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We analyze the color-magnetic (or “B”) field two-point function that encodes the finite-mass correction
to the heavy-quark momentum-diffusion coefficient. The simulations are done on fine isotropic lattices in
the quenched approximation at 1.5Tc, using a range of gradient flow times for noise suppression and
operator renormalization. The continuum extrapolation is performed at fixed flow time followed by a
second extrapolation to zero flow time. Perturbative calculations to next-to-leading order of this correlation
function, matching gradient-flowed correlators to MS, are used to resolve nontrivial renormalization issues.
We perform a spectral reconstruction based on perturbative model fits to estimate the coefficient κB of the
finite-mass correction to the heavy-quark momentum-diffusion coefficient. The approach we present here
yields high-precision data for the correlator with all renormalization issues incorporated at next-to-leading
order and is also applicable for actions with dynamical fermions.
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I. INTRODUCTION

Heavy-ion collisions create a new state of matter, the
quark-gluon plasma [1–3]. Studying this state of matter is
complicated by the fact that most participants—quarks and
gluons—undergo multiple interactions throughout the col-
lision, ending in hadronization. Therefore, their final yields
and momentum distributions encode the early dynamics in
a complicated and indirect way. Hard probes are objects
with enough energy and/or momentum to provide more
direct information about the early stages of the collision.
Principle among these are heavy quarks, whose evolution
in the quark-gluon plasma has been extensively studied
both experimentally [4–6] and theoretically [6–8].
Most heavy quarks are produced at relatively low

transverse momentum, meaning γv≲ 1. In this regime,
they interact with the medium through a series of scatter-
ings which can be collectively described as momentum
diffusion and drag [7,9,10]. Close to rest, the momentum-
diffusion coefficient κ is determined by a force-force
correlation function which can be rewritten as a color-E-
field color-E-field correlation function in the medium, with
the adjoint color-electric field group-theory factors

connected by a fundamental Wilson line [11]. The asso-
ciated spectral function is the analytical continuation of the
thermal Euclidean correlation function of two E fields
along a fundamental Polyakov loop, normalized by the
trace of the Polyakov loop [12]. This opens the possibility
of computing this quantity on the lattice, something several
groups have pursued [13–17].
Because the charm quark is not extremely heavy, and

because some charm and bottom quarks are created with
somewhat larger momenta, it may also be important to
consider finite-velocity corrections to this momentum-
diffusion picture. Bouttefeux and Laine showed [18] that
the next order in velocity is determined by a color-
magnetic-magnetic correlator on a Wilson line, which is
the continuation of a magnetic-magnetic correlator along a
fundamental Wilson line in the thermal Euclidean path
integral. This quantity can also be investigated on the
lattice, and several groups have already tried to do so
[19–21]. However, treating this problem is more compli-
cated, as Laine already showed [22]: the BB correlator on a
Wilson line renormalizes in a nontrivial way, which must be
taken into account both in fitting lattice data and in
interpreting the result in terms of heavy-quark diffusion.
The goal of this paper is to investigate the correlation

function of two magnetic fields on a Wilson line with the
use of lattice QCD and gradient flow. We hope to improve
on previous studies in three ways. First, we perform a high-
statistics study using a wide range of very fine lattices in
order to control continuum and small-flow extrapolations.
Second, we treat correlations within the data analysis
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process more carefully than previous studies (including our
previous study of electric field correlations). For instance,
results at a fixed separation and nearly equal flow depths
are highly correlated, whereas many analyses have treated
different flow depths as if they are independent; similarly,
the small-flow extrapolation for nearly equal separations is
also highly correlated. Third, we treat the issues of operator
renormalization more carefully when carrying out the finite
flow time extrapolation. Here we take advantage of a recent
next-to-leading order (NLO) result for the effect of gradient
flow on magnetic field correlators along a Wilson line to
provide a fully NLO matching between gradient-flowed
lattice results, perturbative calculations in the modified
minimal subtraction scheme (MS scheme), and the physical
diffusion coefficient. The use of these relations greatly
improves the extrapolation over gradient flow depth,
eliminating a logarithmic dependence which would other-
wise arise.
An outline of the paper is as follows. In Sec. II we

present the theoretical framework of this study, including
the definition of lattice object, analytical continuation,
gradient flow, and a matching procedure for converting
lattice results at finite gradient flow depth to the physical
values. Next, Sec. III describes the details of our lattice
setup and the evaluation of magnetic field correlation
functions. Section IV provides the details of the matching
procedure. Section V describes the continuum and zero
flow limits. This section represents a main innovation in our
treatment, since the renormalization of the operators as a
function of gradient flow depth is fully incorporated in our
extrapolations, and since data correlations across flow
times and between separations is taken into account.
Then Sec. VI presents the analytical continuation of our
results to a Minkowski spectral function. Finally, Sec. VII
presents our results and conclusions.

II. RENORMALIZATION OF MAGNETIC FIELD
CORRELATORS UNDER GRADIENT FLOW

The basic object we shall consider is the correlation
function of two magnetic field operators along a Wilson
line. In Euclidean space this will be a fundamental-
representation Polyakov loop, and the value should be
normalized by the mean trace of the Polyakov loop,

GBðτÞ≡ L−1hTrG12ð0ÞUð0; τÞG12ðτÞUðτ; βÞi; ð1Þ

L≡ hTrUð0; βÞi; ð2Þ

Uðt1; t2Þ≡ Pexp − i
Z

t2

t1

GA
0 ðtÞTAdt: ð3Þ

Here β ¼ 1=T is the inverse temperature, Uðt1; t2Þ is a
fundamental-representation Wilson line along the time
direction, G12 is the color-magnetic field strength under
the geometrical normalization convention, and L is the

trace of the Polyakov line. All operators occur at a common
spatial point, only time is varying. The analytical continu-
ation of this object to real time is the Wightman-ordered
correlation function of two magnetic field operators with a
Wilson line running up the real time axis, between the
operators, down the real-time axis, and across the
Euclidean branch,

GBðtÞ ¼ L−1hTrG12ð0ÞUð0; tÞG12ðtÞUðt; 0ÞUð0; iβÞi: ð4Þ

The associated spectral function ρðωÞ is related to GBðτÞ in
the standard way,

GBðτÞ ¼
Z

∞

0

dω
π

ρBðωÞ
cosh ðωðτ − β=2ÞÞ

sinhðωβ=2Þ : ð5Þ

In a completely analogous way one can also define GE, the
correlation function for electric fields,

GEðτÞ ¼ −L−1hTrG01ð0ÞUð0; τÞG01ðτÞUðτ; βÞi; ð6Þ

where the − sign accounts for two factors of i in the
continuation of Minkowski to Euclidean electrical fields.1

The two spectral functions ρE and ρB then determine the
momentum-diffusion coefficient κ via

κ ¼ lim
ω→0

2T
ω

�
ρE þ 2

3
hv2iρB

�
; ð7Þ

where hv2i is the mean-squared velocity of the heavy quark.
The velocity, as determined by thermodynamics, depends
on the ratio T=M, which is the way the dependence on the
thermal heavy-quark mass M enters. The operators in
Eqs (1) and (4) require regularization and their regularized
values will generically depend on the scale or procedure
used. For the case of electric field correlators on a Wilson
line this regularization turns out to be harmless; the
operator determining GE turns out to be finite and regulator
independent within MS and gradient flow regulators, and
its value in these two schemes is equal. But the issue is
more complicated for GBðτÞ, as we review below.
The lattice itself provides a regularization which could

be used. But the regularization calculation has not been
carried out to our knowledge, and in general lattice-
regularized operators tend to possess large renormalizations
and poorly convergent perturbative expansions, so this
approach is not attractive. In any case, achieving a high
signal-to-noise ratio from a lattice simulation will generally
require the use of gradient flow. Gradient flow automati-
cally provides renormalized operators with finite correla-
tion functions, and it eliminates any detailed dependence on
the lattice spacing or lattice implementation. But it is

1GEðτÞ defined in this way is positive because the Euclidean
electric field is time-reflection odd.
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important to correctly understand what this regularization
actually does in terms of the flow time dependence of GB.
Briefly, gradient flow is a procedure for transforming

gauge-field backgrounds AμðxÞ within the path integral,
removing their short-distance fluctuations. One defines a
flowed variable Bμðx; τFÞ through a boundary condition
and an evolution equation,

Bμðx; τF ¼ 0Þ ¼ AμðxÞ;
∂τFBμðx; τFÞ ¼ DB

νGB
νμ; ð8Þ

where the superscript B indicates that the covariant deriva-
tive and field strength are those constructed using the
flowed field Bμðx; τFÞ, not the original field AμðxÞ. For
more discussion see Refs. [23–26]. After applying this
procedure to a flow depth τF, the gauge fields are free of
short-distance fluctuations beyond approximately the
momentum scale2

μF ≡ 1=
ffiffiffiffiffiffiffi
8τF

p
ð9Þ

and all correlation functions are rendered finite. We will
write the magnetic field correlation function evaluated on
the flowed fields as Gflow;μF

B ,

Gflow;μF
B ðτÞ≡GBðτÞ with AμðxÞ → Bμðx; τFÞ: ð10Þ

It is the quantity which one directly measures on the lattice.
The quantity GE has a finite τF → 0 limit which is
approached with OðτF=τ2Þ corrections. However, as we
will see,Gflow;μF

B also contains logarithmic-in-τF corrections
which must be correctly handled.
Bouttefeux and Laine [18], followed by Laine [22]

considered GB in the MS renormalization scheme and its
relation to the physical diffusion coefficient for heavy
quarks. They found the relation between the physical
diffusion coefficient and the MS-regulated and renormal-

ized3 correlation function GMS;μ̄
B to be

Gphys
B ¼ GMS;μ̄

B

�
1þ g2γ0

�
ln

μ̄2

ð4πTÞ2 − 2þ 2γE

��
: ð11Þ

Here g2γ0 ¼ g2CA=8π2 ¼ 3g2=8π2 is the leading-order
anomalous dimension for a magnetic field operator inserted
along a temporal Wilson line (with CA ¼ 3 the adjoint
Casimir) with the gauge coupling g2 ¼ 4παs. We assume
that g2 ¼ g2

MS
ðμ̄Þ. SinceGB involves two B-field insertions,

the correction has an additional overall factor of 2 relative

to that in Ref. [22]. This expression implies that GMS;μ̄
B

depends explicitly on the MS renormalization scale μ̄
through a Callan-Symanzik equation:

μ̄2d
dμ̄2

Gphys
B ¼ 0

⇒
μ̄2d
dμ̄2

GMS;μ̄
B ¼ −g2γ0G

MS;μ̄
B : ð12Þ

It remains to relateGMS;μ̄
B with what we actually measure on

the lattice, which is Gflow;μF
B . Since the latter is independent

of the μ̄ scale, its relation with GMS;μ̄
B must also involve

logarithms of μ̄, balanced by the gradient flow scale μF.
Very recently, de la Cruz et al. have found the relation
[27] between these quantities, valid to leading order in
small τF=τ2,

Gflow;μF
B ¼ GMS;μ̄

B

�
1þ γ0g2

�
ln

μ̄2

4μ2F
þ γE

��
: ð13Þ

This result was also recently derived by Brambilla and
Wang [28]. The μ̄ dependence in Eq. (13) and in Eq. (11)
cancel, rendering a combined result which is independent
of μ̄ at the NLO level.
Besides these renormalization effects, we expect that

Gflow;μF
B will contain additional polynomially suppressed

flow effects, that is, effects of order τF=τ2. To extrapolate
these away, we will be interested in small values of τF,
satisfying τFT2 ≪ 1 and therefore μF ≫ T. If we use a
single MS scale μ̄ in applying both Eqs. (11) and (13), this
will lead to large logarithms in at least one equation. We
should then expect α2s ln2ðlargeÞ effects at the next order.
Such uncontrolled higher-order logarithms can be avoided,
as usual, by evaluating Eqs. (11) and (13) at two different
MS scales, each chosen appropriately to avoid large

logarithms in the matching, and evolving GMS;μ̄
B between

these scales using the Callan-Symanzik equation (12). This
also requires an accurate determination of the scale-depen-
dent gauge coupling. Combining these ideas, the following
approach appears appropriate to obtain the renormalized
color-magnetic correlator Gphys

B :
(1) Determine the MS gauge coupling g2

MS
ðμ̄Þ ¼ 4παs at

one scale, μ̄ref , accurately, using the approach of
Refs. [25,29] (more details in Sec. IV). From this,
use the standard MS β function to determine the
gauge coupling over the desired range of scales.

(2) For each relevant4 flow time, measure Gflow;μF
B ðτFÞ on

the lattice and take its continuumlimit at fixed flow time.

2Note that τF has units of length squared, not length.
3Meaning that 1=ϵ̄ factors have been subtracted off.

4See Sec. V for details. Relevant flow times are some set of
flow times inside the flow time extrapolation window. In this
window, data at different flow times are highly correlated. To not
underestimate statistical errors, we perform the flow time
extrapolation of Gflow;μF

B using as few points as possible (i.e.,
three maximally spaced data points for a linear fit).
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(3) Match the continuum-extrapolated Gflow;μF
B to GMS;μ̄

B
with the help of Eq. (13). This requires choosing a
matching scale μ̄τF for μ̄. This could be, for example,

μ̄τF;LO ≡ μF; ð14Þ
the typical scale for gradient flow effects, or the scale

where Gflow;μF
B ¼ GMS;μ̄

B , which is

μ̄τF;NLO ≡ μF
ffiffiffiffiffiffiffiffiffiffiffi
4e−γE

p
≃ 1.50μF: ð15Þ

In any case we end up with G
MS;μ̄τF
B .

(4) To avoid large logarithms in Eq. (11), run G
MS;μ̄τF
B to

the “physical scale” μ̄T using Eq. (12), incorporating
the running of the coupling using a two-loop or
higher-loop β function. Two sensible choices for μ̄T
would be

μ̄T;LO ≡ 2πT; ð16Þ
the typical scale for thermal physics, and the scale

where Gphys
B ¼ GMS;μ̄

B at NLO, which is

μ̄T;NLO ≡ 4πe1−γET ≃ 19.18T: ð17Þ

In any case we end up with GMS;μ̄T
B .

(5) Finally, with the help of Eq. (11), obtain Gphys
B

from GMS;μ̄T
B .

In the event that either Eq. (11) or Eq. (13) involves a
relatively large correction, we can also attempt to incor-
porate higher-loop multiple-log contributions by the sub-
stitution ð1þ xÞ → expðxÞ, where x ¼ γ0g2… is the NLO
correction. A summary of steps 3–5 is then

Gphys
B ðτFÞ ¼ Zmatchðμ̄T; μ̄τF ; μFÞGflow;μF

B ðτFÞ;

lnZmatch ¼
Z

μ̄2τF

μ̄2T

γ0g2MS
ðμ̄Þ dμ̄

2

μ̄2

þ γ0g2MS
ðμ̄TÞ

�
ln

μ̄2T
ð4πTÞ2 − 2þ 2γE

�

− γ0g2MS
ðμ̄τFÞ

�
ln

μ̄2τF
4μ2F

þ γE

�
; ð18Þ

where we have introduced the total matching factor Zmatch.
The resulting quantity,Gphys

B ðτFÞ, must then be extrapolated
to zero flow time, assuming that the flow time dependency
is of form τF=τ2, respectively.
In the following we will employ this procedure in our

data analysis to correctly account for the renormalization
of GB, such that the spectral reconstruction can be
performed using Gphys

B . The approach involves a somewhat
arbitrary choice for the scale μ̄T and for the scale μ̄τF .
The dependence on these choices formally cancels at the
NLO level, but it will introduce residual next-to-next-to-

leading order (NNLO) effects. By considering two some-
what different choices for each scale, we will determine the
residual renormalization-point dependence of our results,
which we will include in our systematic error budget.

III. LATTICE DETAILS

The color-magnetic field correlators are measured on
four isotropic lattices at temperature T ≃ 1.5Tc, where Tc is
the confinement/deconfinement phase transition temper-
ature determined via the Sommer parameter r0 [30] in
Ref. [31].5 The gauge configurations are generated with
the standard Wilson gauge action using the heat bath and
overrelaxation algorithms. To ensure our calculation is
performed on fully thermalized configurations, the first
4000 sweeps, each consisting of one heat bath update
and four overrelaxation updates, have been discarded.
Autocorrelation between measurements was eliminated
by sampling only every 500th sweep. Periodic boundary
conditions are used for all directions. The lattice spacing a
is determined via the r0 scale [31,32]. The finite temper-
ature lattice setup is summarized in Table I. For the
calculation of the coupling constant, we use additional
zero-temperature lattice simulations at the three finest
lattice spacings considered here, see Table II.
Before measuring the color-magnetic field correlator on

the lattice, we first evolve the gauge fields to the desired

TABLE II. The lattices at T < Tc (“zero temperature”) for
determining the gauge coupling.

a (fm) a−1 (GeV) Nσ Nτ β T=Tc

No.
configuration

0.0178 11.11 96 96 7.1920 0.3712 1000
0.0140 14.14 96 120 7.3940 0.3780 1000
0.0117 16.88 96 144 7.5440 0.3761 1000

TABLE I. The lattice setup used for the calculation of the color-
magnetic field correlators. Here, β is the inverse gauge coupling,
not to be confused with the inverse temperature defined below
Eq. (1).

a (fm) a−1 (GeV) Nσ Nτ β T=Tc

No.
configuration

0.0215 9.187 80 20 7.0350 1.4734 10 000
0.0178 11.11 96 24 7.1920 1.4848 10 000
0.0140 14.14 120 30 7.3940 1.5118 10 000
0.0117 16.88 144 36 7.5440 1.5042 10 000

5The gauge configuration ensemble, detailed in Table I, was
generated years ago with parameters not precisely tuned to 1.5Tc.
These discrepancies, possibly impacting the continuum extrapo-
lation slightly (cf. Fig. 3), are ignored for the purpose of this
study.
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flow time range using the Symanzik-improved gradient
flow (Zeuthen flow) [33].
The generation of gauge configurations and the correlator

measurements, as well as the gradient flow evolution is
performed using the SIMULATeQCD suite [34–36]. The corre-
lator data analysis and spectral reconstruction is carried out
using our software toolkit CORRELATORS_FLOW [37].

IV. DETERMINATION OF GAUGE COUPLING
AND MATCHING FACTOR

In order to make use of Eq. (18) and the matching
procedure explained in Sec. II, the gauge coupling has to be
known in the range from μ̄τF to μ̄T . We can determine the
MS gauge coupling g2

MS
¼ 4παs self-consistently from the

lattice data over a range of scales from about μ ¼ 1=a to
about μ ¼ πT by evaluating the squared field strength
E ¼ TrGμνGμν=2 under gradient flow, which yields

αflowðμFÞ≡ 4π

3
τ2FhEiτF : ð19Þ

Here, hEiτF is the expectation value of the squared field
strength E at flow time τF. Then we use the relation
between this quantity and the MS coupling, calculated at
NLO by Lüscher [25] and at NNLO by Harlander and
Neumann [29],

αflow ¼ αsð1þ k1αs þ k2α2sÞ for μ̄2 ¼ μ2F;

k1 ¼ 1.098þ 0.008Nf;

k2 ¼ −0.982 − 0.070Nf þ 0.002N2
f: ð20Þ

The MS coupling αs is then obtained by solving the cubic
equation. Note that Nf is the number of light-quark flavors
which is zero in the case of this study. This approach
becomes unreliable for τF < a2 (where a means lattice
spacing) due to missing Oða2=τFÞ effects. It also has
problems when τF becomes too large, as the matching
then occurs in a stronger-coupled regime where the
perturbative match of Eq. (20) becomes less precise.
This makes it difficult to establish αs directly over the full
range from μ̄T to μ̄τF . Therefore, the best procedure appears
to be to use this direct determination at a single value μF ¼
1=

ffiffiffiffiffiffiffi
8τF

p ¼ μ̄ref where both lattice spacing and perturbative
effects are under control and to use the perturbative running
of the gauge coupling to obtain it in the desired range. This
is the approach we will follow in this work.
Since the matching procedure is conducted based on the

continuum theory, it is necessary to extrapolate the flowed
coupling constant αflowðμFÞ measured on the lattice (see
Table II) to the continuum first. Given that the discretiza-
tion error of the lattice action is of order a2, we adopt an
Ansatz linear in a2. This extrapolation is shown in the left
panel of Fig. 1. It can be seen that the Ansatz describes the
lattice data well for all relevant flow times. However, the
figure shows that the continuum correction is only small for
μF ≲ 8T, correspondingly restricting the choice for μ̄ref. In
the right panel of Fig. 1, the continuum-extrapolated (cont.
extr.) αflowðμFÞ is shown as a solid green curve. Converting
it to αs via Eq. (20) yields the solid orange curve. We select

μ̄ref ≡ 2πT ð21Þ

FIG. 1. Left: gradient flow coupling αflow as a function of squared lattice spacing [or equivalently N−2
τ at fixed temperature

T ¼ 1=ðaNτÞ] at selected flow scales μF in temperature units. The dashed lines correspond to linear fits at fixed flow scale, yielding the
continuum-extrapolated data points at N−2

τ ¼ 0. Statistical errors are smaller than the data linewidths. Right: continuum-extrapolated
flow coupling αflow and matched MS coupling αs [via Eq. (20)] as a function of gradient flow scale μF in temperature units. Note that the
couplings and scales are defined such that μF ¼ μ̄. The dotted vertical line is located at μF ¼ μ̄ref [Eq. (21)] and depicts the point from
where we move to other scales via the perturbative β function. Statistical errors are smaller than the linewidth.
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and have checked that reducing this value by half does
not significantly alter the results. From this point we can
move to other scales via the perturbative β function. In
practice, the evolution is calculated using the function
crd.AlphasExact(αsðμ̄refÞ, μ̄ref , μ̄τF , Nf ¼ 0, Nloop ¼ 5) of
the RunDec package [38,39]. The resulting coupling is then
used to compute Zmatch via Eq. (18), which we show in
Fig. 2 for different choices of μ̄T and μ̄τF . The vertical
dotted lines enclose all flow times we will use when
extrapolating to zero flow (the flow time extrapolation
window), meaning that the renormalization procedure
changes the bare correlator by at most between −15%
and þ5%. We can also see that the difference between
choices for μ̄τF is almost negligible, while for μ̄T the
difference is simply a constant multiplicative factor. The
four curves for Zmatch shown in this figure, which formally
differ from each other at the NNLO level, will be used in the
next section to obtain four physical correlators via Eq. (18).
These will be treated on an equal footing in the spectral
analysis and therefore contribute to the overall systematic
uncertainty. However, as we will see later, the impact of the
different choices on the determination of κB is almost
negligible. For this reason, some figures are simplified to
show only the choice ðμ̄τF ¼ μ̄τF;NLO; μ̄T ¼ μ̄T;NLOÞ.

V. CORRELATOR COMPUTATION

We calculate the color-magnetic correlator GB on the
lattice using four different lattice spacings a (cf. Table I) and
perform bootstrap resampling to carry out the complete
analysis procedure (i.e., continuum extrapolation, renorm-
alization, and flow time extrapolation of GB, and in the

next section spectral reconstruction) on 1000 bootstrap
samples.6

Note that, to suppress discretization errors, we tree-level
improve [40] the bare correlator by multiplying it with the
ratio of the free correlator obtained in the continuum at
leading order Gnorm

B ðτÞ [12] (which is same as in the color-
electric case) and the one calculated in lattice perturbation
theory at leading order at finite flow time [17]

Glatt
B ðτ; τFÞ → Glatt

B ðτ; τFÞ ×
Gnorm

B ðτÞ
G

norm
latt
B ðτ; τFÞ

: ð22Þ

This is equivalent to including tree-level lattice-spacing
errors in both the correlator and gradient flow procedures.
To make the subtle features of the data visible, we further
normalize it by Gnorm

B ðτÞ. The quantity of interest is there-
fore the tree-level-improved ratio

Glatt
B ðτ; τFÞ

G
norm
latt
B ðτ; τFÞ

: ð23Þ

For simplicity we drop the trivial superscript “latt” in the
following.

FIG. 2. The renormalization factor of the color-magnetic correlator, Zmatch [Eq. (18)], as a function of flow scale μF in
temperature units (left) or as a function of flow radius

ffiffiffiffiffiffiffi
8τF

p
in inverse temperature units (right) for the four combinations of μ̄T

and μ̄τF defined in Sec. II. Statistical errors are smaller than the linewidth. The difference between the panels is the inverted x-axis since
μF ¼ 1=ð ffiffiffiffiffiffiffi

8τF
p Þ.

6For each lattice spacing, 1000 samples for the correlator are
created by randomly drawing 10,000 measurements at that lattice
spacing with replacement, from which then, for each flow time,
the corresponding sample correlator is calculated. The continuum
extrapolation yields 1000 continuum correlator samples by
drawing one sample correlator from each lattice spacing (without
replacement). We represent bootstrap sample distributions using
their median �34th percentile, which is what is shown in all
subsequent figures that feature data points with error bars.
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A. Continuum extrapolation of the bare correlator

In this section we consider the continuum extrapolation
of the bare correlators (item 2 of Sec. II). The continuum
extrapolation of GBðτ; τFÞ=Gnorm

B ðτ; τFÞ requires an inter-
polation of the Euclidean temporal separations τT to the
same values across all lattices (we use those present on the
finest lattice). This is done using cubic splines with natural
boundary condition at the smallest τT and zero slope at
τT ¼ 0.5 due to the periodic boundary conditions used in
the lattice simulation. The continuum extrapolation is
carried out using an Ansatz linear in a2 as we use the
standard Wilson action.
In the two panels of Fig. 3we show the extrapolation at the

minimum and maximum flow time [in units of
ffiffiffiffiffiffiffi
8τF

p
=τ,

cf. Eq. (24)] that is later used in the flow-time-to-zero
extrapolation. We can see that the linear-in-a2 fit Ansatz
gives a good description for the lattice data at all τT
considered (smaller τT are not reliably accessible by the
gradient flow method, as explained further below). The
continuum-extrapolated results are shown in the left panel of
Fig. 4. The renormalized correlators obtained via Eq. (18)
are shown in the right panel of Fig. 4 as colorful bands. It can
be seen that the matching factor does ameliorate the
logarithmic flow time divergence, rendering the remaining
flow time dependence of the renormalized color-magnetic
correlator linear, which is in close resemblance to the
behavior of the color-electric correlator (cf. Refs. [14,17]).

B. Flow-time-to-zero extrapolation
of renormalized correlator

Now we perform the τF → 0 extrapolation of the
continuum color-magnetic correlator, which has been

renormalized via Eq. (18) using the matching factors shown
in Fig. 2. As detailed in a previous study of the color-electric
field correlators [14,17], there is a small flow time window
that is usable for the flow extrapolation, which reads

0.25 ≤
ffiffiffiffiffiffiffi
8τF

p
τ

≤ 0.3: ð24Þ

The lower limit effectively results from the largest lattice
spacing used in the continuum extrapolation, as enough flow
needs to be applied to sufficiently suppress lattice discreti-
zation artifacts. The upper limit results from a perturbative
study [41] that allowed the flowed (color-electric) correlator
to deviate from its zero flow counterpart by, atmost, 1%. This
ensures that the flowed correlator does not stray too far from
the physical, zero flow time value. Due to Eq. (24), the
correlator can only be calculated reliably for Euclidean time
separations τT ≥ 0.25.
In the window given by Eq. (24) a linear extrapolation is

performed, inspired by the lowest-order small flow time
expansion and justified by our data. Such a simple Ansatz
turns out to work very well as the right panel of Fig. 4
indicates, where the fits, indicated by the dashed lines, go
through all data points in the flow time window. We
perform this extrapolation by fitting to the three explicitly
shown data points at the minimum, midpoint, and maxi-
mum of our flow time window. We do this because there is
a large autocorrelation between nearby flow times. Fitting
to many nearby flow times is therefore not justified
statistically. It is also important that we determine the
error in the fit based on the different fit results found in
bootstrap resamplings of our data, rather than through naive
regression.

FIG. 3. Bare color-magnetic correlator GB, tree-level improved and normalized to its free counterpart Gnorm, as a function of squared
lattice spacing a2 [or equivalently 1=N2

τ at fixed temperature T ¼ 1=ðaNτÞ] at the smallest (left) and largest (right) flow time in units offfiffiffiffiffiffiffi
8τF

p
=τ according to Eq. (24). The dashed lines and data points at 1=N2

τ ¼ 0 represent the linear-in-a2 continuum extrapolation.
Statistical errors are smaller than the error bar linewidth.
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In Fig. 5 we show a comparison of the double-extrapo-
lated color-electric field correlator GE from Ref. [14] and
the color-magnetic field correlators Gphys

B obtained in this
study at the same temperature using the same lattices. The
figure shows that each correlator is larger at τT ¼ 0.5 than
at small τT values. This is partly a result of infrared,
thermal contributions to the spectral function and partly

because of the intrinsic separation dependence of the
vacuum correlation function. For GE these arise because
GE ∝ g2 which is scale dependent and becomes smaller at
short distances—hence the falloff inGE between, say, τT ¼
0.35 and τT ¼ 0.25. For GB this distance dependence
arises from g2 and also from the scale (and hence τ)
dependence of Zmatch or, equivalently, of c2B as we will
discuss around Eq. (26). This softens the τ dependence of
the vacuum GB correlator in comparison to GE.

VI. SPECTRAL RECONSTRUCTION

In this section we invert Eq. (5) to reconstruct the spectral
function from the renormalized color-magnetic field corre-
lators Gphys

B obtained above. We model the spectral function
consisting of twomain parts: the ultraviolet (UV) part and the
infrared (IR) part. TheUVpart is known at both leadingorder
(LO) [19] and NLO [19]. At LO the MS spectral function
matches the color-electric case and reads

ϕLO
UVðω; μ̄ωÞ ¼

g2ðμ̄ωÞCFω
3

6π
; ð25Þ

with CF ¼ ðN2
c − 1Þ=ð2NcÞ, Nc ¼ 3, and g2 the MS cou-

pling, which should be evaluated at some scalewhichmay be
ω dependent. In a previous paper [21]we use this LO spectral
function for the UV part, picking a renormalization point
which transitions froma fixed value in the IR to μ̄ ¼ 2ω in the
UV. However, this approach is not really self-consistent,
since it takes into account one source of NLO logarithmic
scale dependence, the running of the coupling, without
taking into account another source of logarithmic scale

FIG. 5. Comparison of renormalized, continuum, zero flow time
color-electric (X ¼ E, fromRef. [14]) and color-magnetic (X ¼ B,
this work) correlators as a function of Euclidean temporal sepa-
ration τ in inverse temperature units. For the color-magnetic case
four variants are shown that arise from the renormalization due to
a priori unknown scales at NLO as detailed in Sec. II.

FIG. 4. Left: bare continuum-extrapolated color-magnetic correlator GB, tree-level improved and normalized to its free counterpart
Gnorm, as a function of normalized flow time τF=τ for Euclidean temporal separations τ in units of inverse temperature. The bands depict
the statistical �1σ error around the median value. Right: the same as on the left, but renormalized by multiplying with Zmatch [Eq. (18)]
for the case μ̄T ¼ μ̄T;NLO, μ̄τF ¼ μ̄τF;NLO (other choices differ only marginally or by a simple rescaling). The dashed lines depict the
linear-in-τF=τ2 flow time extrapolation, which, due to large autocorrelation between subsequent flow times, is based solely on the three
explicit data points indicated between 0.25 ≤

ffiffiffiffiffiffiffi
8τF

p
=τ ≤ 0.30 [Eq. (24)].
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dependence, the renormalization of the B-field operators.
This operator renormalization also causes a logarithmically
scale-dependent shift which is not captured by using an
RG-flowed g2 value in Eq. (25). Therefore, in this work we
will only study the casewhere theUVismodeled by theNLO
spectral function.
The NLO expression for the spectral function in the

pure-glue theory is [19]

ϕNLO
UV ðω; μ̄ωÞ¼ c2Bðμ̄ω; μ̄TÞ

�
g2ðμ̄ωÞCFω

3

6π

×

�
1þNcg2ðμ̄ωÞ

ð4πÞ2
�
5

3
ln

μ̄2ω
4ω2

þ134

9
−
2π2

3

��

þg4CF

12π3
f� � �g

�
;

c2Bðμ; μ̄TÞ¼ exp

�Z
μ2

μ̄2T

γ0g2ðμÞ
dμ2

μ2

�
: ð26Þ

Note that, compared to Ref. [19], we have corrected [27]
the term−8π2=3 to−2π2=3. The expression g4CF=12π3ð…Þ
in Eq. (26), which we have not completely written, is the
thermal contribution; the remainder of the expression is the
vacuum spectral function. The expression for the thermal
contribution is lengthy, but it turns out to be tiny compared to
the vacuum contribution when ω ≫ T.7 At very small
frequencies ω < T it is not reliable and in any case small
compared to the infrared contribution which the data require
us to add. We include the thermal part but have checked
numerically that it has only a marginal effect on the spectral
reconstruction.
The quantity in round parenthesis in Eq. (26) represents

the MS spectral function. This should be converted to the
spectral function for the physical correlator to account for
the renormalization of the magnetic field operators on the
Wilson line. This necessitates the factor c2B, which plays the
same role as Zmatch played in Sec. II and in particular in
Eq. (11). Including this factor, the expression in Eq. (26) is
formally independent of the renormalization scale μ̄ω up to
NNLO effects, since the explicit logarithm cancels with the
implicit μ dependence from the one-loop running of g2ðμ̄ωÞ
and the μ dependence of c2B. Nevertheless, we have to
choose some value, and we should attempt to pick a value
which will somehow reflect the intrinsic scales present in
the spectral function. One such scale is the temperature, and
the other is the frequency itself. To estimate the typical

thermal scale, we adopt the thermal scale of the dimen-
sionally reduced 3D effective field theory [42],

μ̄DR ¼ 4π exp

�
−γE −

Nc − 8Nf ln 2

22Nc − 4Nf

�
T; ð27Þ

with Nc ¼ 3 and Nf ¼ 0 yielding μ̄DR ≈ 6.74T. This scale
should be used for ω ∼ T. For the relevant scale at large
frequency we use μ̄ ¼ ω, and we transition from one to the
other via

μ̄ω ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ μ̄2DR

q
: ð28Þ

To calculate c2B we also again need the MS coupling
constant, which we reuse from Sec. IV. To take the
systematics from higher-loop corrections into account we
allow a rescaling of the UV part by the fit parameter K, that
is, we choose ϕUV ¼ KϕNLO

UV .
The IR part manifests a very simple structure based on

the infrared asymptotics [43],

ϕIRðωÞ≡ κBω

2T
: ð29Þ

Now that both IR and UV parts have been established, the
missing link is the region between them. Several schemes
have been considered in the literature [13–17,19,20]. In this
study we employ three of them that we consider represen-
tative. The first one is simply to take the maximum of the
two asymptotics [13]

ρmax ≡maxðϕIR;ϕUVÞ: ð30Þ

The second one makes a smooth switch between the two
parts [13]

ρsmax ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
IR þ ϕ2

UV

q
: ð31Þ

The third one imposes a power-law transition between ϕIR
and ϕUV [15]

ρplaw ≡
8<
:

ϕIR ω ≤ ωIR;

pðωÞ for ωIR < ω < ωUV;

ϕUV ω ≥ ωUV;

pðωÞ ¼ aωb; a ¼ ϕIRðωIRÞ
ðωIRÞb

;

b ¼ lnϕIRðωIRÞ − lnϕUVðωUVÞ
lnωIR − lnωUV

: ð32Þ

The choice for the cuts ωIR and ωUV can be justified based
on some physical arguments. Common option of ωIR
ranges from T [42] to πT [44]. However, according to
Ref. [14], ρmax and ρsmax also tend to exhibit a transition
around πT. This makes the choice πT redundant so we use

7Unlike the stress tensor spectral function, the color-magnetic
and color-electric spectral functions first deviate from their
vacuum forms at NLO in the gauge coupling expansion.
Structurally, this is because they involve the correlation of a
single field strength with another, rather than a product of field
strengths, so at the free level the correlation equals the sum of the
vacuum-theory correlations summed over periodic copies. The
result is that the thermal part first arises at NLO and is therefore
small compared to the LO vacuum contribution.
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ωIR ¼ T. As for ωUV we choose 2πT, which is the standard
thermal scale obtained from the perturbation theory in the
MS scheme [42].
With these models we fit the lattice data by minimizing

χ2 ≡X
τ

�
GBðτÞ − GmodelðτÞ

δGBðτÞ
�
2

; ð33Þ

where δGBðτÞ denotes the error of the lattice data and
GmodelðτÞ is calculated using the convolution [Eq. (5) con-
tinuation] replacing ρB by the above models. The two free
parameters of the spectral function models areK and κB=T3.
The results of the spectral function model fits are

shown in Fig. 6. The left panel highlights the differences
between the spectral function model shapes [defined in
Eqs. (30)–(32)] in the transition from infrared to ultraviolet
asymptotics. The right panel of Fig. 6 shows the residual
deviation between the resulting fitted model correlator and
the physical color-magnetic correlator data obtained in the
previous section. We remark that all the fit procedures in
this study are performed on each of the 1000 bootstrap
samples separately, with the individual fits using inverse
squared statistical errors employed as weights. All models
describe the lattice data well according to the residual
χ2=d:o:f:, which is 1.8� 0.8 for ρmax, 1.6� 0.8 for ρsmax,
and 1.2� 0.7 for ρplaw. There is no meaningful difference
in the fit quality between the different choices of μ̄T and
μ̄τF . The fit results for theK-factors areK ≈ 0.85� 0.01 for
all models using μ̄T ¼ μ̄T;LO and K ≈ 1.03� 0.01 for all
models using μ̄T ¼ μ̄T;NLO.

By aggregating the fit results for κB=T3 across different
models, we obtain a scatter plot, as shown in Fig. 7. The
systematic and statistical errors, combined according to the
methodology detailed in [17], yield a confidence interval
for κB=T3, which is depicted as a gray band. Including all
four combinations for μ̄T and μ̄τF yields the final estimate

0.78 ≤
κB
T3

≤ 1.97; T ¼ 1.5Tc: ð34Þ

In Fig. 8 we compare κB obtained in this work (black
line) and two other calculations, one using the multilevel
method [19] and another also using gradient flow with
analytical continuation performed at finite flow depth [20].

FIG. 6. Left: fitted model spectral functions ρB as a function of frequency ω in temperature units for the case μ̄T ¼ μ̄T;NLO,
μ̄τF ¼ μ̄τF;NLO (other choices differ only marginally). Statistical errors are not shown to reduce clutter; the intent of the figure is to show
the differences in spectral function model shapes. The y-axis is scaled to yield κB=T3 for ω → 0. Right: ratio of fitted model correlators
Gmodel to renormalized, continuum, zero flow time correlator data Gphys

B . (cf. Fig. 5) as a function of Euclidean time τ for the case
μ̄T ¼ μ̄T;NLO, μ̄τF ¼ μ̄τF;NLO (other choices differ only marginally). Different models are slightly offset in τT for visibility.

FIG. 7. Coefficient κB of the finite-mass correction to heavy-
quark momentum diffusion from each model. The gray band
shows the confidence interval that ranges from the 34th to 68th
percentile of the total distribution of the fit results of all bootstrap
samples for all models (see Sec. V).
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We find that the results are consistent even though they are
calculated in different ways.
In Fig. 9 we collect all existing determinations for κE and

κB on the market and plot them logarithmically as a function

of g2ðμ ¼ 2πTÞ. The quenched data for κE are taken from
Refs. [13–16,20], while the quenched data for κB are taken
from Refs. [19,20] and this work. The full QCD data for κE
and κB are taken from Ref. [17] and Ref. [21], respectively.
Based on perturbation theory [8], both κE and κB are
expected to be proportional to g4. This is despite the UV
behavior of the spectral function scaling as g2, as shown in
Eq. (25). When we fit all κB and κE data using two different
Ansätze, one proportional to g2 and the other proportional to
g4, we find that the former can describe neither κE nor κB and
neither quenched nor unquenched data (red curve). But a
single fit of form g4 actually describes all data (quenched and
unquenched, κE and κB) within errors (orange curve) with a
residual χ2=d:o:f: ¼ 0.36. This corroborates the validity
of the perturbative prediction, which has also recently
been used in an out-of-equilibrium study on heavy-quark
diffusion [45].

VII. RESULTS AND CONCLUSIONS

In this paperwe calculate themass correction to the heavy-
quark momentum-diffusion coefficient using quenched
lattice simulations. The correction is extracted from the
color-magnetic field correlation functions measured under
gradient flow. In our opinion the most interesting part of this
paper is Sec. II, in whichwe elaborate how to take care of the
anomalous dimension existing for a magnetic field operator
that is further complicated by thematching from the gradient
flow scheme to its physical value. By introducing amatching
factorZmatch, we establish amultistep routine that bridges the
gap between the object measured under gradient flow and its
physical counterpart. κB obtained from the physical corre-
lation functions in this work is consistent with previous
quenched results calculated in different ways. We also find
that κE;B calculated on the lattice, in both the quenched and
the unquenched case, follows a form κ=T3 ¼ 0.4g4ðμ̄ ¼
2πTÞ that shows the same scaling with the coupling strength
as the perturbative calculation does [8]. This remarkably
simple expression describes all quenched and unquenched
lattice results with a good χ2. Themethodology developed in
thiswork can be used in the future for a full QCD study at the
physical pion mass reaching lower temperatures around the
crossover region.

All data from our calculations, presented in the figures of
this paper, can be found in Ref. [37].
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