. [8] it has been proposed to
use the −iε term appearing in the denominator of Eq. (77)
as a regulator of the problem by introducing the smeared
amplitude Hμν

s;2ðE; k; εÞ

Hμν
T̄s;2

ðE; k; εÞ ¼
Z

∞

E�

dE0

2π

ρμνðE0; kÞ
E0 − E − iε

¼
Z

∞

E�

dE0

2π
KðE0 − E; εÞρμνðE0; kÞ; ð79Þ

where

Kðx; εÞ≡ 1

x − iε
¼ x

x2 þ ε2
þ i

ε

x2 þ ε2
: ð80Þ

The key point is that for nonzero values of ε, the kernel
function Kðx; εÞ is smooth, and its convolution integral
with the spectral density ρμνðE0; kÞ can be evaluated, from
the knowledge of C̄μν

s;2ðt; kÞ only, using the Hansen-Lupo-
Tantalo (HLT) method introduced in Ref. [36] (see also
Refs. [37–39] for recent applications of the method, and
Refs. [40–42] for different strategies on how to cope with
the inverse Laplace transform problem). The idea is to
numerically evaluate the smeared amplitude Hμν

T̄s;2
ðE; k; εÞ

for finite values of the smearing parameter ε using the HLT
method (to be discussed in the next section), and then to
extrapolate to ε ¼ 0, exploiting the fact that (see Ref. [8] for
a proof)

Hμν
T̄s;2

ðE; k; εÞ ¼ Hμν
T̄s;2

ðE; kÞ þ AðE; kÞεþOðε2Þ: ð81Þ

We stress that the problem of evaluating Hμν
T̄s
ðE; kÞ is ill

posed only for E > E�, i.e. if the inequality in Eq. (73) is
satisfied. Instead, for E < E�, one can directly set ε ¼ 0
in Eq. (77) (in this case the integrand is nonsingular), and
by using

1

E0 − E
¼
Z

∞

0

dte−ðE0−EÞt ðvalid forE < E0Þ; ð82Þ

one arrives at (see Ref. [8])

Hμν
T̄s;2

ðE; kÞ ¼
Z

∞

0

dteEtC̄μν
s;2ðt; kÞ < ∞; ð83Þ

which is the standard formula used to evaluate the form
factors in absence of problems of analytic continuation [see
e.g. Eq. (22)] and the one we apply here to determine
Hμν

Tb;2
ðE; kÞ. In Ref. [8] we have checked, that using the

HLT method below hadronic thresholds to evaluate the
form factors for Ds → lνll

0l0 decays (where l;l0 denote
charged leptons) produces results which agree with those
obtained by using the standard approach based on Eq. (83).
To summarize, we evaluate the hadronic tensor

Hμν
T̄ ðp; kÞ in Eq. (67) as the sum of the following terms:

Hμν
T̄ ðp; kÞ≡Hμν

T̄b
ðE; kÞ þHμν

T̄s
ðE; kÞ; ð84Þ

where

Hμν
T̄b
ðE; kÞ≡Hμν

T̄b;1
ðE; kÞ þHμν

T̄b;2
ðE; kÞ; ð85Þ

Hμν
T̄s
ðE; kÞ≡ lim

ε→0þ
Hμν

T̄s;1
ðE; kÞ þHμν

T̄s;2
ðE; k; εÞ; ð86Þ

and we have defined the first time ordering contribution as
(q ¼ b; s)

Hμν
T̄q;1

ðE; kÞ≡
Z

0

−∞
dteEtC̄μν

q;1ðt; kÞ;

C̄μν
q;1ðt; kÞ≡ Cμν

q;1ð−it; kÞ;
Cμν
q;1ðt; kÞ≡ h0jJνT̄ð0ÞJμqðt;−kÞjB̄sð0Þi; ð87Þ

where the Euclidean correlator C̄μν
q;1ðt; kÞ is the lattice input.

On the lattice, because of the discretization of spacetime,
the relations above get slightly modified, as we will discuss
in the next section.

A. Numerical results for F̄T

In order to evaluate the form factor F̄T we have
performed simulations on a subset of the ensembles in
Table I. These are the B64 and D96 ensembles. The
computations have been performed at all four values of
xγ in Eq. (34) but only at the following three values of the
heavy quark mass,

mh

mc
≃ 1; 1.5; 2.5: ð88Þ

The reasons for reducing the number of ensembles and
values of mh which we use are twofold. Firstly, the use of
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the spectral representation technique to overcome the
difficulty in the continuation to Euclidean space is com-
putationally expensive and secondly the contribution to
the differential rates from F̄T is small and so this form
factor is not required with the same precision as those
studied in Sec. III.
Our strategy to compute F̄T consists in evaluating on

the lattice the following three-point Euclidean correlation
function:

Mμν
T̄q
ðt; tsep;kÞ

≡ a3
X
x

h0jJμqðtþ tsep;−kÞJνT̄ðtsepÞϕ†
Bs
ð0;xÞj0i; q¼ s; b;

ð89Þ

where ϕ†
Bs
ð0; xÞ is the same interpolating operator as was

used in Eq. (22), while tsep is the fixed time where the
tensor FCNC JνT̄ is inserted, which must be chosen large
enough to ensure the dominance of the ground state. In the
limit of large tsep one has

Mμν
T̄q
ðt; tsep; kÞ ¼

hB̄sð0Þjϕ†
Bs
ð0Þj0i

2mBs

e−mBs tsepðC̄μν
q ðtÞ þ…Þ;

q ¼ s; b; ð90Þ

where the dots represent terms that are exponentially
suppressed at large tsep, and

C̄μν
q ðt; kÞ ¼ θð−tÞC̄μν

q;1ðt; kÞ þ θðtÞC̄μν
q;2ðt; kÞ; q ¼ s; b;

ð91Þ

where the correlators C̄μν
q;1ðt; kÞ and C̄μν

q;2ðt; kÞ were intro-
duced in the previous section.
Notice that the time t in the previous equations corre-

sponds to the time separation between the electromagnetic
and tensor currents and is different from the time t
introduced in Eq. (22). The choice of tsep has been adapted
depending on the contribution being considered. For q ¼ b
(and both t > 0 and t < 0) and for q ¼ s, t < 0 we have
chosen a large tsep ≃ 2 fm, while for q ¼ s and t > 0,
which is the only contribution requiring the spectral density
reconstruction method of Eq. (79) and for which statistical
accuracy is of the utmost importance,12 we have chosen
tsep ≃ 1 fm, after checking ground-state dominance using
the larger value tsep ≃ 1.7 fm. For the same reason, the
inversions of the Dirac operator for q ¼ s and t > 0 have
been performed using a number of stochastic sources

which is eight times larger than that used for q ¼ b and
q ¼ s, t < 0.
We now discuss our determination of F̄T starting from

the b-quark contribution F̄b
T . In this case, since there is no

problem of analytic continuation, we proceed as in
Eq. (75), and evaluate the hadronic tensor Hμν

T̄b
using13

Hμν
T̄b
ðE; kÞ ¼ a

XT=2−tsep
t¼−tsep

eEtCμν
b ðt; kÞ; E ¼ mBs

− Eγ: ð92Þ

For any simulated heavy-strange meson mass mHs
the

corresponding energy E in the previous equation is under-
stood to be

E ¼ mHs
− Eγ ¼ mHs

�
1 −

xγ
2

�
: ð93Þ

From the knowledge of Hμν
T̄b
ðEÞ we use Eq. (67) to

determine the b-quark contribution F̄b
T to the form factor

F̄T . In the rest frame of the decaying meson, and with our
choice of the photon momentum [k ¼ ð0; 0; kzÞ], the form
factor can be obtained using

F̄b
TðxγÞ ¼ −

1

2kz
ðH12

T̄b
ðE; kÞ −H21

T̄b
ðE; kÞÞ;

jkzj ¼ Eγ ¼ mHs

xγ
2
: ð94Þ

Our determination of Fb
T for the four different simulated

values of xγ and for the three different heavy-strange meson
masses mHs

, is shown in the left panel of Fig. 12. The blue
and red colors in the left panel correspond to our results on
the B64 and D96 ensemble, respectively. As the figure
shows, we find that cutoff effects are very small, the xγ
behavior is almost linear and the form factor decreases as
the heavy-quark mass mHs

increases. However, we post-
pone the discussion of the extrapolation to the physical
mass mBs

to Sec. IV B, and concentrate here only on the
issue of the continuum extrapolation. Having only two
lattice spacings available, and given the smallness of the
observed UV cutoff effects, we opt for extrapolating to the
continuum limit at fixed mHs

and xγ, employing either a
constant or linear Ansatz in a2. We then combine the results
of the two extrapolations using the following criterion: if
the constant fit gives a χ2 smaller than two, we combine the
results of the linear and constant fit using the weighted
average already illustrated in Eqs. (36) and (37) but using
same weights for the linear and constant a2 extrapolation,
otherwise the final result is given by the result obtained

12The statistical accuracy of the computed Mμν
T̄;qðt; tsep;kÞ

decreases as tsep increases.

13With respect to Eq. (22), we have dropped the e−ET term,
which is numerically negligible.
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using the linear a2 Ansatz. The result of the continuum-
limit extrapolation is illustrated in the right panel of Fig. 12.
We now turn into the discussion of the more involved

strange-quark contribution. In this case, as already dis-
cussed, the form factor cannot be obtained as in Eq. (92)
since

lim
T→∞

a
XT=2−tsep

t¼−tsep

eEtC̄μν
s ðt; kÞ ¼ ∞; ð95Þ

due to the fact that for large and positive times t the
correlation function behaves approximately as

C̄μν
s ðt; kÞ ≃ e−E

�t; E� < E: ð96Þ

Our strategy to evaluate the contribution from the second
time ordering, which is the only one affected by the
problem of the analytic continuation, is to consider the
smeared (or regularized) hadronic amplitude introduced in
Eq. (79), namely

Hμν
T̄s;2

ðE; k; εÞ ¼
Z

∞

E�

dE0

2π
KðE0 − E; εÞρμνðE0; kÞ; ð97Þ

or equivalently, separating the real and imaginary part,

Re½Hμν
T̄s;2

ðE; k; εÞ� ¼
Z

∞

E�

dE0

2π
KReðE0 − E; εÞρμνðE0; kÞ;

KReðx; εÞ ¼ Re½Kðx; εÞ�; ð98Þ

Im½Hμν
T̄s;2

ðE; k; εÞ� ¼
Z

∞

E�

dE0

2π
KImðE0 − E; εÞρμνðE0; kÞ;

KImðx; εÞ ¼ Im½Kðx; εÞ�; ð99Þ

and then to perform the extrapolation to ε ¼ 0.
Equations (98) and (99) can be evaluated, from the knowl-
edge of Cμν

s;2ðt; kÞ only, using the HLT method and we now

briefly summarize the main ingredients of the procedure.
To simplify the notation, we concentrate directly on the
Lorentz indices that are relevant for the determination of the
form factor with our choice of kinematics [decaying meson
at rest, and k ¼ ð0; 0; kzÞ], and define

C̄ðt; kÞ≡ 1

2
½C̄12

s ðt; kÞ − C̄21
s ðt; kÞ�; ð100Þ

H2ðE; k; εÞ≡ 1

2
½H12

T̄s;2
ðE; k; εÞ −H21

T̄s;2
ðE; k; εÞ�; ð101Þ

ρðE0; kÞ≡ 1

2
½ρ12ðE0; kÞ − ρ21ðE0; kÞ�: ð102Þ

The final goal is to find, for fixed ε, the best approximation
of the kernel functions KRe=ImðE0 − E; εÞ, in terms of the
basis function fe−aE0ngn¼1;…;nmax

, namely

KIðE0 − E; εÞ ≃
Xnmax

n¼1

gIðn; E; εÞe−aE0n ≡ K̃IðE0; E; εÞÞ;

ð103Þ

where I ¼ fRe; Img. In this way, once the coefficients gI
are known, the smeared hadronic amplitude can be recon-
structed, from the knowledge of C̄, using

H2ðE; k; εÞ≡
Z

∞

E�

dE0

2π
ρðE0; kÞKðE0 − E; εÞ

≃
Xnmax

n¼1

ðgReðn; E; εÞ

þ igImðn; E; εÞÞ
Z

∞

E�

dE0

2π
e−aE

0nρðE0; kÞ

¼
Xnmax

n¼1

ðgReðn; E; εÞ þ igImðn; E; εÞÞC̄ðna; kÞ:

ð104Þ

FIG. 12. Left: values of F̄b
T obtained on the B64 (blue data points) and D96 (red data points) ensembles as a function of xγ . Right:

results for F̄b
T after extrapolation to the continuum as a function of xγ , obtained following the procedure described in the text. The

different symbols correspond to the different values of the simulated heavy quark mass mh.
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The problem of finding the coefficients gI presents a certain
number of technical difficulties. Any determination of the
real and imaginary part of the smeared hadronic amplitude
based on Eqs. (103) and (104) will inevitably be affected
by both systematic errors (due to the inexact reconstruction
of the kernels) and statistical uncertainties [due to the
fluctuations of the correlator C̄ðt; kÞ], which need to be
simultaneously kept under control. The HLT method finds
an optimal balance between the size of the statistical and
systematic errors. This is achieved by minimizing a linear
combination

WI½g�≡ AI½g�
AI½0�

þ λB½g�; ð105Þ

of the norm-functional

AI½g� ¼
Z

∞

Emin

dE0
����X
nmax

n¼1

gðnÞe−aE0n −KIðE0 −E;εÞ
����2; ð106Þ

which quantifies the difference between the approximated
and the target kernel, and of the error-functional

B½g� ¼ Bnorm

Xnmax

n1;n2¼1

gðn1Þgðn2ÞCovðan1; an2Þ; ð107Þ

where Covðan1; an2Þ is the covariance matrix of the cor-
relator C̄ðanÞ, and Bnorm is a normalization factor intro-
duced to render the error-functional dimensionless. The
algorithmic parameter Emin should only satisfy the con-

straint Emin < E�, and we choose Emin ¼ 0.9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ þ E2
γ

q
.

For each simulated value of xγ and mHs
, we choose nmax

by requiring that the statistical error on the correlation
function C̄ðt; kÞ for all times t ≤ anmax must be smaller
than 30%. The parameter λ in Eq. (105) is the so-called
trade-off parameter, and for a given value of λ, the
minimization of the functional Wα

I ½g� gives the coefficients
gλI. In the presence of statistical errors, the second term in
Eq. (105) disfavors coefficients g leading to too large
statistical uncertainties in the reconstructed value of the
smeared hadronic amplitude. The optimal balance between
having small statistical errors (small B½g�) and small
systematic errors in the kernel reconstruction (small
AI½g�) can be achieved by tuning λ appropriately. This is
done performing the so-called stability analysis, which is
discussed in detail in Refs. [8,37]. In brief, using the
stability analysis, one monitors the evolution of the
reconstructed values of the real and imaginary part of
H2ðE; k; εÞ as a function of λ. The optimal value, λ⋆,
(which is generally different for the real and imaginary
parts) is chosen to be in the so-called statistically dominated
regime, where λ is sufficiently small that the systematic
error due to the kernel reconstruction is smaller than the

statistical one (in this region the results are therefore stable
under variations of λ), but large enough to still have
reasonable statistical uncertainties. Finally, having deter-
mined the optimal value λ⋆, we repeat the calculation using
a second (smaller) value of λ ¼ λ⋆⋆, which is determined
by imposing the validity of the following condition:

B½gλ⋆⋆I �
AI½gλ⋆⋆I � ¼ κ

B½gλ⋆I �
AI½gλ⋆I � ; ð108Þ

with κ ¼ 10. Any statistically significant difference between
the values of the real and imaginary part of H2ðE; kÞ
corresponding to the two choices λ ¼ λ⋆ and λ ¼ λ⋆⋆ is
added as a systematic uncertainty in our final error. We refer
the reader to Ref. [37] for further details on this point.
At a finite lattice spacing, similarly to what had been

done in Ref. [8], we adopt the kernel function

Kðx; εÞ ¼ a
sinh ½aðx − iεÞ� ¼

1

x − iε
þOða2Þ; ð109Þ

which differs from the one in Eq. (80) only byOða2Þ cutoff
effects. A major difference in the analysis of H2ðE; kÞ
compared to the strategy followed for Hμν

T̄b
ðE; kÞ and

Hμν
T̄s;1

ðE; kÞ, concerns the scaling of the energy E with

the heavy-strange meson mass, mHs
. While the energy

scaling given by Eq. (93) leads to a smooth mass depend-
ence for the latter two contributions, this is not the case for
H2ðE; kÞ: the main contributions to the spectral density
ρðE0; kÞ are expected to depend on the position of the
ϕ;ϕð1680Þ;ϕð2170Þ (and possibly heavier) resonances. By
scaling the energy E according to Eq. (93), to our lightest
simulated mass mHs

¼ mDs
would correspond to an energy

E smaller or very close to that of one of the main ss̄ peaks.
On the other hand, the energy E ¼ mBs

ð1 − xγ=2Þ, corre-
sponding to the physical mass of the Bs meson, is much
larger than the energy of such resonances. Since the
behavior of H2ðE; k; εÞ below (or close to) the main ss̄
resonances is expected to be very different from the one at
much larger energies of order OðmBs

Þ, the mass scaling of
H2ðE; k; εÞ that would result from the use of Eq. (93) is
very complicated and difficult to handle. At the same time
setting E ¼ mBs

ð1 − xγ=2Þ for all simulated mHs
is prob-

lematic, as it leads to large cutoff effects. For H2ðE; k; εÞ
we thus chose to scale the energy E with the heavy-strange
meson mass mHs

according to

EðrÞ ¼ ðrmHs
þ ð1 − rÞmBs

Þ
�
1 −

xγ
2

�
: ð110Þ

Note that any fixed r is allowed since

lim
mHs→mBs

EðrÞ ¼ mBs

�
1 −

xγ
2

�
; ð111Þ

R. FREZZOTTI et al. PHYS. REV. D 109, 114506 (2024)

114506-22



and for 0 ≤ r ≤ 1 one interpolates between the scaling in
Eq. (93) (r ¼ 1) and the case of a fixed energy E ¼
mBs

ð1 − xγ=2Þ (r ¼ 0). For each xγ we tune the value of r
in such a way that for mHs

¼ mDs
, since mHs

ð1 − xγ=2Þ is
the closest to the resonance region, the corresponding
energy EðrÞ is above that of the main ss̄ peaks, and
at the same time small enough to avoid large cutoff
effects. We choose r ¼ 0.65; 0.60; 0.57; 0.55, respectively
for xγ ¼ 0.1; 0.2; 0.3, and 0.4 for all three values of mHs

.
Finally, we define the smeared form factor as

F̄s
Tðxγ; εÞ≡ −

HðE;EðrÞ; k; εÞ
kz

; k ¼ ð0; 0; kzÞ; ð112Þ

HðE;EðrÞ;k; εÞ ¼Hð0;kÞ þHsub
1 ðE;kÞ þHsub

2 ðEðrÞ;k;εÞ;
ð113Þ

where

Hð0; kÞ ¼ a
XT=2−tsep

t¼−tsep

C̄ðt; kÞ;

Hsub
1 ðE; kÞ ¼ a

X0
t¼−tsep

ðeEt − 1ÞC̄ðt; kÞ ð114Þ

Hsub
2 ðEðrÞ; k; εÞ ¼ H2ðEðrÞ; k; εÞ −H2ð0; k; 0Þ: ð115Þ

In the combined mHs
→ mBs

and ε → 0 limits, the smeared
form factor tends to F̄s

TðxγÞ. The zero-energy subtraction
allows us to define the contributions from the two time
orderings in such a way that cutoff effects start at order
Oða2Þ for both time orderings. This is because they both
are now free of the contact term C̄ð0; kÞ. This contact term
does not belong to either the first or second time ordering,
and cannot be simply removed as this generates OðaÞ
cutoff effects. Since H2ðEðrÞ; k; εÞ is evaluated via the

HLT reconstruction method using the kernel function in
Eq. (109), to avoid the presence of OðaÞ cutoff effects also
H2ð0; k; 0Þ is evaluated via the HLT method using the same
type of kernel function. Being able to define the two time
orderings separately turns out to be useful if a model for the
spectral density ρðE0; kÞ is used to perform the ε → 0
extrapolation, as will be discussed below.
In the plot of Fig. 13, we give an example of the stability

analysis in the case of the lowest simulated quark mass,
and for xγ ¼ 0.1 and ε ≃ 1.4 GeV. In the figurewe show the
real and imaginary part of the smeared form factor F̄s

Tðxγ; εÞ,
obtained employing different values of the trade-off param-
eter λ. The results are shown as a function of AI½gλ�=AI½0�
which is a measure of the goodness of the reconstruction.
When the systematic error due to the inexact kernel
reconstruction becomes smaller than the statistical uncer-
tainty, the reconstructed smeared form factor is stable under
variation of λ. In this region we determine λ⋆ and λ⋆⋆ which
are given respectively by the red and blue data points in the
figure. The reconstructed kernel functions corresponding to
our choice of λ⋆ are then shown in Fig. 14.
We have repeated the analysis for different values of ε

and for all simulated xγ andmHs
. The smearing parameter ε

cannot be however reduced arbitrarily since the uncertain-
ties on Fs

T̄ðxγ; εÞ generally increase as ε decreases, and at
the same time the reconstruction of the kernel function
becomes poorer. The smallest value of ε for which the
errors are still under control is determined by both the
statistical uncertainties on C̄ðt; kÞ and by the size nmax of
the exponential basis.
In the plots of Figs. 15 and 16 we show the ε behavior of

the real and imaginary parts of the smeared form factors for
the different simulated heavy-strange meson masses mHs

,
and for the smallest (0.1) and largest (0.4) simulated values
of xγ. In the figure we show the results obtained on both the
B64 and D96 ensembles. Few comments are in order. First
of all the observed cutoff effects are smaller or of the same
size of the statistical error for all contributions, with the

FIG. 13. The real (left panel) and imaginary (right panel) part of the form factor F̄s
Tðxγ ; εÞ on the B64 ensemble, for the lowest

simulated value ofmh ¼ mc, and for ε ≃ 1.4 GeV and xγ ≃ 0.1, as a function of the ratio AI½gλ�=AI½0� indicating the quality of the kernel
reconstruction obtained employing different values of λ. The plot shows an example of our stability analysis. The red and blue data
points in both panels correspond to the reconstructions obtained for λ ¼ λ⋆ and λ ¼ λ⋆⋆, respectively.
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exception of F̄s
Tðxγ; εÞ for mHs

≃ 1.78mDs
. Such behavior

can be expected since larger masses correspond to higher
energies EðrÞ. In addition, we observe that both the real and
imaginary part of F̄b

TðxγÞ decrease in magnitude as mHs

increases.
We extrapolate the smeared form factor F̄s

Tðxγ; εÞ to the
continuum limit at fixed ε, xγ and mh, following the same
procedure used for F̄b

TðxγÞ. Next we perform the ε → 0

extrapolation at fixed xγ and mh, which is the most delicate
step of the analysis. As already stated, using the kernel

function Kðx; εÞ ¼ ðx − iεÞ−1, the leading corrections to
the ε ¼ 0 limit are expected to be of the form

F̄s
TðεÞ ¼ F̄s

T þ A1εþ A2ε
2 þOðε3Þ; ð116Þ

and in the following we indicate by asymptotic regime, the
regime in which the corrections to the vanishing-ε limit can
be described by a low-degree polynomial in ε. The onset of
the asymptotic regime for H2ðE; k; εÞ at a given energy E,
as discussed in detail in Ref. [8], depends on the (unknown)

FIG. 15. ε dependence of the real part of the smeared form factor F̄s
Tðxγ ; εÞ for the three different masses mHs

≃mDs
(top-left panel),

mHs
≃ 1.27mDs

(top-right panel), and mHs
≃ 1.78mDs

(bottom panel). For each figure we show the results obtained at xγ ¼ 0.1 and
xγ ¼ 0.4 on the B64 and D96 ensembles.

FIG. 14. The reconstructed smearing kernels K̃IðE0; E; εÞ obtained using the coefficients gλ
⋆

I employed in the reconstruction of
F̄s
Tðxγ ; εÞ in Fig. 13. The black lines correspond to the real (right panel) and imaginary (left panel) part of the exact kernel function

KðE0 − E; εÞ of Eq. (109). The kernels are given in lattice units.
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typical size, ΔðEÞ, of the interval around E in which
H2ðE; kÞ is significantly varying. Parametrically one must
then have ε ≪ ΔðEÞ and at the same time ε ≫ 1=L to avoid
large FSEs. Assuming that H2ðE; kÞ is dominated by the
contribution from a single resonance, which at fixed xγ and
mHs

we approximate with a Breit-Wigner distribution
centered at M and of width Γ, i.e.

H2ðE; kÞ ≃HBW
2 ðEÞ ¼ R

M − E − i Γ
2

⇒ H2ðE; k; εÞ ≃
R

M − E − iðΓ
2
þ εÞ ; ð117Þ

then within this approximation we have ΔðEÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE −MÞ2 þ Γ2=4

p
. In our case the energy E is given

for each xγ andmHs
by EðrÞ in Eq. (110), and it ranges from

EðrÞ ≃ 3 GeV at the lowest mass mHs
¼ mDs

to EðrÞ ≃
4 GeV at mHs

≃ 1.78mDs
. The peaks of the main ss̄

resonances, the ϕ, ϕð1680Þ and ϕð2170Þ, are at M ≃
1; 1.7; 2.2 GeV respectively, with a mild dependence on
the value of jkj. In our computations we have ε ≃
Oð1 GeVÞ or higher and it is not clear whether such
values of ε are in the asymptotic regime, despite an
approximate linear scaling in ε being observed in
Figs. 15 and 16. To account for this source of systematic
error we proceed as follows: we first carry out the
extrapolation to ε ¼ 0 assuming that the observed behavior
is the asymptotic scaling, and perform a polynomial
extrapolation in ε (in practice, as explained below, we
perform a quadratic extrapolation in ε, unless there is no

signal of a ε2 term, in which case we perform a linear
extrapolation). In addition to the polynomial extrapolation,
we follow a second approach, performing the vanishing-ε
extrapolation assuming the following model for the spectral
density:

ρmodðE0; kÞ ¼
X

n¼1;2;3

θðEθ − E0Þ RnðkÞΓn

ðEnðkÞ − E0Þ2 þ ðΓn
2
Þ2

þ θðE0 − EθðkÞÞ
DðkÞ
ðE0Þz ;

EnðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n þ jkj2
q

; ð118Þ

with z ¼ 1=2; 1, and whereMn and Γn are the mass and the
decay width of the ϕ, ϕð1680Þ, and ϕð2170Þ resonances
respectively for n ¼ 1; 2; 3, which we take from the
PDG [10]. The last term in Eq. (118) mimics the con-
tinuum behavior at large energies starting at a threshold
EθðkÞ > E3ðkÞ, and is compatible with the physical con-
straint limE0→∞ρðE0; kÞ ¼ 0.14 For any fixed values of xγ
and mHs

, our model for the spectral density contains four
free real parameters: the three amplitudes R1ðkÞ, R2ðkÞ,
R3ðkÞ, and the threshold energy EθðkÞ. The parameterDðkÞ
is instead determined by the requirement that the spectral
density is continuous at E0 ¼ EθðkÞ. The smeared hadronic
amplitude Hmod

2 ðE; k; εÞ associated with ρmodðE0; kÞ is then

FIG. 16. Same as in Fig. 15 for the imaginary part of the smeared form factor F̄s
Tðxγ; εÞ.

14The spectral density must vanish in the infinite-energy limit
in order to have a finite Re½H2ðE; k; εÞ�.
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given by the convolution of ρmodðE0; kÞ with the kernel
function KðE − E0; εÞ. Finally, we can useHmod

2 ðE0; k; εÞ to
obtain the corresponding model smeared form factor,

F̄s;mod
T ðxγ; εÞ≡ −

HmodðE; EðrÞ; k; εÞ
kz

; ð119Þ

HmodðE;EðrÞ; k; εÞ≡Hmod
2 ðEðrÞ; k; εÞ −Hmod

2 ð0; k; 0Þ
þHsub

1 ðE; kÞ þHð0; kÞ: ð120Þ

In Fig. 17 we show the results of the polynomial
extrapolation to vanishing ε, which we perform separately
for each xγ and mHs

. In the figure we show, as an
illustration, the results obtained for xγ ¼ 0.1 and 0.4.
The extrapolation has been carried out using the following
Ansatz for the smeared form factor

F̄s
TðεÞ ¼ Aþ A1εþ A2ε

2; ð121Þ

where A, A1, and A2 are complex-valued free fit parameters,
which are different for each xγ and mHs

. In order to avoid
overfitting, for those cases when there is no signal of ε2

dependence visible in the data, we have set A2 ¼ 0. We
have minimized a χ2 function constructed without taking

into account the correlation between the values of the
smeared form factors corresponding to different ε, since
they are too correlated, and the resulting correlation matrix
is ill conditioned. In this way, the reduced χ2 resulting from
the minimization, which is always well below one, cannot
be taken as a quantitative measure of the quality of the fit.
To estimate the systematic error of the polynomial extrapo-
lation, we have also performed for all the cases a second fit,
linear in ε, using only the five smallest simulated values of
ε. Any statistically significant deviation from the results
obtained in the fit with all simulated values of ε included
(i.e. those whose resulting best-fit functions are given by
the colored bands of Fig. 17) is then added as a systematic
error. In Fig. 17 the data points at ε ¼ 0 correspond to our
final results from the polynomial extrapolation, after
including the systematic error determined following the
procedure described above. As is clear from the figure the
real and imaginary part of the form factor F̄s

TðxγÞ decrease
in magnitude as the mass mHs

increases, and already for
mHs

≃ 1.78mDs
they are both one order of magnitude

smaller than the tensor form factors FTV and FTA deter-
mined in the previous section.
As discussed above, since the simulated values of ε may

not be in the asymptotic regime, we have also performed
nonpolynomial extrapolations in ε using the model in

FIG. 17. The extrapolation in ε of the real (top panels) and imaginary (bottom panels) components of the smeared form factors, using
the Ansatz in Eq. (121). For those cases when no ε2 dependence is visible in the data, we have set A2 ¼ 0. The different colors
correspond to the three different values of mHs

and the corresponding bands are the best-fit functions obtained from the fits with all
values of ε included. The left and right panels correspond to xγ ¼ 0.1 and xγ ¼ 0.4 respectively. The data points at ε ¼ 0 (which in the
figures are slightly shifted horizontally for better visualization) correspond to our final results after including the systematic error,
determined as discussed in the text.
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Eq. (118) with z ¼ 1=2 and z ¼ 1. The fits have been
performed imposing Gaussian priors on all four fit param-
eters. The central values and widths of the priors, along
with the choice of the parameter z, have to be considered as
part of the definition of the model we use to estimate the
systematic uncertainties. The prior corresponding to the
amplitude R1ðkÞ of the ϕ resonance is

R1ðkÞ ¼ hR1ðkÞið1� 0.1Þ; ð122Þ

where hR1ðkÞi has been estimated from an effective
residue analysis of the correlation function C̄ðt; kÞ at large
times. We use hR1ðkÞi=jkj¼−0.045;−0.042;−0.040GeV,
respectively for mHs

=mDs
≃ 1; 1.27; 1.78. The priors corre-

sponding to the two amplitudes R2ðkÞ and R3ðkÞ are instead

R2ðkÞ ¼
hR1ðkÞi

2
ð1� 1Þ; R3ðkÞ ¼

hR1ðkÞi
2

ð1� 1Þ;
ð123Þ

i.e. we assume that, within one standard deviation, they are at
most of the same size as the contribution from the ϕ
resonance. Finally the prior on the threshold parameter
EθðkÞ is

EθðkÞ ¼ E3ðkÞ þ ð0.5� 0.5Þ GeV; ð124Þ
i.e. we assume that the onset of the perturbative regime occurs
at an energywhich isOðΛQCDÞ larger than that of the heaviest

known ss̄ resonance. We have found that both values of z
describe the data well at all masses and xγ.

15

For the real part of F̄s
TðxγÞ, the results of the extrapo-

lation to ε ¼ 0, obtained using the model with either z ¼
1=2 and 1 are in good agreement with those of the
polynomial extrapolation. For the imaginary part, instead,
we find that the model results (in particular for z ¼ 1=2) are
significantly smaller than those obtained from the poly-
nomial extrapolation. The comparison is shown in Fig. 18,
for the case xγ ¼ 0.1 and for both mHs

¼ mDs
and

mHs
∼ 1.78mDs

. All the other cases are very similar. The
lower value obtained for Im½F̄s

TðxγÞ� assuming the model
ρmodðE0; kÞ for the spectral density, could be due to the fact
that at the simulated values of ε, the imaginary part of the
kernel function still has a sizeable overlap with the peaks of
the nearby resonances [e.g. the ϕð2170Þ resonance]. In this
case, the imaginary part of the smeared form factor,
Im½F̄s

Tðxγ; εÞ�, is expected to decrease in value for smaller,
presently unreachable, values of ε. This behavior cannot be
captured by the polynomial extrapolation, but is in-built in
our model for the spectral density. To have a realistic
estimate of the systematic uncertainty for F̄s

Tðxγ; εÞ, we
average the results of the polynomial and model-dependent

FIG. 18. Comparison between the results from the polynomial extrapolation (given by the red band), and those obtained fitting the
smeared form factor using the model in Eq. (118) with z ¼ 1=2 (given by the green band) and z ¼ 1 (given by the blue band). The top
panels correspond to xγ ¼ 0.1, mHs

¼ mDs
, while the bottom panels to xγ ¼ 0.1, mHs

∼ 1.78mDs
.

15Additionally, we have tried to fit our data using the model in
Eq. (118) with z ¼ 2, but found that it does not provide an equally
good description of the smeared form factor.
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extrapolation with z ¼ 1=2, and include a systematic error
equal to half the difference between the two results.

B. Extrapolating F̄T to the mass
of the physical Bs-meson

We now discuss the extrapolation of the form factor F̄T
to the mass of the physical Bs-meson. We start from
the b-quark contribution F̄b

TðxγÞ, which we determined
for three values of the heavy-strange meson mass
mHs

=mDs
≃ 1; 1.27 and 1.78 as shown in the right panel

of Fig. 12. To perform the mass extrapolation we make
use of a phenomenological VMD-inspired Ansatz to
describe the combined xγ and mHs

dependence of the
form factor. At the physical Bs mass point, the form
factor F̄b

TðxγÞ is expected to be dominated by the contri-
butions of neutral, JP ¼ 1−, bb̄ resonance states [e.g.
ϒð1SÞ;ϒð2SÞ;ϒð3SÞ;…]. The contribution to the form
factor F̄b

TðxγÞ of a given vector resonance state containing
an heavy quark (h) and a heavy antiquark (h̄), for a given
value of mHs

, and approximating the resonance as a stable
state, is of the form

F̄b
T;nðxγÞ ¼

qbfnmngþn ð0Þ
EnðEn þ Eγ −mHs

Þ þ regular terms; ð125Þ

where En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n þ E2
γ

q
, andmn and fn are respectively the

mass and the electromagnetic decay constant of the vector
resonance. The latter is defined through

h0jh̄γμhjnð−k; ηÞi ¼ ημfnmn; ð126Þ

where jnð−k; ηÞi is the vector resonance state with given
polarization η. The coupling gþn ð0Þ is defined by [4]

hnð−k; ηÞjs̄σμνhjH̄sð0Þi ¼ iη�βϵ
μνβγ½gþn ðp2

γÞðpþ qnÞγ
þ g−n ðp2

γÞðp − qnÞγ�
þ ig0nðp2

γÞðη� · pÞϵμνβγpβqn;γ;

ð127Þ
with qn ¼ ðEn;−kÞ, pγ ¼ p − qn. In the heavy-quark limit,
mh → ∞, the following scaling laws hold:

fn ∝
1ffiffiffiffiffiffi
mh

p þ… ∝
1ffiffiffiffiffiffiffiffimHs

p þ…;
mn

mHs

¼ 2þ Λn
T

mHs

þ…;

ð128Þ
where Λn

T ≃OðΛQCDÞ, and the ellipses represent higher-
order terms in the heavy-quark expansion. In light of the
previous relations F̄b

T;nðxγÞ can be further approximated
with

F̄b
T;nðxγÞ ¼

qb
mHs

fngþn ð0Þ
1þ xγ

2
þ Λn

T
mHs

�
1þO

�
xγ;

ΛQCD

mHs

��
: ð129Þ

Our strategy to extrapolate F̄b
TðxγÞ to the physical mass

mBs
, consists in approximating the tower of contributions

of type 125, with a single effective pole. This is achieved
through the use of the following fit Ansatz for the combined
mass and xγ dependence of the form factor

F̄b
Tðxγ; mHs

Þ ¼ 1

mHs

Aþ Bxγ
1þ xγ

2
þ ΛT

mHs

; ð130Þ

where A, B, and ΛT are free fit parameters, and the
effective-pole mass is meff ¼ 2mHs

þ ΛT . We assume that
A and B are mass independent, which is consistent with our
data, as illustrated below.16

FIG. 19. Extrapolation to mBs
of the form factor F̄b

TðxγÞ using the Ansatz in Eq. (130). The red, blue, and green bands correspond
to the best-fit function obtained for mHs

=mDs
≃ 1; 1.27; 1.78, respectively. The magenta band corresponds to our final result for

F̄b
T at mHs

¼ mBs
.

16The Ansatz in Eq. (130) assumes that gþn ∝ ffiffiffiffiffiffiffiffimHs

p for which
however we are not aware of any formal proof in the HQET.
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Using the Ansatz in Eq. (130) we have performed a
combined fit of the xγ andmHs

dependence of our data. The
total number of measurement entering the χ2 minimization
is 12, and the number of fit parameters is 3. The χ2=dof
resulting from the minimization is very good and well
below unity, although in this case we have employed an
uncorrelated χ2 function, since we find that the covariance
matrix is ill conditioned. To illustrate the quality of the fit,
we show in Fig. 19 the best-fit functions obtained from the
global fit. As is clear from the figure, the VMD-inspired
Ansatz perfectly captures both the mass and xγ behavior of
our data. The resulting value of the parameter ΛT is

ΛT ¼ −0.32ð11Þ GeV; ð131Þ

which implies that at the physical Bs mass the effective pole
is located at meff ¼ 10.4ð1Þ GeV, i.e. around the mass of
the ϒð2SÞ resonance. To check for possible systematic
errors due to the mass extrapolation we have repeated the fit
setting to zero the parameter B in Eq. (130). However, we
did not find significant differences within uncertainties.
The magenta band in Fig. 19 corresponds to our final result
for F̄b

TðxγÞ at mHs
¼ mBs

. This contribution turns out to be
small compared to the tensor form factors FTVðxγÞ and
FTAðxγÞ described in Sec. III B, which are more than one
order of magnitude larger. In Table IV we give our results
for F̄b

T extrapolated at the physical mass mBs
, for the four

simulated values of xγ .

We now turn to the discussion of the mass extrapolation
of F̄s

TðxγÞ. In this case the uncertainties are significantly
larger than those affecting F̄b

TðxγÞ. Moreover, after includ-
ing the systematic errors due to the ε → 0 extrapolation,
only a very smooth xγ dependence is visible in the data
within uncertainties. This is shown in Fig. 20, where we
plot the real and imaginary part of F̄s

TðxγÞ as a function of
1=mHs

for all simulated values of xγ. As is clear from the
figure, both the real and imaginary part of F̄s

TðxγÞ decrease
as mHs

increases. This is expected since the form factor
vanishes in the static limit. In this case, to have a
conservative error estimate, we take the results at the
largest simulated mass mHs

≃ 1.78mDs
as an estimate for

the value of the form factor at the physical point,
mHs

¼ mBs
. Since there is no clear xγ dependence visible

in the data, we quote the following, xγ-independent,
estimates for the real and imaginary part of the form factor

Re½F̄s
TðxγÞ� ¼ −0.019ð19Þ; Im½F̄s

TðxγÞ� ¼ 0.018ð18Þ;
ð132Þ

which correspond to the data points in magenta in the
panels of Fig. 20.

V. THE Bs → μ+ μ− γ DECAY RATE

The doubly differential cross section for the Bs → μþμ−γ
decay can be written as

d2Γ
dxγdðcos θÞ

¼ d2ΓðPTÞ

dxγdðcos θÞ
þ d2ΓðINTÞ

dxγdðcos θÞ
þ d2ΓðSDÞ

dxγdðcos θÞ
;

ð133Þ

where the superscript (PT) refers to the pointlike contri-
bution (which becomes negligible for large xγ), (SD) labels
the structure-dependent contribution, and (INT) labels the

TABLE IV. Our results for the form factor F̄b
T extrapolated to

the physical mass mBs
, for the four simulated values of

xγ ¼ 0.1; 0.2; 0.3; 0.4.

xγ

0.1 0.2 0.3 0.4

F̄b
T 0.028(1) 0.026(1) 0.025(1) 0.0239(9)

FIG. 20. Mass dependence of the real (left panel) and imaginary (right panel) part of F̄s
TðxγÞ for the four simulated values of xγ . The

data points corresponding to the four simulated values of xγ have been slightly shifted horizontally for better visualization. The data
point in magenta corresponds to our final (conservative) estimate for F̄s

TðxγÞ at the physical mass mHs
¼ mBs

.
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contribution from the interference between the pointlike
and structure-dependent terms in the amplitude. In
Eq. (133) θ is the angle between the three-momenta of
the μþ and the photon in the rest frame of the μþμ− pair.
Recalling that xγ ¼ 2p · k=mBs

, cos θ is written in terms of
Lorentz invariant quantities in Eq. (136) below. We now

present the expressions for the three terms on the right-hand
side of Eq. (133), neglecting the contributions from O1−6;8
except for the charming penguin diagram in Fig. 4 which is
included in the effective Wilson coefficient Ceff

9 .
The structure-dependent contribution, which depends

quadratically on the form factors, can be written as [4]17

d2ΓðSDÞ

dxγdðcos θÞ
¼ G2

Fα
3
emm5

Bs

210π4
jV tbV�

tsj2JðxγÞ½x2γB0ðxγÞ þ xγξðxγ; t̂ÞB̃1ðxγÞ þ ξ2ðxγ; t̂ÞB̃2ðxγÞ�; ð134Þ

where t̂ ¼ ðp − p1Þ2=m2
Bs

and p1 is the momentum of the μþ lepton. The function ξðxγ; t̂Þ is defined as

ξðxγ; t̂Þ ¼ xγ þ 2m̂2
μ − 2t̂; ð135Þ

where m̂μ ¼ mμ=mBs
,18 in terms of which the angle θ is given by

cos θ ¼ ξðxγ; t̂Þ
xγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m̂2

μ=ð1 − xγÞ
q : ð136Þ

The Jacobian JðxγÞ is

JðxγÞ ¼
xγ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m̂2
μ

1 − xγ

s
: ð137Þ

Finally the functions B0ðxγÞ, B̃1ðxγÞ, and B̃2ðxγÞ are as follows:

B0ðxγÞ ¼ ð1 − xγ þ 4m̂2
μÞðF1ðxγÞ þ F2ðxγÞÞ − 8m̂2

μjC10ðμÞj2ðF2
VðxγÞ þ F2

AðxγÞÞ; ð138Þ

B̃1ðxγÞ ¼ 8½ð1 − xγÞFVðxγÞFAðxγÞReðCeff�
9 ðμ; xγÞC10ðμÞÞ

þ m̂bFVðxγÞReðC�
7ðμÞFeff�

TA ðxγÞC10ðμÞÞ þ m̂bFAðxγÞReðC�
7ðμÞFeff�

TV ðxγÞC10ðμÞÞ�; ð139Þ

B̃2ðxγÞ ¼ ð1 − xγÞðF1ðxγÞ þ F2ðxγÞÞ; ð140Þ

where m̂b ¼ mb=mBs
,

F1ðxγÞ ¼ ðjCeff
9 ðμ; xγÞj2 þ jC10ðμÞj2ÞF2

VðxγÞ þ
�

2m̂b

1 − xγ

�
2

jC7ðμÞFeff
TVðxγÞj2

þ 4m̂b

1 − xγ
FVðxγÞReðC7ðμÞFeff

TVðxγÞCeff�
9 ðμ; xγÞÞ; ð141Þ

F2ðxγÞ ¼ ðjCeff
9 ðxγ; μÞj2 þ jC10ðμÞj2ÞF2

AðxγÞ þ
�

2m̂b

1 − xγ

�
2

jC7ðμÞFeff
TAðxγÞj2 ð142Þ

þ 4m̂b

1 − xγ
FAðxγÞReðC7ðμÞFeff

TAðxγÞCeff�
9 ðμ; xγÞÞ; ð143Þ

17In Ref. [4] the authors chose ŝ ¼ ðp − kÞ2=m2
Bs

¼ 1 − xγ and t̂ ¼ ðp − p1Þ2=m2
Bs
, where p1 is the four-momentum of the μþ, as the

independent variables. We choose xγ and cos θ and JðxγÞ is the Jacobian relating the two sets of variables.
18ξðxγ; t̂Þ can also be written as û − t̂, where û ¼ ðp − p2Þ2=m2

Bs
and p2 is the momentum of the μ−.
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and

Feff
TVðxγÞ ¼ FTVðxγÞ þ F̄TðxγÞ; ð144Þ

Feff
TAðxγÞ ¼ FTAðxγÞ þ F̄TðxγÞ: ð145Þ

The interference and pointlike contributions are given by

d2ΓðINTÞ

dxγdðcos θÞ
¼ −

G2
Fα

3
emm5

Bs

210π4
jV tbV�

tsj2
16fBs

mBs

m̂2
μJðxγÞ

x2γ
ðxγ þ m̂2

μ − t̂Þðt̂ − m̂2
μÞ

×

�
2xγm̂b

1 − xγ
ReðC�

10ðμÞC7ðμÞFeff
TVðxγÞÞ þ xγFVðxγÞReðC�

10ðμÞCeff
9 ðμ; xγÞÞ þ ξðxγ; t̂ÞFAðxγÞjC10ðμÞj2

�
ð146Þ

and

d2ΓðPTÞ

dxγdðcos θÞ
¼ G2

Fα
3
emm5

Bs

210π4
jV tbV�

tsj2
�
8fBs

mBs

�
2

m̂2
μjC10ðμÞj2JðxγÞ

�
1 − xγ þ x2γ=2

ðxγ þ m̂2
μ − t̂Þðt̂ − m̂2

μÞ

−
�

xγm̂μ

ðxγ þ m̂2
μ − t̂Þðt̂ − m̂2

μÞ
�

2
�
: ð147Þ

In the following we will use the Wilson coefficients
evaluated in the MS scheme at the scale μ ¼ 5 GeV,
which corresponds to the same scheme and scale at which
we calculated the tensor form factors. In the calculation
of the rate we input the value mb ¼ mbð5 GeVÞ ¼
4.073ð11Þ GeV obtained from mbðmbÞ ¼ 4.203ð11Þ GeV
[43] using the four-loop quark-mass anomalous dimen-
sion [44].

We now discuss our strategy for estimating in a
conservative way the systematic error due to the charm-
ing-penguin diagram in Fig. 4, corresponding to the
emission of the μþμ− pair from the cc̄ loop. As already
discussed in Sec. II, this contribution can be written as a
process and q2 ¼ m2

Bs
ð1 − xγÞ dependent shift of the

Wilson coefficient C9 → Ceff
9 ðq2Þ ¼ C9 þ ΔC9ðq2Þ, and

we rely on the phenomenological parametrization in
Eq. (18) which we rewrite here for convenience,

ΔC9ðq2Þ ¼ −
9π

α2em

�
C1 þ

C2

3

�X
V

jkV jeiδV

×
mVBðV → μþμ−ÞΓV

q2 −m2
V þ imVΓV

: ð148Þ

The values of the parameters mV;ΓV; BðV → μþμ−Þ are
known experimentally for the lowest-lying resonances, and
are collected in Table V. Instead, the value of the coef-
ficients jkV j and the phases δV are largely unknown: δV ¼
jkV j − 1 ¼ 0 only holds in the factorization approximation.
In order to estimate the systematic error induced in the
parametrization of Eq. (148) by the poor knowledge of
some of the parameters, we follow a (conservative) pro-
cedure similar to the one adopted in Ref. [5]. We assume for
each resonance the value jkV j ¼ 1.75ð0.75Þ,19 and that the

TABLE V. Masses, decay widths, and branching fractions
into a μþμ− pair for the lowest-lying charmonium resonances
Vcc̄ [10]. For some of the charmonium resonances, in absence of
information on the branching into μþμ−, we provide the branch-
ing into eþe−, which is expected to provide a good approxima-
tion of BðVcc̄ → μþμ−Þ given thatMVcc̄

≫ mμ; me. In those cases
where the branching into eþe− is given, the numerical value of
the branching is preceded by an asterisk. For the last resonance in
the table, theΨð4660Þ resonance, neither the branching into eþe−
or μþμ− has been measured, and we input the fiducial value
BðΨð4660Þ → μþμ−Þ ¼ 1ð1Þ × 10−5.

Vcc̄ MVcc̄
[GeV] Γ [MeV] BðVcc̄ → μþμ−Þ

J=ψ 3.096900(6) 0.0926(17) 0.05961(33)
Ψð2SÞ 3.68610(6) 0.294(8) 8.0ð6Þ × 10−3

Ψð3770Þ 3.7737(4) 27.2(1.0) �9.6ð7Þ × 10−6

Ψð4040Þ 4.039(1) 80(10) �1.07ð16Þ × 10−5

Ψð4160Þ 4.191(5) 70(10) �6.9ð3.3Þ × 10−6

Ψð4230Þ 4.2225(24) 48(8) 3.2ð2.9Þ × 10−5

Ψð4415Þ 4.421(4) 62(20) 2ð1Þ × 10−5

Ψð4660Þ 4.630(6) 72þ14
−12 Not seen

19It has been found [45] that jkV j ≃ 2.5 well describes the B →
Kμþμ− experimental data. The 1σ interval we choose for jkV j
thus spans the region between jkV j ¼ 2.5 and jkV j ¼ 1 which
corresponds to the value obtained in the factorization approxi-
mation.
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phases δV are completely unknown. Furthermore we
assume that the resonance parameters are completely
uncorrelated. To correctly propagate the uncertainty on
jkV j and δV , as well as the one coming from all other input
parameters (e.g. from the CKM matrix elements jV tbj and
jV tsj), we generate a large bootstrap sample of size Nb ¼
Oð1000Þ (and we assume that the parameters δV are
uniformly distributed in the interval ½0; 2πÞ), and repeat
the calculation of the rate for each bootstrap value of the
input parameters. Central values and standard errors are
then obtained from the usual bootstrap average and
dispersion formulas.
For the Wilson coefficients we take the values from

Ref. [9], which in the basis of operators which we use,
correspond to

C1ð5 GeVÞ ¼ 0.147; C2ð5 GeVÞ ¼ −1.053;

C7ð5 GeVÞ ¼ 0.330; C9ð5 GeVÞ ¼ −4.327;

C10ð5 GeVÞ ¼ 4.262; ð149Þ

and for the remaining input parameters we take [10]

jV tbj ¼ 1.014ð29Þ; jV tsj ¼ 4.15ð9Þ × 10−2;

τBs
¼ 1.521ð5Þ × 10−12 s; ð150Þ

where τBs
is the average between the lifetimes of the BsH

and BsL mesons, which are the mass eigenstates of the
Bs − B̄s system. The Wilson coefficients computed in
Ref. [9] include next-to-leading logarithm corrections.
This has a particularly large relative effect on C1 which
is reduced by approximately 40% compared to the leading
logarithmic result [46,47], and subsequently on the mag-
nitude of the combination C1 þ C2=3 entering the charm-
ing-penguin parametrization in Eq. (148), which is
increased by more than 60%. In the plot of Fig. 21 we
provide our determination of the differential branching
fraction

dB
dxγ

≡ τBs

dΓ
dxγ

; ð151Þ

as a function of xγ ∈ ½0.025; 0.4�. We give separately the
pointlike, interference, and structure-dependent contribu-
tions. As the figure shows the pointlike contribution
becomes subleading for xγ ≳ 0.15, while the interference
contribution turns out to be orders of magnitude smaller
than the structure-dependent one on the entire range of xγ
explored. At large xγ ≳ 0.2, the uncertainty stemming from
the missing charming-penguin contributions is dominant
over all other sources of uncertainties, and therefore in
order to improve the precision of the differential branching
at large xγ a rigorous treatment of the charming penguin
diagrams is necessary.

We now proceed to discuss the determination of the total
branching fraction,

Bðxcutγ Þ ¼
Z

xcutγ

0

dxγ
dB
dxγ

; ð152Þ

as a function of the upper bound Ecut
γ ¼ mBs

xcutγ =2 on the
measured photon energy. As is well known, Bðxcutγ Þ suffers
from an infrared divergence generated by the pointlike
contribution to dB=dxγ which at small xγ behaves as 1=xγ .
The infrared divergence appearing in the decay rate with
a real photon in the final state is then cancelled by the
OðαemÞ virtual photon contribution to the Bs → μþμ−
decay amplitude, through the usual Block-Nordsieck
mechanism [48]. The interference (BINTðxcutγ ÞÞ and structure-
dependent (BSDðxcutγ ÞÞ contributions are instead IR finite.
In the experimental analysis made by the LHCb Colla-
boration in Refs. [1,2] the pointlike contribution (called the
final-state-radiation contribution in Refs. [1,2]) has been

FIG. 21. Our determination of the differential branching
dB=dxγ for xγ ∈ ½0.025; 0.4�. We give separately the pointlike
(light-green band), interference (light-blue band), and structure-
dependent (light-red band) contributions. The blue and red bands
correspond respectively to the determination of the interference
and structure-dependent contribution obtained neglecting the
charming-penguin diagrams.

FIG. 22. Our determination of the IR-finite structure-dependent
[BSDðxcutγ Þ, red band] and interference [BINTðxcutγ Þ, blue band]
contributions to the partial branching fractions Bðxcutγ Þ. The
vertical blue line corresponds to the experimental cut imposed
on the photon energy by the LHCb Collaboration in Refs. [1,2].
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included in the analysis of the Bs → μþμ− invariant-mass
distribution, as a radiative tail. For the IR-finite structure-
dependent contribution (called the initial-state-radiation
contribution in Refs. [1,2]) LHCb quotes the following
upper-bound:

BLHCb
SD ð0.166Þ < 2 × 10−9: ð153Þ

In agreement with our results, the interference contribution
has been instead considered negligible in Refs. [1,2] on the
basis of the results of Ref. [4] obtained using the relativistic
dispersion approach. In Fig. 22 we provide our determi-
nation of the IR-finite structure-dependent [BSDðxcutγ Þ] and
interference [BINTðxcutγ Þ] contributions to Bðxcutγ Þ. The blue
vertical line corresponds to the experimental cut xcutγ ≃
0.166 adopted in the experimental result of Eq. (153). For
xcutγ ¼ 0.166 we obtain

BSDð0.166Þ ¼ 6.9ð9Þ × 10−11; ð154Þ

while the interference contribution is completely negli-
gible. Our result is well within the bound set by the LHCb

Collaboration [Eq. (153)]. In Table VI we collect our results
for the sum BSDþINTðxcutγ Þ≡ BSDðxcutγ Þ þ BINTðxcutγ Þ of the
interference- and structure-dependent contribution to the
partial branching fraction, for different values of xcutγ .
We can further compare our results with the ones

obtained using the model-dependent determination of
the form factors FV , FA, FTV , and FTA from Refs. [3–5].
The results of the comparison are shown in Fig. 23. As the
figure shows, our results for BINTþSD are smaller than those
obtained using the form factors from Ref. [3], and larger
than those obtained using the form factors from Refs. [4,5]
(with respect to Ref. [4] the difference is however less
pronounced). This is not surprising given that the same
trend is observed for the form factors (see Fig. 11). Finally,
we repeat that in order to obtain a more accurate theoretical
prediction for BSDðxcutγ Þ at large values of xcutγ , a first-
principles calculation of the charming-penguin contribu-
tions is needed, since our model-dependent estimate
presently represents the main source of uncertainty for
large xcutγ .

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

The rare radiative leptonic decay Bs → μþμ−γ is a
flavor-changing neutral current transition which is forbid-
den at tree level in the Standard Model and is therefore
particularly sensitive to potential new physics contribu-
tions. Although there is an additional factor of αem in the
amplitude for this process compared to that for the widely
studied Bs → μþμ− decay, the presence of the final state
photon removes the helicity suppression making the rates
for the two processes comparable. On the other hand, while
the leading hadronic effects in the Bs → lþl− (l ¼ e, μ, τ)
decay amplitude depend only on the Bs-meson decay
constant fBs

, which is known to subpercent precision from
lattice computations, the determination of the amplitude for
the Bs → μþμ−γ decay is much more complex. In this case
the nonperturbative hadronic effects depend not only on
local form factors, but also on resonance (including
“charming penguin”) and other long-distance contribu-
tions. In this paper, we have presented a first-principles
calculation of the local form factors FV , FA, FTV , FTA, and
F̄T , which provide the main contributions to the amplitude
for the Bs → μþμ−γ decay at large dimuon invariant masses

TABLE VI. Our results for the partial branching fraction BSDþINTðxcutγ Þ≡ BSDðxcutγ Þ þ BINTðxcutγ Þ for different
values of xcutγ . The interference contribution BINTðxcutγ Þ is orders of magnitude smaller than BSDðxcutγ Þ and completely
negligible within uncertainties. ffiffiffiffiffiffiffi

q2cut
p

½GeV� ¼ mBs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − xcutγ

p
4.1 4.2 4.3 4.4 4.5 4.6

BSDþINT × 1010 6.1(2.1) 5.3(1.7) 3.99(88) 3.31(74) 2.57(50) 2.02(39)
4.7 4.8 4.9 5.0 5.1 5.2

BSDþINT × 1010 1.47(22) 1.04(14) 0.685(90) 0.399(55) 0.188(29) 0.057(12)

FIG. 23. Comparison between our results for BSDþINTðxcutγ Þ
(shown in the figure by the red band), the ones obtained in
Ref. [5] (shown by the orange band), and the ones we obtained
using the form factors FV , FA, FTV , and FTA from Ref. [3]
(shown in the figure by the green band), and Ref. [4] (shown in
the figure by the blue band). We used the estimate of F̄T given in
Ref. [4] to produce the results corresponding to the blue band,
while the green band has been obtained setting F̄T ¼ 0. The
impact of F̄T on the branching fraction is however extremely
modest, and negligible within uncertainties.
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ffiffiffiffiffi
q2

p
> 4.16 GeV, above the peaks of the lowest charmo-

nium resonances. In order to determine the amplitude, we
combine our results for the form factors with previous
phenomenological estimates of the remaining contribu-
tions, in particular those from charming penguins. While
we find that the dominant contribution to the differential
branching fraction is given by the well-determined form
factor FV, the largest contribution to the uncertainty for
q2 ≲ ð4.8 GeVÞ2 at present comes from the charming
penguins.
The fitted results for the form factors are plotted as

functions of xγ in Fig. 11, where they are also compared to
earlier estimates obtained using different techniques [3–5].
It can be seen that, with a few exceptions, our results for the
form factors differ significantly from the earlier estimates
(which also differ from each other). In particular our results
for the form factor FV, which gives the largest contribution
to the amplitude, are significantly smaller than that
obtained in Ref. [3] and larger than those in Refs. [4,5].
In evaluating F̄s

T , the contribution to the form factor F̄T
in which the virtual photon is emitted from the strange
antiquark, one encounters the difficulty of performing the
analytic continuation to Euclidean spacetime due to the
presence of intermediate vector ss̄ states with masses belowffiffiffiffiffi
q2

p
. As explained in detail in Sec. IV, in order to

overcome this problem, we have employed the novel
spectral-density reconstruction technique developed in
Ref. [8]. Since the contribution of F̄T to the differential
rate is small, and in view of the computational expense of
implementing the spectral representation technique, we
have evaluated it at the same four values of xγ as the four
other form factors, but only on two ensembles and at three
values of the heavy-quark mass (mh=mc ¼ 1; 1.5; 2.5). We
do not observe any significant dependence on xγ in F̄s

TðxγÞ
and present our results for its real and imaginary parts in
Eq. (132). There is no difficulty in the continuation to
Euclidean space for F̄b

T, the contribution to the form factor
F̄T in which the virtual photon is emitted from the b-quark,
and we find that F̄b

T is an order of magnitude smaller
than FTV and FTA. The results at the four values xγ ¼
0.1; 0.2; 0.3 and 0.4 are presented in Table IV.
We use our results for the local form factors to evaluate

the Bs → μþμ−γ amplitude for q2 > ð4.16 GeVÞ2, taking
into account the systematic uncertainties due to the con-
tributions that we have not computed in the present work,
in particular those from the charming-penguin diagrams.
We present our results for the partial branching fractions
as a function of the upper cutoff on xγ (or equivalently on

the lower cutoff on
ffiffiffiffiffi
q2

p
) in Table VI. Imposing the same

cut on the photon energy [q2 > ð4.9 GeVÞ2, i.e.
xγ < 0.166] as adopted by the LHCb Collaboration, we
obtain a value for the structure-dependent contribution
to the branching fraction BSDð0.166Þ ¼ 7.0ð8Þ × 10−11,
which is well within the bound set by the LHCb

Collaboration BSDð0.166Þ < 2.0 × 10−9 [1,2]. However,
as illustrated in Figs. 11 and 23, our results disagree with
the LCSR and model/effective-theory determinations of the
branching fractions from Refs. [3–5]; in particular they are
smaller than the result in Ref. [3] and larger than those in
Refs. [4,5]. The difference can be traced back to the fact
that our result for the form factor FV, which is the dominant
contribution to the rate, is larger (smaller) than those
obtained in Refs. [3–5] by about a factor of 1.5–2.
At present our results for the branching fractions have

uncertainties ranging from Oð15%Þ for
ffiffiffiffiffiffiffi
q2cut

p
¼ 4.9 GeV,

toOð30%Þ for
ffiffiffiffiffiffiffi
q2cut

p
¼ 4.2 GeV. Our uncertainties should

already be at the level of precision that can be obtained in
the future experimental measurements of BðBs → μþμ−γÞ
at LHCb. Our analysis shows that in order to further
improve the accuracy of the theoretical predictions in the
low-q2 region, it is necessary to obtain a first-principles
determination of the (currently missing) charming-penguin
contributions, which presently constitute the main source
of uncertainty in the differential branching fraction for
q2 ≲ ð4.8 GeVÞ2. This can be seen as the difference
between the light-red band in Fig. 21, which is our full
result, and the dark-red curve in which the charming
penguin contributions have been neglected.
Since this paper was originally written, the LHCb

Collaboration has presented an upper bound based on an
analysis with the explicit detection of the final state photon
[49,50]. Above the charmonium resonances the bound is
weaker by about an order of magnitude than the earlier
result BSDðxcutγ ¼ 0.166Þ < 2 × 10−9 [1,2], which was
obtained from the shape of the spectrum of the μþμ− pair.
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APPENDIX: DETERMINATION OF THE DECAY
CONSTANT f Bs

In this appendix we discuss our determination of the
decay constant of the Bs meson, which enters in the
extrapolation formulas of Sec. III C. For this calculation,
in order to account for any correlations in the determina-
tion of the decay constants and form factors, we use
the same configurations and masses as in the determination
of the form factors FW , W ¼ fV; A; TV; TAg discussed
in Sec. III A.
For each simulated value of the heavy-light meson mass

mHs
, and for each lattice spacing, we use two different

estimators of the decay constant fHs
. The first determi-

nation of fHs
is obtained from the pseudoscalar-pseudo-

scalar two-point correlation functions

Csm-loc
PS ðtÞ≡X

x⃗

hPloc
5 ðt; x⃗ÞP†sm

5 ð0Þi;

Csm-sm
PS ðtÞ≡X

x⃗

hPsm
5 ðt; x⃗ÞP†sm

5 ð0Þi; ðA1Þ

where the labels sm and loc indicate “smeared” and “local”
respectively,

Ploc
5 ðxÞ ¼ s̄ðxÞγ5hðxÞ; Psm

5 ðxÞ ¼ s̄ðxÞγ5HN
k ðx; yÞhðyÞ;

ðA2Þ

and where

Hkðx; yÞ ¼
1

1þ 6k

 
1þ k

X
ĵ

UjðxÞδðxþ aĵ; yÞ
!

ðA3Þ

is the gauge-field-dependent Gaussian-smearing operator
that has been used to construct the interpolating operator of
the H̄s meson in the Euclidean three-point correlation
function Bμν

W ðt; k; pÞ in Eq. (22). The Wilson parameter
of the s̄ and h valence quarks entering the bilinears are
always chosen to be opposite. In the large time limit t ≫ a,

t ≪ T, the correlation functions Csm-loc
PS ðtÞ and Csm-sm

PS ðtÞ
behave as

Csm-loc
PS ðtÞ ¼ jZsm-loc

PS j2
2mHs

ðe−mHs t þ e−mHs ðT−tÞÞ þ…;

Csm-sm
PS ðtÞ ¼ jZsm-sm

PS j2
2mHs

ðe−mHs t þ e−mHs ðT−tÞÞ þ…; ðA4Þ

where the ellipsis indicate terms that are subleading in the
limit of large time separations. From the knowledge of
Zsm-loc
PS and Zsm-sm

PS it is possible to determine the decay
constant fHs

, without the need of any renormalization
constant, making use of [53]

ZPS ≡ hH̄sjs̄γ5hj0i ¼
jZsm-loc

PS j2
jZsm-sm

PS j ;

fHs
¼ aðmbare

s þmbare
h Þ jZPSj

mHs
sinhðamHs

Þ ; ðA5Þ

where mbare
s and mbare

h are the simulated values of the bare
strange and heavy quark mass. The use of smeared
interpolating operators is essential in order to improve
the signal for fHs

, as it allows the ground state contribution
to be isolated at much smaller times (as compared to the
standard local interpolating operator), where the correlation
function is generally more precise.
The second estimator of fHs

that we use is obtained
exploiting the fact that in the zero photon-momentum limit
k ¼ 0, the spatial part Hii

Að0; 0Þ of the axial hadronic tensor
is equal to ifHs

if we choose fictitious values q0s and q0h for
the electric charges of the strange and heavy quark entering
Jμem in Eq. (23), in such a way that q0s þ q0h ¼ 1 (see
Appendix C of Ref. [12] for more details on this point).
In the following we denote the determination of fHs

from

Eqs. (A1)–(A5) as f2ptHs
, and the one from Hii

Að0; 0Þ as f3ptHs
.

The two estimates of the decay constants only differ by
cutoff effects and allow us to better constrain the result
of the continuum fits. Our strategy is to perform the
continuum limit extrapolation at fixed values of mHs

,

fitting simultaneously f2ptHs
and f3ptHs

using the following
Ansatz:

ϕ2pt
Hs

≡ f2ptHs

ffiffiffiffiffiffiffiffi
mHs

p ¼ Aþ B2pta2 þD2pta4;

ϕ3pt
Hs

≡ f3ptHs

ffiffiffiffiffiffiffiffi
mHs

p ¼ Aþ B3pta2 þD3pta4; ðA6Þ

where A, B2pt=3pt, and D2pt=3pt are free fit parameters. Note
that a common continuum value is enforced. In order to
avoid overfitting, given the limited number of gauge
ensembles that we employ, we do not include fits with
both D2pt and D3pt as fit parameters, i.e. we set either D2pt

or D3pt or both to zero. The fits are performed minimizing
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a correlated χ2 function which takes into account the
correlation between ϕ2pt

Hs
and ϕ3pt

Hs
evaluated on the same

gauge ensemble. The results of the extrapolation to the
continuum limit for the five simulated values of mHs

are
illustrated in Fig. 24. We have performed a total of six
different fits for each mHs

, which differ depending on
whether the ensemble with the coarsest lattice spacing is
included or not, and on whether we include or neglect the
terms proportional to a4, i.e. whether we set D2pt and/or
D3pt to zero. The results obtained from the different fits are
then combined using the AIC, which has already been
discussed in Sec. III A. To be conservative, we add linearly
the systematic and statistical errors from AIC. Having
extrapolated the decay constants fHs

for each of the five
simulated values of mHs

to the continuum limit, in order to
obtain fBs

we need to perform the extrapolation in the

mass. To do so, we make use of the heavy-quark scaling
relation

ϕðmHs
Þ ¼ const ×

�
1þ B

mHs

þOðm−2
Hs
Þ
�
: ðA7Þ

As is well known, Eq. (A7) is valid exactly only in the
effective theory at the bare level. Logarithmic corrections
to Eq. (A7) are generated by the nonzero anomalous
dimension of the axial current in the HQET, as well as
from its matching to the axial current in full QCD. Let
JΓðμ0Þ ¼ Z−1

J ðαsðμÞÞlΓh, where Γ is one of the Dirac
matrices and l and h denote light and heavy quark fields
in QCD, be a generic renormalized heavy-light current in
QCD and let J̃ΓðμÞ ¼ Z−1

J̃
ðαsðμ0ÞÞlΓhv be its counterpart

in the HQET. The relation between the two currents is

FIG. 24. Continuum limit extrapolation of ϕHs
for the five different simulated values of the heavy-strange meson mass mHs

. For each
mass we show the continuum limit fits obtained employing all four lattice spacings. The blue and red data points correspond respectively
to the estimator ϕ2pt and ϕ3pt. The green, red, and blue bands correspond respectively to the pure a2 fit, and to the a4 fit with D3pt ¼ 0

and D2pt ¼ 0. Finally, the black data point at a2 ≃ 0 corresponds to our final determination, which is obtained combining the six
different fits we performed using the AIC.
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given, at leading order, in the heavy-quark mass mh,
by [54]

JΓðμ0Þ ¼ CΓðmh;mhÞ exp
�Z

αsðμ0Þ

αsðmhÞ

γJðαsÞ
2βðαsÞ

dαs
αs

−
Z

αsðμ0Þ

αsðmhÞ

γJ̃ðαsÞ
2βðαsÞ

dαs
αs

�
J̃Γðμ0Þ; ðA8Þ

where βðαsÞ is the QCD β function, and γJðJ̃Þ is the

anomalous dimension of the current JðJ̃Þ. In the case
of the QCD axial current one has γJ ¼ 0. CΓðmh;mhÞ
is the matching coefficient and is obtained by imposing
the equality between the renormalized proper vertices of
the quark bilinear in question, evaluated in QCD and in
the HQET at the heavy quark scale mh. Its two-loop
expression for the axial current has been computed in
Ref. [55] and is given by

Cγ0γ5ðmh;mhÞ ¼ 1 −
2

3

αsðmhÞ
π

− 2.95

�
αsðmhÞ

π

�
2

: ðA9Þ

The anomalous dimension γJ̃ in the HQET (which does
not depend on the specific Γ considered) has been
computed at three loops in Ref. [54]. In summary, the
relation in Eq. (A7) gets modified by the matching and
by the running of J̃Γðμ0Þ into

ϕðmHs
Þ ¼ Cγ0γ5ðmh;mhÞ exp

�Z
αsðmhÞ

0

γJ̃ðαsÞ
2βðαsÞ

dαs
αs

�

× const0 ×
�
1þ B

mHs

þOðm−2
Hs
Þ
�
; ðA10Þ

and we have reabsorbed the μ0 dependence in Eq. (A8)
into the constant factor, const0. A delicate point of the
analysis is the determination of the heavy quark mass mh
of the HQET, which should be identified with the pole
mass. Notoriously, the pole mass is affected by renor-
malon ambiguities and its perturbative expansion in terms

of the MS mass mMS
h ðmMS

h Þ is asymptotically divergent.
To avoid the use of the pole mass, we follow two
different strategies and use, in place of mh, either the
heavy-strange meson mass mHs

[mHs
−mh ≃OðΛQCDÞ],

or the minimal-renormalon-subtracted mass advocated in
Ref. [56] (see also Ref. [57] for another alternative to the
use of the pole mass).

The result of the extrapolation obtained replacing mh
withmHs

in Eq. (A10), and with the constant term and the B
coefficient considered as free fit parameters, is shown in
Fig. 25. The fit takes fully into account the correlation
between the values of the decay constant obtained at the
different values of mHs

. The resulting χ2=dof of the fit is
very good and smaller than unity. By repeating the fit
employing the minimal-renormalon-subtracted mass, we
find that the value of fBs

changes by less than 0.3σ, and
therefore we do not add any additional systematic error. We
obtain the value

fBs
¼ 224.5ð5.0Þ MeV; ðA11Þ

which agrees with the Nf ¼ 2þ 1þ 1 FLAG average
fFLAGBs

¼ 230.3ð1.3Þ MeV at the level of 1.1σ. Our final
uncertainty is however much larger, which reflects the fact
that our calculation is not tailored to be a precise deter-
mination of fBs

. Our main interest is in the calculation of
the local form factors contributing to the Bs → μþμ−γ
decay amplitude. The main limitation preventing a more
precise determination of fBs

comes from the systematic
uncertainty associated to the continuum limit extrapolation,
performed here with a rather limited number of lattice
spacings. The new gauge ensembles that the Extended
Twisted Mass Collaboration will produce at smaller values
of the lattice spacing, will allow for significantly reduced
uncertainties on fBs

.

FIG. 25. Extrapolation of the decay constant fHs
to the physical

Bs meson mass mBs
≃ 5.367 GeV using the Ansatz in Eq. (A10)

and with mh replaced by mHs
. The red curve corresponds to the

best-fit function, while the dashed vertical line corresponds to the
inverse mass of the Bs meson. The reduced χ2 of the fit is smaller
than unity. Our final determination of fBs

is given in Eq. (A11).
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