
Parallel tempered metadynamics: Overcoming potential barriers
without surfing or tunneling

Timo Eichhorn ,* Gianluca Fuwa ,† Christian Hoelbling ,‡ and Lukas Varnhorst §

Department of Physics, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

(Received 7 November 2023; accepted 23 April 2024; published 7 June 2024)

At fine lattice spacings, Markov chain Monte Carlo simulations of QCD and other gauge theories with or
without fermions are plagued by slow modes that give rise to large autocorrelation times. This can lead to
simulation runs that are effectively stuck in one topological sector, a problem known as topological
freezing. Here, we demonstrate that for a relevant set of parameters, metadynamics can be used to unfreeze
four-dimensional SU(3) gauge theory. However, compared to local update algorithms and the Hybrid
Monte Carlo algorithm, the computational overhead is significant in pure gauge theory, and the required
reweighting procedure may considerably reduce the effective sample size. To deal with the latter problem,
we propose modifications to the metadynamics bias potential and the combination of metadynamics with
parallel tempering. We test the new algorithm in four-dimensional SU(3) gauge theory and find that it
can achieve topological unfreezing without compromising the effective sample size, thereby reducing
the autocorrelation times of topological observables by at least 2 orders of magnitude compared to
conventional update algorithms. Additionally, we observe significantly improved scaling of autocorrelation
times with the lattice spacing in two-dimensional U(1) gauge theory.
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I. INTRODUCTION

In recent years, physical predictions based on lattice
simulations have reached subpercent accuracies [1]. With
ever-shrinking uncertainties, the demand for precise extrap-
olations to the continuum grows, which in turn necessitates
finer lattice spacings. Current state-of-the-art methods for
simulations of lattice gauge theories either rely on a mixture
of heat bath [2–6] and overrelaxation [7–9] algorithms for
pure gauge theories or molecular-dynamics-based algo-
rithms like the Hybrid Monte Carlo algorithm (HMC) [10]
for simulations including dynamical fermions. For all of
these algorithms, the computational effort to carry out
simulations dramatically increases at fine lattice spacings
due to critical slowing down. While the exact behavior
depends on a number of factors, such as the update
algorithms, the exact discretization of the action, and the
choice of boundary conditions, the scaling of the integrated

autocorrelation times with the inverse lattice spacing can
usually be described by a power law.
In addition to the general diffusive slowing down,

topologically nontrivial gauge theories may exhibit topo-
logical freezing [11–18]. This effect appears due to the
inability of an algorithm to overcome the action barriers
between topological sectors, which can lead to extremely
long autocorrelation times of topological observables and
thus an effective breakdown of ergodicity.
Over the years, several strategies have been developed to

deal with this situation. On the most basic level, it has
become customary in large scale simulations to monitor the
topological charge of the configurations in each ensemble,
thus avoiding regions of parameter space which are affected
by topological freezing [19–21]. Another possibility to
circumvent the problem consists in treating fixed topology
as a finite volume effect and either correcting observables
for it [22,23] or increasing the physical volume sufficiently
to derive the relevant observables from local fluctua-
tions [24]. It is also possible to use open boundary
conditions in one lattice direction [25], which invalidates
the concept of an integer topological charge for the price of
introducing additional boundary artifacts and a loss of
translational symmetry.
Despite the success of these strategies in many relevant

situations, the need for a genuine topology changing update
algorithm is still great. This is evident from the large
number and rather broad spectrum of approaches that are
currently being investigated in this direction. Some of these
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approaches address critical slowing down, in general,
whereas others focus particularly on topological freezing.
These approaches include parallel tempering [26–28], modi-
fied boundary conditions [29], and combinations of both
[30,31]; multiscale thermalization [32–34], instanton(-like)
updates [35–40], metadynamics [41,42], multicanonical
simulations [43,44], density of states [45], Fourier accel-
eration [46–50], and trivializing maps [51–53]. Additionally,
recent years have seen multitudinous efforts to utilize
generative models to sample configurations more efficiently
[54–75]. For a recent review of both conventional and
machine learning approaches see [76].
In this work we propose a new update algorithm, parallel

tempered metadynamics (PT-MetaD), and demonstrate its
efficiency in four-dimensional SU(3) at parameter values
where conventional update algorithms suffer from topo-
logical freezing. In its basic variant, which we present here,
PT-MetaD consists of two update streams simulating the
same physical system. One of the streams uses any suitable
conventional algorithm, while the other one includes a
bias potential that facilitates tunneling between topological
sectors. At regular intervals, swaps between the two
streams are suggested, so that the good topological sam-
pling from the bias potential stream carries over to the other
stream. The algorithm thus combines ideas from parallel
tempering [77], metadynamics [78], and multicanonical
simulations [43], leading to an efficient sampling of
topological sectors while avoiding the problem of small
effective sample sizes, which is usually associated with
techniques involving reweighting, such as metadynamics
or multicanonical simulations. Additionally, applying
PT-MetaD to theories including fermions is conceptually
straightforward.
This paper is organized as follows. We start out by giving

a general introduction to metadynamics in Sec. II.
Afterwards, Sec. III describes our simulation setup, includ-
ing our choice of actions, observables, and update algo-
rithms. Some details on the application of metadynamics
in the context of SU(3) gauge theory are also given. In
Sec. IV, we present baseline results obtained with conven-
tional update algorithms, including a rough determination
of gradient flow scales for the doubly blocked Wilson
(DBW2) action. In Sec. V we present results obtained
with pure metadynamics for four-dimensional SU(3) and
discuss several possible improvements. In Sec. VI we
introduce parallel tempered metadynamics and show some
scaling tests of the new algorithm in two-dimensional
U(1) gauge theory, as well as exploratory results in four-
dimensional SU(3). Finally, in Sec. VII, we conclude with a
summary and outlook on the application of the new
algorithm to full QCD. Appendices A–D contain math-
ematical conventions and derivations related to the meta-
dynamics force calculation, and Appendix E summarizes
exact results for observables in two-dimensional U(1)
gauge theory.

II. METADYNAMICS

Consider a system described by a set of degrees of
freedom fUg, where the states are distributed according to
the probability density

pðUÞ ¼ 1

Z
e−SðUÞ; ð1Þ

with the partition function Z defined as

Z ¼
Z

D½U�e−SðUÞ: ð2Þ

The expectation value of an observable O is defined as

hOi ¼
Z

D½U�pðUÞOðUÞ: ð3Þ

In the context of lattice gauge theories, the integration
measure D½U� is usually the product of Haar measures for
each link variable, but more generally D½U� may be under-
stood as a measure on the configuration space of the system.
Metadynamics [78] is an enhanced-sampling method,

based on the addition of a history-dependent bias potential
VtðsðUÞÞ to the action SðUÞ, where t is the current
simulation time. The dynamics of the modified system
are governed by SMt ðUÞ ¼ SðUÞ þ VtðsðUÞÞ, and now
explicitly depend on a number of observables siðUÞ, with
i∈ f1;…; Ng, that are referred to as collective variables
(CVs). These CVs span a low-dimensional projection of
the configuration space of the system and may generally
be arbitrary functions of the underlying degrees of
freedom fUg. However, when used in combination with
molecular-dynamics-based algorithms, such as the Hybrid
Monte Carlo algorithm, the CVs need to be differentiable
functions of the underlying degrees of freedom. During
the course of a simulation, the bias potential is modified in
such a way as to drive the system away from regions of
configuration space that have been explored previously,
eventually converging towards an estimate of the negative
free energy as a function of the CVs, up to a constant
offset [79,80]. Usually, this is accomplished by construct-
ing the potential from a sum of Gaussians gðsÞ, so that at
simulation time t, the potential is given by

VtðsÞ ¼
X
t0≤t

YN
i¼1

g
�
si − siðt0Þ

�
: ð4Þ

The exact form of the Gaussians is determined by the
parameters w and δsi:

gðsiÞ ¼ w exp

�
−

s2i
2δs2i

�
: ð5Þ

Both parameters affect the convergence behavior of the
potential in a similar way: Increasing the height w or the
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widths δsi may accelerate the convergence of the potential
during early stages of the simulation but lead to larger
fluctuations around the equilibrium during later stages.
Furthermore, the widths δsi effectively introduce a smallest
scale that can still be resolved in the space spanned by the
CVs, which needs to be sufficiently small to capture the
relevant details of the potential.
If the bias potential has reached a stationary state, i.e., its

time dependence in the region of interest is just an overall
additive constant, then the modified probability density,
which we shall also refer to as target density, is given by

p0ðUÞ ¼ 1

Z0 e
−SðUÞ−VðsðUÞÞ; ð6Þ

with the modified partition function

Z0 ¼
Z

D½U�e−SðUÞ−VðsðUÞÞ: ð7Þ

Expectation values with respect to the modified distribution
can then be defined in the usual way, i.e., via

hOi0 ¼
Z

D½U�p0ðUÞOðUÞ: ð8Þ

On the other hand, expectation values with respect to the
original, unmodified probability density can be written
in terms of the modified probability distribution with an
additional weighting factor. For a dynamic potential,
different reweighting schemes have been put forward to
achieve this goal [81], but if the potential is static, then the
weighting factors are directly proportional to the exponen-
tial of the bias potential:

hOi ¼
R
D½U�p0ðUÞOðUÞeVðsðUÞÞR

D½U�eVðsðUÞÞ : ð9Þ

The case of a static potential is thus essentially the same as
a multicanonical simulation [43].
In situations where the evolution of the system is

hindered by high action barriers separating relevant regions
of configuration space, metadynamics can be helpful in
overcoming those barriers, since the introduction of a bias
potential modifies the marginal distribution over the set of
CVs. For conventional metadynamics, the bias potential is
constructed in such a way that the marginal modified
distribution is constant:

p0ðsiÞ ¼
Z

D½U�p0ðUÞδðsi − siðUÞÞ ¼ const: ð10Þ

Conversely, for a given original distribution pðsÞ and a
desired target distribution p0ðsÞ, the required potential is
given by

VðsÞ ¼ ln

�
p0ðsÞ
pðsÞ

�
: ð11Þ

Nevertheless, it is important to recognize that even if the
bias potential completely flattens out the marginal distri-
bution over the CVs, the simulation is still expected to
suffer from other (diffusive) sources of critical slowing
down as is common for Markov chain Monte Carlo
simulations.

III. SIMULATION SETUP AND OBSERVABLES

A. Choice of gauge actions

For our simulations of SU(3) gauge theory, we work on a
four-dimensional lattice Λ with periodic boundary con-
ditions. Configurations are generated using the Wilson [82]
and the DBW2 [83] gauge actions, both of which belong to
a one-parameter family of gauge actions involving standard
1 × 1 plaquettes as well as 1 × 2 planar loops, which may
be expressed as

Sg ¼
β

3

X
n∈Λ

 X
μ<ν

c0
�
3 − Re tr½Wμ;νðnÞ�

�

þ
X
μ≠ν

c1
�
3 − Re tr½Wμ;2νðnÞ�

�!
: ð12Þ

Here,Wkμ;lνðnÞ refers to a Wilson loop of shape k × l in the
μ-ν plane originating at the site n. The coefficients c0 and
c1 are constrained by the normalization condition c0 þ
8c1 ¼ 1 and the positivity condition c0 > 0, where the
latter condition is sufficient to guarantee that the set of
configurations with minimal action consists of locally
pure gauge configurations [84]. For the Wilson gauge
action (c1 ¼ 0), only plaquette terms contribute, whereas
the DBW2 action (c1 ¼ −1.4088) also involves rectangu-
lar loops.
It is well known that the critical slowing down of

topological modes is more pronounced for improved gauge
actions than for the Wilson gauge action [12,14,15,17,18]:
A larger negative coefficient c1 suppresses small disloca-
tions, which are expected to be the usual mechanism
mediating transitions between topological sectors on the
lattice. Among the most commonly used gauge actions, this
effect is most severely felt by the DBW2 action. In previous
works [15,17], local update algorithms were found to be
inadequate for exploring different topological sectors in a
reasonable time frame at lattice spacings around 0.06 fm.
Instead, the authors had to generate thermalized configu-
rations in different topological sectors using the Wilson
gauge action, before using these configurations as starting
points for simulations with the DBW2 action. Thus, this
action allows us to explore parameters where severe critical
slowing down is visible, while avoiding very fine lattice
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spacings and thereby limiting the required computational
resources.

B. Observables

The observables we consider here are based on various
definitions of the topological charge and Wilson loops of
different sizes at different smearing levels. The unrenor-
malized topological charge is defined using the clover-
based definition of the field strength tensor:

Qc ¼
1

32π2
X
n∈Λ

ϵμνρσtr
�
F̂clov
μν ðnÞF̂clov

ρσ ðnÞ�: ð13Þ

This field strength tensor is given by

F̂clov
μν ðnÞ ¼ −

i
8

�
CμνðnÞ − CνμðnÞ

�
; ð14Þ

where the clover term CμνðnÞ is defined as

CμνðnÞ ¼ Pμ;νðnÞ þ Pν;−μðnÞ þ P−μ;−νðnÞ þ P−ν;μðnÞ;
ð15Þ

and Pμ;νðnÞ denotes the plaquette:

Pμ;νðnÞ ¼ UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ: ð16Þ

Alternatively, the topological charge may also be defined
via the plaquette-based definition, here denoted by Qp:

Qp ¼ 1

32π2
X
n∈Λ

ϵμνρσtr½F̂plaq
μν ðnÞF̂plaq

ρσ ðnÞ�: ð17Þ

Similar to the clover-based field strength tensor, the
plaquette-based field strength tensor is defined as

F̂plaq
μν ðnÞ ¼ −

i
2
ðPμ;νðnÞ − Pν;μðnÞÞ: ð18Þ

Both Qc and Qp formally suffer from Oða2Þ artifacts,
although the coefficient is typically smaller for the clover-
based definition Qc. The topological charge is always
measured after Oð30Þ steps of stout smearing [85] with a
smearing parameter ρ ¼ 0.12. To estimate the autocorre-
lation times of the system, we consider the squared
topological charge [18], the Wilson gauge action, and
n × n Wilson loops for n∈ f2; 4; 8g at different smearing
levels. We denote the latter two by Sw andWn, respectively.

C. Update algorithms

Throughout this work, we employ a number of different
update schemes: To illustrate critical slowing down of
conventional update algorithms and to set a baseline for
comparison with metadynamics-based algorithms, we use

standard Hybrid Monte Carlo updates with unit length
trajectories (1HMC), a single heat bath sweep (1HB), five
heat bath sweeps (5HB), and a single heat bath sweep
followed by four overrelaxation sweeps (1HBþ4OR).
The local update algorithms are applied to three distinct
SU(2) subgroups during each sweep [6], and the HMC
updates use an Omelyan-Mryglod-Folk fourth-order mini-
mum norm integrator [86] with a step size of ϵ ¼ 0.2,
which leads to acceptance rates above 99% for the para-
meters used here.
We compare these update schemes to metadynamics

HMC updates with unit length trajectories (MetaD-HMC),
and a combination of parallel tempering with metadynamics
(PT-MetaD) which is discussed in more detail in Sec. VI.
An important requirement for the successful application

of metadynamics is the identification of appropriate CVs.
In our case, the CV should obviously be related to the
topological charge. However, it should not always be
(close to) integer valued but rather reflect the geometry
of configuration space with respect to the boundaries
between topological sectors. On the other hand, the CV
needs to track the topological charge closely enough for the
algorithm to be able to resolve and overcome the action
barriers between topological sectors. A straightforward
approach is to apply only a moderate amount of some kind
of smoothing procedure, such as cooling or smearing, to a
gluonic definition of the topological charge, for which we
choose Qc. Since these smoothing procedures involve
spatial averaging, the action will become less local, which
complicates the use of local update algorithms. Therefore,
we use the HMC algorithm to efficiently update the entire
gauge field at the same time, which requires a differentiable
smoothing procedure, such as stout [85] or hypercubic
exponential (HEX) [87] smearing. Due to its simpler
implementation compared to HEX smearing, we choose
stout smearing here. Previous experience [88] seems to
indicate that for Qc, four to five stout smearing steps with
a smearing parameter ρ ¼ 0.12 strike a reasonable balance
between having a smooth CV and still representing the
topological charge accurately.We found that usingQp would
require significantly more smearing steps, whereas some
improved definitions involving more general rectangular
loops would not reduce the necessary amount of smearing.
The force contributed by the bias potential may be

written in terms of the chain rule:

Fμ;metaðnÞ ¼ −
∂Vmeta

∂Qmeta

∂Qmeta

∂UðsÞ
μs ðnsÞ

×
∂UðsÞ

μs ðnsÞ
∂Uðs−1Þ

μs−1 ðns−1Þ
…

∂Uð1Þ
μ1 ðn1Þ

∂UμðnÞ
: ð19Þ

Here we have introduced the notation Vmeta for the bias
potential and Qmeta for the CV to clearly distinguish it from
other definitions of the topological charge. Note that there
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is an implicit summation over the lattice sites ni and the
Lorentz indices μi. The first term in the equation, corre-
sponding to the derivative of the bias potential with respect
to Qmeta, is trivial, but the latter two terms are more
complicated: The derivative of Qmeta with respect to the
maximally smeared field UðsÞ is given by a sum of staples
with clover term insertions, and the final terms correspond to
the stout force recursion [85] that also appears during the
force calculation when using smeared fermions. Note that in
machine learning terminology, this operation is essentially a
backpropagation [89] and may be computed efficiently using
reverse mode automatic differentiation. More details on the
calculation of the force can be found in Appendices B–D.
The bias potential is constructed from a sum of one-

dimensional Gaussians, as described in Sec. II, and stored
as a histogram. Due to charge conjugation symmetry, we
can update the potential symmetrically. Values at each point
are reconstructed by linearly interpolating between the two
nearest bins, and the derivative is approximated by their
finite difference. To limit the evolution to relevant regions
of the phase space, we introduce an additional penalty term
to the potential once the value of Qmeta has crossed certain
thresholds Qmin and Qmax. If the system has exceeded the
threshold, then the potential is given by the outermost
value of the histogram, plus an additional term that scales
quadratically with the distance to the outer limit of the
histogram.
Unless mentioned otherwise, we have used the following

values as default parameters for the potential:Qmax=min¼�8,
nbins ¼ 800, w ¼ 0.05, while δQ2 has always been set equal
to the bin width, i.e., ðQmax −QminÞ=nbins.
It is often convenient to build up a bias potential in one or

several runs, and then simulate and measure with a static
potential generated from the previous runs. In some sense,
this can be thought of as a combination of metadynamics
and multicanonical simulations.

IV. RESULTS WITH CONVENTIONAL
UPDATE ALGORITHMS

To establish a baseline to compare our results to, we have
investigated the performance of some conventional update
algorithms using the Wilson and DBW2 gauge actions.
Furthermore, we have made a rough determination of the
gradient flow scales t0 and w0 for the DBW2 action. Some
preliminary results for the Wilson action were already
presented in [88].

A. Critical slowing down with Wilson
and DBW2 gauge actions

In order to study the scaling of autocorrelations for
different update schemes, we have performed a series of
simulations with theWilson gauge action on a range of lattice
spacings. The parameters were chosen to keep the physical
volume approximately constant at around ð1.1 fmÞ4, using

the scale given by the rational fit function in [90], which was
based on data from [91]. A summary of the simulation
parameters can be found in Table I.
Since autocorrelation times near second-order phase

transitions are expected to be described by a power law,
we use the following fit ansatz in an attempt to parametrize
the scaling:

τint ¼ c

�
r0
a

�
z
: ð20Þ

All autocorrelation times and their uncertainties are esti-
mated following the procedure described in [92]. Figure 1
shows the scaling of the integrated autocorrelation times
of 2 × 2 Wilson loops W2 and the square Q2

c of the
clover-based topological charge with the lattice spacing.
Additionally, the figure also includes power law fits to the
data and the resulting values for the dynamical critical
exponents zðW2Þ and zðQ2

cÞ. Both observables were
measured after 31 stout smearing steps with a smearing
parameter ρ ¼ 0.12. While the integrated autocorrelation
times of both observables increase towards finer lattice
spacings and are adequately described by a power law
behavior, the increase is much steeper for the squared topo-
logical charge than for the smeared 2 × 2 Wilson loops.
Below a crossover point at a ≈ 0.08 fm, the autocorrelation
times of the squared topological charge start to dominate.
They can be described by both a dynamical critical
exponent z ≈ 5 or, alternatively, by an exponential increase
that was first suggested in [16]. This behavior is compatible
with the observations in [18].
In contrast, the autocorrelation time of Wilson loops is

compatible with a much smaller exponent z ≈ 1–2. As can
be seen in Table II, the critical exponent does not change
significantly with the size of the Wilson loop after 31 stout
smearing steps. Generally, the integrated autocorrelation
times of smeared Wilson loops slightly increase both with
the size of the loops and the number of smearing levels. The
only exception to this behavior occurs for larger loops, where
a few steps of smearing are required to obtain a clean signal
and not measure the autocorrelation of the noise instead.

TABLE I. A summary of the simulation parameters for the
Wilson gauge action runs using conventional update algorithms.
The scale was set via the rational fit from [90] (where
r0 ¼ 0.49 fm), which in turn used data from [91].

β L=a a [fm] Nconf

5.8980 10 0.1097 100000
6.0000 12 0.0914 100000
6.0938 14 0.0783 100000
6.1802 16 0.0686 100000
6.2602 18 0.0610 100000
6.3344 20 0.0549 100000
6.4035 22 0.0499 100000
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Regarding the different update algorithms, the unit length
HMC does show a somewhat better scaling behavior for all
observables than the local update algorithms, but is also the
most computationally expensive update scheme considered
here (see Table III).1 For all the local update algorithms, the
critical exponents are very similar, but the combination of
one heat bath and four overrelaxation steps has the smallest
prefactor. It is interesting to note that this algorithm is also
approximately twice as fast as the five-step heat bath update
scheme, while still providing smaller autocorrelation times.
The single step heat bath without overrelaxation, although
numerically cheapest, exhibits the worst prefactor of the
local update algorithms. Note that the reported numbers for
the critical exponents differ from those in [88] due to a
different fit ansatz (in the proceedings, the ansatz included an
additional constant term).
For the DBW2 action, the problem is more severe.

Figure 2 shows the time series of the topological charge for
two runs using the 1HMC and the 1HBþ4OR update
scheme. Both simulations were carried out on 164 lattices at
β ¼ 1.25 using the DBW2 action.

FIG. 1. Scaling of the integrated autocorrelation times of square 2 × 2 Wilson loops W2 (left) and the squared topological charge Q2
c

(right) for different update schemes using the Wilson gauge action. The scaling of both observables can be described using a power law
fit [Eq. (20)] and is compatible with a dynamical critical exponent z ≈ 2 for the Wilson loops and z ≈ 5 for the squared topological
charge. Details on the simulation parameters are listed in Table I.

TABLE II. The dynamical critical exponents obtained from
power law fits to the integrated autocorrelation times of Q2

c, Sw,
and Wilson loops of different sizes after 31 stout smearing steps
for different update schemes and the Wilson gauge action.
Notably, the dynamical critical exponents associated with Q2

c
are much larger than those associated with the smeared action or
smeared Wilson loops of different sizes.

Update scheme zðQ2
cÞ zðSwÞ zðW2Þ zðW4Þ zðW8Þ

1HMC 4.90(13) 1.27(12) 1.23(12) 1.16(12) 1.29(16)
1HB 5.55(25) 1.69(10) 1.66(10) 1.64(9) 1.82(12)
5HB 5.43(22) 1.92(11) 1.89(10) 1.85(10) 1.95(10)
1HBþ4OR 5.50(9) 1.77(15) 1.74(14) 1.71(14) 1.85(13)

TABLE III. Relative performance of the update algorithms used
in our scaling runs. The results cited here are taken from
simulations on 224 lattices. Note that the performance of the
heat bath algorithm is slightly better for larger β [4,5].

Update scheme Relative time

1HMC 6.98
1HB 1.00
5HB 4.99
1HBþ4OR 2.02

1Since we are ultimately interested in dynamical fermion
simulations, we do not consider the more efficient local HMC
variant presented in [93], as it is applicable to local bosonic
actions only.
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Evidently, both update schemes are unable to tunnel
between different topological sectors in a reasonable time.
Only a single configuration during the 1HBþ4OR run and
two (successive) configurations during the 1HMC run
fulfill the condition jQcj > 0.5.

B. Scale setting for the DBW2 action

To the best of our knowledge, scales for the DBW2
action in pure gauge theory have only been computed
based on simulations with β ≤ 1.22 [17,94], and interpo-
lation formulas are only available based on data with β ≤
1.04 [95]. Since here we perform simulations at β ¼ 1.25,
we compute approximate values for t0 [96] and w0 [97],
which allows us to estimate our lattice spacings for
comparison to the Wilson results. Both scales are based
on the energy density E, which is defined as follows:

E ¼ 1

4a2V

X
n∈Λ

Fa
μνðnÞFa

μνðnÞ

¼ −
1

2a2V

X
n∈Λ

tr
�
FμνðnÞFμνðnÞ

�
: ð21Þ

Similar to the topological charge definitions, we adopt a
plaquette- and clover-based definition of the field strength
tensor, with the only difference being that the components
are also made traceless, and not just anti-Hermitian. The
gradient flow scales t0 and w0 are both defined implicitly:

Eðt0Þ ¼ t2hEi
���
t¼t0

¼ 0.3; ð22Þ

Wðw2
0Þ ¼ t

d
dt
EðtÞ

���
t¼w2

0

¼ 0.3: ð23Þ

The flow equation was integrated using the third-order
commutator free Runge-Kutta scheme from [96] with a step
size of ϵ ¼ 0.025. Measurements of the clover-based
energy density were performed every ten integration steps,
and t2hEðtÞi was fitted with a cubic spline, which was
evaluated with a step size of 0.001. For every value of β,
two independent simulations with 100 measurements each
were performed on 48 × 323 lattices. Every measurement
was separated by 200 update sweeps with the previously
described 1HBþ4OR update scheme, and the initial 2000
updates were discarded as thermalization phase. Our results
are displayed in Table IV.
Using the physical value of

ffiffiffiffi
t0

p ¼ 0.1638ð10Þ fm
from [98], these results imply a physical volume of
approximately ð0.9 fmÞ4 and a temperature of around
219 MeV for the 164 lattice from the previous section.
In order to facilitate comparison with other results, we

also provide an interpolation of our lattice spacing results.
For this purpose, we use a rational fit ansatz with three fit
parameters that is asymptotically consistent with perturba-
tion theory [90] and has a sufficient number of degrees of
freedom to describe our data well:

lnðt0=a2Þ ¼
8π2

33
β
1þ d1=β þ d2=β2

1þ d3=β
: ð24Þ

For our reference, clover-based t0 scale setting, this results
in a fit with χ2=d:o:f: ≈ 1.31 and parameters d1 ≈ 1.0351,
d2 ≈ −1.3763, d3 ≈ 0.4058, which is displayed in Fig. 3.
We want to emphasize that these results are not meant to be
an attempt at a precise scale determination but rather only
serve as an approximate estimate. Especially for the finer
lattices, the proper sampling of the topological sectors

FIG. 2. Time series of the topological charge for V ¼ 164,
β ¼ 1.25 using the DBW2 action. The configurations were
generated with the 1HMC (top) and the 1HBþ4OR (bottom)
update schemes. Out of a total of 400000 configurations each,
only a single configuration during the 1HBþ4OR run and two
(successive) configurations during the 1HMC run fulfill the
condition jQcj > 0.5.

TABLE IV. Results for different gradient flow scales for the
DBW2 gauge action. These results should not be interpreted as an
attempt at a precise scale determination but rather as an
approximate estimate.

β Nt × N3
s t0;plaq=a2 t0;clov=a2 w2

0;plaq=a
2 w2

0;clov=a
2

1.04 48 × 323 3.445(3) 3.647(3) 3.601(4) 3.641(4)
1.10 48 × 323 4.483(6) 4.684(6) 4.675(9) 4.716(9)
1.15 48 × 323 5.549(9) 5.751(10) 5.787(14) 5.827(14)
1.16 48 × 323 5.761(9) 5.962(9) 5.992(15) 6.032(15)
1.17 48 × 323 6.032(8) 6.234(8) 6.291(14) 6.332(13)
1.18 48 × 323 6.269(13) 6.470(14) 6.525(24) 6.566(24)
1.19 48 × 323 6.524(10) 6.726(10) 6.803(12) 6.844(12)
1.20 48 × 323 6.798(15) 7.000(15) 7.082(20) 7.123(20)
1.21 48 × 323 7.047(16) 7.248(16) 7.331(25) 7.372(25)
1.22 48 × 323 7.386(23) 7.588(24) 7.710(35) 7.751(35)
1.23 48 × 323 7.642(23) 7.844(24) 7.954(35) 7.995(35)
1.24 48 × 323 7.963(23) 8.165(23) 8.293(35) 8.334(35)
1.25 48 × 323 8.312(27) 8.515(28) 8.681(37) 8.721(37)
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cannot be guaranteed, and the comparatively small volumes
may introduce non-negligible finite volume effects.

V. RESULTS WITH METADYNAMICS

Figure 4 shows the time series of the topological charge
obtained from simulations with the HMC and the
MetaD-HMC with five and ten stout smearing steps on a
224 lattice at β ¼ 6.4035 using the Wilson gauge action.

Both MetaD-HMC runs tunnel multiple times between
different topological sectors, whereas the conventional
HMC run essentially displays only a single tunneling event
between sectors Q ¼ 0 and Q ¼ 1. The autocorrelation
times of Q2

c for the MetaD-HMC runs are comparable
despite the different amounts of smearing used to define the
CV: For the run with five smearing steps τintðQ2

cÞ ¼
586ð142Þ, while τintðQ2

cÞ ¼ 342ð68Þ for the run with ten
smearing steps. A noteworthy difference between the two
MetaD-HMC runs is the increase of fluctuations with
higher amounts of smearing. If too many smearing steps
are used to define the CV, the resulting Q values will
generally be closer to integers, which will eventually drive
the system to coarser regions of configuration space. Since
these regions do not contribute significantly to expectation
values in the path integral, it is desirable to minimize the
time that the algorithm spends there. This is directly related
to the issue of small effective sample sizes after reweight-
ing, which we will discuss in more detail in Sec. V B.
A similar comparison of topological charge time series

for the DBW2 action can be seen in Fig. 5. Here, two
MetaD-HMC runs with four and five stout smearing steps
on a 164 lattice at β ¼ 1.25 are compared to the 1HMC and
1HBþ4OR runs, which were already shown in Fig. 2.
Both conventional update schemes are confined to the
zero sector, whereas the two MetaD-HMC runs explore
topological sectors up to jQj ¼ 6. More quantitatively,
the integrated autocorrelation time of Q2

c is estimated to be
τintðQ2

cÞ ¼ 5126ð1500Þ for the run with four smearing steps
and τintðQ2

cÞ ¼ 4159ð1137Þ for the run with five smearing
steps. On the other hand, lower bounds for the autocorre-
lation times of the 1HMC and 1HBþ4OR update schemes
are 4 × 105, which is larger by more than a factor of 70.

FIG. 3. Rational fit of the form Eq. (24) to the t0;clov=a2 values
presented in Table IV. The fit has χ2=d:o:f: ≈ 1.31 and parameters
d1 ≈ 1.0351, d2 ≈ −1.3763, and d3 ≈ 0.4058. Error bars are
substantially smaller than the symbols.

FIG. 4. Comparison of the time series of the topological charge between runs using the HMC algorithm and MetaD-HMC runs for
V ¼ 224 and β ¼ 6.4035 using the Wilson gauge action. The bias potentials in the metadynamics runs were built up dynamically/from
scratch during each run. Both metadynamics runs are able to transition between topological sectors numerous times, whereas the run
using the conventional HMC is essentially stuck in two sectors.
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To illustrate the role of the CVQmeta, it may be helpful to
compare the time series ofQmeta andQc, as shown in Fig. 6.
The two observables are clearly correlated, but Qmeta is
distributed more evenly between integers.

A. Computational overhead and multiple
timescale integration

A fair comparison of the different update schemes also
needs to take the computational cost of the algorithms into
account. Table V shows the relative timings for the different
update schemes used in this section, measured for simu-
lations carried out on 164 lattices. While no significant

efforts were made to optimize the performance of our
implementation of the MetaD-HMC, it is still clear that the
additional overhead introduced by the computation of the
metadynamics force contribution is significant for pure
gauge theory. The relative overhead is especially large
compared to local update algorithms, which are already
more efficient than the regular HMC. Note, however, that
due to the more nonlocal character of the DBW2 gauge
action, the relative loss in efficiency when switching to
metadynamics from either a local update algorithm or the
HMC is already noticeably smaller.
Since the majority of the computational overhead

comes from the metadynamics force contribution, and

FIG. 5. Comparison of the time series of the topological charge between runs using conventional update algorithms (HMC and a
combination of heat bath and overrelaxation updates) and MetaD-HMC runs for V ¼ 164 and β ¼ 1.25 using the DBW2 action. The
bias potentials in the metadynamics runs were built up dynamically during each run. The results shown for the 1HMC and 1HBþ4OR
update schemes are from the same runs as the time series shown in Fig. 2. While the conventional update algorithms are unable to escape
the Q ¼ 0 sector, both metadynamics runs frequently transition between different topological sectors.

FIG. 6. Time series of the CV Qmeta and the topological charge Qc, measured after five and 30 stout smearing steps with a smearing
parameter of ρ ¼ 0.12, respectively. The data are from the 5stout MetaD-HMC run shown in Fig. 5.
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the involved scales are different from those relevant for the
gauge force, it seems natural to split the integration into
multiple timescales in a similar fashion to the Sexton-
Weingarten scheme [99]: The force contributions from the
bias potential are correlated to the topological charge,
which is an IR observable, whereas the gauge force is
usually dominated by short-range UV fluctuations. There-
fore, it is conceivable that integrating the metadynamics
force contribution on a coarser timescale than the gauge
force could significantly decrease the required computa-
tional effort, while still being sufficiently accurate to lead to
reasonable acceptance rates.
We have attempted to use combinations of both the

leapfrog and the Omelyan-Mryglod-Folk second-order
integrator with the Omelyan-Mryglod-Folk fourth-order
minimum norm integrator in a multiple timescale integra-
tion scheme. Unfortunately, we were unable to achieve a
meaningful reduction of metadynamics force evaluations
without encountering integrator instabilities and deterio-
rating acceptance rates. However, this approach might still
be helpful for simulations with dynamical fermions, where
it is already common to split the forces into more than two
levels.
Even if such a multiple timescale approach should turn

out to be unsuccessful in reducing the number of metady-
namics force evaluations, we expect the relative overhead
of metadynamics to be much smaller for simulations
including dynamical fermions. In a previous study [42]
it was found that compared to conventional HMC simu-
lations, simulations with metadynamics using 20 steps
of stout smearing were about 3 times slower in terms of
real time.

B. Scaling of the reweighting factor and improvements
to the bias potential

Due to the addition of the bias potential, unweighted
averages do not lead to expectation values with respect
to the original physical probability density. If corrected
with a reweighting procedure, then the overlap between
the sampled distribution and the distribution of physical

interest needs to be sufficiently large for the method to
work properly. A common measure to quantify the effi-
ciency of the reweighting procedure is the effective sample
size (ESS), defined as

ESS ¼
�P

iwi

�
2P

iw
2
i

; ð25Þ

where wi is the respective weight associated with each
individual configuration. In the case of a static bias potential,
this is simply eVðQmeta;iÞ. We found the normalized ESS, i.e.,
the ESS divided by the total number of configurations, to
generally be of order Oð10−2Þ or lower when simulating in
regions of parameter space where conventional algorithms
fail to sample different topological sectors.
Although the low ESS ultimately results from the fact

that the bias potential is constructed in such a way as to
have a flat marginal distribution over the CV, we can none-
theless distinguish between two contributions towards this
effect. On the one hand, there is the inevitable flattening
of the intersector barriers by the bias potential, which is
necessary to facilitate tunneling between adjacent topo-
logical sectors. On the other hand, however, the different
weights of the individual topological sectors are also
canceled by the bias potential. While it is necessary to
faithfully reproduce the intersector barriers, the leveling of
the weights of the different topological sectors is often
unwanted. It increases the time that the simulation spends
at large values of jQj, so that these sectors are over-
represented compared to their true statistical weight. It is
therefore conceivable that by retaining only the intersector
barrier part of the bias potential, the relative weights of the
different topological sectors will be closer to their physical
values, and the ESS will increase. The resulting marginal
distribution over the topological charge is then expected to
no longer be constant, but rather resemble a parabola. In
cases where this modification to the bias potential is used,
we will either explicitly mention it or include the abbre-
viation “mod.” to make a clear distinction between it and
the original potential.
Here and in Sec. VI of this work, we perform scaling

tests of the proposed improvements in two-dimensional
U(1) gauge theory, where high statistics can be generated
more easily than in four-dimensional SU(3) gauge theory.
The action is given by the standard Wilson plaquette action,

Sg ¼ β
X
n∈Λ

�
1 − Re

�
Pt;xðnÞ

��
; ð26Þ

and updates are performed with a single-hit Metropolis
algorithm. The topological charge is defined using a
geometric integer-valued definition:

Q ¼ 1

2π
Im

"X
n∈Λ

logPt;xðnÞ
#
: ð27Þ

TABLE V. Relative timings for the different update schemes
measured for simulations carried out on 164 lattices. The
significant computational overhead for the metadynamics updates
compared to the other algorithms is due to the stout smearing and
the stout force recursion required for the metadynamics force
calculation.

Update scheme
Relative time

Wilson action DBW2 action

1HBþ4OR 1 1
1HMC 2.90 4.21
MetaD-HMC (4stout) 61.91 24.27
MetaD-HMC (5stout) 73.64 28.11
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For all metadynamics updates, we use a field-theoretic
definition of the topological charge that is generally not
integer valued:

Qmeta ¼
1

2π
Im

"X
n∈Λ

Pt;xðnÞ
#
: ð28Þ

Since the charge distributions obtained from the two
definitions already show reasonable agreement without any
smearing for the parameters considered here, we can use
local update algorithms and directly include the metady-
namics contribution in the staple. A similar idea that
encourages tunneling in the Schwinger model by adding
a small modification to the action was proposed in [100].
In previous tests in two-dimensional U(1) gauge theory,

we found that the bias potentials could be described by a
sum of a quadratic and multiple oscillating terms [101]:

VðQÞ ¼ AQ2 þ
XN
i¼1

Bisin2ðπfiQÞ: ð29Þ

Here, we fit our bias potentials that are obtained from the
two-dimensional U(1) simulations to this form. We then
obtain a modified bias potential by subtracting the resulting
quadratic term from the data.
Table VI contains the normalized ESS and integrated

autocorrelation times for different lattice spacings on the
same line of constant physics in two-dimensional U(1)
theory. We compare metadynamics runs using bias poten-
tials obtained directly from previous simulations with
metadynamics runs using potentials that were modified
to retain the relative weights of the topological sectors as

described above. We see large improvements for both the
ESS and τint in the modified case, even for the finest lattices
considered.
We expect that the quadratic term is mostly relevant for

small volumes and high temperatures. With larger volumes
and lower temperatures, the slope should decrease, and
with it the importance of correctly capturing this term.
On the other hand, the oscillating term is expected to grow
more important with finer lattice spacings, as the barriers
between the different sectors grow steeper. Thus, the
oscillating term needs to be described more and more
accurately towards the continuum.
A standard technique to decrease, but not completely

eliminate, action barriers is well-tempered metadyna-
mics [102]. In this approach, the height of the added
Gaussians w decays with increasing potential. In our tests,
we found that this method increases the ESS at the cost
of higher autocorrelation times. Whether the gains of the
ESS outweigh the loss from the higher autocorrelation
times depends on the choice of parameters. Although this
technique might yield moderate improvements in the over-
all sampling efficiency, we decided not to attempt any fine-
tuning of the parameters at this point.

C. Accelerating the equilibration/buildup
of the bias potential

Another avenue of improvement is accelerating the
buildup of the bias potential. This aspect becomes espe-
cially relevant when considering large-scale simulations,
where current simulations are typically limited to Oð104Þ
update sweeps, and a lengthy buildup phase of the bias
potential would render the method infeasible. Additionally,
the range of relevant Q values will also increase with larger
physical volumes.
The first idea explored here is to exploit the aforemen-

tioned well-tempered variant of metadynamics, by choos-
ing a larger starting value of the Gaussian height w and
letting it decay slowly so as to minimize the change in the
potential that arises from the decay. While this approach
introduces the decay rate as another fine-tunable parameter,
we found that this did indeed reduce the number of update
iterations required to thermalize the potential. A small
caveat is that an optimal choice of the decay rate requires
prior knowledge on the approximate height of the action
barriers.
A second way of reducing the buildup time is to use an

enhancement of metadynamics which is most commonly
referred to as multiple walkers metadynamics [103], where
the potential is simultaneously built up by several inde-
pendent streams in a trivially parallelizable way. In our
case, it is convenient to make each stream start in a distinct
topological sector. In two-dimensional U(1) gauge theory,
this can be achieved by seeding each stream with an
instanton configuration of charge Q, which can be con-
structed according to [104],

TABLE VI. Normalized effective sample sizes for simulations
carried out on different lattices on the same line of constant
physics in two-dimensional U(1) gauge theory. For each set of
parameters, 107 measurements were performed with a separation
of ten update sweeps between every measurement. More details
on the simulation setup can be found in Sec. V B.

L=a β ESS=nmeas τintðQ2Þ
Regular bias potential

16 3.2 33.088(74)% 52
20 5.0 21.81(11)% 207
24 7.2 12.70(11)% 567
28 9.8 8.805(81)% 676
32 12.8 8.261(85)% 1167

Modified bias potential (see Sec. V B)

16 3.2 99.50627(11)% 5
20 5.0 64.3084(87)% 33
24 7.2 28.572(12)% 123
28 9.8 27.291(16)% 227
32 12.8 18.751(25)% 247
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UI
tðQ; t; xÞ ¼ exp

�
−2πix

Q
NxNt

�
;

UI
xðQ; t; xÞ ¼ exp

�
2πit

Q
Nt

δx;Nx

�
: ð30Þ

The serial and parallel buildup are compared in Fig. 7
where the potential parameters for each stream are given
by: Qmax =min ¼ �7, nbins ¼ 1400, and w ¼ 0.002. In the
case of four-dimensional SU(3) the direct construction of
instantons with higher charge is not quite as simple as in
two-dimensional U(1) gauge theory. The construction of
lattice instantons with even charge is described in [104],
and lattice instantons with odd charge can be constructed
by combining multiple instantons with charge jQj ¼ 1
[88,105]. Regardless, starting with instantons is not
required, since we only need each stream to fall into the
specified sector. The time until the streams start to tunnel
is a first indicator of the thermalization timescale of the
potential.
Independent of the possible improvements mentioned

here, a fine-tuning of the standard metadynamics para-
meters could also prove to be worthwhile in regard to
accelerating the buildup and improving the quality of the
bias potential.

VI. COMBINING METADYNAMICS WITH
PARALLEL TEMPERING

In order to eliminate the problem of small effective
sample sizes observed in our metadynamics simulations
due to the required reweighting, we propose to combine
metadynamics with parallel tempering [77]. This is done in
a spirit similar to the parallel tempering on a line defect
proposed by Hasenbusch [30]. We introduce two simu-
lation streams: One with a bias potential, and the other
without it, while the physical actions SðUÞ are the same for

both streams, as illustrated in Fig. 8. Since we are working
in pure gauge theory, this means the second stream without
bias potential can be simulated with local update algo-
rithms. After a fixed number of updates have been
performed on the two streams, a swap of the configurations
is proposed and subject to a standard Metropolis accept-
reject step. The action difference is given by

ΔSMt ¼ �SMt ðU1Þ þ SðU2Þ
�
−
�
SMt ðU2Þ þ SðU1Þ

�
¼ VtðQmeta;1Þ − VtðQmeta;2Þ; ð31Þ

where the indices of the quantities denote the number of the
stream, and Vt is the bias potential in the first stream. It is
apparent and important to note that the action difference is
simple to compute regardless of what the physical action
looks like. Even in simulations where dynamical fermions
are present, the contributions from the physical action are
always canceled out by virtue of the two streams having
the same action parameters; only the contribution from the
bias potential remains. Moreover, the action differences,

FIG. 7. Comparison of serial and parallel buildup of the bias
potential in two-dimensional U(1) gauge theory for 322 lattices.
The ratio of update iterations per stream was held fixed at 15∶1,
so that both methods would use the same number of total update
steps during each snapshot.

FIG. 8. Illustration of the PT-MetaD algorithm, with the two
columns representing two simulation streams. The bias potentials
are illustrated at the top, while subsequent rows represent the time
series, with different shades of the configurations for better
visibility. Q values are indicative and do not represent results
from an actual simulation.
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and thus the swap rates, should be largely independent of
the volume.
Since the second/measurement stream samples configu-

rations according to the physical distribution no reweight-
ing is needed, and thus the effective sample size is not
reduced. Additionally, if the swaps are effective, the
measurement stream will inherit the topological sampling
from the stream with bias potential and thus also sample
topological sectors well. Effectively, the accept-reject step
for swap proposals serves as a filter for configurations with
vanishing weight, thereby decreasing the statistical uncer-
tainties on all observables weakly correlated to the topo-
logical charge. What remains to be seen is whether the
efficiency of the sampling of the topological sectors carries
over from the bias potential stream to the measurement
stream. In this section, we address this question via both
scaling tests in two-dimensional U(1) and exploratory runs
in four-dimensional SU(3) in a region where conventional
update algorithms are effectively frozen.

A. Scaling tests in two-dimensional U(1)

We carried out a number of simulations in two-
dimensional U(1) gauge theory using the same parameters
and simulation setup as described in Sec. V B. We use bias
potentials already built for these metadynamics runs and
keep them static in a number of parallel tempered meta-
dynamics runs. For each set of parameters, we carried out
one run with the respective unmodified potential and one
run with a potential modified as described in Sec. V B. In
these runs, swaps between the two streams were proposed
after each had completed a single update sweep over all
lattice sites. The run parameters, as well as the resulting
autocorrelation times of the topological charge Q, can be
found in Table VII.
Since the relevant configuration space is now the product

of configuration spaces of the individual streams, autocor-
relation timescales of observables that are defined on the
product space will now contain important information
about the dynamics of the system. Therefore, we addition-
ally monitor the sum of the squared topological charges on
both streams. This observable allows us to distinguish the
fluctuations in Q originating from true tunneling events
from repeated swaps between the two streams without
tunneling.
Figure 9 shows the scaling of the total amount of

independent configurations, which is given by the quotient
of the effective sample size Eq. (25) and the integrated
autocorrelation time of the topological susceptibility.
The performance of the standard Metropolis algorithm is
compared to parallel tempered and standard metadynamics,
with both modified (see Sec. V B) and nonmodified bias
potentials.
PT-MetaD performs well throughout the entire range

of lattice spacings, consistently outperforming standard
metadynamics by more than an order of magnitude. Most

TABLE VII. Integrated autocorrelation times for different
lattices on the same line of constant physics in two-dimensional
U(1) gauge theory, using both Metropolis and PT-MetaD updates.
Observables indexed with 1 are taken from the stream with bias
potential, whereas those indexed with 2 are taken from the regular
stream. The modification of the bias potential is discussed in
Sec. V B. Overall, 107 measurements were performed with a
separation of ten update sweeps between every measurement.

L=a β τintðQ2
2Þ τintðQ2

1 þQ2
2Þ

Single-hit Metropolis

16 3.2 3 N/A
20 5.0 71 N/A
24 7.2 3939 N/A
28 9.8 462472 N/A
32 12.8 > 10000000 N/A

PT-MetaD (regular bias potential)

16 3.2 5 20
20 5.0 59 142
24 7.2 939 534
28 9.8 1730 818
32 12.8 1926 1319

PT-MetaD (modified bias potential)

16 3.2 4 5
20 5.0 47 47
24 7.2 184 208
28 9.8 316 403
32 12.8 312 465

FIG. 9. Continuum scaling of the total sample size for the
standardMetropolis algorithm and variations ofMetaD-Metropolis
in two-dimensional U(1), including the use of a modified bias
potential (see Sec. V B). The corresponding data can be found in
Table VI and Table VII. Lines are drawn to guide the eyes.
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importantly, the ratio of independent configurations seems
to reach a plateau for finer lattice spacings, indicating
an improved scaling behavior compared to conventional
metadynamics, which in itself already scales significantly
better than the single-hit Metropolis algorithm. It is also
worth noting that the modified bias potential provides
better results than the nonmodified one, as evidenced by
the normalized effective sample sizes and swap rates
presented in Table VIII. This is consistent with our expect-
ation that large excursions in the topological charge, which
produce irrelevant configurations, are curbed by the modi-
fication of the bias potential. A more detailed look at the
effectiveness of the new algorithm is provided by Fig. 10.

It compares the results of PT-MetaD and standard meta-
dynamics at our finest lattice spacing, with and without
modification of the bias potential. For reference, exact
values from analytical solutions [40,106–108] are also
provided (see Appendix E for more details). First, we note
that there is no significant difference in the performance
between standard and parallel tempered metadynamics
in the topology related observables Q and Q2 in the case
of a modified bias potential. This indicates that the swaps
are effective in carrying over the topological sampling
of the bias potential stream to the measurement stream.
On the other hand, the inclusion of the irrelevant higher
sectors with the unmodified bias potential does increase
the error bars, and there is some indication that not all of
the topological sector sampling is carried over into the
measurement run of PT-MetaD. Furthermore, Fig. 10
reveals that for observables not related to the topology,
PT-MetaD with a modified bias potential is superior to
standard metadynamics. This is clearly the effect of the
higher effective sample size and number of independent
configurations.
In summary, our scaling tests in two-dimensional U(1)

suggest that parallel tempered metadynamics with a modi-
fied bias potential has much improved topological sam-
pling, equivalent to standard metadynamics, while at the
same time not suffering from a reduced effective sample
size. There is some indication that the ratio of statistically
independent to total configurations does reach a stable
plateau in the continuum limit.

TABLE VIII. Normalized effective sample sizes and swap rates
for PT-MetaD simulations with regular and modified bias
potential in two-dimensional U(1) gauge theory, where the
normalized effective sample sizes were measured on the bias
potential streams of the PT-MetaD runs. The nonmonotonous
behavior of the quantities for the PT-MetaD runs may be due to a
suboptimal choice of bias potentials.

PT-MetaD PT-MetaD mod.

L=a β ESS=nmeas Swap rate ESS=nmeas Swap rate

16 3.2 21.0% 0.198 99.6% 0.960
20 5.0 13.6% 0.151 64.3% 0.585
24 7.2 7.3% 0.086 28.6% 0.271
28 9.8 5.0% 0.057 27.3% 0.249
32 12.8 8.3% 0.081 18.8% 0.169

FIG. 10. Comparison of expectation values and uncertainties for the plaquette P, larger Wilson loops Wn, the topological charge Q,
and the topological susceptibility Q2 for variations of MetaD-Metropolis in two-dimensional U(1) for 322 lattices and β ¼ 12.8. The
modification of the bias potential is discussed in Sec. V B. Dashed lines correspond to the exact solutions [40,106–108]. Results
obtained from a run with standard Metropolis updates are off the scale everywhere except for Q, where the expectation value is exactly
equal to zero due to complete topological freezing.
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B. First results in four-dimensional SU(3)

For our exploratory study in four-dimensional SU(3), we
turn to the DBW2 gauge action at β ¼ 1.25 on a V ¼ 164

lattice, which we have already used in Sec. V. For our first
run, which is depicted in the left panels of Fig. 12, we have
combined a local 1HBþ4OR measurement stream with a
4stout MetaD-HMC stream that dynamically generates
the bias potential. Between swap proposals, updates for the
two streams are performed at a ratio of 10 1HBþ4OR
update sweeps to a single unit length MetaD-HMC tra-
jectory, which roughly reflects the relative wall clock times
between the algorithms. One can see that the measurement
run starts exploring other topological sectors almost as soon
as the parallel run with active bias potential has gained
access to them. In the later stages of the run, when the bias
potential is sufficiently built up to allow the metadynamics
run to enter higher topological sectors, one can see that the
swap rate is lowered by the action difference between the
topological sectors, leading to an overall swap rate of ∼8%.
This effect mirrors the reduction of the effective sample size
in pure metadynamics updates and may be ameliorated
by removing the quadratic term in the bias potential, as

FIG. 11. Comparison between the original bias potential and its
trend subtracted modifications from singular spectrum analysis
and piecewise subtraction of the Q2 term.

FIG. 12. Topological charge time series for our parallel tempered metadynamics runs on a V ¼ 164 lattice at β ¼ 1.25 with the DBW2
gauge action and four steps of stout smearing in the definition of Qmeta. The left panels show results of our first run with a dynamically
built bias potential, while the right panels show our second run with a modified static potential. The topmost row shows the time series of
the topological charges in the respective measurement runs, while the second row is for the metadynamics part (note the different y
scales). The third row displays the sum of the topological charges on the measurement stream and the stream including a bias potential,
serving as an indicator for genuine transitions of the entire system into new topological sectors. In the bottom row, the running average of
the swap acceptance rate with a window size of 2000 is displayed.
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discussed in Sec. V B. In fact, the relevant point is that the
action difference between the maxima of the bias potential
for different topological sectors reflects the relative weight
of these sectors in the path integral and should not be
flattened out. Ideally, we want the bias potential to only
reproduce the barriers between the sectors, not their relative
weights. For a second exploratory PT-MetaD run, we there-
fore opted for a static bias potential of this sort. Lacking
data that are precise enough to model the bias potential in
detail, as we did in two-dimensional U(1), we started from
the bias potential of a previous metadynamics run and
extracted the high frequency (in Qmeta) part corresponding
to the topological barriers, while eliminating the long
range part corresponding to the relative weights of the
topological sectors. For this purpose, we chose to perform
a singular spectrum analysis [109] and cross-checked the
result with a simple piecewise subtraction of the Q2 term
between consecutive local maxima. As displayed in Fig. 11,
both methods result in a similar modified bias potential that
seems to reproduce the intersector barriers rather well.
The right panels of Fig. 12 display the results of the

corresponding PT-MetaD run. Notably, excursions to large
absolute values of the topological charge in the stream
with bias potential are now curbed, and the swap accep-
tance rate has increased to ∼21%. In addition, the accep-
tance rate is approximately constant over the entire run,
as it should be expected for a static bias potential. The
resulting autocorrelation times are τintðQ2

cÞ ¼ 53ð3Þ and
τintðQ2

c þQ2
c;MetaDÞ ¼ 333ð35Þ. We would like to empha-

size that the bias potential we extracted is a rather rough
guess. With a larger amount of data, it might be possible
to extract a better bias potential, possibly leading to even
higher acceptance rates. Considering the rather simple
forms used to model the bias potential, it might also be
possible to describe it with sufficient accuracy for good
initial guesses at other run parameters. We plan to address
these points in the future.
In any case, these first results clearly show that the parallel

tempered metadynamics algorithm is able to achieve
enhanced topological sampling in four-dimensional SU(3)
without the reduction of the effective sample size that is
typical for algorithms with a bias potential.

VII. CONCLUSION AND OUTLOOK

In this paper, we have proposed a new update algorithm,
PT-MetaD and applied it to four-dimensional SU(3) gauge
theory. In its simplest form, which we have investigated
here, it consists of two parallel streams simulating the same
physical system. One of the streams includes a fixed bias
potential, which facilitates transitions between topological
sectors. This bias potential can, for example, be extracted
from a metadynamics simulation of the system. The second

stream can utilize any efficient conventional update algo-
rithm that, by itself, may exhibit topological freezing. At
regular intervals, swaps between the two streams are
proposed and subjected to a Metropolis accept-reject step.
We have demonstrated that in this way, the good topo-
logical sampling of the stream with bias potential carries
over to the conventional update stream without compro-
mising its effective sample size. When performing mea-
surements exclusively on the second conventional update
stream, one therefore obtains topological unfreezing with-
out any reweighting or additional modifications. The price
to pay is the additional update stream including a bias
potential, which requires minimal communication with the
measurement stream and thus is embarrassingly parallel.
The proposed algorithm may be helpful in overcoming
potential barriers in more general cases without compro-
mising the effective sample size.
We have demonstrated that PT-MetaD can unfreeze four-

dimensional SU(3) gauge theory at parameter values where
conventional algorithms are frozen. Furthermore, scaling
tests in two-dimensional U(1) gauge theory indicate gains
of more than an order of magnitude compared to standard
metadynamics in the total sample size and an improved
scaling of autocorrelation times with the lattice spacing
compared to standard update algorithms. We have also
demonstrated that the buildup of the metadynamics bias
potential may be accelerated by running multiple metady-
namics simulations in parallel.
We believe these results are promising and plan to study

the scaling behavior of the methods tested here in more
detail for four-dimensional SU(3) gauge theory, and even-
tually in full QCD. Conceptually, there seem to be no
obstacles for implementing parallel tempered metadynam-
ics in full QCD. We also plan to explore possible opti-
mizations for parallel tempered metadynamics. These
include optimizing the bias potential via enhanced buildup
and extraction and, possibly, describing it parametrically.
Furthermore, it would be interesting to investigate whether
adding additional streams with the same or modified bias
potentials could increase performance, despite the addi-
tional computational cost. This might be especially inter-
esting for large scale simulations, where additional streams
may offer a reduction of autocorrelation times in a trivially
parallelizable manner.
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APPENDIX A: CONVENTIONS

We consider the Lie group SU(3) along with the
associated Lie algebra suð3Þ. The generators Ta may be
represented as traceless anti-Hermitian 3 × 3 matrices with
the group index a∈ f1;…; 8g. In terms of the Gell-Mann
matrices, the generators may be chosen to be

Ta ¼ i
2
λa; ðA1Þ

but more generally, the generators are normalized in such a
way that

tr½TaTb� ¼ −
1

2
δab: ðA2Þ

The scalar product on the algebra is defined as

hA; Bi ¼ −2tr½AB� ¼ AaBa; ðA3Þ

where summation over the group indices a is implied. Note
that the definition of the scalar product affects the trajectory
length in the HMC and the MetaD-HMC. The convention
we use throughout this paper agrees with, e.g., [18].
We also introduce the following abbreviation for the

projector that maps any 3 × 3 matrix onto suð3Þ:

Psuð3ÞðAÞ ¼
1

2
ðA − A†Þ − 1

6
tr½A − A†�

¼ −2TaRe tr½TaA�: ðA4Þ

The derivative of a scalar function of the gauge field fðUÞ
with respect to a single link UαðnÞ is defined as a linear
combination of generators Ta and partial derivative
operators ∂an;α:

∂n;αfðUÞ ¼ Ta
∂
a
n;αfðUÞ: ðA5Þ

Individually, the action of the ath partial derivative operator
on fðUÞ is defined as

∂
a
n;αfðUÞ ¼ d

ds
f
�
U½s�����

s¼0
; ðA6Þ

where

U½s�
ν ðmÞ ¼



esT

a
UαðnÞ if ðm; νÞ ¼ ðn; αÞ;

UνðmÞ else:
ðA7Þ

While the result of the partial derivatives acting on a
function is basis dependent, the linear combination in
Eq. (A5) is not.

APPENDIX B: CLOVER CHARGE
DERIVATIVE

In order to obtain an expression for the force contribution
from the topological bias potential in Eq. (19), the algebra-
valued derivative of the collective variable Qmeta with
respect to the group-valued fully smeared links has to be
calculated first. Evidently, this part of the force calculation
does not depend on the smearing procedure used. The
subsequent stout force recursion [19,85] required to relate
this term to the derivative with respect to unsmeared links is
discussed in Appendix C.
Recall that the clover-based definition of the topological

charge is given by

Qc ¼
1

32π2
X
n∈Λ

ϵμνρσtr
�
F̂clov
μν ðnÞF̂clov

ρσ ðnÞ�; ðB1Þ

where the field strength tensor is defined as

F̂clov
μν ðnÞ ¼ −

i
8

�
CμνðnÞ − CνμðnÞ

�
; ðB2Þ

and the clover term is given by

CμνðnÞ ¼ Pμ;νðnÞ þ Pν;−μðnÞ þ P−μ;−νðnÞ þ P−ν;μðnÞ:
ðB3Þ

For notational convenience, we introduce the auxiliary
variables RμνðnÞ ¼ CμνðnÞ − CνμðnÞ and drop the specifi-
cation of the lattice site n unless pertinent to the formula.
What we need for the force is the sum of the partial

derivatives in all eight group directions. By using the
cyclicity of the trace and the symmetry relation

R†
μν ¼ −Rμν ¼ Rνμ; ðB4Þ

we can rewrite the sum of partial derivatives as

Ta
∂
a
n;αϵμνρσtr½RμνRρσ� ¼ 4Ta

X
νρσ

∂
a
n;αϵανρσtr½RανRρσ�: ðB5Þ

Note that in the second line of Eq. (B5) and the subsequent
equations in this section, the index α is not summed over.
Applying the partial derivative operators, we get two

nonvanishing contributions from every plaquette term.
Using the same symmetry arguments as before, we can
further simplify the expression to obtain the following
result for the derivative:
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4Ta
X
νρσ

∂
a
n;αϵανρσtr½RανRρσ� ¼ 8Ta

X
νρσ

ϵανρσRe tr
�
TaUαðnÞUνðnþ αÞU†

αðnþ νÞU†
νðnÞRρσðnÞ

− TaUαðnÞU†
νðnþ α − νÞU†

αðn − νÞRρσðn − νÞUνðn − νÞ
− TaUαðnÞU†

νðnþ α − νÞRρσðnþ α − νÞU†
αðn − νÞUνðn − νÞ

þ TaUαðnÞRρσðnþ αÞUνðnþ αÞU†
αðnþ νÞU†

νðnÞ
− TaUαðnÞU†

νðnþ α − νÞU†
αðn − νÞUνðn − νÞRρσðnÞ

þ TaUαðnÞUνðnþ αÞU†
αðnþ νÞRρσðnþ νÞU†

νðnÞ
− TaUαðnÞRρσðnþ αÞU†

νðnþ α − νÞU†
αðn − νÞUνðn − νÞ

þ TaUαðnÞUνðnþ αÞRρσðnþ αþ νÞU†
αðnþ νÞU†

νðnÞ
�

¼ 8Ta
X
νρσ

ϵανρσRe tr½TaAανρσ�

¼ 8TaRe tr½TaAα�: ðB6Þ

An expression of the above form can be rewritten using the
projector induced by the scalar product of the algebra
defined in Eq. (A4):

8TaRe tr½TaAα� ¼ −4Psuð3ÞðAαÞ: ðB7Þ

Including the missing prefactors from Eq. (B1) and
Eq. (B2), we obtain the following final result for the
derivative of the clover-based topological charge with
respect to the gauge link UαðnÞ:

Ta
∂
a
n;αQc ¼

1

32π2
Ta

∂
a
n;αϵμνρσtr

�
F̂clov
μν F̂clov

ρσ

�
¼ −

1

2048π2
Ta

∂
a
n;αϵμνρσtr½RμνRρσ�

¼ 1

512π2
Psuð3ÞðAαÞ: ðB8Þ

In a similar way, expressions for the derivatives of
improved definitions of the topological charge involving
larger loops can be obtained.

APPENDIX C: STOUT FORCE RECURSION

The derivative of the topological charge with respect
to an unsmeared link can be computed by propagating
the initial derivative with respect to a fully smeared link
through the different smearing levels [19,85]. This part
of the force calculation is completely independent of the
topological charge operator and only depends on the
smearing procedure used. In fact, the recursion is exactly
the same as the recursion used during the force calculation
with stout smeared fermions. Note that starting the calcu-
lation at the highest smearing level is vastly more efficient,

despite having to track intermediate smearing levels, since
the function’s domain is high dimensional, whereas the
codomain is one dimensional.
We begin by establishing the required definitions before

describing the actual force recursion. For notational con-
venience, we only consider a single smearing step without
loss of generality and denote smeared quantities with a
prime symbol. For the most part, we will use the same
notation as in [85]. Starting from a gauge field U, the stout
smeared gauge field U0 is defined as

U0
μðnÞ ¼ eiQμðnÞUμðnÞ; ðC1Þ

QμðnÞ ¼ −iPsuð3Þ
�
ΩμðnÞ

�
; ðC2Þ

ΩμðnÞ ¼ CμðnÞU†
μðnÞ: ðC3Þ

Note that no summation is performed over μ in Eq. (C3).
CμðnÞ is a weighted sum of staples:

CμðnÞ ¼
X
ν≠μ

ρμν
�
UνðnÞUμðnþ ν̂ÞU†

νðnþ μ̂Þ

þU†
νðn − ν̂ÞUμðn − ν̂ÞUνðnþ μ̂ − ν̂Þ�: ðC4Þ

If the smeared force F0 is known, the unsmeared force F is
given by

FμðnÞ ¼ Psuð3Þ
�
UμðnÞΣ0

μðnÞeiQμðnÞ

þ iUμðnÞC†
μðnÞΛμðnÞ − iUμðnÞϒμðnÞ

�
; ðC5Þ

where
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ϒμðnÞ ¼
X
ν≠μ

�
ρνμUνðnþ μ̂ÞU†

μðnþ ν̂ÞU†
νðnÞΛνðnÞ þ ρμνU

†
νðnþ μ̂ − ν̂ÞU†

μðn − ν̂ÞΛμðn − ν̂ÞUνðn − ν̂Þ

þ ρνμU
†
νðnþ μ̂ − ν̂ÞΛνðnþ μ̂ − ν̂ÞU†

μðn − ν̂ÞUνðn − ν̂Þ − ρνμU
†
νðnþ μ̂ − ν̂ÞU†

μðn − ν̂ÞΛνðn − ν̂ÞUνðn − ν̂Þ
− ρνμΛνðnþ μ̂ÞUνðnþ μ̂ÞU†

μðnþ ν̂ÞU†
νðnÞ þ ρμνUνðnþ μ̂ÞU†

μðnþ ν̂ÞΛμðnþ ν̂ÞU†
νðnÞ

�
; ðC6Þ

Λ ¼ 1

2
ðΓþ Γ†Þ − 1

6
tr½Γþ Γ†�; ðC7Þ

Γ ¼ tr½B1UΣ0�Qþ tr½B2UΣ0�Q2

þ f1UΣ0 þ f2QUΣ0 þ f2UΣ0Q; ðC8Þ

Σ0 ¼ U0†F: ðC9Þ

The exact form of the fj and Bi is given in Appendix D. For
multiple smearing levels, the procedure in Eq. (C5) can
simply be repeated.

APPENDIX D: COMPUTATION OF THE MATRIX
EXPONENTIAL USING THE CAYLEY-

HAMILTON THEOREM

The computation of the matrix exponential is done along
the lines of [85] using the Cayley-Hamilton theorem,
which also affects the details of the stout force recursion.
The characteristic polynomial of a 3 × 3 matrix A reads as
follows:

pAðλÞ ¼ λ3 − tr½A�λ2 þ 1

2

�
tr½A�2 − tr½A2��λ− detðAÞ: ðD1Þ

For a traceless Hermitian matrix Q, this reduces to

pQðλÞ ¼ λ3 −
1

2
tr½Q2�λ − detðQÞ: ðD2Þ

According to the Cayley-Hamilton theorem, Q satisfies its
own characteristic equation:

Q3 − c1Q − c0I ¼ 0; ðD3Þ

where we again follow the notation in [85]:

c0 ¼ detðQÞ ¼ 1

3
tr½Q3�; ðD4Þ

c1 ¼
1

2
tr½Q2� ≥ 0: ðD5Þ

The structure of Q restricts the range of c0:

cmax
0 ¼ −cmin

0 ¼ 2

�
c1
3

�
3=2

: ðD6Þ

For analytic functions, Eq. (D3) may therefore be used to
reduce the series representation of the function to a
polynomial of degree 2 in the matrix itself:

fðQÞ ¼ f2Q2 þ f1Qþ f0: ðD7Þ

More generally, analytic functions of n × n matrices can be
reduced to polynomials of degree n − 1 using the same
strategy. The complex coefficients fj may be expressed in
terms of complex auxiliary functions hj and real variables u
and w that are closely related to the eigenvalues of Q:

fj ¼
hj

9u2 − w2
; ðD8Þ

where

u ¼
ffiffiffiffiffi
c1
3

r
cos

�
θ

3

�
; ðD9Þ

w ¼ ffiffiffiffiffi
c1

p
sin

�
θ

3

�
; ðD10Þ

θ ¼ arccos

�
c0
cmax
0

�
: ðD11Þ

The hj in turn are defined as

h0 ¼ ðu2 − w2Þe2iu þ e−iu
�
8u2 cosðwÞ

þ 2iuð3u2 þ w2Þξ0ðwÞ
�
; ðD12Þ

h1 ¼ 2ue2iu − e−iu
�
2u cosðwÞ

− ið3u2 − w2Þξ0ðwÞ
�
; ðD13Þ

h2 ¼ e2iu − e−iu
�
cosðwÞ þ 3iuξ0ðwÞ

�
; ðD14Þ

with

ξ0ðwÞ ¼ sincðwÞ ¼ sinðwÞ
w

; ðD15Þ

ξ1ðwÞ ¼
sinc0ðwÞ

w
¼ cosðwÞ

w2
−
sinðwÞ
w3

: ðD16Þ

For small values of w, the direct evaluation of the
expressions in Eq. (D15) and Eq. (D16) may suffer from
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numerical inaccuracies. To ensure sufficient precision, we
use sixth-order Taylor expansions below certain thresholds:

ξ0ðwÞ ¼
8<
:

1− w2

6

�
1− w2

20

�
1− w2

42

�� jwj ≤ ξ0;thr;

sinðwÞ
w jwj > ξ0;thr:

ðD17Þ

ξ1ðwÞ ¼
8<
:

− 1
3
þ w2

30

�
1− w2

28

�
1− w2

54

�� jwj ≤ ξ1;thr;

cosðwÞ
w2 − sinðwÞ

w3 jwj> ξ1;thr:
ðD18Þ

The thresholds used in our simulations were determined
empirically:

ξ0;thr ¼


0.56 in single precision;

0.05 in double precision:
ðD19Þ

ξ1;thr ¼


0.75 in single precision;

0.115 in double precision:
ðD20Þ

The stout force recursion also involves terms related to
the derivative of the exponential function that appear in
Eq. (C8). Specifically, the matrix polynomials Bi are
defined as

Bi ¼ bi2Q2 þ bi1Qþ bi0: ðD21Þ

The coefficients bij are given by

b1j ¼
2urð1Þj þ ð3u2 − w2Þrð2Þj − 2ð15u2 þ w2Þfj

2ð9u2 − w2Þ2 ; ðD22Þ

b2j ¼
rð1Þj − 3urð2Þj − 24ufj

2ð9u2 − w2Þ2 ; ðD23Þ

and the auxiliary quantities rðiÞj are defined as

rð1Þ0 ¼ 2
�
uþ iðu2 − w2Þ�e2iu þ 2e−iu

�
4uð2 − iuÞ cosðwÞ

þ ið9u2 þ w2 − iuð3u2 þ w2Þ�ξ0ðwÞ�; ðD24Þ

rð1Þ1 ¼ 2ð1þ 2iuÞe2iu þ e−iu
�
−2ð1 − iuÞ cosðwÞ

þ i
�
6uþ iðw2 − 3u2Þ�ξ0ðwÞ�; ðD25Þ

rð1Þ2 ¼ 2ie2iu þ ie−iu
�
cosðwÞ − 3ð1 − iuÞξ0ðwÞ

�
; ðD26Þ

rð2Þ0 ¼ −2e2iu þ 2iue−iu
�
cosðwÞ

þ ð1þ 4iuÞξ0ðwÞ þ 3u2ξ1ðwÞ
�
; ðD27Þ

rð2Þ1 ¼ −ie−iu
�
cosðwÞ þ ð1þ 2iuÞξ0ðwÞ − 3u2ξ1ðwÞ

�
;

ðD28Þ

rð2Þ2 ¼ e−iu
�
ξ0ðwÞ − 3iuξ1ðwÞ

�
: ðD29Þ

In addition to the previously discussed functions ξ0ðwÞ and
ξ1ðwÞ, numerical instabilities may also be caused by a small
denominator appearing in Eqs. (D8), (D22), and (D23). In
particular, the expressions become problematic when
w → 3u, as either c0 → cmin

0 or c1 → 0. The former case
can be circumvented by using the following symmetry
relations of fj and bij with respect to the sign of c0:

fjð−c0; c1Þ ¼ ð−1Þjf�jðc0; c1Þ; ðD30Þ

bijð−c0; c1Þ ¼ ð−1Þiþjþ1b�ijðc0; c1Þ: ðD31Þ

By only working with positive c0, the range of θ is
restricted to θ∈ ½0; π=2�, which in turn implies that the
expression 9u2 − w2 will lie in the interval [2, 3].
The latter case c1 → 0 implies that cmax

0 → 0, which can
cause problems during the division in the argument of the
arccos in Eq. (D11). In practice, this can be handled by
explicitly setting

u ¼ w ¼ 0; ðD32Þ

fj ¼ hj ¼


1 j ¼ 0;

0 else
ðD33Þ

for very small values of cmax
0 (namely, values smaller than

the smallest representable positive normalized floating
point number). In particular, this also covers the case of
the trivial gauge configuration where Q ¼ 0 and all three
eigenvalues of the matrix will be degenerate and exactly
equal to 0.
Finally, problems appear if the argument of the arccos in

Eq. (D11) exceeds 1 due to numerical inaccuracies. Since
the argument is guaranteed to be bounded by 1 in exact
arithmetic, this problem can be solved by rounding the
argument down to 1.

APPENDIX E: EXACT SOLUTION
OF TWO-DIMENSIONAL U(1)

GAUGE THEORY

In two-dimensional U(1) gauge theory, exact results for
expectation values of many observables are known ana-
lytically [40,106–108]. A detailed derivation for Wilson
loops in the aforementioned theory with both open and
periodic boundary conditions can be found in Appendix A.3
of [110], of which we summarize the main results. For
convenience, we introduce the notation

Rn;mðβÞ ¼
InðβÞ
ImðβÞ

; ðE1Þ
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where InðβÞ is the nth modified Bessel function of the
first kind.
For open boundary conditions in two dimensions, all

plaquettes decouple and can be integrated independently. In
particular, a consequence of this is the complete absence
of finite volume effects, independent of the gauge group.
Expectation values of Wilson loops with area A (the exact
shape does not matter due to the Abelian nature of the
gauge group) are given by

hWAiopen ¼
�
I1ðβÞ
I0ðβÞ

�
A
¼ �R1;0ðβÞ

�
A: ðE2Þ

Evidently, the plaquette expectation value is simply given by

hPiopen ¼
I1ðβÞ
I0ðβÞ

¼ R1;0ðβÞ: ðE3Þ

When periodic boundary conditions are imposed, the
theory is not completely trivial, as additional constraints
are imposed by the periodicity. In that case, the expectation
values of Wilson loops of area A on a square lattice of size
L × L can be expressed in terms of sums over irreducible
characters of the gauge group:

hWAiperiodic ¼
P

rðIrðβÞÞL2−AðIrþ1ðβÞÞAP
rðIrðβÞÞL2 ; ðE4Þ

where the index r∈Z runs over the irreducible represen-
tations of U(1). The direct evaluation of this expression is
problematic for fine lattice spacings and larger volumes,
since the power of the Bessel functions quickly exceeds the
representable range for floating point numbers. This prob-
lem can be circumvented by slightly rewriting the expres-
sion and only working with ratios of Bessel functions:

hWAiperiodic ¼
P

rðRr;0ðβÞÞL2ðRrþ1;rðβÞÞAP
rðRr;0ðβÞÞL2 : ðE5Þ

For the plaquette, this simplifies to

hPiperiodic ¼
P

rðRr;0ðβÞÞL2

Rrþ1;rðβÞP
rðRr;0ðβÞÞL2 : ðE6Þ

Finally, the (unnormalized) topological susceptibility is
given by [40]

hQ2iperiodic ¼ −V
P

rArðβÞðIrðβÞÞV−1P
rðIrðβÞÞV

− ðV2 − VÞ
P

rðBrðβÞÞ2ðIrðβÞÞV−2P
rðIrðβÞÞV

; ðE7Þ

where

ArðβÞ ¼ −
1

2π

Z
π

−π
dϕ

�
ϕ

2π

�
2

eirϕþβ cosϕ; ðE8Þ

BrðβÞ ¼
i
2π

Z
π

−π
dϕ

ϕ

2π
eirϕþβ cosϕ: ðE9Þ

Again, it is advantageous from a numerical standpoint to
work with ratios of Bessel functions:

hQ2iperiodic ¼ −V
P

rArðβÞðRr;0ðβÞÞV−1
I0ðβÞ

P
rðRr;0ðβÞÞV

− ðV2 −VÞ
P

rðBrðβÞÞ2ðRr;0ðβÞÞV−2
ðI0ðβÞÞ2

P
rðRr;0ðβÞÞV

: ðE10Þ

All of the sums in the previous expressions converge
rapidly; in fact, for our parameters (V ¼ 322, β ¼ 12.8),
only considering the leading terms already gives the correct
results up to machine precision, which are indistinguishable
from the results obtained for open boundary conditions for
the Wilson loops.

[1] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)
Collaboration), FLAG review 2021, Eur. Phys. J. C 82, 869
(2022).

[2] M. Creutz, Confinement and the critical dimensionality of
space-time, Phys. Rev. Lett. 43, 553 (1979).

[3] M. Creutz, Monte Carlo study of quantized SU(2) gauge
theory, Phys. Rev. D 21, 2308 (1980).

[4] K. Fabricius and O. Haan, Heat bath method for the twisted
Eguchi-Kawai model, Phys. Lett. 143B, 459 (1984).

[5] A. D. Kennedy and B. J. Pendleton, Improved heat bath
method for Monte Carlo calculations in lattice gauge
theories, Phys. Lett. 156B, 393 (1985).

[6] N. Cabibbo and E. Marinari, A new method for updating
SU(N) matrices in computer simulations of gauge theories,
Phys. Lett. 119B, 387 (1982).

[7] S. L. Adler, An overrelaxation method for the Monte Carlo
evaluation of the partition function for multiquadratic
actions, Phys. Rev. D 23, 2901 (1981).

[8] M. Creutz, Overrelaxation and Monte Carlo simulation,
Phys. Rev. D 36, 515 (1987).

[9] F. R. Brown and T. J. Woch, Overrelaxed heat bath and
metropolis algorithms for accelerating pure gauge
Monte Carlo calculations, Phys. Rev. Lett. 58, 2394
(1987).

PARALLEL TEMPERED METADYNAMICS: OVERCOMING … PHYS. REV. D 109, 114504 (2024)

114504-21

https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1103/PhysRevLett.43.553
https://doi.org/10.1103/PhysRevD.21.2308
https://doi.org/10.1016/0370-2693(84)91502-8
https://doi.org/10.1016/0370-2693(85)91632-6
https://doi.org/10.1016/0370-2693(82)90696-7
https://doi.org/10.1103/PhysRevD.23.2901
https://doi.org/10.1103/PhysRevD.36.515
https://doi.org/10.1103/PhysRevLett.58.2394
https://doi.org/10.1103/PhysRevLett.58.2394


[10] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,
Hybrid Monte Carlo, Phys. Lett. B 195, 216 (1987).

[11] B. Alles, G. Boyd, M. D’Elia, A. Di Giacomo, and E.
Vicari, Hybrid Monte Carlo and topological modes of full
QCD, Phys. Lett. B 389, 107 (1996).

[12] K. Orginos (RBC Collaboration), Chiral properties of
domain wall fermions with improved gauge actions, Nucl.
Phys. B, Proc. Suppl. 106, 721 (2002).

[13] L. Del Debbio, H. Panagopoulos, and E. Vicari, theta
dependence of SU(N) gauge theories, J. High Energy Phys.
08 (2002) 044.

[14] T. A. DeGrand, A. Hasenfratz, and T. G. Kovacs, Improv-
ing the chiral properties of lattice fermions, Phys. Rev. D
67, 054501 (2003).

[15] J. Noaki (RBC Collaboration), Calculation of weak matrix
elements in domain wall QCD with the DBW2 gauge
action, Nucl. Phys. B, Proc. Suppl. 119, 362 (2003).

[16] L. Del Debbio, G. M. Manca, and E. Vicari, Critical
slowing down of topological modes, Phys. Lett. B 594,
315 (2004).

[17] Y. Aoki et al., The Kaon B-parameter from quenched
domain-wall QCD, Phys. Rev. D 73, 094507 (2006).

[18] S. Schaefer, R. Sommer, and F. Virotta (ALPHA Collabo-
ration), Critical slowing down and error analysis in lattice
QCD simulations, Nucl. Phys. B845, 93 (2011).

[19] S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg, T.
Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vulvert
(BMW Collaboration), Lattice QCD at the physical point:
Simulation and analysis details, J. High Energy Phys. 08
(2011) 148.

[20] C. Bernard and D. Toussaint (MILC Collaboration),
Effects of nonequilibrated topological charge distributions
on pseudoscalar meson masses and decay constants, Phys.
Rev. D 97, 074502 (2018).

[21] S. Borsanyi et al., Leading hadronic contribution to the
muon magnetic moment from lattice QCD, Nature
(London) 593, 51 (2021).

[22] R. Brower, S. Chandrasekharan, J. W. Negele, and U. J.
Wiese, QCD at fixed topology, Phys. Lett. B 560, 64
(2003).

[23] S. Aoki, H. Fukaya, S. Hashimoto, and T. Onogi, Finite
volume QCD at fixed topological charge, Phys. Rev. D 76,
054508 (2007).

[24] M. Lüscher, Stochastic locality and master-field simula-
tions of very large lattices, EPJ Web Conf. 175, 01002
(2018).

[25] M. Luscher and S. Schaefer, Lattice QCD without top-
ology barriers, J. High Energy Phys. 07 (2011) 036.

[26] B. Joo, B. Pendleton, S. M. Pickles, Z. Sroczynski, A. C.
Irving, and J. C. Sexton (UKQCD Collaboration), Parallel
tempering in lattice QCD with O(a)-improved Wilson
fermions, Phys. Rev. D 59, 114501 (1999).

[27] E.-M. Ilgenfritz, W. Kerler, M. Muller-Preussker, and H.
Stuben, Parallel tempering in full QCD with Wilson
fermions, Phys. Rev. D 65, 094506 (2002).

[28] S. Borsanyi, R. Kara, Z. Fodor, D. A. Godzieba, P. Parotto,
and D. Sexty, Precision study of the continuum SU(3)
Yang-Mills theory: How to use parallel tempering to
improve on supercritical slowing down for first order
phase transitions, Phys. Rev. D 105, 074513 (2022).

[29] S. Mages, B. C. Toth, S. Borsanyi, Z. Fodor, S. D. Katz,
and K. K. Szabo, Lattice QCD on nonorientable manifolds,
Phys. Rev. D 95, 094512 (2017).

[30] M. Hasenbusch, Fighting topological freezing in the two-
dimensional CPN-1 model, Phys. Rev. D 96, 054504
(2017).

[31] C. Bonanno, C. Bonati, and M. D’Elia, Large-N SUðNÞ
Yang-Mills theories with milder topological freezing,
J. High Energy Phys. 03 (2021) 111.

[32] M. G. Endres, R. C. Brower, W. Detmold, K. Orginos, and
A. V. Pochinsky, Multiscale Monte Carlo equilibration:
Pure Yang-Mills theory, Phys. Rev. D 92, 114516 (2015).

[33] W. Detmold and M. G. Endres, Multiscale Monte Carlo
equilibration: Two-color QCD with two fermion flavors,
Phys. Rev. D 94, 114502 (2016).

[34] W. Detmold and M. G. Endres, Scaling properties of
multiscale equilibration, Phys. Rev. D 97, 074507 (2018).

[35] F. Fucito and S. Solomon, Does standard Monte Carlo give
justice to instantons?, Phys. Lett. 134B, 230 (1984).

[36] J. Smit and J. C. Vink, Topological charge and fermions in
the two-dimensional lattice U(1) model. 1. Staggered
fermions, Nucl. Phys. B303, 36 (1988).

[37] H. Dilger, Screening in the lattice Schwinger model, Phys.
Lett. B 294, 263 (1992).

[38] H. Dilger, Topological zero modes in Monte Carlo sim-
ulations, Int. J. Mod. Phys. C 06, 123 (1995).

[39] S. Durr, Physics of η0 with rooted staggered quarks, Phys.
Rev. D 85, 114503 (2012).

[40] D. Albandea, P. Hernández, A. Ramos, and F. Romero-
López, Topological sampling through windings, Eur. Phys.
J. C 81, 873 (2021).

[41] A. Laio, G. Martinelli, and F. Sanfilippo, Metadynamics
surfing on topology barriers: The CPN−1 case, J. High
Energy Phys. 07 (2016) 089.

[42] C. Bonati, The topological properties of QCD at high
temperature: problems and perspectives, EPJ Web Conf.
175, 01011 (2018).

[43] B. A. Berg and T. Neuhaus, Multicanonical ensemble: A
new approach to simulate first-order phase transitions,
Phys. Rev. Lett. 68, 9 (1992).

[44] C. Bonati, M. D’Elia, G. Martinelli, F. Negro, F.
Sanfilippo, and A. Todaro, Topology in full QCD at high
temperature: A multicanonical approach, J. High Energy
Phys. 11 (2018) 170.

[45] G. Cossu, D. Lancastera, B. Lucini, R. Pellegrini, and A.
Rago, Ergodic sampling of the topological charge using
the density of states, Eur. Phys. J. C 81, 375 (2021).

[46] S. Duane, R. Kenway, B. J. Pendleton, and D. Roweth,
Acceleration of gauge field dynamics, Phys. Lett. B 176,
143 (1986).

[47] S. Duane and B. J. Pendleton, Gauge invariant fourier
acceleration, Phys. Lett. B 206, 101 (1988).

[48] C. T. H. Davies, G. G. Batrouni, G. R. Katz, A. S.
Kronfeld, G. P. Lepage, P. Rossi, B. Svetitsky, and K. G.
Wilson, Fourier acceleration in lattice gauge theories. 3.
Updating field configurations, Phys. Rev. D 41, 1953
(1990).

[49] G. Cossu, P. Boyle, N. Christ, C. Jung, A. Jüttner, and F.
Sanfilippo, Testing algorithms for critical slowing down,
EPJ Web Conf. 175, 02008 (2018).

EICHHORN, FUWA, HOELBLING, and VARNHORST PHYS. REV. D 109, 114504 (2024)

114504-22

https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/S0370-2693(96)01247-6
https://doi.org/10.1016/S0920-5632(01)01827-8
https://doi.org/10.1016/S0920-5632(01)01827-8
https://doi.org/10.1088/1126-6708/2002/08/044
https://doi.org/10.1088/1126-6708/2002/08/044
https://doi.org/10.1103/PhysRevD.67.054501
https://doi.org/10.1103/PhysRevD.67.054501
https://doi.org/10.1016/S0920-5632(03)01552-4
https://doi.org/10.1016/j.physletb.2004.05.038
https://doi.org/10.1016/j.physletb.2004.05.038
https://doi.org/10.1103/PhysRevD.73.094507
https://doi.org/10.1016/j.nuclphysb.2010.11.020
https://doi.org/10.1007/JHEP08(2011)148
https://doi.org/10.1007/JHEP08(2011)148
https://doi.org/10.1103/PhysRevD.97.074502
https://doi.org/10.1103/PhysRevD.97.074502
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1016/S0370-2693(03)00369-1
https://doi.org/10.1016/S0370-2693(03)00369-1
https://doi.org/10.1103/PhysRevD.76.054508
https://doi.org/10.1103/PhysRevD.76.054508
https://doi.org/10.1051/epjconf/201817501002
https://doi.org/10.1051/epjconf/201817501002
https://doi.org/10.1007/JHEP07(2011)036
https://doi.org/10.1103/PhysRevD.59.114501
https://doi.org/10.1103/PhysRevD.65.094506
https://doi.org/10.1103/PhysRevD.105.074513
https://doi.org/10.1103/PhysRevD.95.094512
https://doi.org/10.1103/PhysRevD.96.054504
https://doi.org/10.1103/PhysRevD.96.054504
https://doi.org/10.1007/JHEP03(2021)111
https://doi.org/10.1103/PhysRevD.92.114516
https://doi.org/10.1103/PhysRevD.94.114502
https://doi.org/10.1103/PhysRevD.97.074507
https://doi.org/10.1016/0370-2693(84)90677-4
https://doi.org/10.1016/0550-3213(88)90215-5
https://doi.org/10.1016/0370-2693(92)90692-W
https://doi.org/10.1016/0370-2693(92)90692-W
https://doi.org/10.1142/S0129183195000101
https://doi.org/10.1103/PhysRevD.85.114503
https://doi.org/10.1103/PhysRevD.85.114503
https://doi.org/10.1140/epjc/s10052-021-09677-6
https://doi.org/10.1140/epjc/s10052-021-09677-6
https://doi.org/10.1007/JHEP07(2016)089
https://doi.org/10.1007/JHEP07(2016)089
https://doi.org/10.1051/epjconf/201817501011
https://doi.org/10.1051/epjconf/201817501011
https://doi.org/10.1103/PhysRevLett.68.9
https://doi.org/10.1007/JHEP11(2018)170
https://doi.org/10.1007/JHEP11(2018)170
https://doi.org/10.1140/epjc/s10052-021-09161-1
https://doi.org/10.1016/0370-2693(86)90940-8
https://doi.org/10.1016/0370-2693(86)90940-8
https://doi.org/10.1016/0370-2693(88)91270-1
https://doi.org/10.1103/PhysRevD.41.1953
https://doi.org/10.1103/PhysRevD.41.1953
https://doi.org/10.1051/epjconf/201817502008


[50] T. Nguyen, P. Boyle, N. H. Christ, Y.-C. Jang, and C. Jung,
Riemannian manifold hybrid Monte Carlo in lattice QCD,
Proc. Sci. LATTICE2021 (2022) 582.

[51] M. Luscher, Trivializing maps, the Wilson flow and the
HMC algorithm, Commun. Math. Phys. 293, 899 (2010).

[52] G. P. Engel and S. Schaefer, Testing trivializing maps in the
Hybrid Monte Carlo algorithm, Comput. Phys. Commun.
182, 2107 (2011).

[53] P. Boyle, T. Izubuchi, L. Jin, C. Jung, C. Lehner, N.
Matsumoto, and A. Tomiya, Use of Schwinger-Dyson
equation in constructing an approximate trivializing map,
Proc. Sci. LATTICE2022 (2023) 229.

[54] M. S. Albergo, G. Kanwar, and P. E. Shanahan, Flow-
based generative models for Markov Chain Monte Carlo in
lattice field theory, Phys. Rev. D 100, 034515 (2019).

[55] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C.
Hackett, S. Racanière, D. J. Rezende, and P. E. Shanahan,
Equivariant flow-based sampling for lattice gauge theory,
Phys. Rev. Lett. 125, 121601 (2020).

[56] K. A. Nicoli, C. J. Anders, L. Funcke, T. Hartung, K.
Jansen, P. Kessel, S. Nakajima, and P. Stornati, Estimation
of thermodynamic observables in lattice field theories with
deep generative models, Phys. Rev. Lett. 126, 032001
(2021).

[57] D. Boyda, G. Kanwar, S. Racanière, D. J. Rezende, M. S.
Albergo, K. Cranmer, D. C. Hackett, and P. E. Shanahan,
Sampling using SUðNÞ gauge equivariant flows, Phys.
Rev. D 103, 074504 (2021).

[58] L. Del Debbio, J. Marsh Rossney, and M. Wilson, Efficient
modeling of trivializing maps for lattice ϕ4 theory using
normalizing flows: A first look at scalability, Phys. Rev. D
104, 094507 (2021).

[59] M. S. Albergo, G. Kanwar, S. Racanière, D. J. Rezende,
J. M. Urban, D. Boyda, K. Cranmer, D. C. Hackett, and
P. E. Shanahan, Flow-based sampling for fermionic lattice
field theories, Phys. Rev. D 104, 114507 (2021).

[60] D. C. Hackett, C.-C. Hsieh, M. S. Albergo, D. Boyda,
J.-W. Chen, K.-F. Chen, K. Cranmer, G. Kanwar, and P. E.
Shanahan, Flow-based sampling for multimodal distribu-
tions in lattice field theory, arXiv:2107.00734.

[61] K. A. Nicoli, C. J. Anders, L. Funcke, T. Hartung, K.
Jansen, P. Kessel, S. Nakajima, and P. Stornati, Machine
learning of thermodynamic observables in the presence of
mode collapse, Proc. Sci., LATTICE2021 (2022) 338.

[62] S. Foreman, T. Izubuchi, L. Jin, X.-Y. Jin, J. C. Osborn,
and A. Tomiya, HMC with normalizing flows, Proc. Sci.,
LATTICE2021 (2022) 073.

[63] J. Finkenrath, Tackling critical slowing down using global
correction steps with equivariant flows: The case of the
Schwinger model, arXiv:2201.02216.

[64] M. S. Albergo, D. Boyda, K. Cranmer, D. C. Hackett, G.
Kanwar, S. Racanière, D. J. Rezende, F. Romero-López,
P. E. Shanahan, and J. M. Urban, Flow-based sampling in
the lattice Schwinger model at criticality, Phys. Rev. D
106, 014514 (2022).

[65] J. M. Pawlowski and J. M. Urban, Flow-based density of
states for complex actions, Phys. Rev. D 108, 054511
(2023).

[66] M. Gerdes, P. de Haan, C. Rainone, R. Bondesan, and
M. C. N. Cheng, Learning lattice quantum field theories

with equivariant continuous flows, SciPost Phys. 15, 238
(2023).

[67] A. Singha, D. Chakrabarti, and V. Arora, Conditional
normalizing flow for Monte Carlo sampling in lattice
scalar field theory, Phys. Rev. D 107, 014512 (2023).

[68] R. Abbott et al., Gauge-equivariant flow models for
sampling in lattice field theories with pseudofermions,
Phys. Rev. D 106, 074506 (2022).

[69] R. Abbott et al., Sampling QCD field configurations with
gauge-equivariant flow models, Proc. Sci. LATTICE2022
(2023) 036.

[70] R. Abbott et al., Aspects of scaling and scalability for flow-
based sampling of lattice QCD, Eur. Phys. J. A 59, 257
(2023).

[71] S. Bacchio, P. Kessel, S. Schaefer, and L. Vaitl, Learning
trivializing gradient flows for lattice gauge theories, Phys.
Rev. D 107, L051504 (2023).

[72] J. Komijani and M. K. Marinkovic, Generative models for
scalar field theories: How to deal with poor scaling?, Proc.
Sci., LATTICE2022 (2023) 019.

[73] D. Albandea, L. Del Debbio, P. Hernández, R. Kenway,
J. M. Rossney, and A. Ramos, Learning trivializing flows,
Eur. Phys. J. C 83, 676 (2023).

[74] K. A. Nicoli, C. J. Anders, T. Hartung, K. Jansen, P.
Kessel, and S. Nakajima, Detecting and mitigating
mode-collapse for flow-based sampling of lattice field
theories, Phys. Rev. D 108, 114501 (2023).

[75] R. Abbott et al., Normalizing flows for lattice gauge theory
in arbitrary space-time dimension, arXiv:2305.02402.

[76] J. Finkenrath, Review on algorithms for dynamical fer-
mions, Proc. Sci., LATTICE2022 (2023) 227.

[77] R. H. Swendsen and J.-S. Wang, Replica Monte Carlo
simulation of spin-glasses, Phys. Rev. Lett. 57, 2607
(1986).

[78] A. Laio and M. Parrinello, Escaping free-energy minima,
Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).

[79] G. Bussi, A. Laio, and M. Parrinello, Equilibrium free
energies from nonequilibrium metadynamics, Phys. Rev.
Lett. 96, 090601 (2006).

[80] Y. Crespo, F. Marinelli, F. Pietrucci, and A. Laio, Meta-
dynamics convergence law in a multidimensional system,
Phys. Rev. E 81, 055701(R) (2010).

[81] T. M. Schäfer and G. Settanni, Data reweighting in
metadynamics simulations, J. Chem. Theory Comput.
16, 2042 (2020).

[82] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[83] T. Takaishi, Heavy quark potential and effective actions on
blocked configurations, Phys. Rev. D 54, 1050 (1996).

[84] M. Luscher and P. Weisz, On-shell improved lattice gauge
theories, Commun. Math. Phys. 97, 59 (1985); 98, 433(E)
(1985).

[85] C. Morningstar and M. J. Peardon, Analytic smearing of
SU(3) link variables in lattice QCD, Phys. Rev. D 69,
054501 (2004).

[86] I. Omelyan, I. Mryglod, and R. Folk, Symplectic analyti-
cally integrable decomposition algorithms: Classification,
derivation, and application to molecular dynamics, quan-
tum and celestial mechanics simulations, Comput. Phys.
Commun. 151, 272 (2003).

PARALLEL TEMPERED METADYNAMICS: OVERCOMING … PHYS. REV. D 109, 114504 (2024)

114504-23

https://doi.org/10.22323/1.396.0582
https://doi.org/10.1007/s00220-009-0953-7
https://doi.org/10.1016/j.cpc.2011.05.004
https://doi.org/10.1016/j.cpc.2011.05.004
https://doi.org/10.22323/1.430.0229
https://doi.org/10.1103/PhysRevD.100.034515
https://doi.org/10.1103/PhysRevLett.125.121601
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1103/PhysRevD.104.094507
https://doi.org/10.1103/PhysRevD.104.094507
https://doi.org/10.1103/PhysRevD.104.114507
https://arXiv.org/abs/2107.00734
https://doi.org/10.22323/1.396.0338
https://doi.org/10.22323/1.396.0073
https://doi.org/10.22323/1.396.0073
https://arXiv.org/abs/2201.02216
https://doi.org/10.1103/PhysRevD.106.014514
https://doi.org/10.1103/PhysRevD.106.014514
https://doi.org/10.1103/PhysRevD.108.054511
https://doi.org/10.1103/PhysRevD.108.054511
https://doi.org/10.21468/SciPostPhys.15.6.238
https://doi.org/10.21468/SciPostPhys.15.6.238
https://doi.org/10.1103/PhysRevD.107.014512
https://doi.org/10.1103/PhysRevD.106.074506
https://doi.org/10.22323/1.430.0036
https://doi.org/10.22323/1.430.0036
https://doi.org/10.1140/epja/s10050-023-01154-w
https://doi.org/10.1140/epja/s10050-023-01154-w
https://doi.org/10.1103/PhysRevD.107.L051504
https://doi.org/10.1103/PhysRevD.107.L051504
https://doi.org/10.22323/1.430.0019
https://doi.org/10.22323/1.430.0019
https://doi.org/10.1140/epjc/s10052-023-11838-8
https://doi.org/10.1103/PhysRevD.108.114501
https://arXiv.org/abs/2305.02402
https://doi.org/10.22323/1.430.0227
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1073/pnas.202427399
https://doi.org/10.1103/PhysRevLett.96.090601
https://doi.org/10.1103/PhysRevLett.96.090601
https://doi.org/10.1103/PhysRevE.81.055701
https://doi.org/10.1021/acs.jctc.9b00867
https://doi.org/10.1021/acs.jctc.9b00867
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.54.1050
https://doi.org/10.1007/BF01206178
https://doi.org/10.1007/BF01205792
https://doi.org/10.1007/BF01205792
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1103/PhysRevD.69.054501
https://doi.org/10.1016/S0010-4655(02)00754-3
https://doi.org/10.1016/S0010-4655(02)00754-3


[87] S. Capitani, S. Durr, and C. Hoelbling, Rationale for
UV-filtered clover fermions, J. High Energy Phys. 11
(2006) 028.

[88] T. Eichhorn, C. Hoelbling, P. Rouenhoff, and L. Varnhorst,
Topology changing update algorithms for SU(3) gauge
theory, Proc. Sci., LATTICE2022 (2023) 009.

[89] Y. Nagai and A. Tomiya, Gauge covariant neural network
for 4 dimensional non-abelian gauge theory, arXiv:2103
.11965.

[90] S. Durr, Z. Fodor, C. Hoelbling, and T. Kurth, Precision
study of the SU(3) topological susceptibility in the
continuum, J. High Energy Phys. 04 (2007) 055.

[91] S. Necco and R. Sommer, The NðfÞ ¼ 0 heavy quark
potential from short to intermediate distances, Nucl. Phys.
B622, 328 (2002).

[92] U. Wolff (ALPHACollaboration), Monte Carlo errors with
less errors, Comput. Phys. Commun. 156, 143 (2004); 176,
383(E) (2007).

[93] P. Marenzoni, L. Pugnetti, and P. Rossi, Measure of
autocorrelation times of local hybrid Monte Carlo
algorithm for lattice QCD, Phys. Lett. B 315, 152
(1993).

[94] K. Hashimoto and T. Izubuchi (RBC Collaboration),
Static anti-Q—Q potential from NðfÞ ¼ 2 dynamical
domain-wall QCD, Nucl. Phys. B, Proc. Suppl. 140,
341 (2005).

[95] S. Necco, Universality and scaling behavior of RG gauge
actions, Nucl. Phys. B683, 137 (2004).

[96] M. Lüscher, Properties and uses of the Wilson flow in
lattice QCD, J. High Energy Phys. 08 (2010) 071; 03
(2014) 092(E).

[97] S. Borsanyi et al. (BMW Collaboration), High-precision
scale setting in lattice QCD, J. High Energy Phys. 09
(2012) 010.

[98] R. Sommer, Scale setting in lattice QCD, Proc. Sci.,
LATTICE2013 (2014) 015.

[99] J. C. Sexton and D. H. Weingarten, Hamiltonian evolution
for the hybrid Monte Carlo algorithm, Nucl. Phys. B380,
665 (1992).

[100] P. de Forcrand, J. E. Hetrick, T. Takaishi, and A. J. van der
Sijs, Three topics in the Schwinger model, Nucl. Phys. B,
Proc. Suppl. 63, 679 (1998).

[101] P. Rouenhoff, T. Eichhorn, C. Hoelbling, and L. Varnhorst,
Metadynamics surfing on topology barriers in the
Schwinger model, Proc. Sci., LATTICE2022 (2022) 253.

[102] A. Barducci, G. Bussi, and M. Parrinello, Well-tempered
metadynamics: A smoothly converging and tunable free-
energy method, Phys. Rev. Lett. 100, 020603 (2008).

[103] P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M.
Parrinello, Efficient reconstruction of complex free energy
landscapes by multiple walkers metadynamics, J. Phys.
Chem. B 110, 3533 (2006).

[104] J. Smit and J. C. Vink, Remnants of the index theorem on
the lattice, Nucl. Phys. B286, 485 (1987).

[105] P. T. Jahn, The Topological Susceptibility of QCD at High
Temperatures, Ph.D. thesis, Darmstadt, Tech. Hochsch.,
2019.

[106] T. G. Kovacs, E. T. Tomboulis, and Z. Schram, Topology
on the lattice: 2-d Yang-Mills theories with a theta term,
Nucl. Phys. B454, 45 (1995).

[107] S. Elser, The Local bosonic algorithm applied to the
massive Schwinger model, Ph.D. thesis, Humboldt Uni-
versity of Berlin, 2001, arXiv:hep-lat/0103035.

[108] C. Bonati and P. Rossi, Topological susceptibility of two-
dimensional UðNÞ gauge theories, Phys. Rev. D 99,
054503 (2019).

[109] R. Vautard and M. Ghil, Singular spectrum analysis in
nonlinear dynamics, with applications to paleoclimatic
time series, Physica (Amsterdam) 35D, 395 (1989).

[110] G. Kanwar, Machine learning and variational algorithms
for lattice field theory, Ph.D. thesis, MIT, 2021, arXiv:
2106.01975.

EICHHORN, FUWA, HOELBLING, and VARNHORST PHYS. REV. D 109, 114504 (2024)

114504-24

https://doi.org/10.1088/1126-6708/2006/11/028
https://doi.org/10.1088/1126-6708/2006/11/028
https://doi.org/10.22323/1.430.0009
https://arXiv.org/abs/2103.11965
https://arXiv.org/abs/2103.11965
https://doi.org/10.1088/1126-6708/2007/04/055
https://doi.org/10.1016/S0550-3213(01)00582-X
https://doi.org/10.1016/S0550-3213(01)00582-X
https://doi.org/10.1016/S0010-4655(03)00467-3
https://doi.org/10.1016/j.cpc.2006.12.001
https://doi.org/10.1016/j.cpc.2006.12.001
https://doi.org/10.1016/0370-2693(93)90173-F
https://doi.org/10.1016/0370-2693(93)90173-F
https://doi.org/10.1016/j.nuclphysbps.2004.11.314
https://doi.org/10.1016/j.nuclphysbps.2004.11.314
https://doi.org/10.1016/j.nuclphysb.2004.01.032
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP09(2012)010
https://doi.org/10.1007/JHEP09(2012)010
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/S0920-5632(97)00870-0
https://doi.org/10.1016/S0920-5632(97)00870-0
https://doi.org/10.22323/1.430.0253
https://doi.org/10.1103/PhysRevLett.100.020603
https://doi.org/10.1021/jp054359r
https://doi.org/10.1021/jp054359r
https://doi.org/10.1016/0550-3213(87)90451-2
https://doi.org/10.1016/0550-3213(95)00440-4
https://arXiv.org/abs/hep-lat/0103035
https://doi.org/https://doi.org/10.1103/PhysRevD.99.054503
https://doi.org/https://doi.org/10.1103/PhysRevD.99.054503
https://doi.org/10.1016/0167-2789(89)90077-8
https://arXiv.org/abs/2106.01975
https://arXiv.org/abs/2106.01975

