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We determine, by means of lattice QCD calculations, the local form factors describing the B, — u™ ™y
decay, in the so-called electroquenched approximation. For this analysis we make use of the gauge
configurations produced by the ETM Collaboration with Ny = 2 + 1 + 1 flavor of Wilson-Clover twisted-
mass fermions at maximal twist. To obtain the B; meson form factors, we perform simulations for several
heavy-strange meson masses 1 _in the range my_€ [mp_,2mp ], and extrapolate to the physical B, meson
point mg ~5.367 GeV making use of the HQET scaling laws. We cover the region of large dimuon

invariant masses \/g”> > 4.16 GeV, and use our results to determine the branching fraction for
B, — p* "y, which has been recently measured by LHCb in the region \/g> > 4.9 GeV. The largest

contribution to the uncertainty in the partial branching fractions at values of \/¢> < 4.8 GeV is now due to
resonance and other long-distance effects, including those from ‘“charming penguins,” which we estimate

by summing over the contributions from the J* = 1~ charmonium resonances.

DOI: 10.1103/PhysRevD.109.114506

I. INTRODUCTION

The flavor-changing neutral current (FCNC) transition
B, — puu~y, being strongly suppressed in the Standard
Model (SM), represents an ideal channel to look for signals
of new physics (NP). Although there is an additional factor
of a,,, in the amplitude for this process compared to that for
the widely studied B; — u"u~ decay, the presence of the
final state energetic photon removes the helicity suppres-
sion making the rates for the two processes approximately
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comparable. The LHCb Collaboration has recently
searched for signals of this process [1,2] but found no
significant events resulting in an upper limit for the
branching ratio of B(B; — u*u~y) < 2.0 x 10~ for pho-
tons y emitted by the quarks' (the so-called initial-state
radiation contribution, or ISR) and for dimuon invariant

masses \/? > 4.9 GeV. Future measurements will be able
to reduce the experimental uncertainties and cover a larger
portion of the phase space reaching lower values of g>. On
the other hand, a first-principles theoretical prediction of

'"The final-state radiation (FSR) contribution, in which the
photon is emitted from a final-state muon, dominates at small
photon energies and has been subtracted in Ref. [1]. The
interference between FSR and ISR is instead found to be
negligible.
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the B, — u™ "y decay rate is currently missing. While the
leading hadronic effects in the B, —» £¢~ (£ = e, u, 1)
decay amplitude depend only on the Bj;-meson decay
constant f , which is known to subpercent precision from
lattice computations, the determination of the amplitude for
the B; — u" "y decay is much more complex. In this case
the nonperturbative hadronic effects depend not only on
local form factors, but also on resonance contributions.
Existing estimates of the rate are based on light-cone sum
rules (LCSR) [3], on model/effective-theory calculations,
such as the relativistic dispersion approach based on the
constituent-quark picture [4] and, more recently, on the use
of existing lattice QCD results for the radiative leptonic
form factors of the D; meson to estimate some of the B, —
uTp"y transition form factors assuming vector-meson
dominance (VMD) [5].

The aim of this paper is to provide a first-principles
determination, using lattice QCD, of the local form
factors Fy, Fy, Fry, Frs, and Fy, which represent the
only nonperturbative QCD input in the determination
of the B, — utu~y transition matrix elements’
(y(e)u"u=|07.9.10|By), where ¢ is the photon’s polarization
vector, and the O; are the standard operators appearing
in the effective weak Hamiltonian H’7* describing the
FCNC b — s transition and are defined in Eq. (3) below.
We work in the so-called electroquenched approximation,
and explore the region of large dimuon invariant masses

\/? > 4.16 GeV. In this region, the impact of the con-
tributions from the operators O|_g g (Which are neglected at
present) stemming from the four-quark operators and from
the chromomagnetic penguin operator in H2;* is expected
to be modest [6], and the rate can be reliably computed
from the knowledge of the local form factors only. As an
estimate of the systematic error induced by this approxi-
mation, we employ a phenomenological description of the
charming-penguin contribution, illustrated in Fig. 4 below,
which is expected to be among the largest of the contri-
butions we have neglected because of the presence of broad
charmonium resonances which are near or within the region
of ¢*> we consider. While we find that the differential
branching fractions themselves are dominated by the form
factors (in particular by Fy), the dominant uncertainty for

\/? < 4.8 GeV is that due to charming penguin contri-
butions (see Fig. 22) and therefore in order to improve the
precision and to be able to reach lower values of ¢° the
development of a rigorous treatment of the contributions
from O)_¢g will be necessary.

For this calculation we employ the same set of gauge
configurations which have recently been used in our work
on the radiative leptonic form factors of the D, meson [7].
The configurations have been generated by the Extended

The text and diagrams here and below correspond to the
decay of the B, meson, which contains a valence b-quark.

Twisted Mass Collaboration (ETMC) with Ny =2 + 1 + 1
flavors of Wilson-clover twisted-mass fermions at maximal
twist, and sea-quark masses tuned very close to their
physical values for all quark flavors. The ensembles
correspond to four values of the lattice spacing a in the
range [0.056,0.09] fm.

Our strategy for obtaining results for the physical B,
meson, is to perform simulations at a series of unphysical
(lighter) heavy-strange pseudoscalar mesons H,, con-
sisting of a heavy quark () and a strange antiquark (5),
with my € [mp_,2mp, |. We then use heavy quark effective
theory (HQET) relations to guide the extrapolation of the
results to the physical B, meson. For each heavy-quark
mass we evaluate the form factors at four different values of
the energy of the photon E, (as measured in the rest frame
of the decaying meson), which we keep fixed in units of the
heavy-strange meson mass my . The values are given by
x, =2E,/my_=0.1,0.2,0.3 and 0.4, and for my_= mg
this corresponds to g > (4.16 GeV)?. Our main result
is the calculation of Bgp (xy"), which is the ISR contribu-
tion (to which we refer to in the paper as the structure-
dependent contribution) to the branching fraction for
q> > mp (1 —x™), and is given in Table VI. Our result

at x;"' = 0.166 (i.e. q* > (4.9 GeV)?) is

Bsp (xS = 0.166) = 6.9(9) x 10711, (1)

which is well within the current upper bound set by the
LHCb, B(x$" =0.166) < 2.0 x 107°. Anticipating that
future experiments will be able to access values of g>
below (4.9 GeV)?, we present in Table VI the partial
branching fractions corresponding to values of the lower

cutoff v/ g2, = mpg /1 —x;" from 4.1 to 5.2 GeV in steps
of 0.1 GeV. We find that the partial branching fractions in

the ¢° region we explored is dominated by the contribution
of the vector form factor F'y; the combined contribution of
all other local form factors F 4, Fyry, Fra, Fy is of the order
of O(10%).

The plan for the remainder of this paper is as follows. In
Sec. I we briefly recall the definition of the local form
factors in terms of matrix elements of the operators in the
effective weak Hamiltonian. In Sec. III we explain our
strategy for the determination of the local form factors F'y,
F,, Fry, and Fr4, and present the results of the continuum
extrapolation for each value of the simulated heavy-strange
meson mass. We also discuss the heavy-quark scaling
relations, which are then used to extrapolate the results to
the mass of the physical B, meson. In Sec. IV we present
our strategy for evaluating the local form factor 7, whose
lattice determination is complicated by the problem of the
analytic continuation to Euclidean space-time of the rel-
evant Minkowski correlation functions. We tackle this
problem using the spectral reconstruction technique devel-
oped in Ref. [8]. In Sec. V we provide our determination of
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the differential cross section for B; — u* u~y as well as the II. THE EFFECTIVE WEAK HAMILTONIAN
total differential rate for different ¢> intervals. We then AND LOCAL FORM FACTORS
compare our results with existing estimates as well as
with the LHCb measurement [1,2] corresponding to the
interval g> > (4.9 GeV)?. Finally, in Sec. VI we present
our conclusions and outlook for future improvements.

The low-energy effective weak Hamiltonian descri-
bing the b — s transition, neglecting doubly Cabibbo-
suppressed contributions, is given by [9]

é’f?s=2fGFVsz:‘s[ZC OC+ZC )O; +“ech } 2)

i=1.2

where G is the Fermi constant, C; are the Wilson coefficients, and O; are local operators renormalized at the scale y. The
latter are given by (Ppg) = (1 F7°)/2)

Of = (57" Pc;)(C;y"PLb;), 05 = (5y*Prc)(er'PLb), (3)
my, _ v . gsmy _ v

0, = —7sa" F,,Pgb, Og = e =—"50""G,, Pgb, (4)

Oy = (57" PLb)(fiy,m), O = (5r"PLb)(iy,r°p). (5)

while the operators O3_g are the QCD penguins. In the previous equations i, j are color indices, while F,, and G, are the
electromagnetic and gluonic field strength tensor, respectively. In the following, for the CKM matrix elements we use the
PDG values |Vy| = 1.014(29) and |V| = 4.15(9) x 1072 [10]. Our conventions for the gamma matrices are

i
=%, o= Sl (6)

0123 _

while for the Levi-Civita tensor we adopt the convention & —1. The transition amplitude for the decay of the B, meson

is given by

A[Bs - /ﬁﬂ_?’] = <7(k7 €)M+(P1)/4_(P2)| - Hgf?s|Bs(p)>QCD+QED’ (7)

where k = (E, = |k|.k) and p = (Ep ,p) are the momenta of the photon and B; meson respectively, ¢ is the photon’s
polarization vector, and p; and p, the momenta of the y* and u~ respectively. The dimuon four-momentum is then
q = p + p>» = p — k. The amplitude A is then expanded to leading nonvanishing order ((’)(aer/nz)) in the electromagnetic

coupling a.,,, and can be expressed as [9]

9 .
D Aem * % v v l v
A[By — puy] = _eLGFthVtsgu Z CiH"Ly, + Cyo | HoLa, — —fB\.Lﬁ Du (8)
\/Eﬂ i=1 2
where we have defined
Ly =a(py)y o(py), Ly =a(p)rro(p). 9)

The last term in Eq. (8), which only depends on the leptonic tensor (m, is the muon mass)

Ly = —ia(p,) y”% S =y wy"}' v(p1). (10)
(p=p1)* —m, (p=p2)* —my

and on the decay constant f5 of the B; meson, corresponds to the FSR contribution (to which we refer in the following as to

the pointlike contribution). The nonperturbative contribution to the structure-dependent part of the amplitude is instead

encoded in the hadronic tensors H:", which can be grouped into three different categories: the contribution from the

semileptonic operators Oqy_;, the contribution from the photon penguin operator O;, and finally the contributions from the

four-fermion operators O;_¢ and from the chromomagnetic penguin operator Og.
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S 9,10 b Q.10

FIG. 1. Graphical representation of the contribution to the B, — u* "y decay amplitude from the semileptonic operators Qg and O, .

FIG. 2. Graphical representation of the contribution to the B, — u*u~y decay amplitude from the photon penguin operator O; in
which the final-state photon is emitted directly from one of the valence quarks.

The contributions from the semileptonic operators are depicted graphically in Fig. 1. For these contributions the real
photon y is emitted directly from one of the two quarks. The corresponding tensors H{’ |, are given by

HE (p, k) = HY(p, ) = i / e (0|57 P, b](0)Tin(y) B, (p)

. F F
= —i[g* (k- q) — ¢"k*] 2m2 - 8"”""kpqgﬁ, (11)

where J%,, is the electromagnetic (e.m.) current, and T represents “time-ordered.” The two tensors are parametrized by
vector (Fy) and axial (F,) form factors, which are scalar functions of the single invariant of the process, namely the dimuon
invariant mass ¢> = (p — k). In the following, as in our previous papers, we present the form factors as functions of the
dimensionless variable

. 4
="t =1-2 . 0<x, <1-—~, (12)

2
mBS mBS I’l’l&v

FIG. 3. Graphical representation of the contribution to the B; — y*u~y amplitude from the photon penguin operator (; in which the
final-state photon is emitted from the penguin operator.
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The contribution from the photon penguin operator O is
illustrated in Figs. 2 and 3. In this case there are two types
of contribution: those in which the final-state real photon is
emitted by the valence quarks (Fig. 2), and those in which
the real photon is emitted by the penguin vertex (Fig. 3). We
indicate by H%, and H%, the hadronic tensor correspon-
ding to the first and second contribution respectively, with
HY = HY, + H%y. The hadronic tensor HY) is given by

HY, (p.k)
2 4., Hiky T ) (4 2
= 17 d*ye"™T(0|[-i56"" q,Pgb|(0)Jem(y)|Bs(P))

_ —i[g””(k . q) _ qﬂky] FTAzmb + 8ﬂy,)akpq6 Frvzmb (13)
q q
where the two tensor form factors Fyy and F7, are again
scalar functions of x,. Exploiting the relation yot =
—ie"??c,,/2 one can show that the two tensor form factors
obey the kinematical constraint Fry(1) = Fra(1) (see
also Ref. [4]). The hadronic tensor H7 s> corresponding
to the emission of the real photon from the FCNC vertex is

instead given by
Hp(p.k)

=20 [ e (0]-isor ki) (0) (1) By )
C]

F
— —ilg" (k- q) - ' T; ST kg, S (14

In this case, as discussed in Ref. [4], the two form factors

obey FTV( ,) = Fra(x,) = Fr(x,).” Moreover at x, = 1,
ie. at ¢ —k2 0 one has
Fry(1) = Fra(1) :FT<1)' (15)

The form factor F7(x,) is the most difficult to determine
on the lattice. When the virtual photon y* is emitted
by a valence strange quark, the presence of intermediate
JP =17 55 resonance states forbids the analytic continu-
ation to Euclidean spacetime of the relevant Minkowskian
correlation functions needed to evaluate Fy(x,). In this
case, in order to evaluate the form factor F 7, we rely on
the spectral density reconstruction technique developed in
Ref. [8]. It is the form factors Fy, F, Fyy, Fra, and Fy
which we evaluate from first principles via lattice QCD
simulations. In the following we sometimes refer to them as
local form factors.

The remaining contributions to the amplitude A[B; —
utuy] are those corresponding to the four-quark operators

3Agajn this can be shown making use of the relation
Yot = —ie"”/’”ap(,/Z.

s 0§05 ¢

FIG. 4. Graphical representation of the contribution to the
B, — u"u~y amplitude from the four-quarks operators O and
O5 with the virtual photon y* emitted by the charm loop (the
corresponding diagram with the real photon emitted from the
strange valence quark is not shown).

and to the chromomagnetic penguin operator. The corre-
sponding hadronic tensors H/”,  ; are given by

4
Hﬁl—ég(l”k) ( ﬂ) /d4yd4xe’kv igx
’ 7

< {01 Jem(¥)Jem () O;(0) B, (p)).  (16)

In the high-¢? region which we consider, as discussed in
Ref. [6], the contribution of the presently neglected
terms from O,_; g is expected to be small, since they
are of higher order in the 1/m;, expansion. Among
them, one of the most important contributions is that of
the charming-penguin diagram depicted in Fig. 4, due
to the presence of broad charmonium resonance con-
tributions, which are near or within the region of g> we
have explored.4
To take into account this contribution, we follow
Refs. [4-6] and include the charming-penguin diagram
in Fig. 4 as a g>-dependent shift of the Wilson coefficient
Cy, namely
Co = C§'(q*) = Co + ACo(q?), (17)
where ACy(q?) can be phenomenologically modeled as a

sum over the contributions from all the J¥ = 1~ charmo-
nium resonances [4,5,11]

7 C
7)== (6 F) Clkvle

em

ACy(

% myB(V -y )y

, 18
q* - m‘z/ + imyl'y (18)

4Charming-penguin diagrams of the type shown in Fig. 4
also arise from the QCD penguin operators O;_¢. However,
these contributions are further suppressed by the small
Wilson coefficients C;_g and we neglect them in this first
study.
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where I'y is the total decay width of the resonance V, my, its
mass, and B(V — p"pu~) the branching fraction for the
decay into a dimuon.” The coefficient ky, and the phase shift
Oy take into account deviations from the factorization
approximation, which corresponds to &, = |ky|—1=0.
The values of (some of) the parameters entering Eq. (18),
for the low-lying resonances, can be taken from experi-
ments, but clearly this introduces a systematic error in our
prediction. In the evaluation of the rate, we will use
Eq. (18), and estimate the associated systematic error in
a conservative way by varying the input parameters over a
sufficiently broad range. The conservative systematic we
associate to the missing charming-penguin diagram in
Fig. 4 is expected to be sufficiently large to cover the

Eq. (16). In the future, in order to remove this source of
systematic uncertainty and reduce the theory error, it will be
extremely important to evaluate H’i‘il_ag on the lattice, in
particular the charming-penguin contribution of Fig. 4,
which we plan to do. We now turn to the discussion of the
calculation of the local form factors Fy, Fy, Fry, Fra,
and F.

III. THE LOCAL FORM FACTORS Fy, F,, Fyv,
AND Fp,

As illustrated in the previous section, the form factors
Fy(x,), W={V,A,TV,TA} can be computed from
QCD matrix elements involving the e.m. and the following

uncertainty of all the other missing contributions from  currents

Ty = =iZy(W)36"b 2 (19)

Jy = Zysy*ysb,
mpg

J = Z,57°b, Jh, = —iZp(u)56%ysh 2
m

B

s s

where, as already stated, ¢g* = p* — k¥ is the four-momentum of the charged muon pair. In the previous equation we have
introduced the scheme- and scale-dependent renormalization constant (RC) Zy(u) of the tensor current, and the (finite) RCs
of the axial and vector currents that in twisted-mass QCD are chirally rotated with respect to the ones of standard Wilson
fermions. From now on, we work in the rest frame of the decaying meson and thus set p = (mg_,0). In terms of the
hadronic tensors

Hi (0.0 =1 [ aye UL OB O). W= {V.A.TV. T4} (20)
and recalling the definitions given in Egs. (11)—(13), one has that
F F
HY (p.k) = i[(k- )¢ — ¢k ]—>.  HY(p.k) = ¢“"k,p,—~
mBl\ mB\_
H (po k) = —il(k- )9 — k] TA . H% (p k) = ek p, L1V (21
ra(p. k) = —i[(k-q)9" — q ]mB, rv(p.k) =e PP )

s s

In Sec. I and Appendix B of Ref. [12] we show in detail that for the emission of a real photon, the hadronic tensor HY, can
be extracted for all values of x, from the Euclidean three-point correlation function:

BY(t.k)=a ET: @ "y (0(T/2 = 1) + 0(t, — T/2)e 5T ) B (0T[4, (1.0) o (1,.3) ) (0.%)]0).  (22)
t,=0 y x

where T is the temporal extent of the lattice % a is the lattice spacing, and qﬂh is an interpolating operator with the quantum

numbers to create the B, meson which, as in Ref. [7], we smear using Gaussian smearing. For the electromagnetic current
Jem we use the exactly conserved point-split lattice operator

_ o drpys =7t o N
Jem(x) = Zf:J’} = _;%"{V/f(x)fTUﬂ(x)Wf(x HR) =l ) =

>The result in Eq. (18) depends upon the choice of the scheme and scale at which the Wilson coefficients, and in particular C; + C, /3,
are evaluated. In a first principles calculation of charming penguin contributions, this dependence is cancelled by the corresponding
dependence of the matrix elements of the renormalized four-quarks operators.

°T is not to be confused with T which represents time-ordered.
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Jem
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N 00 ng Q_Wef
LYt

c,,bdl

(S
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0@|
<.
¢

2
T0s

FIG. 5. The diagram on the left represents the quark-line disconnected contributions to the correlation function B, in which the
photon is emitted by a sea quark. In our numerical simulations we work in the electroquenched approximation and neglect such
diagrams. The diagram on the right represents the quark-line connected contributions and illustrates our choice of the spatial boundary
conditions, which allow us to set arbitrary values for the meson and photon spatial momenta. The spatial momenta of the valence quarks

in terms of the twisting angles are as indicated. Each diagram implicitly includes all orders in QCD.

In the forward half of the lattice 0 <« r < T'/2 one has

2m
RY(1,k) = B

where the ellipsis indicates terms that vanish exponen-
tially in the large ¢ limit. Equation (22) is valid for
t <T/2, however, as explained in Appendix B of
Ref. [12], H%/(p,k) can also be obtained from the
backward half of the lattice T/2 <t < T exploiting
time-reversal symmetry. The Wick contractions of the
correlation function in Eq. (22) give rise to two distinct
topologies of Feynman diagrams, namely to quark-line
connected and quark-line disconnected diagrams; these
are illustrated in Fig. 5. In the disconnected diagrams
the photon is emitted from a sea quark. This contribu-
tion vanishes in the SU(3)-symmetric limit, and when
loops of charmed and heavier quarks are omitted, and is
neglected in the present study; this is the so-called
electroquenched approximation. We focus instead on
the calculation of the dominant, quark-connected con-
tributions for which only the strange- and bottom-
quark components of the electromagnetic current Jep,
contribute.

As explained in Ref. [12], it is possible to use twisted
boundary conditions to assign arbitrary values to
momenta of the photon and B;-meson, k and p respec-
tively, at the price of violations of unitarity which vanish
exponentially with the lattice extent L [13—15]. This is
achieved by treating the two quark propagators beginning
or ending at y, i.e. the point at which the electromag-
netic current is inserted in the right-hand diagram of
Fig. 5, as corresponding to two distinct quark fields
w', ' having the same mass and quantum number, but
satisfying different spatial boundary conditions. Defining
yw* to be the spectator quark field in the right-hand

e E (B (0)[¢5, (0)[0)

By (t.k) = Hy (p.k) +---. (24)

|
diagram of Fig. 5, we set the spatial boundary conditions
of the three quark fields v, y', w* as follows:

w'(x+nL) =exp(2zin-0,)y"(x), r=1{0,1,s}, (25)

where 6y, are arbitrary spatial vectors of angles, in
terms of which the photon and meson lattice momenta
can be written as

2 . (arm 2 . [an
p = —sm <f (00 —05)), k= ;Sll’l <f (00 —0,)).

(26)

We choose the photon momentum to be in the z
direction, k = (0,0, k), and set

6,=6,=0, 0,=(0,0,0,). (27)
With such a choice of kinematics, the form factors can be
obtained from the large time behavior, 0 < t < T/2, of
the following estimators:

1
Ry(1l) = S (RP(l) - R (1)), (28)
Z
— L 11 2

Ra(1) = 5 (RY(0.K) + RE(1.K) oz Fol,).
| TS 21 (29)
Ryy(t.k) = Z_kZ(RTV(t’ k) — Ry (1,k)) @ Fry(x,),
(30)
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TABLE I

Parameters of the ETMC ensembles used in this work. We present the light-quark bare mass,

ap, = au, = auy, the lattice spacing a, the pion mass m,, the lattice size L and the number of gauge configurations
N, that have been used for each ensemble. The values of the lattice spacing are determined as explained in

Appendix B of Ref. [22] using the value fi,sOQCD = 130.4(2) MeV for the pion decay constant.

Ensemble B V/a* a (fm) apy m, (MeV) L (fm) N,
A48 1.726 48% x 128 0.09075(54) 0.00120 174.5(1.1) 4.36 109
B64 1.778 643 x 128 0.07957(13) 0.00072 140.2(0.2) 5.09 400
C80 1.836 803 x 160 0.06821(13) 0.00060 136.7(0.2) 5.46 72
D96 1.900 96° x 192 0.05692(12) 0.00054 140.8(0.2) 5.46 100

___1 pn 2
Ryu(t.k) = 2E, (Ryu(t.k) + Ry (t.k)) m Fra(x,).
(31)

For each form factor it is useful to distinguish the two
contributions due to the emission of the real photon from
the bottom and strange quarks (left and right diagrams in
Figs. 1 and 2). We denote the two contributions by F%, and
F3, for W = {V,A, TV, TA}. They are simply obtained by
setting respectively the electric charges g, = Oand g, = Oin
all the previous formulas. A minor complication arises in the
axial channel W = A due to the presence of a pointlike
contribution, proportional to g, 5 and —q,fp_respectively
in F4 and F%, which then cancels in the sum of the two
contributions due to g, = ¢g,. This pointlike contribution,
which is always present in the radiative leptonic decays of
charged pseudoscalar mesons [12], can however, be easily
removed by calculating the following zero-momentum-
subtracted estimator:

ROP (1.4) = (R}ﬁ”) (.k) — ROV (1, 0)

n Ril(s,b)(t, k) — Ri2,(s.b)(t’ 0))

—F .
0<xr<T/2 A (xy)

(32)
We refer the reader to Ref. [12] for more details on the
removal of the pointlike contribution.

A. Numerical results for Fy, Fy, Fyy, Fry

We now turn to the discussion of our numerical results
for Fy, F4, Fry, and Fr. They have been obtained using
the gauge field configurations generated by the ETMC
employing the Iwasaki gluon action [16] and Ny =2 +
1+ 1 flavors of Wilson-Clover twisted-mass fermions
at maximal twist [17]. This framework guarantees the
automatic O(a) improvement of parity-even observables
[18,19]. Moreover, the introduction of the clover term
significantly reduces the cutoff effects (see Ref. [20] and
references therein). A detailed description of the ETMC
ensembles can be found in Refs. [20-23], and we also refer

to Ref. [7] for additional information on the tuning of the
sea and valence quark masses. In Table I we present the
parameters of the ETMC ensembles that have been used in
the present computation, while in Table II we collect the
relevant RCs used to renormalize the vector, axial, and
tensor currents. The presently available lattice spacings are
not small enough to perform simulations at the physical
bottom quark mass. For this reason our strategy to reach the
physical B, meson mass, is to perform simulations for a
series of heavy-strange quark masses, and then extrapolate
to the physical point using HQET scaling relations, to be
discussed in the next sections. For each of the ensembles
of Table I, we have performed simulations at five dif-
ferent values of my , the mass of the lightest pseudoscalar
meson composed of a valence heavy quark of mass m,, and
a strange antiquark with mass mg. The five values cor-
respond to the following five mj,/m, ratios (m, is the
mass of the charm quark determined by the condition
m, =2.984(4) GeV, see Refs. [8,22]):

"M 0 1.15.2.255.3.

o (33)
Such values of the heavy quark masses my; give rise
to heavy-strange meson masses my in the range
my /mp €[1,2]. The highest values of the bare heavy
quark masses which we have used for each gauge ensemble
are am;™ = 0.83,0.72,0.61,0.51 for the A48, B64, C80,

TABLE II. The values of the vector (Zy), axial (Z,), and tensor
(Z7) renormalization constants, for the ETMC ensembles of
Table 1. Z; values were kindly provided to us by the ETMC
and are from a preliminary analysis [24]. For the present work,
we increased their uncertainties by a factor of 3. The scale-
independent renormalization constants Zy and Z, have been
determined in Ref. [22] using Ward-identity methods.

Ensemble Zy Zy Z;(MS, 5 GeV)
A48 0.68700(15) 0.7284(18) 0.7541(98)
B64 0.706379(24)  0.74294(24) 0.7735(93)
C80 0.725404(19)  0.75830(16) 0.7928(85)
D96 0.744108(12)  0.77395(12) 0.8141(74)
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FIG. 6. The estimators Ry, (¢, x,) (left) and R’v’v(t, x,) (right) for W = {V,A,TV,TA}. The data corresponds to the D96 ensemble at
x, = 0.2 and for m;, = 2m,. The blue bands show our estimates of the form factors from a constant fit in the region where the estimators

Rs)f,'w(t, x,) display a plateau.

and D96 ensembles respectively. For each ensemble and
heavy quark mass mj;, we evaluate the Euclidean three-
point function BYy (t; k, p) at four evenly spaced values of
the dimensionless variable x,:

_2E _
X, = L =0.1,02,03,04.
Y my

(34)

K

For an illustration of the quality of the plateaus, we present in
Fig. 6 the estimators Rif,’b) (t.x,)= R%f,‘l7> (2.(0,0,k,(x,)),
W = {V,A, TV ,TA}, obtained at x, = 0.2 on the finest
lattice spacing ensemble (D96) for m,,/m, ~ 2. In each figure
the blue band shows our estimate of the corresponding
form factor, obtained from a constant fit in the region where

the estimators Rgf,’b)(t, x,) display a plateau. The band
already includes the systematic error due to the choice
of the fit interval, which is estimated by performing a
second fit shifting the fit interval forward in time by an
amount AT = 0.4,0.35,0.30,0.27,0.25 fm, respectively
for my,/m, ~1,1.5,2,2.5,3, and then adding the difference
between the central values obtained in the two different

fits as a systematic error.’ For the tensor form factors the
results are obtained using the preliminary values of Z7(u) in
the MS scheme at u =5 GeV, provided to us by the
ETMC [24].

The ensembles of Table I all correspond to lattices with a
spatial extent in the range L ~ 4.4-5.4 fm. These volumes
are expected to be large enough for the finite size effects
(FSEs) on the form factors to be small. For the smallest
heavy quark mass considered, m; = m,, and for the form
factors F4 and Fy, this has been explicitly checked in
Ref. [7] using an additional ensemble, the B96, which has a
large spatial extent L of more than 7.5 fm. Here, using the
B96 ensemble, we have checked that FSEs are very small
(at the level of our statistical uncertainty or smaller) also for
the tensorial form factors Fry and Fr,, and we therefore
consider our results on the ensembles listed in Table I as
infinite-volume quantities.

"The choice of AT, for each value of 1, has been adjusted so
that this is small enough to avoid the region of large times where
the signal-to-noise ratio of the estimator R} is very small, and
at the same time large enough to provide a reasonable estimate of
the systematics due to the choice of the fit interval.
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Next we consider the cutoff effects. For each value of x,
and my , the extrapolation to the continuum limit is
performed using the following Ansatz:

b,s b,s b.s
Fio (x, my ,a) = Fip) (x,, my ) (1 + Do) (x,, myy )a?),

W ={V.A,TV,TA}, (35)

where F %’Q (x,,my ) and D%’s) (x,, my_) are fit parameters
which depend on x, and my , and are different for the four
channels W = {V,A, TV, TA} and for the two contributions
F3, and FY,. Statistical correlations are taken into account
performing a full jackknife analysis of all our data. We esti-
mate the systematic uncertainty due to the continuum-limit
extrapolation by performing two different linear extrapola-
tions: in the first one we include the full dataset, and in the
second one we remove the measurements on the ensemble
with the largest lattice spacing (A48). The two results are
combined as follows: let f4 and fp represent generically the
continuum values of Fy (x,), foragiven W={V,A,TV,TA}
and x, € {0.1, ..., 0.4}, obtained respectively from the linear
fit by including or omitting the result at the coarsest lattice
spacing. We determine the final central value f through a
weighted average of the form

f=wafa+wgfs.

Our estimate of the systematic error, which is added (linearly
to be conservative) to the statistical uncertainty, is then
obtained using

wq +wp =L (36)

Ugyst = Zwi(fi _.?)2'

i=A.B

(37)

The weights w;, withi = {A, B}, are chosen according to the
akaike information criterion [25] (AIC), namely
+2Np=Ny)/2

(2
w; o« e i

(38)

where y7 is the total y? obtained in the ith fit, and N. éQrs and

N, E;Las are the corresponding number of fit parameters and
measurements.

In Figs. 7 and 8 we show the results of our continuum fits,
for the smallest (x, = 0.1) and largest (x, = 0.4) simulated
values of x,. The fits shown in the figures are those for which
the full dataset has been used. Clearly for large quark masses
my,, as a consequence of the Parisi-Lepage theorem [26,27],
the statistical noise of the data rapidly increases. The quality
of the fits is very good, and in Fig. 9 we show the histogram of
the reduced »* distribution corresponding to the 160 con-
tinuum extrapolations we have performed.8

*We have performed separate continuum extrapolations for
each x, (four in total), for each simulated heavy-strange meson
mass mpy_ (five in total) and for each form factor (four form
factors times the two subcontributions due to photon emission by
the strange or the heavy quark). This gives a total of 4 x 5 x
4 x 2 = 160 continuum extrapolations.

B. Extrapolating the results for the local form factors
Fy, F,, Fry, Fr, to the physical B, meson

In this section we discuss the asymptotic formulas
used to extrapolate the form factors, computed for
my €[mp_,2mp |, to the physical point my = mpg =~
5.367 GeV. For heavy quark masses m; and energetic
photons, there are elegant and simple relations relating
the four form factors. In Ref. [28] (see also [29-32]), the
authors studied in detail the behavior of the axial and
vector form factors contributing to the radiative B — y£v
decay amplitude in the framework of the HQET and
large-photon-energy expansions. The relations derived in
Ref. [28] imply that up to (and including) order
O(1/my ,1/E,) terms in the heavy-quark and large-
photon-energy expansion, the axial and vector form
factors F, and Fy are given by

FV(xy’mH,) |qv| <R<E},,,M)
—— ===+ &x,my)
Sh, x, \ Ap(n) r
1 1
msty |Qs| my,
FA(xy’mH) ‘qs‘ <R(Ey7ﬂ)
—_— = ——+&(x,, my
I, %, gy O )
L lalny w0
myx, gl my)’

where fy is the decay constant of the H, = 5h pseu-
doscalar meson of mass my , Ag(u) is the first inverse
moment of the B;-meson light-cone distribution ampli-
tude (LCDA), and R(E,,u) = 1+ O(ay) is a radiative
correction factor that is the same for Fy and F,. Finally,
&(x,,my ) is a power-suppressed term, common to both
form factors, that can be written as [33]

A B

X, m = —+ .
e My, MyXy,

(41)

In Egs. (39) and (40), perturbative radiative corrections to
the subleading terms and O(m,/(mj; )) terms have been
neglected. The leading contribution to the form factors
comes from the emission of the photon from the strange
quark. Radiation from the heavy quark is suppressed by a
factor proportional to 1/my and the corresponding
subleading terms are proportional to |g,| in Egs. (39)
and (40).

The large mass/photon-energy behavior of the tensor
form factors F7, and Fyy including order O(1/my , 1/E,)
corrections has been investigated in Ref. [9] and is
given by
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FIG.7. Continuum limit extrapolation of the lattice data for F}y, (left) and F’ €V (right) for x, = 0.1. The transparent bands correspond to
the best-fit function obtained in the linear a® fit employing the full dataset. In the panels, the different colors correspond to different

values of the heavy quark mass m,,.

FTV(xme‘,.vﬂ) _ |Qs| <RT(Ey’ﬂ)
fHA. xy A’B(ﬂ)
1—x 1
Lyl LY
my X, |Qs| mpy,

+ g(xy’mH,.)

FTA(X va,.v.“) qs RT(E ’ﬂ)
Fraley mao ) _ lds| ——— T+ E(x, my)

fHS I iB(ﬂ)

v

1—x 1

— r 4 @_> ,
my X, |qs| mpy,

(43)

where Ry (E,.u) =1+ O(a,) is the radiative correc-
tion. Again, perturbative radiative corrections to the
subleading terms and O(m,/(mj; )) terms have been
neglected. In Eqgs. (42) and (43) we have explicitly
inserted in the left-hand side the dependence on the
renormalization scale u, which is instead absent

in Fy and F, which are scale-independent quantities.
The previous relations imply that, neglecting power sup-
pressed contributions and radiative corrections, one has
Fry(x,) = Fra(x,) = Fy(x,) = Fa(x,).

We now explain that the above asymptotic relations for
the form factors, being valid in the limit of large E,,
are not sufficient to describe their behavior in the range
of the simulated values of my_ and x, because of the
presence of sizeable nonasymptotic contributions from
resonances. To highlight this point, we start from the
canonical decomposition of the form factors in terms of
intermediate-state contributions. The hadronic tensor
H% (p, k) in Eq. (20)

HY(p komy) = i / dye (015 (0) () L, (0)).

(44)
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can be decomposed as

0 . _ ©o , _
H’CVD(P’k’me)Ii/ dfe”gf’<0|J€v(0)fé‘m(hk)IH.v(0)>Jrl'/0 dte’™' (0| em(t. k).J3, (0)| H,(0))

—Qo0

Hy ((p.komy ) + Hy H(p k.my ), (45)

where
Jem (1, k) E/d3xe_ika£’m(t,x). (46)
We now focus on the contribution from the first time ordering, H’:;.p which can be written as

o o . _
Hy, \(p.k,my,) = i/ dre'™s (0]J4, (0) e = =) 5 (0, k) | H 5 (0))

—0o0

1 . (015 (0)|n) (n|em (0, k) | H 5 (0))
= (0|7%,(0) JEn(0,k)|H(0 =§ u S (47
(0173 ( )H+Ey_mHS et (0.k)[H,(0)) - 2E,(—k)(E,(~k) + E, —my ) (47)
where A is the QCD Hamiltonian. The contributing intermediate states |n) are B = —1, S = 1 states with J” = 1~ for

W ={V.TV} and J* = 1 for W = {A, TA}. Their energies are given by E,(—k) = /m? + E2. In the following, in
order to model the x, and mass behavior of the form factors, we only consider the contributions coming from the
resonances that we treat as stable particles. Using the following relations (#, is the polarization of the vector meson |n),

k, = (Em_k)? Py = k, — p):

v

14 U v ’7% kn
OW5In) = ety (O ln) = ,{V[E(kn-q)— <nn-q>]

me
v f U A v - rTA ’]l;l k’;l
O ) = ingmafl (O ln) = —if] [ (k- q) =2, q>]
me m s
(n|Jem|H(0)) = g, (n;) knypp W ={V.TV},
(n|JEmlH(0)) = g, (1) (P - p,) = (- p,)P*] + O(p2). W = {A,TA}, (48)

and given that at leading order in my_one has f W f .- and assuming that at leading order the form factors g, and g,
are constant, one obtains that each of the intermediate states in Eq. (47) gives a contribution Fy ,(x,) to the form factor
Fy(x,) which scales as (r, =m,/my )

WA
Fya(x,) « — .
\/;’%%—%“F%’—l

In the static limit, since r, approaches one, the scaling relations in Egs. (39)—(43) are recovered. However, it is
important to notice that for x, = 0 the denominator in Eq. (49) develops a pole for r, — 1, signalling the fact that the
scaling laws are different at x, = 0 and x, # O (in this last case the denominator approaches a nonzero value x,/2 +
O(x}%) in the m;, — oo limit). For small enough values of x,, the presence of a quasipole may generate large corrections
to the scaling relations in Egs. (39)-(43), which we now discuss. We start by recalling the following HQET relations for
the masses mp. and my  of the lowest-lying vector mesons H; and Hy in the J® =17 and J” = 1" channel [34]

(49)

1

my, —mpy =24 + O<m—h>, Jr = 0.24 GeV?, (50)
1

mHsl - ml:ls = A1 + O<m_h) s A] ~ (0.5 GeV. (51)
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As is well known, the first relation comes from the fact that the ground-state pseudoscalar (J© = 07) and vector (J* = 17)
mesons, are members of the same HQET spin-doublet, and so they become degenerate in the infinite heavy-quark mass limit.
The mass-splitting between the ground-state pseudoscalar and axial-vector meson is instead of order O(Aqcp). This implies
that for the lowest-lying intermediate state (n = 1) contributing to Fy, for W = {V, TV}, one has

Mo i X2 x A X
n=—taly 2 = Aty -la 2+ (52)
my. my 42 my, 2

where the ellipses indicate subleading corrections at large 7, and small x,. For W = {A, TA}, one has instead

2
My, A I 4 A ¥
=~ 4+ — — 4+ Ll y— L 53
N +me Vr1+4+2 mH‘Y+2+ (33)

The previous equations show that for small values of x, the quasipole produces an enhancement of the form factor of order
O(m?) and O(m,,), respectively in the vectorlike and axial-like channels. In the following section we will combine the leading-
order relations Eqs. (39)—(43), with the quasipole behavior described by Egs. (52) and (53) in order to extrapolate the form
factors to the physical B; meson mass.

C. Numerical results at the physical B; mass

Guided by the analysis in the previous section, we introduce some model-dependent interpolating formulas for the form
factors which describe their ¢> dependence in the resonance region and have the correct asymptotic behavior in the limit of
large m;,. We have extrapolated our results for Fy,, W = {V,A, TV, TA}, obtained at the five different simulated values of

the heavy quark mass m; in Eq. (33), employing the following fit Ansatz (z = 1/my ):

FV(XV’Z) _ |q\| 1
- 2
Sfu, x, 1+ CV%

FA(XV’Z) _ |QS| 1 (

Z
K—-(1+6,)—-
To, x4 GE\CTUH

14
FTv(xy,Z) _ ml + 2CVZZ
le\ x;/ 1 + Cv%

FTA(xy’Z) — |QS| 1 +2C£Z <

fh, Xy 1+C£)2<_f v

where C} = C4 + 6C%, Ky = K + 6Ky, and K, 6Ky, &
Ay, Cy, C,, 8CEL, Az, AL, AZ(;, 8., and Bfr‘l’/xy
(W ={V,A, TV, TA}) are free fit parameters. Our strategy
to extrapolate the form factors to the physical B,-meson
consists in a simultaneous global fit of the mass and x,
dependence of all four form factors. The phenomenological
fit Ansatz described by Egs. (54)—(57) takes into account
the constraints discussed in the previous section, and
contains the quasipole corrections to the asymptotic scaling
described by Eqgs. (39), (40), (42), and (43). We however
relaxed the constraint A, = A,, and A, = Al due to the
presence of the same function &(x,,my ) in the expres-
sion for the tensorlike and vectorlike form factors in
Egs (39)-(43). The position of the pole is taken to be
the same in the vector and tensor-vector channel, while we

20

Z
(K+(1+5Z)x_+ﬁ
Y

1
Ky + (AL +1)z +A§yx£— (148, —2KCT)z

2
Z Z
+ Anz+ A, —+ BYZ2 + BY —) : (54)
H Xy Xy

1 z 7
——— +Auz+ (A, +2KCy) -+ Bj2* + B} —>, (55)
77— Ay X X,

14

b4 I —x 2
<KT + (AL + 1)z +A£rx_y+ (1 +5;)zx—y+BZ1z2 + BV (1 —xy)—>, (56)

y Xy

—x 2
BB -x) D) (50
Xy ’ v

R‘N

[

allow for the possibility of having a different pole in F4 and
Fry (i.e. 5CL # 0). This is due to the fact that while in the
vector channel vector-meson dominance is expected to
work well since the vector (H}) and pseudoscalar (H,)
ground-state mesons become degenerate in the static limit,
this is not the case in the axial channel where many
resonances with masses of order my + O(Aqgcp) are
present. The axial pole should be considered to be an
effective pole, and its position can therefore be slightly
different in the axial and tensor-axial channel due to the
different couplings to the excited states. Moreover, in order
to account for the fact that the tree-level equality between
tensorlike and vectorlike form factors is spoiled by the
radiative corrections, we also allow for the possibility that
0Ky # 0. Notice that in the tensor form factors, the
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numerator in the pole term is inserted to ensure the validity
of the kinematical constraint Fr4(1) = Fyy(1). Finally, we
have included a parameter Ay to account for the fact that
the hadron mass my; _differs from the heavy quark mass m,
by an amount of order O(Aqcp) [see the last terms in
Egs. (39) and (40)], and two parameter &,, §, to account for
violations of the relations in Egs. (39)—(43) which are only
exactly valid in the limit of a massless strange quark and
neglecting radiative corrections to the power suppressed
terms. Our determination of the decay constant f , on the
same configurations used for the computation of the form
factors, is discussed in detail in the Appendix. In the same
Appendix we also discuss our determination of f , for
which we get the value

fp, = 224.5(5.0) MeV. (58)

Our determination of fp agrees with the Ny =2+ 1+ 1
FLAG average f};-A¢ =230.3(1.3) MeV at the level of
1.10, although ourluncenainty is larger. Using the Ansdtze
in Egs. (54)—(57) we have performed a total of N ~ O(500)
fits which differ on whether the fit parameters 6K, 5C£, 0.,
&, are set to zero or not, and on whether we include or not
the fit parameters describing the O(1/ m%,) corrections.
The total number of measurements is 80 and the maximum
number of fit parameters used is 14. To stabilize the fits,
large Gaussian priors are imposed on the fit parameters
6K, 6C}, 6., 8L, Ay, and B)Y, . These are’

8Ky =0+04GeV~!, 8/ =0+1, 5CT=0+04GeV,
Ay =075+05GeV, BY, =0+25GeV. (59)

We minimize a correlated y° function which takes fully into
account the correlations between the values of a given form
factor at the different simulated values of x, and my .
However, in order to avoid having an ill-conditioned
covariance matrix, we assume, in the construction of the
x7, that the different form factors are instead uncorrelated.
This reduces the full 80 x 80 covariance matrix, to a block
diagonal matrix having four 20 x 20 blocks. We remark
that the error on the fit parameters are always estimated by
properly taking into account the correlated dispersion
results, through a jackknife analysis.

Many of the fit parameters entering Eqs. (54)—(56) are
not needed in order to obtain a good y?/dof, and a good
description of the data is already obtained by setting 6K; =
5C} = 6, = 8. = 0 and neglecting the O(1/mj, ) correc-
tions. However, in order to estimate correctly the systematic

At an initial stage of the analysis we performed the global fit
using a set of priors having widths two times smaller than the
ones given in Eq. (59). We have then increased the prior widths
by a factor of two, and found no differences in the final results.

errors due to the mass extrapolation, it is important to span
over a sufficiently large number of fit Ansdtze.

We combine the results of the N different fits using two
different criteria. The first one is based on the AIC
discussed in Sec. Il A, i.e. we assign to each of the N
fits a weight w; given by

_ , N
w; & exp(= (%) + 2Njas = Ni)/2), D wi =1, (60)
i—1

1

where )(%i) is the total y? of the ith fit, and NE,QIS and N
are the corresponding number of fit parameters and
measurements. The second criterion consists in selecting
only those fits leading to a good y?/dof and assigning them

a uniform weight, i.e. using

N
w; x 6(c —)(%l.)/Nggf), ZW,- =1, (61)
i=1

and we set ¢ = 1.4 which corresponds approximately to

1+ 2\/2/N£12f, where \/Z/Ngigf is the standard deviation

of the reduced y? distribution with N, ggf degrees of freedom.
Then, with a given choice for the weights w;, the final
central value X is obtained from a weighted average:

N
X = Z W;iX;, (62)
i=1

where x; is the result obtained from the ith fit. The sum in
Eq. (62) is evaluated in a correlated way, so that the
statistical errors of the x; are correctly propagated to X.
The systematic error, which is added in quadrature to the
statistical error of X, is then given by

N
Gyzc,syst = Z Wi(xi - )_C)z‘ (63)
=

We have found that the results obtained using the weights in
Egs. (60) and (61) are consistent well within the uncer-
tainties. However, at small x, the errors obtained using
the AIC are typically smaller than those obtained using
Eq. (61). In order to be conservative, we take the results
obtained using the weights in Eq. (61) to obtain our final
results for the form factors.

The results of the extrapolation are collected in the plots
of Fig. 10. The continuum bands in the figure correspond to
the best-fit function obtained after applying the above
procedure with the weights in Eq. (61). We obtain for the
pole coefficients Cy, Cy4, and C4 + 5C£ the values

Cy = (0.57(3) GeV)2,  C, = 0.70(7) GeV,
Ca + 6CT =0.77(4) GeV. (64)
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FIG. 10. Extrapolation to the physical B; meson of the four form factors F, (top left), Fr4 (top right), Fy (bottom left), and Fry
(bottom right). The form factors are divided by the decay constant ff of the heavy-strange pseudoscalar meson. The different colors
correspond to the different simulated values of the Lorentz invariant x,. Finally, the continuum bands correspond to the best-fit function
obtained after applying the model-averaged procedure described by Egs. (62) and (63) using the weights in Eq. (61).

The result for Cy can be compared with the value
expected from the HQET relation in Eq. (50), namely
Cy ~ 1, ~ (0.5 GeV)2. Although slightly larger (recall that
the Ansatz we use is a phenomenological description of the
full form factors where excited-states contributions are
always present), our determination is in line with expect-
ations, and provides nice evidence that the reason behind
the steep rise of the vector form factors at small x, is due to
the presence of the quasipole. Concerning the position
of the axial pole, the value we obtained for C, and
5CT is also qualitatively in line with the expectations
Cy,Cy +6CT~O(A,). We did not find clear evidences
of nonzero values of 6., 8., and 6K;. We obtain

146, =1.0209), 148 =1.06(8),
K =1.46(10) GeV™!, K+ 6K =1.39(6) GeV~!,
(65)
and for the fit parameter Ay we obtain the value

Ay = 0.70(17) GeV. Finally, for the parameters A,,, AL,
A, , and Af/ we obtain

A, =0.8(5),
A, =-10(1),

AL = 1.4(3),

AT = —1.0(1). (66)

The relation A, = Afy which holds in the HQET and

large-photon-energy expansion neglecting perturbative
radiative corrections and nonzero strange-quark mass

effects, appears to be well reproduced by our data. As
for the relation A,, = Al , we find that the fitted values of
A,, and AT are slightly different, which can be attributed to
radiative corrections and/or O(m,/my ) effects as well as
to statistical fluctuations. In Table III we provide our results
for the four form factors, extrapolated to the physical
mass mp and for the four simulated values of x,. The fit
parameters, including their correlations, are available upon
request from the authors.

Our results for the form factors can be compared with
available phenomenological and model estimates. The form
factors Fy, W ={V,A,TV,TA} have been previously
obtained using relativistic dispersion relations [4], light-
cone sum rules [3], and recently a hybrid approach [5] in
which the existing lattice results for the form factors Fy,
and F, in D; — £vy decays are used to obtain the form
factors Fy and F, entering B, — u*u~y decays using a
VMD-inspired Ansatz. The comparison between our deter-
mination of Fy, W ={V,A,TV,TA} and the existing

TABLE III.  Our results for the form factors Fy, F,, Fry, and
Fr, extrapolated to the physical mass mj_, for the four simulated
values of x, = 0.1,0.2,0.3,0.4.

Xy Fy Fy Fry Fra
0.1 1.103(38) 0.290(13) 1.026(35) 0.413(17)
0.2 0.610(13) 0.226(8) 0.564(15) 0.326(8)
0.3 0.422(8) 0.186(6) 0.389(10) 0.270(6)
0.4 0.322(6) 0.157(5) 0.297(8) 0.230(5)
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FIG. 11. Comparison between our results for the form factors Fy with W = {V, A, TV, TA} (shown in the figure by the red bands),

and existing model-dependent results [3-5]. The region between the vertical red dashed lines corresponds to the region of simulated x,,
and therefore within this region our results are obtained through an interpolation of our lattice data.

model-dependent results is shown in Fig. 11. Our results
are given by the red curves, and outside the region of
measured x, are obtained by using the best-fit function
obtained in the global fits discussed above. Our results for
Fry and Fyp, turn out to be in rather good agreement with
the estimate of Ref. [4], taking into account that the results
of the relativistic dispersion approach contain a systematic
uncertainty which is difficult to quantify. However we
find significant differences with respect to the results of
Ref. [3] for F7y and Fp4. For the axial form factor F4, the
differences between our results and those of Ref. [4] are of
similar size as the one present for Fyry, while more
significant deviations are observed for the vector form
factor Fy. Moreover, we disagree with both the estimates
given in Refs. [3] and [5] for Fy, and F,. The disagreement
with the light-cone sum rule calculation was somehow
expected, given that large differences with respect to lattice
QCD calculations have been already observed in the
radiative leptonic decays of the D, meson [7]. The smaller
value of F'y, obtained in Ref. [5] could be, at least partially,
traced back to the fact that their estimate of the strange-
quark contribution to the coupling gp:p ,, an essential input
parameter of their VMD-inspired approach, turns out to be
substantially smaller than the one obtained by the HPQCD
Collaboration in Ref. [35] and in our recent paper [7]
(which are instead in very nice agreement with each other).
The strange-quark contribution to gp:p , has been obtained
in Ref. [5], making use of the lattice data produced in
Ref. [12] for Dy — vy in the limited range x, < 0.4, and of
a quark-model-inspired fit Ansatz to separate the strange-
and charm-quark contributions to the vector form factor Fy,

entering D, — £vy, which were not given separately in
Ref. [12], and for which actually a strong cancellation
occurs, as noticed in Ref. [7]. Concerning F,, instead,
VMD is not expected to be a good approximation in the
axial channel. Before discussing the implications of our
results for the branching fraction B(B;, — utu~y), we
present now our results for the form factor Fy.

IV. THE LOCAL FORM FACTOR F;

The form factor F; can be computed from the knowl-
edge of the hadronic tensor

H™(p,k) = i / d*xe(PRxT (02 (0) i (x) | B, (0))

Fr
= —ghwof p — L 67
ko (67)
where
v : <~ k/’
J4 = —iZ(u)56"b . (68)

mg,
As in the case of the currents J%, and J%,, we renormalize
the tensor current J7 using the nonperturbative determi-
nation of Z; (i) in the MS scheme at the scale y = 5 GeV
given in Table II. Note that HY' (p.k) = Hy(p.p — k),
and recall that F (1) = Fry(1) = Fra(1) [see Eq. (15)].
A significant complication is that the hadronic tensor
HY(p. k) suffers from problems of analytic continuation
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to Euclidean spacetime. To demonstrate this, we start by
writing explicitly the contributions to the hadronic tensor
H’;" from the two time orderings, namely

Hy (k) =i [

—0o0

+i / ” dte’ s ~E)N(0] )5 (1. —k)J4(0)| B (0)).
0
(69)

dl‘ei(me_EV)[<0‘J%,(O)JIém(t, _k) |Bs (0)>

Making use of
J’ém(t k) _ e i(H—ie tJﬂ (0 k) —i(H—ie)t , (70)

where A is the QCD Hamiltonian, one has H (p.k) =
HY\ (p.k) + H%,(p. k) with

HE (K) = (O13(0) ——— 0 0.~K)|B, 0),
H (1) = (01 0. ) g I O)B(0))
| )

The two integrals in Eq. (69) can only be Wick-rotated from
Minkowskian time ¢ to Euclidean time 7 =it if the
following positivity conditions are met:

(n|H - E,|n) > 0, (m|H + E, —mg [m) >0, (72)
where |n) and |m) are the intermediate states contributing
respectively to the first and second time ordering in
Eq. (71). In the rest frame of the B; meson in which we
work, all intermediate states contributing to the hadronic
tensor have three momentum |k| = E,; therefore, the
condition (n|H — E,|n) > 0 is always satisfied and one
can safely set € = 0 in the first contribution on the right-
hand side of Eq. (71). This is not the case for the second
condition in Eq. (72) due to the presence of light
unflavored J¥ = 1~ intermediate states. Indeed, defining
my, to be the mass of the lightest hadronic state
contributing to the second time ordering, the analytic
continuation is obstructed if the photon energy E,
satisfies

/2 2 My, \*
my +E, +E, <mg = x, <1- ) (73)

As in the case of the local form factors Fy,
W ={V,A,TV,TA}, we can distinguish the two con-
tributions F% and F% to the form factor Fy, correspond-
ing respectively to the emission of the virtual photon y*
from the bottom (Fig. 3 left) and strange (Fig. 3 right)

quark line."” The lightest hadronic intermediate states in
the second time ordering are given, respectively, for the
bottom- and strange-quark contributions, by the Y(1S)
resonance and by KK~ states in a P-wave.'' Given that
my =~ 9460 MeV > myp , the bottom quark contribution is
not affected by the problem of analytic continuation,
which is only present in the strange quark contribution.
Indeed, with 2mgx ~1 GeV, one finds that analytic
continuation is obstructed for

2 2
x, <xh=1- <ﬂ> ~ 0.96, (74)

4 4
mBJ

i.e. for all the values of x, that we are considering.

Recently, some of us have proposed a novel strategy [8]
to circumvent the problem of analytic continuation of
electroweak amplitudes of the type present in Eq. (69),
i.e. involving an hadron-to-vacuum QCD matrix element
of the product of two currents. In order to briefly sum-
marize the strategy, we focus on the strange-quark con-
tribution to H',(p. k). To keep the notation simple, we set
E=mp — E, and define

Cya(t.k) = (0174(1. —k)J7.(0)[B,(0)),
Y (EK) = /0 " e (1K),

qg=s,b, (75)

so that H5 (p.k) = Hy. ,(E.k) + HY ,(E.k). The main
idea for 01rcumventing the problem of the analytic con-
tinuation of A% ,(E, k) is to consider the spectral-density

representation of the time-dependent correlation function
' (1.k),

/
c(t.k) = = dE e~ Fipm(E k), 76
5,2 2

T

where [E*, o0) is the support of the spectral density

P(E k), and in our case E*=,/mjy + E; with

my, = 2my. Combining Eqs. (75) and (76) it follows that
(see Ref. [8] for details)

_ w dE' p'(E' k)

H™ (E.k) = 1 LA Sl i

T_nz( k) Ef(% p 2n B —E—ie

o dE'p"(E' k) i
-~ 4 _p(E

/* w B-g 27ER 0D

where PV denotes the principal value of the integral. The
Minkowski correlator C’;f’2(t, k) can always be analytically

""The two contributions are obtained by the replacements
Jem — Ji and J%, — J§ in Eqs. (69)—(71) [see Eq. (23)].

"In the electroquenched approximation in which we work the
Zweig-suppressed contributions from uii, dd, and ¢ resonances
are absent.
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continued to Euclidean spacetime. The Euclidean correlator
C\%(t.k) = C\%(—it,k) is then related to the spectral
density p*(E', k) via

_ o JE' ,
(1K) = / Eerpen. 0
, "

Since C}%(1,k) can be computed using Monte Carlo
simulations, we have formally solved the problem of
analytic continuation; by inverting the relation in
Eq. (78) to determine p*“(E’) we can then obtain
H’%’:’Q (E,k) using Eq. (77). However, in order to determine
p*(E' k) using Eq. (78), an inverse Laplace transform of
the Buclidean correlator Ci%(z,k) is required. This is a
well-known ill-posed numerical problem when C¥ (1, k) is
only known on a finite set of points in time and is affected
by uncertainties, which is the typical situation encountered
in a lattice calculation. In Ref. [8] it has been proposed to
use the —ie term appearing in the denominator of Eq. (77)
as a regulator of the problem by introducing the smeared
amplitude HY",(E. k; €)

w dE' p(E k)
(24 . —
HTSQ(E’k’E) - /* 271, E/_E_ iE'
o E’
- / E (B~ Ee)pm(E k), (19)
E* 2

where

K(x:e) 1 X . €
X, €) = — = 1 .
X — 1€ x2—|—82 x2—|—82

(80)

The key point is that for nonzero values of ¢, the kernel
function K(x;¢) is smooth, and its convolution integral
with the spectral density p**(E', k) can be evaluated, from
the knowledge of C'%(z,k) only, using the Hansen-Lupo-
Tantalo (HLT) method introduced in Ref. [36] (see also
Refs. [37-39] for recent applications of the method, and
Refs. [40-42] for different strategies on how to cope with
the inverse Laplace transform problem). The idea is to
numerically evaluate the smeared amplitude H’}” L(Ek;e)
for finite values of the smearing parameter ¢ using the HLT
method (to be discussed in the next section), and then to
extrapolate to ¢ = 0, exploiting the fact that (see Ref. [8] for
a proof)

HY (E.k;e) = HY ,(E.k) + A(E.k)e + O(¢?).  (81)

We stress that the problem of evaluating H’Tw (E,k) is ill
posed only for E > E*, i.e. if the inequality in Eq. (73) is
satisfied. Instead, for E < E*, one can directly set € =0
in Eq. (77) (in this case the integrand is nonsingular), and
by using

1

= Am dte—(E-E)t (validforE < E'), (82)

one arrives at (see Ref. [8])

HY J(E k) = A dte® C')(1.k) < o0,  (83)

which is the standard formula used to evaluate the form
factors in absence of problems of analytic continuation [see
e.g. Eq. (22)] and the one we apply here to determine
H’}”b ,(E.k). In Ref. [8] we have checked, that using the
HLT method below hadronic thresholds to evaluate the

form factors for D; — £v,£'¢" decays (where Z, ¢ denote
charged leptons) produces results which agree with those
obtained by using the standard approach based on Eq. (83).

To summarize, we evaluate the hadronic tensor
H’%”( p. k) in Eq. (67) as the sum of the following terms:

H’%D<p, k)= H’;”b(E k)+ H’;”(Ek) (84)
where
H’;Z(E, k)= H’;Z’I(E, k)+ H’%Z’Q(E,k), (85)

H(EK) = lim HYY (E.K) + HY (E.ke). (86)

and we have defined the first time ordering contribution as
(q="0b,9)

0 v
HY (EK) = /_ dreP' T (1K),

[Se]

Cialt.de) = O (=it k),
C\ (1.k) = (017%(0) 75 (1, —k)|B(0)).  (87)

where the Euclidean correlator CyY, (7, k) is the lattice input.

On the lattice, because of the discretization of spacetime,
the relations above get slightly modified, as we will discuss
in the next section.

A. Numerical results for F

In order to evaluate the form factor F; we have
performed simulations on a subset of the ensembles in
Table 1. These are the B64 and D96 ensembles. The
computations have been performed at all four values of
x, in Eq. (34) but only at the following three values of the
heavy quark mass,

Mh v 1,15,25. (88)
mC

The reasons for reducing the number of ensembles and
values of m;, which we use are twofold. Firstly, the use of
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the spectral representation technique to overcome the
difficulty in the continuation to Euclidean space is com-
putationally expensive and secondly the contribution to
the differential rates from Fy is small and so this form
factor is not required with the same precision as those
studied in Sec. IIL

Our strategy to compute F; consists in evaluating on
the lattice the following three-point Euclidean correlation
function:

M’}”l (1. tep- )
= @3 (014 (1 + tugs —k) 4 ()5, (0.0)[0). g = 5.0,
X

(89)

where ¢LS (0,x) is the same interpolating operator as was
used in Eq. (22), while 7y, is the fixed time where the
tensor FCNC JZ% is inserted, which must be chosen large
enough to ensure the dominance of the ground state. In the
limit of large 7y, one has

(B,(0)[¢5,(0)[0)

M’;z(t, fep k) = e Mt (CHY (1) + ...,

=s,b, 90
q

where the dots represent terms that are exponentially
suppressed at large 7, and

Ol (1,k) = 6(=0)C™ (1K) + 0()T(1k), g =s.b,

(o1)

where the correlators C7', (¢,k) and Ci’,(,k) were intro-
duced in the previous section.

Notice that the time ¢ in the previous equations corre-
sponds to the time separation between the electromagnetic
and tensor currents and is different from the time ¢
introduced in Eq. (22). The choice of 7, has been adapted
depending on the contribution being considered. For ¢ = b
(and both # > 0 and t < 0) and for g = s, t < 0 we have
chosen a large fy, ~2 fm, while for ¢ =s and 7 >0,
which is the only contribution requiring the spectral density
reconstruction method of Eq. (79) and for which statistical
accuracy is of the utmost importance,12 we have chosen
teep =~ 1 fm, after checking ground-state dominance using
the larger value 7., ~ 1.7 fm. For the same reason, the
inversions of the Dirac operator for ¢ = s and ¢ > 0 have
been performed using a number of stochastic sources

"The statistical accuracy of the computed M’%”q(t, liep- K)
decreases as Iy, increases. '

which is eight times larger than that used for ¢ = b and
qg=-s,1t<0.

We now discuss our determination of F'; starting from
the b-quark contribution F%. In this case, since there is no
problem of analytic continuation, we proceed as in
Eq. (75), and evaluate the hadronic tensor H’;’; using"

T/2~tgp
HY(Ek)=a ) e"C)(nk). E=

1=—lp

mBS - E},. (92)

For any simulated heavy-strange meson mass my the
corresponding energy E in the previous equation is under-
stood to be

E=my —E,=my (1 - xz’> (93)

From the knowledge of H’}: (E) we use Eq. (67) to

determine the b-quark contribution F% to the form factor
Fr. In the rest frame of the decaying meson, and with our
choice of the photon momentum [k = (0, 0, k,)], the form
factor can be obtained using

- 1
b _ 12 _ 21
Filay) = =5 (H3 (E0) = B3 (E.0),
X
|kz| :Ey :mHJEy- (94)

Our determination of F% for the four different simulated
values of x, and for the three different heavy-strange meson
masses my , is shown in the left panel of Fig. 12. The blue
and red colors in the left panel correspond to our results on
the B64 and D96 ensemble, respectively. As the figure
shows, we find that cutoff effects are very small, the x,
behavior is almost linear and the form factor decreases as
the heavy-quark mass my_increases. However, we post-
pone the discussion of the extrapolation to the physical
mass mpg_ 1o Sec. IV B, and concentrate here only on the
issue of the continuum extrapolation. Having only two
lattice spacings available, and given the smallness of the
observed UV cutoff effects, we opt for extrapolating to the
continuum limit at fixed my_and x,, employing either a
constant or linear Ansatz in a*>. We then combine the results
of the two extrapolations using the following criterion: if
the constant fit gives a y> smaller than two, we combine the
results of the linear and constant fit using the weighted
average already illustrated in Eqs. (36) and (37) but using
same weights for the linear and constant a extrapolation,
otherwise the final result is given by the result obtained

BWith respect to Eq. (22), we have dropped the ¢™£7 term,
which is numerically negligible.
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FIG. 12. Left: values of F l} obtained on the B64 (blue data points) and D96 (red data points) ensembles as a function of x,. Right:
results for F2. after extrapolation to the continuum as a function of x,, obtained following the procedure described in the text. The
different symbols correspond to the different values of the simulated heavy quark mass m;,.

using the linear a> Ansatz. The result of the continuum-
limit extrapolation is illustrated in the right panel of Fig. 12.

We now turn into the discussion of the more involved
strange-quark contribution. In this case, as already dis-
cussed, the form factor cannot be obtained as in Eq. (92)
since

T/2—tSCp

Tli_{r()loa eF1C (1,k) = o0,

(95)

t=—lep

due to the fact that for large and positive times ¢ the
correlation function behaves approximately as

C¥(tk)y~e ', E' <E. (96)
Our strategy to evaluate the contribution from the second
time ordering, which is the only one affected by the
problem of the analytic continuation, is to consider the
smeared (or regularized) hadronic amplitude introduced in
Eq. (79), namely

o dE'

HY ,(E.k;e) = / . K(E = Ee)p*(E. k), (97)

or equivalently, separating the real and imaginary part,

” w JF'
Re[HY (E.k: )] = / 5, Kre(E' = Eie)p™(E'. k),
Kge(x;€) = Re[K(x; €)], (98)
UV e dE/ U AL /
Im(H7 ,(Eke)] = | - = Kin(E' = E;e)p (E'. k),
Kin(x; €) = Im[K (x; £)]. (99)
and then to perform the extrapolation to &=0.

Equations (98) and (99) can be evaluated, from the knowl-
edge of C{’)(t,k) only, using the HLT method and we now

briefly summarize the main ingredients of the procedure.
To simplify the notation, we concentrate directly on the
Lorentz indices that are relevant for the determination of the
form factor with our choice of kinematics [decaying meson
at rest, and k = (0,0, k)], and define

1

Cl1.k) =3 [C2(1.k) = CH (1. k), (100)

1

H,(E.k,¢e) = 5

HY (E.k.e) - B2 (E.k.€)]. (101)

1
p(EK) =S [p (B k) =" (LK) (102)
The final goal is to find, for fixed ¢, the best approximation
of the kernel functions Kgeim(E' — E; ), in terms of the

. . o
basis function {e=9E"} _, namely

s
----- Mimax

n“]aX
Z gi(n, E, e)e= " = K|(E', E; ¢)),

n=1

K(E' — E;¢) ~
(103)

where I = {Re,Im}. In this way, once the coefficients g
are known, the smeared hadronic amplitude can be recon-
structed, from the knowledge of C, using

H,(E k;¢) E/

E*
Mmax

Z(gRe(n’ E’ 8)

n=1

+igu(n, E, £)) /

Mmax

Z(gRe(n’ E’ 8) + iglm(nv E? 8))6(1’1(1,]().

n=1

o dF'
Zﬂ(E’,k)K(E’ - E, 8)

~

o« dE'

« 21

e—aE’np(E/’ k)

(104)
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The problem of finding the coefficients g; presents a certain
number of technical difficulties. Any determination of the
real and imaginary part of the smeared hadronic amplitude
based on Egs. (103) and (104) will inevitably be affected
by both systematic errors (due to the inexact reconstruction
of the kernels) and statistical uncertainties [due to the
fluctuations of the correlator C(t,k)], which need to be
simultaneously kept under control. The HLT method finds
an optimal balance between the size of the statistical and
systematic errors. This is achieved by minimizing a linear
combination

Alg]

+ ABlg], (105)

of the norm-functional

Allgl= /oo dEe’
Emin

which quantifies the difference between the approximated
and the target kernel, and of the error-functional

Mmax 2

D gn)e™En —Ki(E' = Ee)| . (106)

n=1

Mmax

B[g] = Bnorm g(nl)g(HZ)COV(anlv an2)7

ny,ny=1

(107)

where Cov(an,, an,) is the covariance matrix of the cor-
relator C(an), and B, is a normalization factor intro-
duced to render the error-functional dimensionless. The
algorithmic parameter E,;, should only satisfy the con-

straint Epy, < E*, and we choose Ep, = 0.9, /m3 + Ej.
For each simulated value of x, and my , we choose 7,

by requiring that the statistical error on the correlation
function C(t,k) for all times t < any,,, must be smaller
than 30%. The parameter 4 in Eq. (105) is the so-called
trade-off parameter, and for a given value of A, the
minimization of the functional W{[g] gives the coefficients
g’}. In the presence of statistical errors, the second term in
Eq. (105) disfavors coefficients g leading to too large
statistical uncertainties in the reconstructed value of the
smeared hadronic amplitude. The optimal balance between
having small statistical errors (small Blg]) and small
systematic errors in the kernel reconstruction (small
Aq[g]) can be achieved by tuning A appropriately. This is
done performing the so-called stability analysis, which is
discussed in detail in Refs. [8,37]. In brief, using the
stability analysis, one monitors the evolution of the
reconstructed values of the real and imaginary part of
H,(E,k;¢) as a function of A. The optimal value, 1*,
(which is generally different for the real and imaginary
parts) is chosen to be in the so-called statistically dominated
regime, where 4 is sufficiently small that the systematic
error due to the kernel reconstruction is smaller than the

statistical one (in this region the results are therefore stable
under variations of 1), but large enough to still have
reasonable statistical uncertainties. Finally, having deter-
mined the optimal value 1*, we repeat the calculation using
a second (smaller) value of A = A**, which is determined
by imposing the validity of the following condition:

Blel”] _ Blej]

Algd"]  AlglT

(108)

with x = 10. Any statistically significant difference between
the values of the real and imaginary part of H,(E, k)
corresponding to the two choices A = A* and 4 = A** is
added as a systematic uncertainty in our final error. We refer
the reader to Ref. [37] for further details on this point.

At a finite lattice spacing, similarly to what had been
done in Ref. [8], we adopt the kernel function

a 1
K(xe) = sinh [a(x — i€)] T x—ie

+0(a?), (109)

which differs from the one in Eq. (80) only by O(a?) cutoff
effects. A major difference in the analysis of H,(E, k)
compared to the strategy followed for H’%’; (E,k) and

H’%il(E, k), concerns the scaling of the energy E with

the heavy-strange meson mass, my . While the energy
scaling given by Eq. (93) leads to a smooth mass depend-
ence for the latter two contributions, this is not the case for
H,(E,k): the main contributions to the spectral density
p(E' k) are expected to depend on the position of the
¢, $(1680), $(2170) (and possibly heavier) resonances. By
scaling the energy E according to Eq. (93), to our lightest
simulated mass my_= mp_would correspond to an energy
E smaller or very close to that of one of the main s5 peaks.
On the other hand, the energy E = my (1 — x,/2), corre-
sponding to the physical mass of the B, meson, is much
larger than the energy of such resonances. Since the
behavior of H,(E,k;¢) below (or close to) the main s5§
resonances is expected to be very different from the one at
much larger energies of order O(my_), the mass scaling of
H,(E,k;¢) that would result from the use of Eq. (93) is
very complicated and difficult to handle. At the same time
setting E = myg (1 — x,/2) for all simulated m,,_is prob-
lematic, as it leads to large cutoff effects. For H,(E, k;¢)
we thus chose to scale the energy E with the heavy-strange
meson mass my_according to

E(r) = (rmy, + (1= r)mg,) (1 -%) (110)
Note that any fixed r is allowed since

lim E(r) :me<1 —%) (111)

My, —np,
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The real (left panel) and imaginary (right panel) part of the form factor F%. (x,:€) on the B64 ensemble, for the lowest

simulated value of m;, = m,., and for £ ~ 1.4 GeV and x, ~ 0.1, as a function of the ratio A;[g*]/A;[0] indicating the quality of the kernel
reconstruction obtained employing different values of A. The plot shows an example of our stability analysis. The red and blue data
points in both panels correspond to the reconstructions obtained for A = A* and A = A**, respectively.

and for 0 < r < 1 one interpolates between the scaling in
Eq. (93) (r=1) and the case of a fixed energy E =
mp (1 —x,/2) (r = 0). For each x, we tune the value of r
in such a way that for my_= mp , since my (1 - x,/2) is
the closest to the resonance region, the corresponding
energy E(r) is above that of the main s5 peaks, and
at the same time small enough to avoid large cutoff
effects. We choose r = 0.65,0.60, 0.57,0.55, respectively
for x, = 0.1,0.2,0.3, and 0.4 for all three values of my .
Finally, we define the smeared form factor as

Fy(ne) = _H(E,Elfr),k;e)’

7
Z

k=(0,0.k,), (112)

H(E,E(r),k;e) = H(0,k) + H™ (E.k) + HS™ (E(r), ks €),

(113)
where
T/2~tgp
H(0.k)=a Y  C(tk),
t=_tsep
0 -
HY®(Ek)=a Y (e =1)C(tk)  (114)

I=—lgp

HY™(E(r),k;e) = Hy(E(r),k; €) — H5(0,k;0).  (115)
In the combined my_— mp_and & — 0 limits, the smeared
form factor tends to F¥(x,). The zero-energy subtraction
allows us to define the contributions from the two time
orderings in such a way that cutoff effects start at order
O(a?) for both time orderings. This is because they both
are now free of the contact term C(0, k). This contact term
does not belong to either the first or second time ordering,
and cannot be simply removed as this generates O(a)
cutoff effects. Since H,(E(r),k;e) is evaluated via the

HLT reconstruction method using the kernel function in
Eq. (109), to avoid the presence of O(a) cutoff effects also
H,(0,k,0) is evaluated via the HLT method using the same
type of kernel function. Being able to define the two time
orderings separately turns out to be useful if a model for the
spectral density p(E',k) is used to perform the ¢ - 0
extrapolation, as will be discussed below.

In the plot of Fig. 13, we give an example of the stability
analysis in the case of the lowest simulated quark mass,
and forx, = 0.1 and e ~ 1.4 GeV. In the figure we show the
real and imaginary part of the smeared form factor F* T(x,€),
obtained employing different values of the trade-off param-
eter . The results are shown as a function of A;[g*]/A;[0]
which is a measure of the goodness of the reconstruction.
When the systematic error due to the inexact kernel
reconstruction becomes smaller than the statistical uncer-
tainty, the reconstructed smeared form factor is stable under
variation of 1. In this region we determine A* and A** which
are given respectively by the red and blue data points in the
figure. The reconstructed kernel functions corresponding to
our choice of 1* are then shown in Fig. 14.

We have repeated the analysis for different values of &
and for all simulated x, and mp . The smearing parameter &
cannot be however reduced arbitrarily since the uncertain-
ties on F%(x,; &) generally increase as e decreases, and at
the same time the reconstruction of the kernel function
becomes poorer. The smallest value of & for which the
errors are still under control is determined by both the
statistical uncertainties on C(,k) and by the size n,, of
the exponential basis.

In the plots of Figs. 15 and 16 we show the & behavior of
the real and imaginary parts of the smeared form factors for
the different simulated heavy-strange meson masses my ,
and for the smallest (0.1) and largest (0.4) simulated values
of x,. In the figure we show the results obtained on both the
B64 and D96 ensembles. Few comments are in order. First
of all the observed cutoff effects are smaller or of the same
size of the statistical error for all contributions, with the
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mp =me, Ty =01, E~3GeV, ¢ ~ 14 GeV
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FIG. 14. The reconstructed smearing kernels K;(E', E;¢) obtained using the coefficients g’}* employed in the reconstruction of
F5 (x,.€) in Fig. 13. The black lines correspond to the real (right panel) and imaginary (left panel) part of the exact kernel function

K(E' — E;¢) of Eq. (109). The kernels are given in lattice units.

exception of F¥(x,; &) for my_=~1.78my, . Such behavior
can be expected since larger masses correspond to higher
energies E(r). In addition, we observe that both the real and
imaginary part of F%(x,) decrease in magnitude as my
increases.

We extrapolate the smeared form factor F§(x,; ) to the
continuum limit at fixed €, x, and m;,, following the same
procedure used for F%(x,). Next we perform the & — 0
extrapolation at fixed x, and m,,, which is the most delicate
step of the analysis. As already stated, using the kernel

function K(x;e) = (x —ie)~!, the leading corrections to
the € = 0 limit are expected to be of the form

F5(e) = F5 + Aje + Aye® + O(&), (116)
and in the following we indicate by asymptotic regime, the
regime in which the corrections to the vanishing-¢ limit can
be described by a low-degree polynomial in €. The onset of

the asymptotic regime for H,(E, k; €) at a given energy E,
as discussed in detail in Ref. [8], depends on the (unknown)

B64 ., = 0.1 BG4z, = 0.4 B64 z, = 0.1« B64x, =04
O—— D96 2y = 0.1er  DI6 2, = 0.4+0 0.01p DY6 2y = 0.1+ DYG 2, = 0.4+o
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w jf w001 S I
& 002 % J § 4 3 Ky b $ % 3
i J 3 e g e P
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= } g b % = -0.03 § ¢
e -0.04 - ‘q’ mpg,=mp, e 20,04 mp, ~ 1.27mDs
-0.05 e T T R -0.05 : : : :
04 05 06 07 08 09 1 11 12 13 14 03 04 05 06 07 08 09 1 11 12
e/mp, e/mp,
B64 2, = 0.1 BG4z, = 0.4
0.0 D96 2, = 0.1+« DI6 2y = 0.4+
0
B @
& -0.01
5002 %g %} %% ¥ §
T
o,
-0.03 mpg, ~ 1.78 mp,
-0.04 - : :
0.2 0.4 0.6 0.8 1 12
E/mHS

FIG. 15. & dependence of the real part of the smeared form factor F %(x,; €) for the three different masses my_ =~ mp, (top-left panel),
my = 1.27Tmp_(top-right panel), and my ~1.78my_(bottom panel). For each figure we show the results obtained at x, = 0.1 and
x, = 0.4 on the B64 and D96 ensembles.
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FIG. 16.

typical size, A(E), of the interval around E in which
H,(E, k) is significantly varying. Parametrically one must
then have ¢ <« A(FE) and at the same time ¢ > 1/L to avoid
large FSEs. Assuming that H,(E, k) is dominated by the
contribution from a single resonance, which at fixed x, and
my we approximate with a Breit-Wigner distribution
centered at M and of width I, i.e.

R
H,(E,k)~HV(E) = ————
A(ER)~ HIV(E) = oy
=  Hy(E.k:e) K (117)
b ;8 : . b
: M-E-it+e)
then within this approximation we have A(E) =

V/(E—=M)?>+T?%/4. In our case the energy E is given
for each x, and my_by E(r) in Eq. (110), and it ranges from
E(r)~3 GeV at the lowest mass my = mp to E(r) =~
4 GeV at my ~1.78mp . The peaks of the main s5§
resonances, the ¢, ¢(1680) and ¢(2170), are at M ~
1,1.7,2.2 GeV respectively, with a mild dependence on
the value of |k|. In our computations we have &=~
O(1 GeV) or higher and it is not clear whether such
values of ¢ are in the asymptotic regime, despite an
approximate linear scaling in & being observed in
Figs. 15 and 16. To account for this source of systematic
error we proceed as follows: we first carry out the
extrapolation to € = 0 assuming that the observed behavior
is the asymptotic scaling, and perform a polynomial
extrapolation in & (in practice, as explained below, we
perform a quadratic extrapolation in &, unless there is no

Same as in Fig. 15 for the imaginary part of the smeared form factor F 7 (x5 €).

signal of a £ term, in which case we perform a linear
extrapolation). In addition to the polynomial extrapolation,
we follow a second approach, performing the vanishing-¢
extrapolation assuming the following model for the spectral
density:

R(T,
(E, () - B+ (&7
D(k)
&)

P E LK) = S O(E, - E)

n=1,23

+ O(E" - Ey(k))

E,(k) = \/ M} + k[,

with z = 1/2, 1, and where M, and T',, are the mass and the
decay width of the ¢, ¢(1680), and ¢(2170) resonances
respectively for n =1,2,3, which we take from the
PDG [10]. The last term in Eq. (118) mimics the con-
tinuum behavior at large energies starting at a threshold
Ey(k) > E3(k), and is compatible with the physical con-
straint limg_ o p(E'.k) = 0."* For any fixed values of x,
and my_, our model for the spectral density contains four
free real parameters: the three amplitudes R, (k), R,(k),
R;(k), and the threshold energy E, (k). The parameter D (k)
is instead determined by the requirement that the spectral
density is continuous at E' = E,(k). The smeared hadronic
amplitude HY*Y(E, k; &) associated with p™4(E’, k) is then

(118)

“The spectral density must vanish in the infinite-energy limit
in order to have a finite Re[H,(E, k;¢)].
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FIG. 17. The extrapolation in ¢ of the real (top panels) and imaginary (bottom panels) components of the smeared form factors, using
the Ansatz in Eq. (121). For those cases when no &> dependence is visible in the data, we have set A, = 0. The different colors
correspond to the three different values of my_ and the corresponding bands are the best-fit functions obtained from the fits with all
values of ¢ included. The left and right panels correspond to x, = 0.1 and x, = 0.4 respectively. The data points at ¢ = 0 (which in the
figures are slightly shifted horizontally for better visualization) correspond to our final results after including the systematic error,

determined as discussed in the text.

given by the convolution of p™4(E’ k) with the kernel
function K(E — E'; ¢). Finally, we can use HY°Y(E', k; ¢) to
obtain the corresponding model smeared form factor,

H™Y(E,E(r),k; €)
k 9

z

Fymd(x,;e) = —

(119)

H™(E,E(r),k;e) = HYY(E(r), k; €) — HY*4(0,k; 0)
+ H™(E, k) + H(0,k). (120)

In Fig. 17 we show the results of the polynomial
extrapolation to vanishing ¢, which we perform separately
for each x, and my . In the figure we show, as an
illustration, the results obtained for x, =0.1 and 0.4.
The extrapolation has been carried out using the following
Ansatz for the smeared form factor

F(e) = A+ Aje + Ayé?, (121)
where A, A;, and A, are complex-valued free fit parameters,
which are different for each x, and my . In order to avoid
overfitting, for those cases when there is no signal of &2
dependence visible in the data, we have set A, = 0. We
have minimized a y? function constructed without taking

into account the correlation between the values of the
smeared form factors corresponding to different e, since
they are too correlated, and the resulting correlation matrix
is ill conditioned. In this way, the reduced y? resulting from
the minimization, which is always well below one, cannot
be taken as a quantitative measure of the quality of the fit.
To estimate the systematic error of the polynomial extrapo-
lation, we have also performed for all the cases a second fit,
linear in ¢, using only the five smallest simulated values of
e. Any statistically significant deviation from the results
obtained in the fit with all simulated values of ¢ included
(i.e. those whose resulting best-fit functions are given by
the colored bands of Fig. 17) is then added as a systematic
error. In Fig. 17 the data points at € = 0 correspond to our
final results from the polynomial extrapolation, after
including the systematic error determined following the
procedure described above. As is clear from the figure the
real and imaginary part of the form factor F§.(x,) decrease
in magnitude as the mass my_increases, and already for
my ~1.78my they are both one order of magnitude
smaller than the tensor form factors Fyy, and Fp, deter-
mined in the previous section.

As discussed above, since the simulated values of € may
not be in the asymptotic regime, we have also performed
nonpolynomial extrapolations in & using the model in
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Comparison between the results from the polynomial extrapolation (given by the red band), and those obtained fitting the

smeared form factor using the model in Eq. (118) with z = 1/2 (given by the green band) and z = 1 (given by the blue band). The top
panels correspond to x, = 0.1, my = mp_, while the bottom panels to x, = 0.1, my_~ 1.78my, .

Eq. (118) with z =1/2 and z = 1. The fits have been
performed imposing Gaussian priors on all four fit param-
eters. The central values and widths of the priors, along
with the choice of the parameter z, have to be considered as
part of the definition of the model we use to estimate the
systematic uncertainties. The prior corresponding to the
amplitude R; (k) of the ¢ resonance is

Ry(k) = (R, (k))(1 £ 0.1), (122)
where (R;(k)) has been estimated from an effective
residue analysis of the correlation function C(t,k) at large
times. We use (R, (k))/|k|=-0.045,—0.042,-0.040 GeV,
respectively for my /mp ~1,1.27,1.78. The priors corre-
sponding to the two amplitudes R, (k) and R (k) are instead

(R, (K)) (R, (K))

Ry(k) = 220 :

(1+£1),  Ry(k) = (1+1),

(123)

i.e. we assume that, within one standard deviation, they are at
most of the same size as the contribution from the ¢
resonance. Finally the prior on the threshold parameter
Eg(k) is

Ey(k) = E5(k) 4+ (0.5+0.5) GeV, (124)

i.e. we assume that the onset of the perturbative regime occurs
atan energy which is O(Aqcp ) larger than that of the heaviest

known s5 resonance. We have found that both values of z
describe the data well at all masses and )cy.15

For the real part of F%(x,), the results of the extrapo-
lation to ¢ = 0, obtained using the model with either 7 =
1/2 and 1 are in good agreement with those of the
polynomial extrapolation. For the imaginary part, instead,
we find that the model results (in particular for z = 1/2) are
significantly smaller than those obtained from the poly-
nomial extrapolation. The comparison is shown in Fig. 18,
for the case x, =0.1 and for both my = mp and
my ~ 1.78my, . All the other cases are very similar. The
lower value obtained for Im[F%(x,)] assuming the model
p™4(E', k) for the spectral density, could be due to the fact
that at the simulated values of ¢, the imaginary part of the
kernel function still has a sizeable overlap with the peaks of
the nearby resonances [e.g. the ¢(2170) resonance]. In this
case, the imaginary part of the smeared form factor,
Im[F%(x,; €)], is expected to decrease in value for smaller,
presently unreachable, values of ¢. This behavior cannot be
captured by the polynomial extrapolation, but is in-built in
our model for the spectral density. To have a realistic
estimate of the systematic uncertainty for F3(x,;¢e), we
average the results of the polynomial and model-dependent

" Additionally, we have tried to fit our data using the model in
Eq. (118) with z = 2, but found that it does not provide an equally
good description of the smeared form factor.
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FIG. 19. Extrapolation to mp_of the form factor Fh(x x,) using the Ansatz in Eq. (130). The red, blue, and green bands correspond

to the best-fit function obtained for my [mp =~
FT at mH‘ = mB\

extrapolation with z = 1/2, and include a systematic error
equal to half the difference between the two results.

B. Extrapolating F; to the mass
of the physical B;-meson

We now discuss the extrapolation of the form factor F;
to the mass of the physical B;-meson. We start from
the b-quark contribution F%(x,), which we determined
for three values of the heavy-strange meson mass
my /mp =~1,1.27 and 1.78 as shown in the right panel
of Fig. 12. To perform the mass extrapolation we make
use of a phenomenological VMD-inspired Ansatz to
describe the combined x, and my dependence of the
form factor. At the physical B; mass point, the form
factor F%(x,) is expected to be dominated by the contri-
butions of neutral, J® = 1~, bb resonance states [e.g.
T(1S), T(2S), T(3S),...]. The contribution to the form
factor F%. (x,) of a given vector resonance state containing
an heavy quark (%) and a heavy antiquark (%), for a given
value of my , and approximating the resonance as a stable
state, is of the form

qbfnmng;lr (0)
En(En + Ey - mH“.)

Fi,(x,) = + regular terms, (125)

where E, = /m? + E2, and m,, and f,, are respectively the

mass and the electromagnetic decay constant of the vector
resonance. The latter is defined through

(Ol iy* hln(—k,n)) = ' f,m,, (126)

where |n(—k, 7)) is the vector resonance state with given
polarization 7. The coupling g} (0) is defined by [4]

1,1.27,1.78, respectively. The magenta band corresponds to our final result for

(n(=k,n)[56*h|H(0)) = inge'” (g (p7)(P + Gu),
+9:(P7)(P = qn),]

+igh(p7) (1" - )" psq.,,.

(127)
with ¢, = (E,.—k), p, = p — q,,. In the heavy-quark limit,
my, — oo, the following scaling laws hold:

1 1 m 7
frox——+ ... +oy —=2+-—"T+
Vi VM, H, My,
(128)

where A%~ O(Aqgcp), and the ellipses represent higher-

order terms in the heavy-quark expansion. In light of the

previous relations F% , (x,) can be further approximated
4y fa94(0)

with
A
S (1+O(xy,ﬂ)). (129)
My, 1+ +. L My,

Our strategy to extrapolate F%(x,) to the physical mass
mpg_, consists in approximating the tower of contributions
of type 125, with a single effective pole. This is achieved
through the use of the following fit Ansatz for the combined
mass and x, dependence of the form factor

F?,n (X},) =

- 1 A+Byx,
Fp(x,my) = ————7,

(130)
my 1+ + - mH

where A, B, and Ay are free fit parameters, and the
effective-pole mass is mey = 2my_+ Ay. We assume that
A and B are mass independent, which is consistent with our
data, as illustrated below.'®

'“The Ansatz in Eq. (130) assumes that g; o | /iy for which
however we are not aware of any formal proof in the HQET.

114506-28



B, — uu"y DECAY RATE AT LARGE ¢* FROM LATTICE QCD

PHYS. REV. D 109, 114506 (2024)

TABLE IV. Our results for the form factor F% extrapolated to
the physical mass mp, for the four simulated values of
x,=0.1,0.2,0.3,0.4.

0.1 0.2 0.3 0.4
F 0.028(1) 0.026(1) 0.025(1) 0.0239(9)

Using the Ansatz in Eq. (130) we have performed a
combined fit of the x, and my_dependence of our data. The
total number of measurement entering the y> minimization
is 12, and the number of fit parameters is 3. The y?/dof
resulting from the minimization is very good and well
below unity, although in this case we have employed an
uncorrelated y* function, since we find that the covariance
matrix is ill conditioned. To illustrate the quality of the fit,
we show in Fig. 19 the best-fit functions obtained from the
global fit. As is clear from the figure, the VMD-inspired
Ansatz perfectly captures both the mass and x, behavior of
our data. The resulting value of the parameter Ay is

Ar = —0.32(11) GeV, (131)
which implies that at the physical B; mass the effective pole
is located at mq = 10.4(1) GeV, i.e. around the mass of
the Y(2S) resonance. To check for possible systematic
errors due to the mass extrapolation we have repeated the fit
setting to zero the parameter B in Eq. (130). However, we
did not find significant differences within uncertainties.
The magenta band in Fig. 19 corresponds to our final result
for F%(x,) at my_= mp_. This contribution turns out to be
small compared to the tensor form factors Fry(x,) and
Fr4(x,) described in Sec. III B, which are more than one
order of magnitude larger. In Table IV we give our results
for % extrapolated at the physical mass m B,» for the four
simulated values of x,.

We now turn to the discussion of the mass extrapolation
of F§(x,). In this case the uncertainties are significantly
larger than those affecting F° ’;(xy). Moreover, after includ-
ing the systematic errors due to the ¢ — 0 extrapolation,
only a very smooth x, dependence is visible in the data
within uncertainties. This is shown in Fig. 20, where we
plot the real and imaginary part of F%.(x,) as a function of
1/my_for all simulated values of x,. As is clear from the
figure, both the real and imaginary part of F%(x,) decrease
as my_increases. This is expected since the form factor
vanishes in the static limit. In this case, to have a
conservative error estimate, we take the results at the
largest simulated mass my_ =~ 1.78mp_as an estimate for
the value of the form factor at the physical point,
my, = mpg_. Since there is no clear x, dependence visible
in the data, we quote the following, x,-independent,
estimates for the real and imaginary part of the form factor

Re[F3(x,)] = —0.019(19),  Im[F3(x,)] = 0.018(18),

(132)

which correspond to the data points in magenta in the
panels of Fig. 20.

V. THE B; —» u*u~y DECAY RATE
The doubly differential cross section for the B, — ut ™y
decay can be written as
&er d2r®" d2(INT) d2r(sp)
dx,d(cos@)  dx,d(cos @) - dx,d(cos 0) + dx,d(cos6)’
(133)

where the superscript (PT) refers to the pointlike contri-
bution (which becomes negligible for large x,), (SD) labels
the structure-dependent contribution, and (INT) labels the

Zy = 0.1ve = 0.3 e
0.01- — \ o @y =02 z,=04-| 009
0 ' 0.08 .
-0.01 B; 0.07 B, !
= -0.02 = 006 :
= 003 b & 005 ;
= 004 % g 004 j
B {ﬁ“ B 003 %
= 00 } E 002
-0.06 H 0.01
-0.07 0
-0.08 L - ‘ ‘ ‘ -0.01 L b ‘ ‘ ‘
0.1 0.2 03 0.4 0.5 0.1 0.2 03 0.4 0.5

1/mpy, [Gc\/_l]

1/mpy, [Gc\/_l]

FIG. 20. Mass dependence of the real (left panel) and imaginary (right panel) part of F 7(x,) for the four simulated values of x,. The
data points corresponding to the four simulated values of x, have been slightly shifted horizontally for better visualization. The data

point in magenta corresponds to our final (conservative) estimate for F 7(x,) at the physical mass my = mpg .
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contribution from the interference between the pointlike
and structure-dependent terms in the amplitude. In
Eq. (133) € is the angle between the three-momenta of
the 4™ and the photon in the rest frame of the ™y~ pair.
Recalling that x, = 2p - k/mp_, cos 0 is written in terms of
Lorentz invariant quantities in Eq. (136) below. We now

|

present the expressions for the three terms on the right-hand
side of Eq. (133), neglecting the contributions from O;_¢ g
except for the charming penguin diagram in Fig. 4 which is
included in the effective Wilson coefficient CgI.

The structure-dependent contribution, which depends
quadratically on the form factors, can be written as (41"

CreD_ Gty VI (x,)[x2B B 2(x,,7)B 134
dxyd(cos 9) 210 4 ts| ( )[ y O(Xy) + xyi(xw t) l(xy) +§ (xyv t) Z(Xy)]’ ( )
where 1 = (p — p;)?/ m%ﬁ and p, is the momentum of the u* lepton. The function &£(x,,7) is defined as
X, t) =x, + 2m:; — 2t,
E(x,.7) = x, + 2m2 — 2 135
where 71, = m,/m 35,18 in terms of which the angle 6 is given by
1
cos = S0y ) ) (136)
501 =40/ (1= x,)
The Jacobian J(x,) is
Xy 4 A/24
=—=4/1- . 137
o) =3\ 1= (137)
Finally the functions By(x,), B|(x,), and B,(x,) are as follows:
Bo(x,) = (1 = x, +4iing) (Fi (x,) + Fa(x,)) = 8z |Cio(w) P (F} (x,) + F3(x,)). (138)
B (x,) = 8(1 = x,)Fy (x,) F(x,)Re(C"™ (. x,) C10())
+ 1y Fy (x, )Re(C3 () FF3 (x,)Cro () + 1y F a(x, )Re(C; () FE (x,) Cro (1)), (139)
By(x,) = (1= x,)(Fi(x,) + Fa(x,)). (140)
where 7, = m,/mp_,
— eff 2 2\ 2 21, \? eff 2
Fi () = (1G5 () P+ 1C1o ) ) Fy () + | 7= ) G ) Fv(x, )]
14
+ M b (e JRe(Cy ) PS8 (x, ) G (1. x, ) (141)
l_xyVy 7\H TV\*y)*~9 :uvyv
e 2mb e
Fa(s) = (G5, + [Cal@PIFR (5 + (2 ) 16300 P o, (142
7
A
e Fy (3, )Re(C (1) 3l (3, ) CS™ (1. x, ). (143)

Xy

"In Ref. [4] the authors chose § = (p — k)2 /mB =1-x,and?= (p—p )z/mB , where p; is the four-momentum of the y*, as the
independent variables. We choose x, and cos 6 and J(x /) 1s the Jacobian relating the two sets of variables.

'Sf(x 7) can also be written as &t — 7, where &t = (p — p,)? /mBY and p, is the momentum of the yu~.
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and
F‘}r{,(xy) = Frv(.xy) + FT(X},), (144)
FeTffx(xy> = FTA(x}’) =+ FT(x;')° (145)
The interference and pointlike contributions are given by
dZF(INT) G a m 16 2
Td(cosd) =~ atogs IVeVil Ih )
,d(cos ) 2 ) (x, + i, —1)(1 = 7iny,)
2x, 1, . y o
T Re(Clo(k)Cr (W) FTy () + x Fy (6, )Re(Clo () 5 (s x,)) + E0xy DFa(x,)Cro() 2| (146)
v
and
@ren  Gradnmy 8f5 \2 1—x, +x2/2
Vo Vil <) m?|C 2y =
dx},d(cosﬁ) 7104 | Vil <m S) m/l’ 10(/‘)| (xy) |:( +m —l‘)(t—ﬁii)
x, 1y, 2
- —— 147
(Gwtim) | 47

In the following we will use the Wilson coefficients
evaluated in the MS scheme at the scale y =5 GeV,
which corresponds to the same scheme and scale at which
we calculated the tensor form factors. In the calculation
of the rate we input the value m;, = m;,(5 GeV) =
4.073(11) GeV obtained from m,(m;) = 4.203(11) GeV
[43] using the four-loop quark-mass anomalous dimen-
sion [44].

TABLE V. Masses, decay widths, and branching fractions
into a utp~ pair for the lowest-lying charmonium resonances
V .z [10]. For some of the charmonium resonances, in absence of
information on the branching into u*p~, we provide the branch-
ing into e*e™, which is expected to provide a good approxima-
tion of B(V,; — ' u~) given that My, > m,,, m,. In those cases
where the branching into e*e™ is given, the numerical value of
the branching is preceded by an asterisk. For the last resonance in
the table, the W(4660) resonance, neither the branching into e e~
or utu~ has been measured, and we input the fiducial value

B(¥(4660) — ptp~) = 1(1) x 1073,

Ve My [GeV] ' [MeV] BV — utu)
J/y 3.096900(6)  0.0926(17) 0.05961(33)
P(2S) 3.68610(6) 0.294(8) 8.0(6) x 1073
¥(3770) 3.7737(4) 27.2(1.0) 9.6(7) x 1076
¥(4040) 4.039(1) 80(10) *1.07(16) x 1073
¥ (4160) 4.191(5) 70(10) *6.9(3.3) x 1076
¥ (4230) 4.2225(24) 48(8) 3.2(2.9) x 1073
Y (4415) 4.421(4) 62(20) 2(1) x 1073

¥ (4660) 4.630(6) 7213 Not seen

We now discuss our strategy for estimating in a
conservative way the systematic error due to the charm-
ing-penguin diagram in Fig. 4, corresponding to the
emission of the y*u~ pair from the c¢c loop. As already
discussed in Sec. II, this contribution can be written as a
process and g*> = mp (1 —x,) dependent shift of the
Wilson coefficient Cy — CSi(¢%) = Cy + ACy(g?), and
we rely on the phenomenological parametrization in
Eq. (18) which we rewrite here for convenience,

_ 9z C
7)== (€ 5) Dhlen

em

ACy(

XmVB(V—>,u Ho)Ty
q* —m} +imyly

(148)

The values of the parameters my,T'y, B(V — utu~) are
known experimentally for the lowest-lying resonances, and
are collected in Table V. Instead, the value of the coef-
ficients |ky| and the phases &y are largely unknown: &y =
|ky| — 1 = 0 only holds in the factorization approximation.
In order to estimate the systematic error induced in the
parametrization of Eq. (148) by the poor knowledge of
some of the parameters, we follow a (conservative) pro-
cedure similar to the one adopted in Ref. [5]. We assume for
each resonance the value |ky| = 1.75(0.75)," and that the

"It has been found [45] that |ky/| ~ 2.5 well describes the B —
Kutu~ experimental data. The 1o interval we choose for |ky|
thus spans the region between |ky| = 2.5 and |ky| = 1 which
corresponds to the value obtained in the factorization approxi-
mation.

114506-31



R. FREZZOTTI et al.

PHYS. REV. D 109, 114506 (2024)

phases &y, are completely unknown. Furthermore we
assume that the resonance parameters are completely
uncorrelated. To correctly propagate the uncertainty on
|ky| and &y, as well as the one coming from all other input
parameters (e.g. from the CKM matrix elements |V | and
|Vi|), we generate a large bootstrap sample of size N, =
O(1000) (and we assume that the parameters &y are
uniformly distributed in the interval [0,2x)), and repeat
the calculation of the rate for each bootstrap value of the
input parameters. Central values and standard errors are
then obtained from the usual bootstrap average and
dispersion formulas.

For the Wilson coefficients we take the values from
Ref. [9], which in the basis of operators which we use,
correspond to

C,(5 GeV) = 0.147,
C,(5 GeV) = 0.330,
C10(5 GCV) = 4262,

C»(5 GeV) = —1.053,
Co(5 GeV) = —4.327,
(149)

and for the remaining input parameters we take [10]

V| = 1.014(29), |Vis| = 4.15(9) x 1072,

75 = 1.521(5) x 10712, (150)
where 75 is the average between the lifetimes of the B,y
and B,; mesons, which are the mass eigenstates of the
B, — B, system. The Wilson coefficients computed in
Ref. [9] include next-to-leading logarithm corrections.
This has a particularly large relative effect on C; which
is reduced by approximately 40% compared to the leading
logarithmic result [46,47], and subsequently on the mag-
nitude of the combination C; + C,/3 entering the charm-
ing-penguin parametrization in Eq. (148), which is
increased by more than 60%. In the plot of Fig. 21 we
provide our determination of the differential branching
fraction

dB dr

— =15 —,
s
dxy dx},

(151)
as a function of x, €[0.025,0.4]. We give separately the
pointlike, interference, and structure-dependent contribu-
tions. As the figure shows the pointlike contribution
becomes subleading for x, 2 0.15, while the interference
contribution turns out to be orders of magnitude smaller
than the structure-dependent one on the entire range of x,
explored. At large x, 2 0.2, the uncertainty stemming from
the missing charming-penguin contributions is dominant
over all other sources of uncertainties, and therefore in
order to improve the precision of the differential branching
at large x, a rigorous treatment of the charming penguin
diagrams is necessary.

le-08 :

1e-09
1e-10 /

=
8
T le-11
le-12 INT-
INT no penguins=—
le-13 SD
SD no penguins —
le-14 ' : : . !
0.05 0.1 0.15 0.2 0.25 0.3 0.35
Ly

FIG. 21. Our determination of the differential branching
dB/dx, for x,€[0.025,0.4]. We give separately the pointlike
(light-green band), interference (light-blue band), and structure-
dependent (light-red band) contributions. The blue and red bands
correspond respectively to the determination of the interference
and structure-dependent contribution obtained neglecting the
charming-penguin diagrams.

We now proceed to discuss the determination of the total
branching fraction,

4B
B(X;Ut) = A dx},a,

4

(152)

as a function of the upper bound EY* = mp x{"/2 on the
measured photon energy. As is well known, B(x;"') suffers
from an infrared divergence generated by the pointlike
contribution to dB/dx, which at small x, behaves as 1/x,.
The infrared divergence appearing in the decay rate with
a real photon in the final state is then cancelled by the
O(aen) virtual photon contribution to the By — utu~
decay amplitude, through the usual Block-Nordsieck
mechanism [48]. The interference (Byyr(x;"')) and structure-
dependent (Bgp(x;")) contributions are instead IR finite.
In the experimental analysis made by the LHCb Colla-
boration in Refs. [1,2] the pointlike contribution (called the
final-state-radiation contribution in Refs. [1,2]) has been

1e-09¢ 1
¢ > (4.9 GeV)?

le-10 ¢

= lell:
T
=
=
= e
g " W = INT—
W = INT no penguins =

le-13 -

t W = SD no penguins —

le-14 P | | ‘ /

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
cut

Ly
FIG. 22. Our determination of the IR-finite structure-dependent
[Bsp(x5™), red band] and interference [Binr(x5"), blue band]
contributions to the partial branching fractions B(x;"). The
vertical blue line corresponds to the experimental cut imposed
on the photon energy by the LHCb Collaboration in Refs. [1,2].
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TABLE VL

values of x5

negligible within uncertainties.

Our results for the partial branching fraction Bgp Nt (X5™) = Bsp (x5™) 4+ Binr(x5™) for different
. The interference contribution Biyr(x5") is orders of magnitude smaller than Bgp, (x§*) and completely

V qeu[GeV] = mpg /T - 3"

4.1 42 43 44 45 46

Bsp et % 1010 6.12.1) 5.3(1.7) 3.99(88) 3.31(74) 2.57(50) 2.02(39)
47 48 49 5.0 5.1 52

Bspamr % 1010 1.47(22) 1.04(14) 0.685(90) 0.399(55) 0.188(29) 0.057(12)

included in the analysis of the B, — y*u~ invariant-mass
distribution, as a radiative tail. For the IR-finite structure-
dependent contribution (called the initial-state-radiation
contribution in Refs. [1,2]) LHCb quotes the following
upper-bound:

BEHCL(0.166) < 2 x 107°. (153)

In agreement with our results, the interference contribution
has been instead considered negligible in Refs. [1,2] on the
basis of the results of Ref. [4] obtained using the relativistic
dispersion approach. In Fig. 22 we provide our determi-
nation of the IR-finite structure-dependent [Bsp (x;"')] and
interference [Biyr(xy™)] contributions to B(x5"). The blue
vertical line corresponds to the experimental cut x{* =~
0.166 adopted in the experimental result of Eq. (153). For
X" = 0.166 we obtain

Bsp(0.166) = 6.9(9) x 107!, (154)
while the interference contribution is completely negli-
gible. Our result is well within the bound set by the LHCb

le-08
le-09
= =1
e 1e10
=
=
— le-11
é This work —
% le-12 FF from Ref. [4] —
le-13 FF from Ref. [3]
FF from Ref. [3]
le-ldl o : ) ‘
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
zS,Ut
!
: cut
FIG. 23. Comparison between our results for Bgp., it (x5™")

(shown in the figure by the red band), the ones obtained in
Ref. [5] (shown by the orange band), and the ones we obtained
using the form factors Fy, Fy, Fry, and Fp, from Ref. [3]
(shown in the figure by the green band), and Ref. [4] (shown in
the figure by the blue band). We used the estimate of F given in
Ref. [4] to produce the results corresponding to the blue band,
while the green band has been obtained setting F = 0. The
impact of F; on the branching fraction is however extremely
modest, and negligible within uncertainties.

Collaboration [Eq. (153)]. In Table VI we collect our results
for the sum Bgp vt (x5") = Bsp (x5") + Binr(x5™) of the
interference- and structure-dependent contribution to the
partial branching fraction, for different values of x;".

We can further compare our results with the ones
obtained using the model-dependent determination of
the form factors Fy, F,, Fyy, and Fy, from Refs. [3-5].
The results of the comparison are shown in Fig. 23. As the
figure shows, our results for Byt sp are smaller than those
obtained using the form factors from Ref. [3], and larger
than those obtained using the form factors from Refs. [4,5]
(with respect to Ref. [4] the difference is however less
pronounced). This is not surprising given that the same
trend is observed for the form factors (see Fig. 11). Finally,
we repeat that in order to obtain a more accurate theoretical
prediction for Bgp(xy") at large values of xy", a first-
principles calculation of the charming-penguin contribu-
tions is needed, since our model-dependent estimate
presently represents the main source of uncertainty for
large xg™.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

The rare radiative leptonic decay B, - utu~y is a
flavor-changing neutral current transition which is forbid-
den at tree level in the Standard Model and is therefore
particularly sensitive to potential new physics contribu-
tions. Although there is an additional factor of a,,, in the
amplitude for this process compared to that for the widely
studied B, — u*pu~ decay, the presence of the final state
photon removes the helicity suppression making the rates
for the two processes comparable. On the other hand, while
the leading hadronic effects inthe B, = £1¢~ (£ = e, u, 1)
decay amplitude depend only on the B -meson decay
constant f , which is known to subpercent precision from
lattice computations, the determination of the amplitude for
the B, — u* "y decay is much more complex. In this case
the nonperturbative hadronic effects depend not only on
local form factors, but also on resonance (including
“charming penguin”) and other long-distance contribu-
tions. In this paper, we have presented a first-principles
calculation of the local form factors Fy, F s, Fry, Fru, and
F 7, which provide the main contributions to the amplitude
for the B, — u™u~y decay at large dimuon invariant masses
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\/? > 4.16 GeV, above the peaks of the lowest charmo-
nium resonances. In order to determine the amplitude, we
combine our results for the form factors with previous
phenomenological estimates of the remaining contribu-
tions, in particular those from charming penguins. While
we find that the dominant contribution to the differential
branching fraction is given by the well-determined form
factor Fy, the largest contribution to the uncertainty for
q* < (4.8 GeV)? at present comes from the charming
penguins.

The fitted results for the form factors are plotted as
functions of x, in Fig. 11, where they are also compared to
earlier estimates obtained using different techniques [3-5].
It can be seen that, with a few exceptions, our results for the
form factors differ significantly from the earlier estimates
(which also differ from each other). In particular our results
for the form factor Fy,, which gives the largest contribution
to the amplitude, are significantly smaller than that
obtained in Ref. [3] and larger than those in Refs. [4,5].

In evaluating F%., the contribution to the form factor Fy
in which the virtual photon is emitted from the strange
antiquark, one encounters the difficulty of performing the
analytic continuation to Euclidean spacetime due to the
presence of intermediate vector s5 states with masses below

\/32~ . As explained in detail in Sec. IV, in order to
overcome this problem, we have employed the novel
spectral-density reconstruction technique developed in
Ref. [8]. Since the contribution of F; to the differential
rate is small, and in view of the computational expense of
implementing the spectral representation technique, we
have evaluated it at the same four values of x, as the four
other form factors, but only on two ensembles and at three
values of the heavy-quark mass (m,/m, = 1,1.5,2.5). We
do not observe any significant dependence on x, in F§(x,)
and present our results for its real and imaginary parts in
Eq. (132). There is no difficulty in the continuation to
Euclidean space for F?. the contribution to the form factor
F 7 in which the virtual photon is emitted from the b-quark,
and we find that F2 is an order of magnitude smaller
than F7y and Fpy. The results at the four values x, =
0.1,0.2,0.3 and 0.4 are presented in Table IV.

We use our results for the local form factors to evaluate
the B, — u*p~y amplitude for ¢*> > (4.16 GeV)?, taking
into account the systematic uncertainties due to the con-
tributions that we have not computed in the present work,
in particular those from the charming-penguin diagrams.
We present our results for the partial branching fractions
as a function of the upper cutoff on x, (or equivalently on

the lower cutoff on \/?) in Table VI. Imposing the same
cut on the photon energy [q*> > (4.9 GeV)?, ie.
x, < 0.166] as adopted by the LHCb Collaboration, we
obtain a value for the structure-dependent contribution
to the branching fraction Bgp(0.166) = 7.0(8) x 107!,
which is well within the bound set by the LHCb

Collaboration By (0.166) < 2.0 x 107 [1,2]. However,
as illustrated in Figs. 11 and 23, our results disagree with
the LCSR and model/effective-theory determinations of the
branching fractions from Refs. [3—5]; in particular they are
smaller than the result in Ref. [3] and larger than those in
Refs. [4,5]. The difference can be traced back to the fact
that our result for the form factor F'y,, which is the dominant
contribution to the rate, is larger (smaller) than those
obtained in Refs. [3-5] by about a factor of 1.5-2.

At present our results for the branching fractions have

uncertainties ranging from O(15%) for \/ g2, = 4.9 GeV,

to O(30%) for \/ g2, = 4.2 GeV. Our uncertainties should
already be at the level of precision that can be obtained in
the future experimental measurements of B(B, — uu~y)
at LHCb. Our analysis shows that in order to further
improve the accuracy of the theoretical predictions in the
low-g* region, it is necessary to obtain a first-principles
determination of the (currently missing) charming-penguin
contributions, which presently constitute the main source
of uncertainty in the differential branching fraction for
g* < (4.8 GeV)?. This can be seen as the difference
between the light-red band in Fig. 21, which is our full
result, and the dark-red curve in which the charming
penguin contributions have been neglected.

Since this paper was originally written, the LHCb
Collaboration has presented an upper bound based on an
analysis with the explicit detection of the final state photon
[49,50]. Above the charmonium resonances the bound is
weaker by about an order of magnitude than the earlier
result Bgp(x;"' = 0.166) < 2 x 10~ [1,2], which was
obtained from the shape of the spectrum of the y*u~ pair.
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APPENDIX: DETERMINATION OF THE DECAY
CONSTANT f

In this appendix we discuss our determination of the
decay constant of the B; meson, which enters in the
extrapolation formulas of Sec. III C. For this calculation,
in order to account for any correlations in the determina-
tion of the decay constants and form factors, we use
the same configurations and masses as in the determination
of the form factors Fy, W ={V,A, TV, TA} discussed
in Sec. IIT A.

For each simulated value of the heavy-light meson mass
my , and for each lattice spacing, we use two different
estimators of the decay constant fy . The first determi-
nation of fy is obtained from the pseudoscalar-pseudo-
scalar two-point correlation functions

Cpyes(r) = ) (PYe(1,%)PE™(0)),

X

G (1) = (PP (1. 3)PL™(0)),

X

(A1)

where the labels sm and loc indicate “smeared” and “local”
respectively,

PY<(x) = 5(x)r’h(x),
and where

1 5
H(xy) =T er (1 + kZUj(x)é(x +aj, y>> (A3)
J
is the gauge-field-dependent Gaussian-smearing operator
that has been used to construct the interpolating operator of
the H, meson in the Euclidean three-point correlation
function Bj,(#;k, p) in Eq. (22). The Wilson parameter
of the § and & valence quarks entering the bilinears are
always chosen to be opposite. In the large time limit ¢ > a,

t < T, the correlation functions C32°¢(7) and CHIs™(r)
behave as

sm-loc _ |Z;r§1—loc|2 —my —mpy (T—t)
CPS (t)—T(e Hst - 7, )+,
H

_lzgep

Csm-smt
R =

(e=must 4 e~ (T=0)) (A4)

where the ellipsis indicate terms that are subleading in the
limit of large time separations. From the knowledge of
Zpmloc and Z3ms™ it is possible to determine the decay
constant fp , without the need of any renormalization
constant, making use of [53]

- |Zpgc|?
Zps = (H,|57°h|0) = Tz

|Zps|

bare bare
= a\m;, m —_—
I, (™ + ) my_sinh(amy )

. (A5)

where m5"® and mb*® are the simulated values of the bare
strange and heavy quark mass. The use of smeared
interpolating operators is essential in order to improve
the signal for f , as it allows the ground state contribution
to be isolated at much smaller times (as compared to the
standard local interpolating operator), where the correlation
function is generally more precise.

The second estimator of fp that we use is obtained
exploiting the fact that in the zero photon-momentum limit
k = 0, the spatial part H% (0, 0) of the axial hadronic tensor
is equal to if _if we choose fictitious values ¢ and g}, for
the electric charges of the strange and heavy quark entering
Jtm in Eq. (23), in such a way that ¢, + ¢}, =1 (see
Appendix C of Ref. [12] for more details on this point).
In the following we denote the determination of f from
Egs. (A1)—(A5) as fzp:, and the one from Hi(0,0) as Zp:.
The two estimates of the decay constants only differ by
cutoff effects and allow us to better constrain the result
of the continuum fits. Our strategy is to perform the
continuum limit extrapolation at fixed values of my ,

2pt

fitting simultaneously f7" and f;}it using the following

Ansatz:
2 2pt
HpSt = I-R\/m—HS:A—’—sztaz +D2pta4’
3 3
b= [ /My, = A+ B¥a? + D¥a?, (A6)

where A, B?/3Pt and D?P'/3t are free fit parameters. Note
that a common continuum value is enforced. In order to
avoid overfitting, given the limited number of gauge
ensembles that we employ, we do not include fits with
both D?' and D3 as fit parameters, i.e. we set either D?P!
or D" or both to zero. The fits are performed minimizing
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FIG. 24.  Continuum limit extrapolation of ¢y for the five different simulated values of the heavy-strange meson mass my . For each
mass we show the continuum limit fits obtained employing all four lattice spacings. The blue and red data points correspond respectively
to the estimator > and ¢°P'. The green, red, and blue bands correspond respectively to the pure a? fit, and to the a* fit with D3 = 0
and D*' = 0. Finally, the black data point at a> ~ 0 corresponds to our final determination, which is obtained combining the six

different fits we performed using the AIC.

a correlated y?> function which takes into account the

. 2pt 3pt
correlation between ¢y and ¢ evaluated on the same
§ s

gauge ensemble. The results of the extrapolation to the
continuum limit for the five simulated values of my are
illustrated in Fig. 24. We have performed a total of six
different fits for each my , which differ depending on
whether the ensemble with the coarsest lattice spacing is
included or not, and on whether we include or neglect the
terms proportional to a*, i.e. whether we set D' and/or
D3 to zero. The results obtained from the different fits are
then combined using the AIC, which has already been
discussed in Sec. III A. To be conservative, we add linearly
the systematic and statistical errors from AIC. Having
extrapolated the decay constants f for each of the five
simulated values of my to the continuum limit, in order to
obtain fp we need to perform the extrapolation in the

mass. To do so, we make use of the heavy-quark scaling
relation

¢(my ) = const x <1 + B + O(m;,z)> (A7)
m :

As is well known, Eq. (A7) is valid exactly only in the
effective theory at the bare level. Logarithmic corrections
to Eq. (A7) are generated by the nonzero anomalous
dimension of the axial current in the HQET, as well as
from its matching to the axial current in full QCD. Let
Jr(W') = Z7"(ay(u))¢Th, where T is one of the Dirac
matrices and £ and & denote light and heavy quark fields
in QCD, be a generic renormalized heavy-light current in
QCD and let Jr(u) = Z3'(ay(u'))£Th, be its counterpart
in the HQET. The relation between the two currents is

114506-36



B, — uu"y DECAY RATE AT LARGE ¢* FROM LATTICE QCD

PHYS. REV. D 109, 114506 (2024)

given, at leading order, in the heavy-quark mass my,,
by [54]

a() y,(ay) dag
Jr(W) =C (mh,mh)exp{/ : :
" t ag(my,) 2/}(“5) Ay

a () y5(ay) das}~
_ Tr(W).
L,,.(mh) zﬂ(as> A T( )

(A8)

where f(a;) is the QCD f function, and y,; is the
anomalous dimension of the current J(J). In the case
of the QCD axial current one has y; = 0. Cr(my, my)
is the matching coefficient and is obtained by imposing
the equality between the renormalized proper vertices of
the quark bilinear in question, evaluated in QCD and in
the HQET at the heavy quark scale my. Its two-loop
expression for the axial current has been computed in
Ref. [55] and is given by

2a,(my,) ay(m;)\?
CyOyS(mh,mh) =1 —57—295 <T .

(A9)

The anomalous dimension y; in the HQET (which does
not depend on the specific I" considered) has been
computed at three loops in Ref. [54]. In summary, the
relation in Eq. (A7) gets modified by the matching and
by the running of Jr-(4') into

as(my) v~ Vda.
¢<mH.v):Cy“ys(mh,mh)exp{A " 73(as) 063}

2ﬁ(as) s
x const’ x <1 + B + O(””Zﬁ))

. (A10)
and we have reabsorbed the x4’ dependence in Eq. (AS8)
into the constant factor, const’. A delicate point of the
analysis is the determination of the heavy quark mass m,
of the HQET, which should be identified with the pole
mass. Notoriously, the pole mass is affected by renor-
malon ambiguities and its perturbative expansion in terms
of the MS mass mMS(m}S) is asymptotically divergent.
To avoid the use of the pole mass, we follow two
different strategies and use, in place of m,, either the
heavy-strange meson mass my_[my —m;, =~ O(Aqcep)],s
or the minimal-renormalon-subtracted mass advocated in
Ref. [56] (see also Ref. [57] for another alternative to the
use of the pole mass).

mg'

0.2 0.3 0.4 0.5
I/mHS [Ge\r"fl]

FIG. 25. Extrapolation of the decay constant f; to the physical
B, meson mass mp_ =~ 5.367 GeV using the Ansatz in Eq. (A10)
and with m, replaced by my . The red curve corresponds to the
best-fit function, while the dashed vertical line corresponds to the
inverse mass of the B, meson. The reduced y? of the fit is smaller
than unity. Our final determination of f5 is given in Eq. (A11).

The result of the extrapolation obtained replacing m;,
with my_in Eq. (A10), and with the constant term and the B
coefficient considered as free fit parameters, is shown in
Fig. 25. The fit takes fully into account the correlation
between the values of the decay constant obtained at the
different values of my . The resulting y%/dof of the fit is
very good and smaller than unity. By repeating the fit
employing the minimal-renormalon-subtracted mass, we
find that the value of fp changes by less than 0.3¢, and
therefore we do not add any additional systematic error. We
obtain the value

fp, = 224.5(5.0) MeV, (A11)

which agrees with the Ny =2+ 1+ 1 FLAG average
J549 =230.3(1.3) MeV at the level of 1.1c. Our final
uncertainty is however much larger, which reflects the fact
that our calculation is not tailored to be a precise deter-
mination of fp . Our main interest is in the calculation of
the local form factors contributing to the B, — u"u"y
decay amplitude. The main limitation preventing a more
precise determination of fp comes from the systematic
uncertainty associated to the continuum limit extrapolation,
performed here with a rather limited number of lattice
spacings. The new gauge ensembles that the Extended
Twisted Mass Collaboration will produce at smaller values
of the lattice spacing, will allow for significantly reduced
uncertainties on fp .
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