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In order to explore the spectrum of hidden-charm scalar and tensor resonances, we study meson-meson
scattering with JPC ¼ 0þþ; 2þþ in the charmonium energy region using lattice QCD. Employing a light-
quark mass corresponding to mπ ≈ 391 MeV, we determine coupled-channel scattering amplitudes up to
around 4100 MeV considering all kinematically relevant channels consisting of a pair of open-charm
mesons or a charmonium meson with a light meson. A single isolated scalar resonance near 4000 MeV is
found with large couplings to DD̄, DsD̄s and the kinematically closed D�D̄� channel. A single tensor
resonance at a similar mass couples strongly toDD̄,DD̄� andD�D̄�. We compare the extracted resonances
to contemporary experimental candidate states, previous lattice results and theoretical modeling. In contrast
to several other studies, we do not find any significant feature in the scalar amplitudes between the ground
state χc0ð1PÞ and the resonance found around 4000 MeV.
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I. INTRODUCTION

In 2003, the discovery of the X=χc1ð3872Þ thrust hadron
spectroscopy into a new era. Beginning with the B-factories
and later at BES-III and LHCb, many hadrons with masses
consistent with containing a charm-anticharm quark pair
have been found in places that were not expected within
existing models of charmonium. To date, no theoretical
picture has explained the complete pattern of observed
states, which have been dubbed the “XYZ” [1].
One key question concerns the relationship between

newly observed hadrons and nearby hadron-hadron thresh-
olds. Many states are found in close proximity to thresh-
olds, but is this merely a coincidence or is it the presence of
the threshold that drives the existence of the state? One

might anticipate that the simplest place to begin to answer
this would be close to the lowest open-charm threshold, i.e.
where DD̄ is produced. However presently neither the
experimental landscape, nor our theoretical understanding
of this energy region is clear. In the χc0 and χc2 channels,
where isoscalar DD̄ interact in S and D-wave respectively,
several candidate states have been reported experimentally.
In the χc0 channel, above the unambiguous ground state

χc0ð1PÞ at 3415 MeV, while simple cc̄ quark models would
expect an isolated 2P state near 3920 MeV [2], recent
experimental analyses suggest multiple candidate states.
The lightest, χc0ð3860Þ, is so far claimed by only one
experiment [3], in eþe− → J=ψDD̄, appearing as a rather
broad resonance. Suggestions of a similar feature have also
been made for the γγ → DD̄ process measured at both
Belle [4] and BABAR [5], although the resonant interpre-
tation is ambiguous, with much of the structure apparently
driven by the Born-term. The χc0ð3860Þ is not seen in a
recent evaluation of B decays to DþD−Kþ by the LHCb
experiment [6], where such a state might be expected to
play significant role. Inclusive production of DD̄ close to
threshold shows an enhancement close to D0D̄0 threshold,
but this is explained in terms of “feed-down” from decays
of the X=χc1ð3872Þ [7], and no additional scalar resonance
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is needed to describe the data. Theoretical reanalyses of the
experimental data, in particular γγ → DD̄, suggests the
energy-dependence used to motivate a broad resonance
χc0ð3860Þ, may actually belong to a subthreshold pole that
behaves like a bound-state in the DD̄ channel [8,9].
Above 3900 MeV there are strong experimental signals

for new resonances, although it is not clear how features
observed in different hadron-hadron channels relate to
each other. The LHCb study of the DþD−Kþ final state
identifies overlapping narrow JPC ¼ 0þþ and 2þþ reso-
nances decaying to DþD− with masses 3924 MeV and
3927 MeV [6] respectively. Analysis of three-body final
states requires the cross-channel amplitudes, in this case
DK, to be modeled, and it is not obvious how sensitive the
need for both scalar and tensor χc resonances is to the
details of this modeling. A recent LHCb analysis proposes
a state decaying to DsD̄s around 3960 MeV [10], which is
suggested to be a separate state to the one reported in
DþD−, although other studies suggest the DD̄ and DsD̄s
enhancements could be related to a single resonance pole
[11,12]. Earlier results from Belle [13] indicate a low-
statistics enhancement in γγ → J=ψω around 3915 MeV.
This final state can be populated in S-wave by either JPC ¼
0þþ or 2þþ owing to the vector nature of the J=ψ and theω.
While the experimental situation for excited χc0 states, as

described above, is currently rather unclear, with even
the number of states not settled, the situation for 2þþ is a
little better. The single χc2ð3930Þ claimed in γγ → DD̄ is
the leading candidate [5], although whether some of the
enhancements currently assigned to 0þþ could actually be
due to 2þþ remains to be seen.
Experimental analyses are typically performed final-state

by final-state, with descriptions of the resonance content of
a particular JPC being inferred from that single dataset,
sometimes with inspiration from observations in other
final-states, but typically not with analysis of multiple
final-states simultaneously. Theoretically the relevant fun-
damental object is a partial-wave scattering amplitude,
which is a matrix in the space of coupled multihadron
channels. The enhancements seen in experiment for real
values of the scattering energy correspond to poles of this
scattering amplitude present at complex energies, and it is
the pole locations and residues that provide a model-
independent description of the resonance content and
channel couplings. The scattering matrix is subject to
important fundamental constraints, such as unitarity and
analyticity, which are not always respected in practical data
analysis, and which can give rise to important effects,
particularly at kinematic thresholds.
Quantum chromodynamics (QCD) is the fundamental

theory of hadrons, but connecting the strong interactions of
quarks and gluons to the presence of resonances in meson-
meson scattering is not simple, and for want of a rigorous
approach, models have been developed that incorporate
some of the features of QCD. While the simplest

approaches have only cc̄ bound-states, other approaches
include compact tetraquark constructions, or molecular
meson-meson bound-states, and in these pictures, many
more states are expected. Early suggestions of the impor-
tance of meson-meson contributions were put forward long
before any XYZ states were discovered [14,15], and the
various possibilities have been discussed in several recent
reviews [1,16–19]. While models are useful to inform our
understanding of the possible mechanisms at work, ulti-
mately they are not QCD, and we must turn to a first-
principles approach like lattice QCD.
In recent years, approaches for computing scattering

processes using lattice QCD have undergone rapid develop-
ment, reviewed in Ref. [20], such that we are now in a
position to consider the challenging χc0 and χc2 systems.
We benefit from several recent breakthroughs, including
the ability to compute coupled-channel scattering ampli-
tudes [21,22], and to consider final states with mesons of
nonzero spin [23–26].
This paper reports on a computation in QCD of the

coupled-channel scattering matrix in the energy region
where the above-mentioned resonance candidates lie. We
use an approximation in which cc̄ annihilation is forbidden,
and a larger-than-physical light-quark mass corresponding
to mπ ≈ 391 MeV. With these choices, no hadron in the
energy region we will consider can decay to more than two
lighter hadrons. The scattering amplitudes resulting from
this approach can be analytically continued to complex
energies to determine resonance poles and their channel
couplings.
The mass scale of charmonium systems brings in several

difficulties that increase the complexity of this calculation
with respect to calculations considering lighter hadrons
composed primarily of light and strange quarks. The
relevant discrete spectra are compressed relative to light
quark spectra, and the small energy gap between D and D�
mesons means that several significant thresholds open
almost simultaneously. Considering also closed-charm
channels, involving a charmonium meson and a light
meson, we are forced to account for physics in a large
number of coupled-channels. Much of this article is
dedicated to disentangling those channels in which strong
scattering effects occur from those which are decoupled
and weak.
We will report coupled-channel amplitudes with JPC ¼

0þþ and 2þþ, constrained using large numbers of discrete
energy levels taken from three lattice volumes, in both the
rest frame and moving frames. One key new feature of this
work is computation of a “complete” S-matrix in these
quantum numbers, one which includes all kinematically
accessible channels, with no a priori assumptions of which
might be “weak enough to ignore.”
Comparing with previous attempts to study this scatter-

ing system in lattice QCD [27,28], we find that previously
claimed near-threshold features at DD̄ and DsD̄s do not
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appear in the present study. We find no broad resonance
low in the S-wave DD̄ amplitude, nor any bound state
between the ground state χc0ð1PÞ and the first hadron-
hadron threshold.
A quite simple picture arises from our study, with only a

single relatively narrow resonance in each of JPC ¼ 0þþ
and 2þþ. Each is found to have large couplings to several
open-charm D-meson decay modes, channels consisting of
pairs of open-charm mesons, with only relatively small
couplings to closed-charm channels such as J=ψω.
This article is organized as follows. In Sec. II, we describe

the lattices and methods used to compute the finite-volume
spectra, present the masses of the stable scattering hadrons,
give the partial-waves that feature in the irreducible repre-
sentations of the lattice symmetry, and outline the operators
that are required to access the spectrum. The determined
finite volume energy levels are presented in Sec. III.
Section IV explains how these energies are translated into
scattering amplitudes through extensions of the Lüscher
formalism. In Sec. V we describe how the amplitudes are
determined, in increasing complexity, beginning with just a
few energies at rest, before ultimately making use of more
than 200 energy levels including systems with nonzero total
momentum. We discuss the pole singularities present in the
determined scattering amplitudes in Sec. VI. In Sec. VII, we
offer some interpretations and comparisons of our results to
experiment, prior lattice calculations, and other theoretical
approaches.We concludewith a brief summary in Sec. VIII.
A concise description of thisworkmaybe found inRef. [29].

II. LATTICE QCD SETUP

Within lattice QCD, the discrete spectrum of eigenstates
of QCD in a finite-volume can be obtained from the time-
dependence of two-point correlation functions. For the
current calculation, we use Nf ¼ 2þ 1 flavors of dynami-
cal quarks with exact isospin symmetry, and opt to work
with a larger-than-physical value of the degenerate u, d
quark mass, while the strange quark mass is approximately
at the physical value. The quenched charm quark mass is
tuned to approximately reproduce the physical ηc mass
[30]. We disallow cc̄ annihilation so that low-lying char-
monia like the ηc and J=ψ are absolutely stable.1

The quark dynamics is implemented by an anisotropic
Wilson-clover action as described in Refs. [31,32], with a
temporal lattice spacing at, finer than that in space as, by a
factor ξ ¼ as=at ≈ 3.5. Distillation is used to smear the
quark fields and enable efficient computation of all con-
tributions, including those where light quarks or strange
quarks annihilate [33]. The three lattice volumes used are
summarized in Table I, where L and T are the spatial and
temporal extent of the lattice respectively. Correlation

functions are averaged over several (Ntsrcs) source time
slices. The lattice scale is set using the physical Ω baryon
mass, leading to a−1t ¼ 5667 MeV [34]. The pion mass is
determined to be atmπ ¼ 0.06906ð13Þ, corresponding to
mπ ≈ 391 MeV [35].
In the finite cubic volume defined by the lattice,

continuous rotation symmetry is broken, and states are
characterized as lying in irreducible representations (irreps)
of the cubic group at rest, and of relevant little groups at
nonzero momentum, rather than by spin, J. Charge-
conjugation, C, remains a good symmetry, but states are
only of definite parity, P, at rest. The finite periodic
boundary implies that momentum is quantized, p⃗ ¼ 2π

L n⃗,
where n⃗ ¼ ði; j; kÞ is a triplet of integers (we will often use
a shorthand notation p⃗ ¼ ½ijk�).
The finite-volume quantization condition which relates

the discrete spectrum to continuous scattering amplitudes is
sensitive to the total momentum of the scattering system,
and as such we compute spectra in moving frames (nonzero
overall momentum P⃗) as well as in the rest frame to obtain
more constraint on the scattering amplitudes. We refer to
irreps at rest with the labels ½000�ΛP, and to moving-frame
irreps as ½ijk�Λ.
For each irrep, we compute a matrix of correlation

functions constructed using a wide range of operators
resembling single–, two–and three–hadron constructions.
The resulting correlation matrix as a function of Euclidean
time, CijðtÞ ¼ h0jOiðtÞO†

jð0Þj0i, is then analyzed varia-
tionally to obtain the discrete spectrum contributing to
these correlation functions [36–38], with our implemen-
tation described in Ref. [39]. The analysis takes the form
of solving a generalized eigenvalue problem on each time
slice,

CðtÞvn ¼ λnðtÞCðt0Þvn; ð1Þ

where the discrete spectrum fEng is obtained from
the time dependence of the eigenvalues. The eigenvectors
can be used to construct optimized operators as
described below. They also provide helpful qualitative
information by indicating which states are produced
dominantly by particular operator constructions via over-
lap factors,

Zn
i ¼ hnjO†

i j0i ¼
ffiffiffiffiffiffiffiffi
2En

p
eEnt0=2vn�j Cjiðt0Þ:

TABLE I. Lattices used: Ncfg is the number of gauge configu-
rations, Nvec is the number of distillation vectors, and Ntsrcs is the
number of time sources.

L=as T=at Ncfg Nvec Ntsrcs L=fm mπL

16 128 478 64 8–16 1.9 3.8
20 256 288 128 4–8 2.4 4.8
24 128 553 160 2–4 2.9 5.7

1In effect we implement two degenerate nondynamical charm
quarks, and study only the charm-isospin ¼ 1 sector. In this way
the approximation is self-consistent.
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The construction of single-hadronlike operators, as fer-
mionbilinears usinggammamatricesΓ andup to threegauge-
covariant derivatives, is as described in Refs. [39–41].
These are of the form O† ∼ q̄ΓD

↔
…D

↔
q with a definite

continuum J that is projected into cubic group irreps Λ.
The construction of two-hadronlike and three-hadronlike

operators is as described in Refs. [25] and [35] respectively.
Both leverage optimized single-hadron operators that have
reduced excited state contamination (when compared to
using only a single operator). A variationally-optimal
single-hadron operator for meson M1 is formed from a
linear combination of a basis of single-hadron operators
withM1 quantum numbers where the coefficients are given
by the eigenvectors from the variational analysis,
Ω†

M1
∼
P

i v
n
i O

†
i . These are then used in product pairs to

form two-hadron operators,

O†
M1M2

ðp⃗Þ ∼
X
p⃗1;p⃗2

CGsΩ†
M1
ðp⃗1ÞΩ†

M2
ðp⃗2Þ;

for theM1M2 channel with overall momentum p⃗ where the
sum is over all momenta related by an allowed lattice
rotation such that p⃗ ¼ p⃗1 þ p⃗2, and “CGs” represents the
necessary lattice Clebsch-Gordan coefficients to project to
the appropriate quantum numbers. A recursive approach
can be adopted to form three-hadronlike operators from
optimized single-hadron and two-hadron operators.

A. Stable hadrons

The systems of coupled-channel scattering we will
consider feature a number of hadrons which are stable
against strong decay on the lattices used in this study.
Their energies as a function of momentum are determined
using spectra extracted from matrices of correlation func-
tions.2 Figure 1 shows dispersion relations for a selection of
the stable hadrons used in this study, along with fits using
the relativistic expression,

ðatEÞ2 ¼ ðatmÞ2 þ jn⃗j2
�

2π

ξL=as

�
2

ð2Þ

from which the rest mass atm, and the anisotropy ξ, are
determined separately for each hadron. The masses result-
ing from such fits are presented in Table II along with
relevant kinematic thresholds for isospin–0, C ¼ þ scatter-
ing channels.
In the dispersion relation fits, points are observed to be

scattered around the mean with a deviation beyond what
would be expected from statistical fluctuations alone—
comparisons can be seen in Fig. 25 in Appendix A. The

most significant deviations are seen for the ηc, χc0, and the
χc2, with largest values of atδE ≈ 0.00030, 0.00050,
0.00100 respectively. These are tiny in absolute terms,
but relatively large on the scale of the very small statistical
uncertainties. We choose to treat these deviations as an
additional systematic uncertainty on the energy levels to be
added to the statistical uncertainties when used in energy
level fits to determine scattering amplitudes. In practice, we
include an additional systematic uncertainty on the Ecm
energies of atδEsyst ¼ 0.00050 when the amplitude we
wish to determine is J ¼ 0, 1. If the amplitude we wish to
determine has J ≥ 2, we use atδEsyst ¼ 0.00100. These
values have been chosen to account for the differences seen
for the stable χc0 and χc2 ground states for J ¼ 0 and J ¼ 2.
Similar effects have been observed in other lattice studies

with charm quarks by other groups. There is a consensus
that this needs to be accounted for in some way. An
alternative used in Refs. [28,48,49] is to apply an energy
shift configuration by configuration to force these numbers
into agreement. We consider the approach adopted in the
current paper to be more conservative, treating the differ-
ence as a systematic uncertainty that will be propagated
through into scattering amplitude determinations. Further
details are given in Appendix A.

0.01 0.02 0.03 0.04

0.34

0.36

0.38

0.40

0.52

0.54

0.56

0.62

0.64

FIG. 1. Lattice-determined rest mass and moving frame en-
ergies of stable hadrons fitted with a relativistic dispersion
relation, Eq. (2). Energy levels taken from f163; 203; 243g lattices
using momenta corresponding to jn⃗j2 ≤ f3; 4; 6g respectively.

2The current calculation makes use of a 203 × 256 lattice
[42,43], while earlier calculations with charm quarks [44–46]
used a shorter time-extent, 203 × 128, lattice.
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The anisotropies, ξ ¼ as=at, obtained for different stable
hadrons differ somewhat, and we choose to increase the
uncertainty on the value obtained for the pion, ξπ¼3.444ð6Þ
[35], to account for such deviations, using in practice
ξ ¼ 3.444ð50Þ, which spans the extracted values for ηc
and J=ψ .3 This uncertainty is propagated through when
center-of-momentum frame energies are obtained from
computed lattice frame energies.

B. Resonance expectations and partial-waves

The goal of this calculation is to obtain coupled-channel
partial wave amplitudes with JPC ¼ 0þþ and 2þþ up to
around 4100 MeV, atEcm ¼ 0.72 in lattice units. This runs
to slightly above theD�D̄� threshold, and corresponds to an
energy region where resonant features have been observed
experimentally.
An earlier lattice QCD calculation of the spectrum on the

current lattices using only single-hadronlike operators [30]
found results that suggest narrow resonant states may
appear. Updating these calculations using more time
sources and a longer time-extent for the 203 lattice, leads
to the spectra presented in Fig. 2 in irreps relevant for
JPC ¼ 0þþ; 2þþ;…. The pattern is reminiscent of the
J ¼ 0, 2, 3 and 4 members of qq̄ quark-model multiplets,
nL ¼ 1P, 2P and 1F, and the overlap of states onto
operators subduced from particular JPC [30] is in agree-
ment with this. Working up to atEcm ≈ 0.72 appears to be
sufficient to capture the 2P-like χc0; χc2 states in this energy
region.4

As shown in Fig. 2, the expected χcJ states lie above a
number of kinematical thresholds, and hence should
appear as resonances in meson-meson scattering ampli-
tudes. We label each meson-meson channel according to
its total spin S (combining the spin quantum numbers of
the two scattering hadrons), orbital angular momentum l,
and total angular momentum J, using the standard
notation, 2Sþ1lJ. Meson-meson partial wave amplitudes
grow at threshold according to their orbital angular
momenta l, via k2li where ki is the cm momentum for
meson-meson pair i. This is a relevant property since it
establishes a hierarchy among partial-waves whereby the
lowest l dominate, unless disturbed by some nearby
singularity.
Due to the presence of scattering mesons with nonzero

spin, for a given JPC, amplitudes with more than one l can
contribute. The JPC ¼ 0þþ amplitudes are relatively sim-
ple, consisting of pairs of pseudoscalars and vectors in a
relative S-wave (1S0). The lowest threshold is ηcη, followed

TABLE II. Stable hadron masses (top panel) and I ¼ 0, C ¼ þ
multi-hadron decay channels (bottom panel). These are obtained
from dispersion relations using energies computed on all three
volumes, unless indicated otherwise.

Hadron JPðCÞ atm

π 0−þ 0.06906(13)
K 0− 0.09698(9)
η 0−þ 0.10364(19)
η0 0−þ 0.16410(100)
σ 0þþ 0.1316(9)b

ω 1−− 0.15541(29)
ϕ 1−− 0.17949(21)

D 0− 0.33281(9)a

D� 1− 0.35464(14)a

Ds 0− 0.34424(11)a

D�
s 1− 0.36566(14)a

D�
0 0þ 0.40170(18)b

D�
s0 0þ 0.4200(5)b

ηc 0−þ 0.52312(4)a

ψ 1−− 0.53715(5)a

hc 1þ− 0.61662(26)a

χc0 0þþ 0.60422(25)a

χc1 1þþ 0.61488(46)a

χc2 2þþ 0.62110(28)a

η0c 0−þ 0.64160(55)a

ψ 0 1−− 0.64566(111)a

Ω 3
2
þ 0.2951(22)

Channel atEthr

ηcη 0.6268(2)
ηcππ 0.6612(2)
ηcη

0 0.6872(10)
ψω 0.6926(3)
χc0η 0.7079(3)
ψϕ 0.7166(2)
ηcKK̄ 0.7171(1)
χc1η 0.7185(5)
χc2η 0.7247(3)
ηcπππ 0.7303(3)
ηcηη 0.7304(3)
ψKK̄ 0.7311(1)
χc0ππ 0.7424(3)

DD̄ 0.6656(1)
DD̄� 0.6875(2)
DsD̄s 0.6885(2)
D�D̄� 0.7093(2)
DsD̄�

s 0.7099(2)
D�

sD̄�
s 0.7313(2)

ηcσ 0.6547(9)c

DD̄�
0

0.7345(2)c

χc0σ 0.7358(9)c

aMasses are obtained from a dispersion relation fit using
energies computed on the 243 lattice.

bBound-state pole masses from a meson-meson scattering
amplitude fit [42,44,45,47].

cIndicates a channel formed from a bound-state with a
significant two-hadron contribution, where it follows that
three-hadron effects may be present.

3This range is almost exactly the same as used in Ref. [25] that
was chosen to account for the observed differences in the helicity
components of the vector ω.

4We will reserve comment on the JPC ¼ 1þþ member for a
future study. It will not contribute in any of the irreps used in this
work.
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by DD̄, ηcη0, DsD̄s, ψω, and D�D̄�. The first contributions
from partial waves with l > 0 arise from ψω in 5D0, and
χc1η in 3P0. There can be no contributions from vector-
pseudoscalar channels such as DD̄�. The JPC ¼ 2þþ

amplitudes contain pairs of pseudoscalars in 1D2 combi-
nations, while vector-vector channels can arise in S-wave
through 5S2. Furthermore, vector-pseudoscalar channels
such as DD̄� now contribute, the lowest combination being
3D2. We summarize the meson-meson partial wave con-
tributions relevant at low energy for each JPC considered in
this study in Table III.

C. Irreps and operators

In order to constrain the coupled-channel scattering
amplitudes for JPC ¼ 0þþ and 2þþ we will compute
finite-volume spectra in several irreps.
Working at zero overall momentum, the ½000�Aþ

1 irrep
constrains 0þþ with contaminations from 4þþ and higher.
JPC ¼ 2þþ information can be obtained from ½000�Eþ and
½000�Tþ

2 , where the second of these also receives contri-
butions from 3þþ. In order to constrain this 3þþ compo-
nent, it is advantageous to consider ½000�Aþ

2 where it is the
leading contribution.

FIG. 2. Energy levels obtained from diagonalizing correlation matrices constructed using only cc̄-like operators in irreps relevant for
JPC ¼ 0þþ; 2þþ;… with zero overall momentum. The locations of hadron-hadron thresholds are marked. The right panel shows a
summary of the observed levels based on the pattern of levels across irreps, and the quark-model–like labeling follows from Ref. [30].

TABLE III. The lowest few I ¼ 0; C ¼ þ hadron-hadron channels for each JPC considered, labeled by spin S, orbital angular
momentum l and total angular momentum J, in the notation 2Sþ1lJ . Because of kli threshold suppression, the lowest l are typically the
most relevant at low energies.

JPC Hadron-hadron channels below atEcm ≈ 0.72

0−þ ηcf0; χc0ηf1S0g;ψω; DD̄�; D�D̄�f3P0g; χc2ηf5D0g;
0þþ ηcη; DD̄; ηcη0; DsD̄s;ψω; D�D̄�;ψϕ f1S0g; χc1ηf3P0g;ψω; D�D̄�;ψϕ f5D0g;
1−þ ηcη; ηcη0;ψω;ψϕ f1P1g;ψω; DD̄�; D�D̄�;ψϕ f3P1g;ψω;ψϕ f5P1g; χc1ηf3S1g; χc1ηf3D1g; χc2ηf5D1g;
1þþ ψω; DD̄� f3S1g;ψω; DD̄� f3D1g;ψω; D�D̄� f5D1g; χc0η; ηcf0 f1P1g; χc1ηf3P1g; χc2ηf5P1g;
2−þ ψω; DD̄�; DsD̄�

s ;ψϕ f3P2g; χc2ηf5S2g; χc1ηf3D2g; χc2ηf5D2g; ηcf0 f1D2g
2þþ ψω; D�D̄�;ψϕ; D�

sD̄�
s f5S2g; ηcη; DD̄; ηcη0; DsD̄s;ψω; D�D̄�;ψϕ f1D2g;

ψω; DD̄�; DsD̄�
s ; D�D̄�;ψϕ f3D2g; χc1ηf3P2g; χc2ηf5P2g;

3−þ ψω; ψϕ f5P3g; χc1ηf3D3g; χc2ηf5D3g; ηcη; ηcη0;ψω;ψϕ f1F3g;ψω; DD̄�; D�D̄�;ψϕ f3F3g;ψω;ψϕ f5F3g;
3þþ DD̄�; DsD̄�

s ;ψω;ψϕ f3D3g;D�D̄�; D�
sD̄�

s ;ψω;ψϕ f5D3g;
ηcf0 f1F3g; χc2ηf5P3g; χc0ηf1F3g; χc1ηf3F3g; χc2ηf5F3g;

4−þ ψω; DD̄�; D�D̄�; DsD̄�
s f3F4g;

4þþ ψω; D�D̄�;ψϕ; D�
sD̄�

sf5D4g; χc1ηf3F4g; χc2ηf5F4g;
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When working at nonzero overall momentum, partial
waves of both parities appear. For example, in the moving
frame ½ijk�A1 irreps we have contributions from 0þþ; 1−þ

and higher. In the moving frame ½00i�B1;2 irreps where 2þþ

is present, 2−þ; 3�þ and higher also appear. In order to
determine the 1−þ, 2−þ and 3−þ amplitudes, we also
consider the rest frame irreps ½000�T−

1 , ½000�E−, ½000�T−
2

and ½000�A−
2 .

In summary, our selection of irreps enables us to
determine scattering amplitudes for JPC ¼ 0þþ; 1−þ; 2�þ

and 3�þ.
Within each irrep we establish a basis of operators,

including all single-hadronlike operators with up to 3
derivatives at-rest and up to 2 derivatives in moving frames.
These are supplemented with all two and three-hadron
operators expected to be relevant in the energy region of
interest based on their corresponding noninteracting
energy. For Nhad ¼ 2 or 3 hadrons, this is determined from

atEn:i: ¼
XNhad

a¼1

�
ðatmaÞ2 þ jn⃗aj2

�
2π

ξL=as

�
2
�

1=2
ð3Þ

where na ¼ ði; j; kÞ is a vector of integers and ma is the
scattering hadron mass. If this “lattice-frame” energy, when
boosted into the cm frame, lies below atEcm ¼ 0.743, the
corresponding operator is included in the basis.5,6 Full lists
of operators used for the presented results can be found in
the Supplemental Material [50].7 When analyzing the
correlation matrices, the operator basis is varied to explore
the sensitivity to the precise selection, and in this process
some of the highest lying operators are discarded as their
presence does not affect low-lying levels.
Three-meson operator constructions are only expected to

be relevant at relatively high energies, owing to the large
light quark mass and prohibition of cc̄ annihilation in this
calculation. There are very few relevant three-hadron
operators in this energy region, and no four-hadron
operators. The lowest three-hadron operators arise from
ηcππ combinations where ππ ∼ σ and there is relatively
high orbital angular momentum between the “σ” and the ηc
(typically an F-wave). These operators are constructed as
described for the RM operators in Sec. II C of Ref. [25].
The projection coefficients for the near-threshold σ are
obtained from the analysis performed in Ref. [42] and these
are combined with the single-hadron ηc optimized operator.
If there were strong interactions in the ηcπ subsystems, it is
possible that these operators alone may not be sufficient.

Further three-hadron contributions arise from χcJππ ∼
χcJσ–like combinations. In ½000�Aþ

1 , one might naively
expect a level at the threshold energy mχc0 þ 2mπ.
However, we know from Refs. [42,47] that on these lattices
the σ channel has a level below threshold with a large
volume dependence owing to a bound-state σ strongly
coupled to ππ. We will see that this feature survives
the addition of a χc0 operator, producing a level below
mχc0 þ 2mπ with an energy that slowly rises with L=as
(similar to the σ in ππ scattering in ½000�Aþ

1 ). Further details
are given in the next section. A few other three-hadron
channels are listed in Table II. These are not expected to
produce levels in the energy region of interest. When
determining scattering amplitudes we will not utilize any
energy levels found to have large overlaps with three-
meson operators.

III. FINITE-VOLUME SPECTRA

The operator bases described in the previous section are
used to compute a matrix of correlation functions for each
irrep and these are then analyzed variationally as discussed
above. The resulting spectrum in the ½000�Aþ

1 irrep on the
243 volume is presented in Fig. 3. The plot also shows
histograms of the overlap factors, Zn

i , for each state where
these have been normalized such that the largest value for a
particular operator, considered across all states, takes value
1. Clear patterns emerge, and in several cases levels are
dominated by a single operator construction. These are
often close to a noninteracting energy level, as determined
by Eq. (3), with a potential explanation of there being a
decoupled channel with only weak interactions.
In Figs. 4 and 5 we plot all of the finite-volume energy

levels extracted from the variational analysis to be used to
constrain scattering amplitudes. The uncertainties shown
are estimated using jackknife. In several cases, in particular
where there is a significant variation in the extracted energy
for different t0 values [in Eq. (1)] or time slice fit ranges and
forms, the uncertainties are enlarged to provide a
conservative estimate of the energy value. We also vary
the operator bases by adding and removing operators when
possible to ensure the spectrum is stable with respect to
small and reasonable changes.8

In Figs. 3–5 we choose a presentation scheme where
those states having a single dominant operator overlap are
colored to indicate which operator is dominant. Black
points show levels that are dominated by single-hadronlike
operators with C ¼ þ, and/or operators constructed from a
pair of D-mesons—as seen in Fig. 3, the mixing between
these sectors appears to be large. Levels shown in cyan5This upper limit corresponds to the χc0ππ threshold.

6Two exceptions are an ηc½012�η½001� in ½002�B1 on the
L=as ¼ 16 volume, and very high-lying χc2ππ operators that
would be expected to produce levels above the energy limits used
in the scattering analyses below.

7No local four-quark operator constructions of the form found
to be irrelevant in Ref. [51] are included.

8The plots do not show the additional systematic uncertainty
atδEsyst discussed in Sec. II A that is added to every level. This
will be shown in later plots as an additional error bar on each
point.
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have dominant overlap with single-hadronlike operators
subduced from JPC ¼ 2−þ (we will later associate them
with a bound 2−þ state).
Noninteracting energies are shown by the continuous

curves, colored according to the meson-meson combina-
tion, and when a noninteracting level is degenerate it is
shown by a repeated curve, slightly displaced vertically
above. Wide brown bands indicate three-body combina-
tions of ηcππ and χcJππ where the ππ part is taken from the
σ channel, similar to the “2þ 1” noninteracting energies
described in Sec. II C of Ref. [25]. At this light quark mass,
the σ appears as a near-threshold bound state that exerts an

influence over a relatively wide region of energy, both
above and below threshold, owing to its strong coupling to
the ππ channel. The curves are determined from

Eð2þ1Þ
n:i: ¼ Eσ

n;cmðΛP; LÞ þ ðm2
3 þ jp⃗3j2Þ12; ð4Þ

where m3 and p⃗3 are the mass and momentum of the ηc or

χcJ, and this E
ð2þ1Þ
n:i: in the lattice frame is then boosted back

to the cm-frame.
The (almost) volume independent levels lying below the

lowest two-meson threshold, ηcη, near atEcm ≈ 0.63 in all

0.60

0.62

0.64

0.66

0.68

0.70

0.72

FIG. 3. The spectrum and normalized operator overlaps Zn
i for the ½000�Aþ

1 irrep on the L=as ¼ 24 volume. The spectrum obtained
from the lattice QCD calculation is shown in the center, colored according to the largest operator overlap as described in the text. Solid
curves in the center show the noninteracting energies. The magnitudes of operator overlaps Zn

i for each state, normalized as described in
the text, are shown in the dotted boxes.
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FIG. 4. Finite-volume spectra in irreps with zero overall momentum and positive parity, and irreps with nonzero overall momentum.
Points with uncertainties are the energy levels determined from lattice QCD correlation matrices, colored according to the dominant
operator overlap as described in the text. Solid thin curves are noninteracting energies, thick light-brown curves are “2þ 1”
noninteracting levels as described in the text, and dashed horizontal lines are hadron-hadron thresholds. A single red star in ½002�B1 for
L=as ¼ 16 indicates an ηc½012�η½001� operator not included in the basis.
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irreps where 0þþ and/or 2þþ contributes correspond to the
stable χc0ð1PÞ and χc2ð1PÞ states. The impact of such
bound-states on the scattering amplitudes above threshold
is modest and can be modeled as smooth “background.”We
will not explicitly include description of these subthreshold
energy levels as part of our amplitude analysis.9

At the highest energies, the extracted spectra can become
rather dense, and levels can overlap at the level of the
statistical uncertainty (although they are distinguished by
their orthogonal eigenvectors in the variational approach).
This high density is to be expected, given the relatively
small mass splittings in the charmed meson sector. The fact
that vector mesons appear in scattering channels leads to a
large number of possible spin-combinations and these can
often subduce into irreps in several different ways for a
given momentum combination. In practice, we will make
only limited use of the densest parts of the spectrum.
Some indications of the likely resonant content can be

read off from the gross structure of the extracted spectra,
particularly on the smallest volume. In the ½000�Λþ irreps
which have contributions from J ¼ 0, 2, there are clear
additional levels (beyond the number of expected non-
interacting levels) around atEcm ≈ 0.7, and these have large
overlaps onto operators with single-hadronlike and DD̄-
like constructions (see also Fig. 3). This could be inter-
preted as indicating that something remains of the picture
inferred from the spectrum found using only single-hadron-
like operators, with these states possibly being 0þþ and
2þþ resonances with DD̄ decays. In addition, the ½000�Aþ

2

irrep shows a pattern of levels that could indicate a single
isolated 3þþ resonance around atEcm ≈ 0.73.
On the other hand, aside for a low-lying volume-

independent level likely interpretable as a 2−þ bound state,
the PC ¼ −þ irreps feature only levels lying on the
noninteracting curves, suggesting the absence of any
significant scattering strength at these energies.
In this first calculation, we do not consider the energy

region above atEcm ≈ 0.72, and will not address the
possible presence of a JPC ¼ 4þþ state, nor a second JPC ¼
2þþ state that might be a member of the qq̄ quark-model
1F multiplet.
To make more quantitative and robust conclusions about

the resonant content, in the next section we use the Lüscher
approach to relate the finite-volume spectra to infinite-
volume scattering amplitudes.

IV. SCATTERING AMPLITUDES FROM FINITE
VOLUME SPECTRA

In order to translate the finite-volume spectra into
infinite-volume scattering amplitudes we make use of
the extensions of Lüscher’s finite volume formalism to
coupled-channel hadron-hadron scattering [23]. In terms of
the infinite-volume scattering t–matrix, the phase-space
matrix, ρ, and a matrix of known kinematic functions M,
this can be expressed as

det½D� ¼ 0;

D ¼ 1þ iρ · t · ð1þ iMÞ: ð5Þ

The matrices exist in a space of coupled meson-
meson channels and partial-waves [20]. Given some

FIG. 5. As Fig. 4 but for irreps with zero overall momentum and negative parity.

9We will perform a limited analysis to check that they can
indeed be neglected in Appendix B.
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parametrized t-matrix, the roots of Eq. (5) yield the finite-
volume spectrum in a given volume and irrep, fEpar

n g. The
so-obtained spectra can matched level-by-level with the
lattice QCD obtained spectrum, fEng, and a correlated χ2

formed, as defined in Eq. (8) of Ref. [22]. Minimization of
this χ2 under variation of the free parameters in tðEcmÞ then
gives a lattice QCD constrained scattering amplitude.
Finding the roots of Eq. (5) in the case of many coupled
channels and/or partial-waves can be efficiently achieved
by making use of an eigenvalue decomposition of D, where
the eigenvalues can be separately searched for zeros [52].
The corresponding eigenvectors are also useful, as de-
scribed below.
In our previous applications of this approach to lattice

QCD data, matching finite-volume energy levels between
the lattice calculation and the parametrization has not
been a significant issue. The simplest algorithm is to pair
levels by their energy order starting from the lowest first.
Another straightforward algorithm is to pair levels work-
ing from the smallest energy differences first. A third
option, which suffers from combinatoric growth with the
number of levels, is to compute all possible pairings and
choose the combination that produces the smallest χ2.
The somewhat novel case encountered in this study
features a relatively high density of states high in the
spectrum, and here the algorithms above prove to be
somewhat imperfect, yielding ambiguous level matching
that does not yield a smooth variation of the χ2 over
parameter space.
An improved approach makes use of the eigenvector

information obtained in the decomposition of D. For small
changes in the scattering amplitude, the eigenvectors at
each eigenvalue zero vary relatively slowly and can thus be
used to help match the spectra obtained from two evalu-
ations with similar parameter values. One method is to
insist that the dot product of the eigenvectors for a given
energy level for slightly different parameter values is
significantly far from zero. We have found that under a
χ2 minimization procedure, this helps to ensure a smooth
evolution of χ2 value with changing amplitude parameters,
and provides well-defined minima even for very dense
spectra.10

Parameterizations of coupled-channel partial-wave t–
matrices are required that exactly respect unitarity, which
was assumed in the derivation of Eq. (5). In this study, we
make use of forms that include the flexibility for there to be
bound-states and resonances in the s-channel scattering
process, in particular the K-matrix expressions,

Kij ¼
X
p

gðpÞi gðpÞj

m2
p − s

þ
X
a

γðaÞij sa

½t−1�ij ¼ ð2kiÞ−li ½K−1�ijð2kjÞ−lj þ Iij; ð6Þ

where K is a real symmetric matrix for real s ¼ E2
cm, and

gðpÞi , mp and γðaÞij are real parameters. The factors ð2kiÞli
implement the behavior at threshold required by angular
momentum conservation.
The matrix I is diagonal and has imaginary part

ImIij ¼ −ρi ¼ −2ki=
ffiffiffi
s

p
, which precisely accounts for

s–channel unitarity in the scattering process. The real
part of Iij can be fixed to zero, which we will sometimes
refer to as a “simple” phase space. Alternatively, a
dispersion relation can be used to generate a real part
from the known imaginary part, which we will refer to as
a “Chew-Mandelstam” phase space.11 The resulting
integral features a subtraction, and the location of the
subtraction point is a free choice, with convenient choices
being the kinematic threshold, or one of the pole
locations, s ¼ m2

p.
These amplitude parametrizations do not directly para-

metrize physics in the t– or u–channels that can generate
“left-hand cuts” which might appear in the energy region
considered. We will return to a discussion of this point
in Sec. VI.

V. SCATTERING AMPLITUDE
DETERMINATIONS

Our approach to determining scattering amplitudes
constrained by the spectra presented in Sec. III will be
to proceed systematically, beginning with description of
rest-frame irreps receiving contributions from a minimal
set of partial waves. Setting the contributions of higher
partial waves using rest-frame irreps in which they are
leading, we will then be able to analyze moving frame
energies with these waves fixed. The workflow is pre-
sented in Fig. 6, where each gray box represents a
subsection below.

A. JPC = 0++ below ηcη0 and DsD̄s threshold
from the rest-frame ½000�A+

1 irrep

At the lowest energies, 0þþ is a coupled-channel system
of S-wave closed-charm ηcη and open-charm DD̄ scatter-
ing. In the ½000�Aþ

1 irrep these are the only kinematically
open channels below atEcm ¼ 0.684, a cutoff selected to lie
some way below the ηcη

0 and DsD̄s thresholds.10An extension of this use of the eigenvectors of D helps to
identify levels that can be associated with decoupled channels.
These typically have overlap only onto meson-meson operators
of a particular structure (see Fig. 3). In some very limited cases,
the dominance of one channel component in the eigenvector of D
is matched with dominance of one overlap, in order to associate a
lattice level with a zero of det½D�.

11See Appendix B of Ref. [22] for implementation details.
The resulting function has the same logarithms as found
from scalar loop integrals often implemented in amplitude
modeling and effective field theory approaches, see Appendix B
of Ref. [53].
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Figure 4 indicates only small departures from the
relevant noninteracting energies on all three volumes, with
possibly very mild attraction at the DD̄ threshold. Nothing
in the spectrum suggests a near-threshold resonance or
bound-state.
The presence in the spectrum of an energy level

near atEcm ¼ 0.604 on each volume is explained by
the stable ground state χc0. Such a deeply bound state
will have no direct effect on the scattering amplitudes
above threshold, so its presence is not included in
amplitude parametrizations.12

The 10 energy levels in this energy region can be
described by a constant K-matrix implemented with a
threshold-subtracted Chew-Mandelstam phase space, with
best-fit parameters,

γηcη→ηcη ¼ ð0.34� 0.23� 0.09Þ
γηcη→DD̄ ¼ ð0.58� 0.29� 0.05Þ
γDD̄→DD̄ ¼ ð1.39� 1.19� 0.24Þ

2
64
1.00 0.77 −0.24

1.00 −0.22
1.00

3
75

χ2=Nd.o.f. ¼ 5.65
10−3 ¼ 0.81;

ð7Þ

where the first error is statistical, and the second repre-
sents the result of varying the stable hadron masses and
anisotropy within their errors.13 The matrix on the right
gives the correlations between parameters. The resulting
amplitude is presented in Fig. 7, where it is clear that the
system in this energy region is compatible with there

being no significant scattering, and there certainly being
no near-threshold DD̄ bound-state. The simplicity of the
spectrum indicates no need for more elaborate amplitude
parametrizations.

B. JPC = 0++ up to and including ψϕ threshold
from the rest-frame A+

1 irrep

Extending description of the ½000�Aþ
1 irrep to

higher energies requires inclusion of the ηcη
0, DsD̄s

and ψω channels which appear in S-wave almost
simultaneously.14

In Fig. 4 we see that levels with large overlap onto ηcη
0

operators tend to be compatible with the corresponding
noninteracting energies, but only within rather large
uncertainties across all three volumes.
An “extra” level, beyond the counting expected from

noninteracting energies, is observed on each volume
slightly above ψω threshold, at an energy close to that
seen in the spectrum obtained using only single-hadronlike
operators presented in Fig. 2. As shown in Fig. 3, this level
has large overlaps onto both the single-hadronlike operators
in the basis and the operator resembling D�

½000�D̄
�
½000�,

motivating the inclusion of the kinematically-closed
D�D̄�f1S0g channel into our analysis.15

We proceed by considering a system of coupled
ηcη; DD̄;DsD̄s; ηcη0;ψω; D�D̄� and ψϕ scattering, where
each pair is in S-wave only, constrained by 45 energy levels
(the colored and black levels, excluding the χc0 bound state,
shown in the ½000�Aþ

1 panel of Fig. 4). We have included
the ψϕ channel for which constraint is provided by three
levels close to ψϕ threshold dominated by a ψϕ-like
operator construction.
A small complication comes from the presence of a

degenerate pair of ψ ½100�ω½100� levels in the noninteracting
limit. In order for there to be two such solutions to the
quantization condition, the t-matrix must feature a ψω D-
wave as well as S-wave, although the impact of what will
be a very weak amplitude near threshold is just to supply an
energy level lying very close to the noninteracting energy.
The simplest option, which we will adopt, is to add a JPC ¼
4þþ amplitude, ψωf5D4g → ψωf5D4g, parametrized with
a K-matrix constant.
The JPC ¼ 0þþ t-matrix is parametrized using a

K-matrix with a single pole and a matrix of constants,

Kij ¼
gigj

m2 − s
þ γij; ð8Þ

FIG. 6. A summary of the scattering amplitude extractions
carried out in this work, indicating the dependencies of later
calculations on fixed “background” waves (arrows). The number
of energy levels used in each amplitude determination is
indicated. We make use of more than 200 energies in total to
ultimately determine the JPC ¼ 0þþ and 2þþ amplitudes.

12In Appendix B we briefly explore amplitudes in which such a
bound-state is explicitly included.

13We perform four additional determinations of the ampli-
tudes, two using the hadron masses at their mean �1σ values
from Table II, and two from varying the anisotropy to ξ− ¼ 3.438
and ξþ ¼ 3.450, the �1σ values determined from the pion.

14ψω also produces 5D0 and 5D4 waves that can contribute in
½000�Aþ

1 but these are expected to be suppressed at energies close
to threshold.

15When including moving frames later, wewill consider a more
limited energy region below D�D̄� threshold in Appendix C 2
where the D�D̄� channel can be neglected.
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and in practice the spectrum mainly lying on the noninteracting energies suggests that we can fix many of the free
parameters to zero. In particular, many parameters that when allowed to vary resulted in a value consistent with zero,
are then fixed to zero, and the minimization rerun. The Chew-Mandelstam phase-space subtracted at the K-matrix
pole location is used. An example result is,

atm¼ð0.7047� 0.0015� 0.0004Þ
atgDD̄¼ð0.150� 0.036 � 0.022Þ

atgDsD̄s
¼ð0.193� 0.049� 0.042Þ

atgψω¼ð0.109� 0.095� 0.145Þ
atgD�D̄� ¼ð0.368� 0.110� 0.066Þ
γηcη; ηcη¼ð0.122� 0.095� 0.052Þ
γDD̄;DD̄¼ð−0.476� 0.301� 0.103Þ

γDD̄;DsD̄s
¼ð−1.23� 0.29� 0.12Þ

γηcη0;ηcη0 ¼ ð1.96� 0.97� 0.69Þ
γψϕ;ψϕ¼ð0.99� 0.90� 0.15Þ

γψω;ψωf5D4g ¼ð258� 275� 138Þ ·a8t

2
66666666666666666666664

1.00 −0.08 −0.14 −0.26 −0.28 −0.16 0.23 0.15 −0.13 −0.06 −0.16
1.00 0.55 0.67 0.73 −0.16 −0.72 −0.36 −0.07 −0.08 −0.12

1.00 0.54 0.66 −0.06 −0.21 −0.12 −0.02 0.03 −0.03
1.00 0.57 −0.07 −0.51 −0.38 −0.03 0.05 −0.10

1.00 −0.01 −0.36 −0.26 0.02 −0.08 −0.05
1.00 0.24 0.04 0.25 0.04 0.04

1.00 0.31 0.13 0.09 0.13

1.00 0.00 0.02 0.05

1.00 0.02 0.03

1.00 0.02

1.00

3
7777777777777777777775

χ2=Nd.o.f.¼ 56.4
45−11¼1.66; ð9Þ

where all parameters not listed have been fixed
to zero. The K-matrix pole couplings to open-charm
channels appear to be significantly nonzero. Figure 8
shows the corresponding amplitudes, where clear
peaks are visible in the DD̄ and DsD̄s amplitudes,
along with a rapid turn-on at threshold of ampli-
tudes leading to D�D̄�. Examination of the complex

energy-plane singularities of this amplitude, reported
on later in the manuscript, will lead us to conclude that
these effects are due to a single resonance. We will
later show that the main features of this amplitude are
robust when we vary the specific parametrization used,
and when we add constraints from moving-frame irrep
spectra.

16 20 24
0.60

0.62

0.64

0.66

0.68

0.63 0.64 0.65 0.66 0.67 0.68 0.69

0.2

0.4

0.6

FIG. 7. Left: JPC ¼ 0þþ scattering amplitudes corresponding to Eq. (7). Amplitudes are only determined up to the ηcη
0 threshold

indicated as the pink circle on the horizontal axis. Right: the finite volume spectrum in ½000�Aþ
1 from Fig. 4 (points) plotted with the

solutions of Eq. (5) with the scattering amplitude as defined by Eq. (7) (orange dashed lines with bands). The effect of the “additional”
systematic uncertainty applied before determining the amplitudes as described in Sec. II is shown by the outer gray error bars on each
energy level (in this case, for most points it is barely visible).
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The value of χ2=Nd.o.f. for this fit suggests that there is
some mild tension between the computed spectrum
and this amplitude, but correlations between computed
energy levels play a significant role. All levels are
described with a maximum deviation of 1.5σ, and the
same amplitude in an uncorrelated fit results in
χ2=Nd.o.f. ¼ 34.0

45−11 ¼ 1.00. The “global” systematic uncer-
tainty on the input spectrum introduced in Sec. II A
influences the χ2 and the associated parameter errors
(removing it yields χ2=Nd.o.f. ¼ 74.4

45−11 ¼ 2.19, and errors
roughly half as large), but both the parameter central
values and the qualitative behavior of the amplitudes
remains unchanged. The result presented in Eq. 9 should
be viewed as being a conservative estimate of the
amplitudes.
The inclusion of the ηcη

0 channel and the associated
levels introduced the level-matching problem described
in Sec. III. The large uncertainties on these levels,

coupled with the high density of zeroes of the quantiza-
tion condition, makes many matching assignments plau-
sible. Fortunately, the noisy levels appear to overlap only
with the ηcη0 operators, suggesting a decoupling that can
be built into the amplitude. When D in Eq. (5) was
eigendecomposed, the zeroes found in the eigenvalue
associated with the ηcη

0f1S0g channel could be matched
with the levels that have large overlap with the ηcη

0
operators. The ηcη and ψϕ channels, which also appear
to be decoupled, were paired in the same way with
the eigendecomposition solutions of the quantization
condition. The remaining levels were matched by
pairing levels working from the smallest energy differ-
ence first.
In order to make use of moving-frame irrep spectra to

provide additional constraint on the 0þþ amplitude, we
must first constrain the other JPC amplitudes which enter
into these irreps by considering other rest-frame irreps in
which they are leading.

C. JPC = 3++ from rest-frame A+
2 irrep

3þþ amplitudes appear in several irreps from which
we wish to extract 0þþ or 2þþ, but we can constrain
their low-energy behavior using the spectrum in the
½000�Aþþ

2 irrep (Fig. 4) where it appears in relative
isolation. In the energy region below atEcm ¼ 0.72,
where we wish to constrain the amplitudes for use in
extracting 0þþ and 2þþ, very few levels are present. The
lowest level is dominated by overlap with a ψω
operator, and on the L=as ¼ 24 volume this is located
close to its noninteracting energy. At higher energies
larger shifts can be seen and a narrow resonance may be
present, as anticipated in Fig. 2 where the use of only
qq̄-like operator constructions results in a level
around atEcm ≈ 0.725.
Meson-meson channels contributing to 3þþ are

(in order of threshold opening): DD̄�f3D3g, ψωf3;5D3g,
DsD̄�

sf3D3g, D�D̄�f5D3g, ψϕf3;5D3g, and D�
sD̄�

sf5D3g.
Excluded from this list is ηcσf1F3g which we expect
to be heavily suppressed by the angular momentum
barrier.16

We consider 16 levels below atEcm ¼ 0.743 having
excluded the single level with large overlap onto the ηcσ
operator. A description using a K-matrix pole and matrix of
constants, with Chew-Mandelstam phase-space subtracted
at the pole, is given by,
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FIG. 8. Scattering amplitudes with JPC ¼ 0þþ determined from
the ½000�Aþ

1 irrep plotted as ρiρjjtijj2 which is limited to a
maximum value of 1 by unitarity. Circles on the horizontal axes
indicate kinematic thresholds. The open circles at the bottom
show the locations of the energy levels providing constraint on
the amplitudes.

16We included in our basis a three-hadron ηcππ ∼ ηcσ
operator constructed from an ηc and the variational solution
in the ππ system corresponding to the σ which is a near-
threshold ππ bound-state on these lattices [42,47]. We
observe that a level with large overlap onto this operator is
consistent with an ηc combined with the lowest σ level
observed in Ref. [42] with no clear “additional interactions.”
This level is located around atEcm ¼ 0.74 with a relatively
large uncertainty.
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atm¼ð0.7295� 0.0017� 0.0002Þ
gDD̄�f3D3g¼ð2.51� 0.35� 0.08Þ ·at
gD�D̄�f5D3g¼ð0.00� 1.38� 0.12Þ ·at
gDsD̄�

sf3D3g¼ð0.00� 0.69� 0.07Þ ·at
γDD̄�f3D3g→DD̄�f3D3g¼ð53� 153� 40Þ ·a4t

γD�D̄�f5D3g→D�D̄�f5D3g¼ð−462� 122� 105Þ ·a4t
γDsD̄�

sf3D3g→DsD̄�
sf3D3g¼ð54� 184� 24Þ ·a4t

γψωf3D3g→ψωf3D3g¼ð343� 210� 55Þ ·a4t
γψωf5D3g→ψωf5D3g¼ð−26� 40� 13Þ ·a4t
γψϕf3D3g→ψϕf3D3g¼ð−19� 628� 75Þ ·a4t

2
6666666666666666666664
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3
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χ2=Nd.o.f.¼ 8.34
16−10¼1.39; ð10Þ

where a noticeable feature is a pole with a significant
coupling to DD̄�f3D3g. We will refer to this description as
the “reference amplitude.” The reproduction of the lattice
QCD energy levels from the finite volume formalism is
shown in Fig. 9, and the amplitudes in Eq. (10) appear in
the left panel of Fig. 10.
The amplitude above proves to not be a unique descrip-

tion of the finite volume spectrum, with other parametriza-
tions giving solutions which have a significant DD̄�; D�D̄�

cross-term, as shown in the right panel of Fig. 10
and summarized in Table VII in Appendix E 1. For the
purposes of serving as a “background wave” in irreps
where we seek 0þþ and 2þþ amplitudes, we only require
the 3þþ amplitude below atEcm ≈ 0.72, and there the

various amplitude descriptions all broadly agree. We will
use the reference amplitude presented above for this
purpose.

D. JPC = f1; 2;3g− + from rest-frame irreps

In order to use moving-frame irreps to constrain 0þþ and
2þþ partial-waves, we must also consider negative parities,
and these are most directly extracted from the at-rest irreps
presented in Fig. 5. The spectra indicate that the inter-
actions are relatively weak, with the only nontrivial feature
being an “extra” level located around atEcm ¼ 0.68 in the
E−
2 and T−

2 irreps. The mild volume-dependence and large
overlaps of this level with single-hadronlike operators
subduced from 2−þ suggest that this is a stable ηc2 state.
In Ref. [30], which used only single-hadronlike operators,
the pattern of states extracted in this energy region
resembled a quark model 1D multiplet, with this state
being the qq̄ð1D2Þ member [2]. The state lies below all
open-charm decay thresholds, but slightly above ηcππ. For
the same reasons as in Sec. V C, we expect only a very
weak coupling to ηcππ and do not include this three-meson
channel in our amplitude analysis.
Considering f1; 2; 3g−þ, the meson-meson partial-waves

that contribute are given in Table III. We choose to first
determine JPC ¼ 2−þ and exotic 3−þ using energy levels in
the E−, T−

2 and A−
2 irreps. Considering all levels below

atEcm ¼ 0.73 except those with dominant overlap with an
ηcππ operator (which are decoupled from other operators),
we have 41 energies. Using a pole plus constant K-matrix
for 2−þ and a matrix of constants for 3−þ, the following
parameters provide a good description of the finite-volume
spectra:

16 20 24
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FIG. 9. As for the right panel of Fig. 7, except in the ½000�Aþ
2

irrep with the solutions from the amplitude in Eq. (10). Several
channels such as ηcη and ηcππ open below the plotted range.
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atm2− ¼ð0.67538� 0.00063� 0.00025Þ
gDD̄�f3P2g ¼ ð−1.73� 0.64� 0.25Þ

γDD̄�f3P2g→DD̄�f3P2g ¼ð43.1� 35.6� 20.3Þ ·a2t
γDD̄�f3F2g→DD̄�f3F2g ¼ð3676� 2118� 1640Þ ·a6t
γDsD̄�

sf3P2g→DsD̄�
sf3P2g ¼ ð21.9� 27.3� 8.8Þ ·a2t

γD�D̄�f3P2g→D�D̄�f3P2g ¼ð−4.9� 24.2� 62.2Þ ·a2t
γψωf3P2g→ψωf3P2g ¼ð−6.32� 11.4� 68.3Þ ·a2t
γψωf5P2g→ψωf5P2g ¼ð−6.63� 12.0� 59.7Þ ·a2t
γχc2ηf5S2g→χc2ηf5S2g ¼ð−0.42� 0.91� 1.56Þ

2
6666666666666666664
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γηcηf1F3g→ηcηf1F3g ¼ð243� 295� 49Þ ·a6t
γDD̄�f3F3g→DD̄�f3F3g ¼ ð−13� 1758� 460Þ ·a6t
γψωf5P3g→ψωf5P3g ¼ ð−14.4� 9.9� 51.3Þ ·a2t

2
664
1.00 0.04 0.05

1.00 0.09

1.00

3
775

χ2=Nd.o.f.¼ 24.9
41−12¼0.86; ð11Þ

The K-matrix pole in 2−þ is allowed a coupling only to the lowest-lying open-charm partial-wave, DD̄�f3P2g; all other
couplings are fixed to zero.
An independent description of energy levels in the T−

1 and A−
2 irreps yields 1−þ and 3−þ amplitudes. While a

hybrid meson is expected in 1−þ, it will lie above the considered energy region, and well above open-charm
three-meson thresholds. Using 20 levels below atEcm ¼ 0.721, the small energy shifts can be described by constant
K-matrices,
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FIG. 10. JPC ¼ 3þþ reference amplitude (left) as given in Eq. (10) and other acceptable descriptions of the finite volume
spectra obtained by parametrization variations (right) as summarized in Table VII. Several channels included, but found to be
very small, are listed below the figure.DD̄�f3D3g → DD̄�f3D3g and in some casesDD̄�f3D3g → D�D̄�f5D3g have clear peaks indicative
of a nearby resonance.
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γDD̄�f3P1g→DD̄�f3P1g ¼ ð14.0� 7.6� 8.1Þ · a2t
γηcηf1P1g→ηcηf1P1g ¼ ð1.73� 1.51� 0.63Þ · a2t
γψωf1P1g→ψωf1P1g ¼ ð−36.4� 22.8� 6.14Þ · a2t
γψωf3P1g→ψωf3P1g ¼ ð−1.61� 26.64� 5.89Þ · a2t
γψωf5P1g→ψωf5P1g ¼ ð23.33� 27.14� 6.01Þ · a2t
γχc1ηf3S1g→χc1ηf3S1g ¼ ð0.65� 1.06� 0.99Þ

2
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γηcηf1F3g→ηcηf1F3g ¼ ð−282� 201� 61Þ · a6t
γDD̄�f3F3g→DD̄�f3F3g ¼ ð1213� 1286� 1268Þ · a6t
γψωf5P3g→ψωf5P3g ¼ ð−24.4� 20.6� 5.0Þ · a2t

2
664
1.00 −0.06 0.15

1.00 0.02

1.00

3
775

χ2=Nd.o.f. ¼ 7.11
20−9 ¼ 0.65: ð12Þ

where the 3−þ amplitude so obtained is statisti-
cally compatible with that extracted previously in
Eq. (11).
The J−þ amplitudes are shown in Figs. 11 and 12. It is

clear that the negative parity waves are weak at low
energies, and we will later find they have only modest
influence in moving-frame irreps.

E. JPC = 2+ + from rest frame irreps

We now turn to the JPC ¼ 2þþ partial wave, investigat-
ing the energy region up to just above the ψϕ threshold
where, based on Fig. 2, we expect to reveal the lowest
resonance in this channel. Several meson-meson channels
contribute, and the large energy shifts seen in Fig. 4
indicate significant interactions.
We begin by determining amplitudes using energies in

the Eþ and Tþ
2 irreps, where the 3þþ contributions to Tþ

2

are fixed using the reference amplitude determined in
Sec. V C—these amplitudes are quite small in this energy
region and the precise details do not significantly impact
the results for 2þþ. We exclude the ηcη

0 channel and a
single energy level that arises in the Eþ irrep on the L=as ¼
24 volume dominated by overlap onto an ηcη0-like operator.
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FIG. 11. Scattering amplitudes determined in JPC ¼ 2−þ and
3−þ presented in Eq. (11). The bound-state present in 2−þ, while
coupled to DD̄�, does not produce significant scattering above
threshold.
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FIG. 12. As Fig. 11 but for the JPC ¼ 1−þ amplitude presented
in Eq. (12).
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We also exclude one level having dominant overlap onto an
ηcππ-like operator in the Tþ

2 irrep on the L=as ¼ 24

volume. In total there are 47 levels that can be used to
constrain the amplitudes.
Considering all S-wave channels open below

atEcm ¼ 0.717, and those D-wave channels opening at
lower energies (except for ηcη

0), we will describe
the 2þþ sector as a coupled ηcηf1D2g, DD̄f1D2g,

DD̄�f3D2g, DsD̄sf1D2g, ψωf5S2g, D�D̄�f5S2g and
ψϕf5S2g system.17

A K-matrix of the form in Eq. (6), which includes the
appropriate kli threshold factors, is capable of describing
the energy levels. One suitable example in which the
K-matrix pole has couplings only to open-charm channels,
and a Chew-Mandelstam phase-space subtracted at the
K-matrix pole location, is,

atm ¼ ð0.7030� 0.0010� 0.0002Þ
gDD̄�f3D2g ¼ ð−30.1� 4.5� 0.8Þ · at
gDsD̄sf1D2g ¼ ð1.53� 2.17� 0.40Þ · at
gD�D̄�f5S2g ¼ ð1.67� 0.18� 0.13Þ · a−1t

γηcηf1D2g;ηcηf1D2g ¼ ð20.4� 23.9� 8.17Þ · a4t
γDD̄f1D2g;DsD̄sf1D2g ¼ ð182� 138� 18Þ · a4t

γψωf5S2g;ψωf5S2g ¼ ð−0.884� 0.449� 0.057Þ
γψϕf5S2g;ψϕf5S2g ¼ ð1.61� 0.77� 0.04Þ

gDD̄f1D2g ¼ 10 · at ðfixedÞ

2
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χ2=Nd.o.f. ¼ 48.0
47−8 ¼ 1.23; ð13Þ

where the resulting amplitude is plotted in Fig. 13. A clear
resonancelike bump is observed in DD̄ and DD̄�, along
with a rapid turn-on of D�D̄� at threshold.
The amplitude presented in Eq. (13) has the unusual

feature that the K-matrix pole coupling toDD̄ is fixed to an
apparently arbitrary value. The origin of this is an empirical
observation that when describing the finite-volume spectra,
there proves to be essentially no sensitivity to the absolute
scale of the couplings g, but only to their ratios. This is a
novel finding, so far unique to this case, but one which
seems to have an explanation in terms of there being a χc2
resonance having a large coupling to the kinematically
closed S-wave D�D̄� channel.
The coupling-ratio phenomenon can be illustrated using

a simple two-channel Flatté amplitude specialized to
describe a resonance lying above threshold for channel
1, and below threshold for channel 2,18

tijðsÞ ¼
gigj

m2
0 − s − i

P
2
k¼1 g

2
kρkðsÞ

; ð14Þ

where it is convenient to remove the channel 2 “self-
energy” contribution to the resonance mass by defining an
m such that m2

0 ¼ m2 − g22jρ2ðm2Þj, so that the Flatté
denominator takes the form

DðsÞ ¼ m2 − s − ig21ρ1ðsÞ − ig22ðρ2ðsÞ − ρ2ðm2ÞÞ:

If we restrict to the region around s ¼ m2, taken to be
below the threshold for channel 2, we can approximate

Dðs≈m2Þ

¼−g22
β

m

�
1þ2m2

g22β

�� ffiffiffi
s

p
−mþ i

�
g1
g2

�
2 m=β

1þ 2m2

g2
2
β

ρ1ðsÞ
�
;

where β ¼ 4m2
2

m2
1

jρ2ðm2Þj. This indicates an amplitude that

depends only on the ratio g1=g2 in the limit that

g2 ≫
ffiffiffiffiffiffi
2m2

β

q
. Some consequences of this property are

investigated in Appendices D and G.
Interpretations of the amplitude given in Eq. (13) in

terms of resonant content and channel couplings will be
presented in Sec. VI by considering the rigorously defined
complex-energy pole content of the t-matrix.

17Similar to Sec. V B, some ψωD-waves are required to
produce a sufficient number of solutions. There proves to be
insufficient constraint to uniquely determine all amplitudes
featuring ψω in D-wave. The required number of levels in the
considered energy region is obtained from the finite-volume
determinant condition provided 5S2, 3D3 and 5D3 waves are
included (the latter two from 3þþ).

18For simplicity we will put both channels in S-wave, although
the logic requires only the higher channel to be in S-wave.
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F. JPC = 2++ from rest and moving-frame irreps

Additional constraint on the 2þþ amplitude comes from
moving-frame irreps. In order to use energy levels in the
½001�; ½002�B1;2 irreps to further constrain the 2þþ ampli-
tude, we supply our previously determined 2−þ and 3�þ
amplitudes, fixing them to the central values found. The
determinant condition one is working with here is of
unprecedented size, featuring seven 2þþ channels, seven
2−þ channels, three 3−þ channels and six 3þþ channels.
The techniques presented in Ref. [52] are invaluable in
handling such a large dimensional problem.
In practice we choose to reduce the complexity of the

minimization problem by adding only the energy levels
from the irreps ½001�B1 and ½002�B1 on the L=as ¼ 20, 24
volumes, leading to a total of 86 levels to constrain the 2þþ
interactions. We checked that the resulting amplitudes also
give a reasonable description of the computed finite-
volume spectra in the ½001�B2 and ½002�B2 irreps.
A challenge associated with using these 86 levels in a

minimization is that there are considerable data correlations
between energy levels computed on the same lattice
volume. Upon eigendecomposition, the data correlation
matrix is found to have a relatively small number of large
eigenvalues which are likely to be reliably determined, and
many more much smaller eigenvalues that may not be well
determined on a limited number of gauge configurations. In
an earlier study, various approaches to deal with such
correlations were explored, such as uncorrelated fits, fitting
to subsets of the data, and removing the smallest eigen-
values by a singular value decomposition (SVD) [45].
Alternative strategies and summaries of the issue can be
found in Refs. [54–57]. Here we opt to remove eigenmodes
with the smallest eigenvalues when inverting the covariance
matrix, associating the cut with a reduction in the number
of degrees of freedom by which we judge the χ2. We find
that retaining all eigenvalues λi where Λ ¼ λi=maxðλÞ >
0.02 results in a reasonable description of the data. This cut

leads to removal of 4 and 19 eigenmodes from the L=as ¼
20 and 24 spectra respectively. A detailed discussion is
presented in Appendix F.
Using the same JPC ¼ 2þþ parametrization as in

Eq. (13), with the additional moving-frame energy levels
included, we obtain,

atm ¼ ð0.7025� 0.0012� 0.0007Þ
gDD̄�f3D2g ¼ ð−37.9� 5.0� 3.94Þ · at
gDsD̄sf1D2g ¼ ð−3.3� 4.3� 2.5Þ · at
gD�D̄�f1S2g ¼ ð1.58� 0.15� 0.22Þ · a−1t

γηcηf1D2g→ηcηf1D2g ¼ ð16.3� 23.1� 7.5Þ · a4t
γDD̄f1D2g→DsD̄sf1D2g ¼ ð−81� 129� 100Þ · a4t

γψωf5S2g→ψωf5S2g ¼ ð0.55� 0.72� 0.81Þ
γψϕf5S2g→ψϕf5S2g ¼ ð2.19� 0.77� 0.11Þ

gDD̄f1D2g ¼ 10 · at ðfixedÞ

2
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χ2=Nd.o.f. ¼ 62.8
86−8−23 ¼ 1.14; ð15Þ
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FIG. 13. As Fig. 8, but for amplitudes with JPC¼2þþ in Eq. (13)
determined from the rest frame ½000�Eþ and ½000�Tþ

2 irreps.
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which agrees within uncertainties with the amplitude
determined from the ½000�Eþþ and ½000�Tþþ

2 energies
alone.19 This parametrization’s description of the rest frame
energy levels can be seen in the middle and right panels of
Fig. 17.
The choice of parametrization form is varied to inves-

tigate bias associated with choosing any specific form. We
take the form implied in Eq. (15) and vary which constants
and couplings are present or set to zero compared to
Eq. (15), we vary the Chew-Mandelstam subtraction point,
and also replace it with the simple phase-space. In addition,
the choice of which K-matrix pole coupling is fixed is
varied, choosing gDsD̄sf1D2g or gDD̄�f1D2g rather than
gDD̄f1D2g, although this is found to have a negligible effect.
We also explore the sensitivity to the data correlation
eigenvalue cutoff. Overall, we consider 24 parametrizations
that give a reasonable description of the finite-volume
spectra and these are summarized in Table VIII in
Appendix E 2. The central values of these parametrizations
are compared with the reference parametrization from
Eq. (15) in Fig. 14, and we find that the central values
of the majority of parametrizations fall within the error
bands obtained from Eq. (15).20

The amplitudes in Fig. 14 that are not small show very
similar features to those in Fig. 13. There is a clear
resonancelike bump in DD̄ and DD̄�, and a rapid turn-
on of D�D̄� at threshold. A small number of parametriza-
tions appear to have some large DsD̄s amplitudes at high
energies, although there is relatively little constraint in this
region. The other amplitudes, including all closed-charm
channels, are consistent with being small. We will explore
the singularity content of these amplitudes in Sec. VI.

G. JPC = 0++ below ηcη0 and DsD̄s thresholds
including moving frame energies

The region around the DD̄ threshold, previously con-
strained using only rest-frame irrep energy levels, can be
reconsidered including the additional constraint from
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FIG. 14. As Fig. 13, but for amplitudes with JPC ¼ 2þþ in
Eq. (15) determined from the rest and moving frame irreps. Solid
curves show the central values from the parametrization varia-
tions summarized in Table VIII.

19The number of degrees of freedom is taken to be
Nd.o.f. ¼ Nlevels − Npars − Nreset, where Nlevels is the number of
energies, Npars. is the number of free parameters, and Nreset is the
number of eigenmodes removed from the covariance matrix by
the cut on eigenvalues.

20One obvious weakness is that there are relatively few
parametrizations with couplings between open-charm channels
and ψωf5S2g. Although no good χ2 minima were found with the
gψωf5S2g parameter allowed to vary, many were attempted and all
of these appeared to produce a small ψωf5S2g amplitude.
This parameter was freed in some amplitude determinations of
the rest-frame energies, only one of which is given in Eq. (G1),
and in that case it was found to be consistent with zero. A
γDD̄f1D2g→ψωf5S2g term was included in one parametrization.
Considering the relevant spectra in Fig. 4, there are no clear
large shifts involving the ψω levels, and so perhaps it is a
reasonable conclusion that these amplitudes are small.
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moving-frame irreps. This analysis further confirms the
previous conclusion that there is no near-threshold scalar
bound-state in this system. In addition to ½000�Aþ

1 , con-
straint comes from energy levels in the ½001�A1, ½111�A1

and ½002�A1 irreps, with a total of 43 energy levels below
ηcη

0 threshold. For this selection of irreps, in this energy
region, all higher partial waves can be neglected.21

For these levels, a reasonable description using a con-
stant K-matrix is found,

γηcη→ηcη¼0.369� 0.145� 0.047

γηcη→DD̄¼−0.638� 0.157� 0.988

γDD̄→DD̄¼0.172� 0.324� 2.162

2
64
1.00 −0.37 0.06

1.00 −0.31
1.00

3
75

χ2=Nd.o.f.¼ 40.5
43−3−5¼1.16; ð16Þ

that is in qualitative agreement with the amplitude found
earlier. The description of the finite-volume spectra is
shown in Fig. 16. This parametrization and 9 other
variations22 are plotted in Fig. 15, where we again observe
no signal indicating strong interactions near DD̄ threshold.

H. JPC = 0++ up to and including ψϕ threshold

Our most highly constrained 0þþ amplitude comes from
simultaneously describing energy levels in the ½000�Aþ

1 ,
½001�A1, ½111�A1 and ½002�A1 irreps up to atEcm ¼ 0.724 at
rest (just above ψϕ threshold) and up to atEcm ¼ 0.69 in
moving frame irreps (just above DsD̄s threshold). The 90
energy levels are subject to a significant degree of data
correlation which we mollify by removing small eigenm-
odes below a cutoff Λ ¼ 0.02 as described in Sec. V F.23

An amplitude of the form used in Sec. V B describes the
spectra with parameter values,

atm¼ð0.7065� 0.0015� 0.0004Þ
atgDD̄f1S0g¼ð0.1174� 0.0226� 0.0039Þ

atgDsD̄sf1S0g¼ð0.189� 0.046� 0.026Þ
atgψωf1S0g¼ð−0.127� 0.069� 0.230Þ

atgD�D̄�f1S0g¼ð0.330� 0.095� 0.023Þ
γηcηf1S0g→ηcηf1S0g¼ð0.144� 0.097� 0.038Þ

γDD̄f1S0g→DsD̄sf1S0g¼ð−0.974� 0.301� 0.027Þ
γηcη0f1S0g→ηcη

0f1S0g¼ð2.55� 1.03� 0.73Þ
γψϕf1S0g→ψϕf1S0g¼ð1.36� 0.90� 0.26Þ
γψωf5D4g→ψωf5D4g¼ð162� 254� 43Þ ·a8t

2
6666666666666666666664

1.00 −0.05 −0.17 0.02 −0.33 −0.26 0.23 −0.06 −0.03 −0.23
1.00 0.52 −0.44 0.64 0.08 −0.07 0.04 −0.04 0.01

1.00 −0.55 0.69 0.05 −0.23 −0.03 0.00 0.02

1.00 −0.54 0.05 0.33 0.02 −0.03 0.05

1.00 0.09 −0.24 0.02 −0.08 0.03

1.00 −0.07 0.22 0.01 0.08

1.00 0.05 −0.03 −0.04

1.00 −0.00 0.03

1.00 −0.01
1.00

3
7777777777777777777775

χ2=Nd.o.f.¼ 91.0
90−10−16¼1.42; ð17Þ

0.63 0.64 0.65 0.66 0.67 0.68 0.69
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FIG. 15. As Fig. 13, but for coupled-channel ηcηf1S0g −
DD̄f1S0g amplitudes with JPC¼ 0þþ determined from ½000�Aþ

1

and moving frame energies. The individual curves correspond to
the central values of the parametrization variations listed in
Table IX. The bands show the extent of the uncertainties from
the amplitude in Eq. (16).

21We choose to exclude energy levels in the ½011�A1 irrep, which receive contributions from 2−þ that may not be negligible due to a
2−þ bound state. We later show in Fig. 16 that the levels in this irrep are in fact in good agreement in this energy region.

23This results in the removal of 16 eigenmodes. A range of values are used when we vary the parametrization, including neglecting the
correlations entirely.

22Details of the parametrization variations are provided in Appendix 3 a.
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where the description of the rest frame energy levels can be
seen in the leftmost panel of Fig. 17. We have fixed the
JPC ¼ 1−þ; 3−þ amplitudes to the results in Eq. (12), the
2þþ amplitude is fixed to the result in Eq. (15), and the 3þþ
amplitude is fixed to the result in Eq. (10).
Exploring a range of K-matrix parametrizations, we find

certain features that must be present to successfully
describe the lattice QCD spectra. Coupling a K-matrix
pole to the open-charm channels (DD̄, DsD̄s, D�D̄�)
appears to be required, and these couplings are always
significantly nonzero, while the K-matrix entries

corresponding to the ψω channels are always small and
typically consistent with zero.
The results of describing the finite-volume spectra with a

range of parametrization choices (listed in Table X) are
presented in Fig. 18, where we see that they are qualita-
tively similar with a single large enhancement around
atEcm ≈ 0.705. The D�D̄�f1S0g channel opens rapidly at
threshold, a phenomenon we will later associate with a
large resonance coupling to D�D̄�f1S0g.
With a set of well-constrained 0þþ and 2þþ scattering

amplitudes in hand, in the following sections we will

FIG. 16. Energy levels from ½000�Aþ
1 and moving frame ½ijk�A1 irreps as in Fig. 4 (points) compared with the spectra from the

coupled-channel ηcηf1S0g −DD̄f1S0g amplitude in Eq. (16) using the finite-volume quantization condition Eq. (5) (dashed orange
curves and bands). Energies plotted in gray were not used in this amplitude determination, neither are the bound state levels around
atEcm ¼ 0.62 and below corresponding to the stable χc0;2ð1PÞ.

16 20 24

0.66

0.68

0.70

0.72

16 20 24 16 20 24

FIG. 17. As Fig. 16 but for spectra in ½000�Aþ
1 , ½000�Eþ and ½000�Tþ

2 irreps compared with solutions from the amplitudes in Eqs. (17)
(left panel) and (15) (middle and right panels).
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determine their pole singularities and present a correspond-
ing interpretation in terms of resonances.

VI. RESONANCE POLES

Scattering amplitudes, considered as a function of
complex values of the scattering energy squared can have
only certain features due to analyticity. As well as the
branch cuts required by unitarity, pole singularities can be
present, having an interpretation as the bound-states and
resonances of the scattering system.
A new branch cut for each channel, opening at the

kinematical threshold, defines a Riemann sheet structure,
with the physical sheet, where scattering occurs for real
energies, having Im ki > 0 for all channels, i. For a given
energy, the unphysical sheet reached by moving down
through the cut, known as the proximal sheet, has Im ki < 0
for all kinematically open channels and Im ki > 0 for all
closed channels.
Close to a pole,

tijðs ≈ s0Þ ¼
cicj
s0 − s

; ð18Þ

and a nearby pole on the proximal sheet will generate rapid
energy dependence on the real energy axis, typically taking
the form of a peak, the canonical resonance line shape. The
pole location in the complex energy plane has an inter-
pretation in terms of the resonance mass and width,ffiffiffiffiffi
s0

p ¼ m� i
2
Γ, while the factorized pole residues give

the channel couplings, ci. Except when they lie close to
thresholds, poles on other unphysical sheets typically have
only a weak influence on physical scattering.
The K-matrix parametrizations we have explored in this

paper have good analytic properties, such that they can be
continued into the complex energy plane without difficulty.
Wewill explore to what extent resonance pole locations and
channel couplings are independent of the details of the
specific parametrization chosen. Experience shows that for
narrow resonances, where the pole is close to physical
scattering (such as the ρ [58,59]), very little variation under
changes in parametrization is seen, while for broad reso-
nances, lying far into the complex plane (such as the σ
[47,60,61] or the D�

0 [53]), a much more significant scatter
over parametrizations can be observed.
While factorized pole-residue couplings, ci, are the most

rigorous way to quantify the coupling of a resonance to a
channel, it is also common to use partial-widths, Γi, or
branching ratios, Bri, to describe decay rates to open
channels. A prescription relating couplings to partial-
widths, expected to be reasonable for narrow resonances,
has been provided by the PDG [62],

Bri ¼
Γi

Γ
¼ jcij2

ρiðRe s0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiðRe s0Þ
p : ð19Þ

0.1

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.1

0.1

0.2

0.3

0.1

0.1

0.1

0.1

0.2

0.67 0.68 0.69 0.70 0.71 0.72

0.1

0.1

3800 3840 3880 3920 3960 4000 4040 4080

FIG. 18. As Fig. 14 but for JPC ¼ 0þþ amplitudes with the
band showing the amplitude in Eq. (17). Parametrization varia-
tions are summarized in Table X.
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A. Scalar resonance

For JPC ¼ 0þþ, considering the analysis in Sec. V H
with variation of parametrizations summarized in
Appendix E 3, we consistently find a pole on the proximal
sheet between ψω and D�D̄� thresholds. We denote the
relevant Riemann sheet using the notation

signðImðkηcη;kDD̄;kηcη0 ;kDsD̄s
;kψω;kD�D̄� ;kψϕÞÞ

¼ ð−;−;−;−;−;þ;þÞ
¼ ðηcη½−�;DD̄½−�;ηcη0½−�;DsD̄s½−�;ψω½−�;

D�D̄�½þ�;ψϕ½þ�Þ:

We always order the channels by their threshold energies,
so that a proximal sheet can be identified by a sequence of
“−” followed by a sequence of “þ.” Thus at these energies
ðηcη½−�;DD̄½−�;ηcη0½−�;DsD̄s½−�;ψω½−�;D�D̄�½þ�;ψϕ½þ�Þ
is the proximal sheet. The pole on this sheet found when
varying the parametrization is shown in Fig. 19. The pole is
located at

at
ffiffiffiffiffi
s0

p ¼ ð0.7050� 0.0025Þ − i
2
ð0.0120� 0.0070Þ

ffiffiffiffiffi
s0

p
≈ 3995� 14 −

i
2
ð67� 38Þ MeV;

where the quoted uncertainties are conservatively taken as
the envelope of the individual uncertainties from each
parametrization, and the quoted central values are taken as
the center of the envelope in complex-Ecm.

The pole residue factorizes into channel couplings,

atjcηcηf1S0gj ≈ 0

atjcDD̄f1S0gj ¼ 0.093ð28Þ
atjcηcη0f1S0gj ≈ 0

atjcDsD̄sf1S0gj ¼ 0.128ð56Þ
atjcψωf1S0gj ¼ 0.083ð83Þ

atjcD�D̄�f1S0gj ¼ 0.227ð97Þ
atjcψϕf1S0gj ≈ 0; ð20Þ

where the uncertainties quoted again reflect the envelope
over all of the individual parametrizations. We find no
evidence for significant couplings to channels with a
charmonium and light meson.
The corresponding partial widths are,

ΓðDD̄f1S0gÞ ¼ 0.0040ð23Þa−1t ≈ 23ð13Þ MeV

ΓðDsD̄sf1S0gÞ ¼ 0.0049ð46Þa−1t ≈ 28ð26Þ MeV

Γðψωf1S0gÞ ¼ 0.016ðþ31
−16Þa−1t ≈ 9þ18

−9 MeV; ð21Þ

and summing these we obtain a value in good agreement
with the total width obtained from the pole location:
60(34) MeV compared with 67(38) MeV from 2 Im

ffiffiffiffiffi
s0

p
.

In all cases, the scattering amplitudes contain several
additional poles. When a pole has a nonzero imaginary part
in s, a complex-conjugate pair of poles ðs0; s�0Þ must arise
on a common Riemann sheet. These are exact complex
conjugates and so are easily identifiable. However, the

0.1 0.2 0.3 0.4

FIG. 19. The JPC ¼ 0þþ pole and couplings found on the “proximal” sheet between ψϕ and D�D̄� thresholds. In the left panel grey
points indicate the pole position on each successful amplitude parametrization and the black point shows the final quoted pole position
and uncertainty as described in the text. In the right panel each histogram bar represents the value of that coupling found in one
successful parametrization.
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distance of the relevant half s-plane should be considered.
Since physical scattering occurs at sþ iϵ on the upper half
s-plane of the physical sheet, then the part of the closest
unphysical sheet (the proximal sheet) that is nearby is its
lower half s-plane. Other relevant unphysical sheets can be
connected to these via their upper half s-planes as we shall
see below.
Due to the presence of a large number of channels, it is

inevitable that additional poles on other Riemann sheets are
present in all cases. Many of these can be considered
“trivial copies” of the resonance pole identified above,
others are far from the region where energy levels are
present and so cannot be reliably claimed. Very distant
poles, far from any (real-valued) energy levels, typically
vary between parametrizations or are sometimes absent
entirely, and can thus be considered inessential to describe
the physics present.24

One family of poles that can be dismissed as “trivial
copies” of the resonance pole are found on the sheets where
the sign of Im ki for a decoupled (or very weakly coupled)
channel is flipped. For example, since ηcη is decoupled, there
is no sensitivity to the sign of Im kηcη. This can be seen from
simple Flatté-like amplitudes which have a denominator like

D ¼ m2 − s − ig21ρ1 − ig22ρ2: ð22Þ

It is the zeros ofD that are the poles of the amplitude. If any gi
tends to zero then the dependence on the choice of sheet for
channel i drops out since ρi ¼ 2ki=

ffiffiffi
s

p
and a pole will be

present for both signs of Im ki. We thus expect there to be
trivial copies due to the possible signs of Im ki for ηcη, ηcη0,
ψω and ψϕ, which are typically observed to have zero or
small couplings. For the remainder of this subsection,
we do not consider these trivial copies, and focus only on
the sheets defined by the signs of Im ki for DD̄, DsD̄s

and D�D̄�.
Considering the 8 possibilities for DD̄, DsD̄s and D�D̄�,

for any given real scattering energy only a few sheets are
relevant. Aside from the physical sheet and the proximal
sheet, further “hidden” sheets may also be important. These
are sheets that are not continuously connected to the real
scattering line away from thresholds. Thus poles on such
sheets can only exert their influence close to the relevant
threshold where the distance in the complex plane to the
physical scattering axis is short.
One relevant sheet for 0þþ where we find an additional

pole is ðDD̄½þ�; DsD̄s½−�; D�D̄�½þ�Þ. This is sometimes
referred to as the “4th” sheet, and its upper half s-plane is
continuously connected to the lower half s-planes of the
ðDD̄½−�; DsD̄s½þ�; D�D̄�½þ�Þ sheet above DsD̄s threshold,
and the ðDD̄½−�; DsD̄s½−�; D�D̄�½þ�Þ sheet below DsD̄s

threshold.25 This is conveniently illustrated through a
plot of the complex kDsD̄s

plane, which opens out the
Riemann surface in s into a single connected plane for the
sheets nearest to DsD̄s threshold. In Fig. 20 we show
the position of this additional pole, along with the pole on
the proximal sheet, in both the complex kDsD̄s

and complexffiffiffi
s

p
planes.26

It is well-known that narrow resonances in coupled-
channel systems often produce such a second pole, some-
times called a “mirror” pole.27 Suggestions have been made
that further information may be inferred from the arrange-
ment of poles [64,65], and in that interpretation, the
arrangement in Fig. 20 corresponds to an “ordinary”
narrow resonance, as opposed to a state present due to
strong attraction at threshold.

B. Tensor resonance

The amplitudes in Sec. V F describing JPC ¼ 2þþ are
found to consistently feature a pole, shown in Fig. 21,
located at

at
ffiffiffiffiffi
s0

p ¼ ð0.6990� 0.0026Þ − i
2
ð0.0115� 0.0026Þ

ffiffiffiffiffi
s0

p
≈ 3961� 15 −

i
2
ð65� 15Þ MeV;

on the proximal sheet between ψω and D�D̄� thresholds,
ðηcη½−�; DD̄½−�; DD̄�½−�; DsD̄s½−�; ψω½−�; D�D̄�½þ�;
ψϕ½þ�Þ.
The couplings of this pole are determined to be

atcηcηf1D2g ≈ 0

atcDD̄f1D2g ¼ 0.103ð25Þ
atcDD̄�f3D2g ¼ 0.123ð39Þ
atcDsD̄sf1D2g ¼ 0.032ð32Þ
atcψωf5S2g ≈ 0

atcD�D̄�f5S2g ¼ 0.336ð99Þ
atcψϕf5S2g ≈ 0: ð23Þ

As in the scalar case, no significant coupling to closed-
charm channels is observed. The relatively large coupling
to D�D̄�, with the resonance lying someway below
threshold for decay into this channel, explains the rapid
turn-on of D�D̄� at threshold. Note that the peculiar

24Occasionally distant poles occur on the physical sheet. In the
scalar channel, these are typically a GeV or more in their
imaginary parts and so are not considered relevant.

25For an earlier example of a 4th sheet pole, see Ref. [63].
26In just one parametrization (the Λ ¼ 0.032 entry in Table X)

this pole is located on the ðDD̄½−�; DsD̄s½þ�; D�D̄�½þ�Þ sheet
instead of the ðDD̄½þ�; DsD̄s½−�; D�D̄�½þ�Þ sheet.

27In a two-channel Flatté amplitude, the ð−;þÞ (or ðþ;−Þ)
pole is relevant for resonances coupled to both channels but found
below the second threshold, while the ð−;−Þ pole becomes
important for narrow resonances coupled to both channels above
both thresholds.
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dependence only upon the ratio of K-matrix couplings gi,
and not the absolute scale, discussed in Sec. V F, is a
property only of the parametrization, and not of the
rigorously defined t-matrix pole couplings ci, which take
very similar values regardless of the choice of fixed “g”
coupling.
The corresponding partial widths are,

ΓðDD̄f1D2gÞ ¼ 0.0046ð22Þa−1t ≈ 26ð12Þ MeV

ΓðDD̄�f3D2gÞ ¼ 0.0039ð25Þa−1t ≈ 22ð14Þ MeV

ΓðDsD̄sf1D2gÞ ¼ 0.0003ð53Þa−1t ≈ 2þ3
−2 MeV; ð24Þ

and summing these produces 50(17) MeV, compared with
65(15) MeV obtained from the pole location. The large
coupling to the closedD�D̄� channel is not accounted for in
this prescription, which may explain the slight difference.
As was the case in 0þþ, additional poles are present for

2þþ, and they warrant further attention. Given the approxi-
mate decoupling observed to closed-charm final states, it is
convenient to label sheets considering only DD̄, DD̄�,
DsD̄s and D�D̄� channels. Additional poles on hidden
sheets are present, and are presented in Appendix G. On the
physical sheet, poles are observed for all parametrizations,
and their presence is a concern given that it signals a

0.67 0.68 0.69 0.70 0.71 0.72
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FIG. 20. Poles found in the JPC ¼ 0þþ amplitudes plotted in the complex kDsD̄s
and

ffiffiffi
s

p
planes. The poles of the reference

parametrization Eq. (17) are identified in black. The resonance pole on the proximal sheet is plotted in blue, and additional poles on
other sheets are plotted in red and green. In one parametrization a “mirror” pole is found on the ð−;þ;þÞ sheet, in all others it is found
on the ðþ;−;þÞ sheet.
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FIG. 21. The JPC ¼ 2þþ pole and couplings found on the “proximal” sheet between ψω and D�D̄� thresholds for a set of successful
amplitude parametrizations. The ηcη0 channel is not included in the parametrizations. Couplings to the ηcη, ψω and ψϕ channels are
found to be small, but only limited freedom is present in the parametrizations used.
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violation of causality in the amplitude description. These
poles are discussed in detail in Appendix G where they are
found to be related to the D-wave barrier factor associated
with the DD̄�f3D2g channel, and upon modification of this
factor, they disappear without the resonance pole being
changed significantly.

C. States in JPC = 3++ and 2−+
We determined JPC ¼ 3þþ amplitudes, primarily to

constrain them as “background” waves in our determina-
tion of 2þþ. Successful descriptions of the finite-volume
spectra include a 3þþ resonance pole coupled toDD̄�f3D3g
and D�D̄�f5D3g. Several caveats apply to this result, as
described in Sec. V C. As shown in Fig. 22, considering
multiple parametrizations, a pole is consistently found with

at
ffiffiffiffiffi
s0

p ¼ ð0.7276� 0.0025Þ − i
2
ð0.0098� 0.0040Þ

ffiffiffiffiffi
s0

p
≈ 4123� 14 −

i
2
ð56� 23Þ MeV

and couplings

atcDD̄�f3D3g ¼ 0.148ð37Þ
atcψωf3D3g ≈ 0

atcψωf5D3g ≈ 0

atcD�D̄�f5D3g ¼ 0.061ð61Þ
atcDsD̄�

sf3D3g ≈ 0

atcψϕf5D3g ≈ 0; ð25Þ

showing that, again, coupling to closed-charm channels is
not significant. The partial widths are

ΓðDD̄�f3D3gÞ ¼ 0.0098ð50Þa−1t ≈ 55ð38Þ MeV

ΓðD�D̄�f5D3gÞ ¼ 0.0011þ22
−11a

−1
t ≈ 6þ13

−6 MeV: ð26Þ

In determining JPC ¼ 2−þ, a stable bound–state pole
coupled to DD̄�f3P2g was found at at

ffiffiffiffiffi
s0

p ¼ 0.67538ð68Þ
in the reference parametrization given in Eq. (11).
This corresponds to a bound-state ηc2 pole withffiffiffiffiffi
s0

p ≈ 3827ð4Þ MeV. A coupling atcDD̄�f3P2g ¼ 25ð15Þi
was also determined.

D. Other possible singularities

The amplitude parametrizations we have used have the
advantage of exactly implementing coupled-channel uni-
tarity in the physical s–channel scattering region where
we have constraint from the finite-volume spectrum.
They have the cuts implied by s-channel unitarity,
and are flexible enough to describe pole singularities

corresponding to resonances, bound states and virtual
bound states. What they do not contain is the physics of
“left-hand cuts,” i.e. the projection into s-channel partial-
waves of scattering processes in the t-and u-channels. In
many simple cases these cuts appear far from the physical
s-channel region, and are of limited relevance, but in certain
circumstances they can enter in a way that may have a
significant impact.
The closest such cuts relevant to the current study are due

to t, u-channel pion exchanges, that arise when at least one
of the scattering hadrons has nonzero intrinsic spin,
leading to the analogue of the “short nucleon cut”
[66,67]. Such cuts open only a few tens of MeV below
the physical s-channel threshold and thus may be of
concern. Since the cut will generate an imaginary part in
partial-wave amplitudes that is not accounted for in the
derivation of the Lüscher formalism, dealing with it
correctly may require a modification of the finite-volume
formalism [68]. A recent example considering the closely
related case of doubly-charmed I ¼ 0 DD� scattering can
be found in Ref. [69] which discusses the lattice calcu-
lation presented in Ref. [70].
We leave the issue of explicitly accounting for “left-hand

cuts” as a problem for future studies. Given that no internal
inconsistencies have been observed in this calculation, with
finite-volume spectra described perfectly well by ampli-
tudes lacking explicit left-hand cut structures, it is possible
that this effect is largely negligible. Indeed, if these effects
are large, then the issue of these cuts is likely to be of
concern in all studies of unstable charmonia.

VII. INTERPRETATION AND COMPARISONS

Our key finding in this work is that, for mπ ≈ 391 MeV,
the 0þþ and 2þþ charmonium sectors contain only a single
narrow resonance each, lying above the DsD̄s threshold,
but slightly below the D�D̄� threshold. The scalar reso-
nance has significant couplings to all open-charm decay
channels, and the tensor to all open-charm except DsD̄s.
Neither resonance has any significant coupling to closed-
charm channels. There are also bound states well below
threshold corresponding to the χc0ð1PÞ and the χc2ð1PÞ.

0.1 0.2 0.3 0.4

FIG. 22. The JPC ¼ 3þþ pole and couplings found on the
“proximal” sheet between ψϕ and D�

sD̄�
s thresholds for a set of

successful amplitude parametrizations.
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There is no indication of any further states in the energy
region considered. In particular, there is no sign of a scalar
bound-state lying just below the DD̄ threshold, where no
significant attraction is observed. The results also suggest
the existence of a narrow 3þþ resonance and a 2−þ
bound state.
Throughout the course of this calculation, we considered

several S-wave channels involving a closed-charm meson
and a light meson: ηcηf1S0g, ηcη

0f1S0g, ψωf1S0g,
ψωf5S2g, ψϕf1S0g, ψϕf5S2g, χc1ηf3S1g, and χc2ηf5S2g.
None were found to have large scattering amplitudes, and
no near-threshold singularities were identified associated
with these channels.
The calculation was performed on three lattice volumes,

but only a single lattice spacing, and a single choice of the
degenerate light quark, strange quark and charm quark
masses, with the light quarks being unphysically heavy. As
indicated in Table IV, which shows stable hadron masses,
there is evidence that the charm-quark mass, and perhaps
the strange-quark mass, may have been tuned to be slightly
smaller than their physical values. Any phenomena that are
sensitive to the mass difference between the up and down
quarks, or QED effects, will not be correctly captured in
this calculation. Discretization effects, while likely small
for light mesons, can be larger for charmed and charmo-
nium systems. For example, the J=ψ–ηc hyperfine splitting,
is around 33(1) MeV smaller than observed experimentally,
as determined from the values in Table II and Ref. [62]. The
deliberate removal of cc̄ annihilation likely plays at most a
modest role and may contribute to small discrepancies
such as the χcJð1PÞ mass difference with respect to experi-
ment (and of course to these states being stable in this
calculation).
Bearing these caveats in mind, we first summarise the

extracted amplitudes and then discuss interpretations,
comparing the results to prior lattice QCD calculations,
to phenomenological models, and to experimental candi-
date states.

A. State content of amplitudes by JPC

We now summarize and discuss the spectroscopic con-
tent of each JPC considered in this work. JPC ¼ f1; 3g−þ
amplitudes were also computed and found to be very small
in the energy region considered and are not discussed
further. There are also indications of a JPC ¼ 4þþ state
based on Ref. [30] and Fig. 2, however this would lie at a

slightly higher energy than has been considered in
this work.

1. JPC = 0+ +

Lying well below DD̄ threshold, the χc0ð1PÞ state is
clearly present and, owing to our deliberate removal of cc̄
annihilation, it is stable. Its presence plays no significant
role in the determination of scattering amplitudes at higher
energies.
Below the DsD̄s and ψω thresholds, no other poles are

found in 0þþ, either as bound states or as resonances inDD̄
or ηcη. Distant virtual poles occur well below threshold in
some parametrizations, but they have negligible impact on
the physical scattering region, and are likely to be artefacts
of extrapolating far outside the region of constraint. The
small negative energy shifts in ½000�Aþ

1 relative to non-
interacting D½000�D̄½000� energies are explained in amplitude
terms by very mild attraction at threshold, at a level far
below that needed for a bound-state to be present.
Around DsD̄s threshold, a similar but slightly larger

negative energy shift is observed, but again description in
terms of (coupled-channel) amplitudes indicates insuffi-
cient strength to require a nearby pole.28

In summary, our findings suggest no strong features
close to DD̄ or DsD̄s thresholds, with only modest
attraction appearing there.
In the energy region above the ψω threshold near

3900 MeV, more significant departures from the non-
interacting energy spectrum are present, which amplitude
analysis shows are due to the presence of a single narrow
scalar resonance. Large couplings to the open DD̄ and
DsD̄s channels are found, along with a large coupling to the
kinematically closed D�D̄� channel. Only upper limits
were found for the coupling to the ψω channel, while
no evidence was found for coupling to the ηcη and ηcη

0
channels.

2. JPC = 2++

In 2þþ the χc2ð1PÞ state is well below DD̄ threshold and
plays no significant role in the scattering amplitudes at
higher energies.

TABLE IV. Comparing stable meson masses determined on this lattice, with the scale fixed using the physicalΩ-baryon mass, to their
values in experiment (where states with significant decay widths have their masses shown in italics) [62]. (Statistical uncertainties less
than 0.5 MeV on lattice masses are not shown).

Mesonmass=MeV π K η D Ds D� ηc J=ψ χc0 χc2

This calculation 391 550 587 1886 1951 2010 2965 3044 3423(3) 3519(2)
Experiment 140 494 548 1865 1969 2007 2984 3097 3415 3556

28In certain extreme cases, where a very limited set of energy
levels were used, we were able to produce a virtual bound-state
pole. Further details can be found in Appendices C 1 and C 2.
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The D-wave nature of DD̄f1D2g and DsD̄sf1D2g
suppresses any near-threshold interaction, with the
first significant feature being a peak in the diagonal
DD̄f1D2g amplitude followed by a peak roughly 50 MeV
higher in energy in the diagonalDD̄�f3D2g amplitude. The
off-diagonal DD̄f1D2g → DD̄�f3D2g amplitudes peak
roughly in the middle, and these observations likely reflect
the different peak-shaping effects of the D-wave barrier
factors for the displaced thresholds.
As the S-wave D�D̄� channel opens, sharp features are

observed in all open-charm amplitudes, with the diagonal
D�D̄�f5S2g amplitude turning on rapidly as was seen for
the corresponding wave in the 0þþ case. Only a very weak
coupling to the DsD̄sf1D2g channel is observed, but this
may reflect, at least in part, theD-wave barrier suppression,
ðkDsD̄s

=kDD̄Þ2 ∼ 0.3 in the peak region.
These features are found to be due to a single narrow

resonance lying between DsD̄s threshold and D�D̄�
threshold.

3. JPC = 3++

Our results suggest the existence of an as-yet-unob-
served narrow JPC ¼ 3þþ resonance coupled dominantly
to DD̄�f3D3g, with a possible coupling to D�D̄�f5D3g and
only small couplings to closed-charm final states.

4. JPC = 2−+

We find a JPC ¼ 2−þ bound state ηc2 around 3830 MeV.
In the computed amplitudes its presence is not obviously
indicated by any strong scattering behavior above thresh-
old, but it is clearly present as a nearly volume-independent
energy level well below threshold.
At the physical light quark mass, it is likely that this state

remains below the relevantDD̄� open-charm threshold, and
will only generate a nonzero width through cc̄ annihilation.
On these grounds we would expect it to be rather narrow,
and it might be observable in radiative transitions.

B. Comparisons with Prelovsek et al. [28]

The most complete previous attempt to study the
charmonium scalar and tensor sectors in lattice QCD
appears in Ref. [28] where DD̄ and DsD̄s channels are
investigated using light and strange quark masses some-
what lighter than those used in this study (the pion mass is
280 MeV). The lightest channel that can couple, ηcη, is
assumed decoupled by fiat and is ignored completely, while
J=ψω is investigated but ultimately not included in
determinations of scattering amplitudes.
In 0þþ, Ref. [28] claims that three states are required to

describe their computed finite-volume spectrum: a stable
bound-state lying 4 MeV below DD̄ threshold, an
extremely narrow resonance lying less than 1 MeV below
DsD̄s threshold, and a resonance with a width of around

60 MeV lying some way above DsD̄s threshold, but well
below D�D̄� threshold.
Only limited consideration of the 2þþ sector is made.

A single resonance is claimed, lying some way aboveDsD̄s

threshold, and only slightly below D�D̄� threshold, a
channel which is not included in the analysis.
The authors compute finite volume spectra in the ½000�Aþ

1 ,
½100�A1, ½110�A1 and ½100�B1 irreps on two volumes using
operator bases that feature single-hadronlike cc̄ operators
and DD̄, DsD̄s meson-meson operators with relevant
momenta.29 The lowest energy D�D̄� operator is included
in the rest-frame only. J=ψω operators are included, but the
energy levels found to have overlapwith them are discarded.
No ηcη operators are included, despite this being nominally
the lowest threshold channel in the problem.30

Reference [28] opts to adjust energy shifts to account for
the difference between computed single hadron energies
and those predicted by the relativistic dispersion relation,
and these shifts can be of order 10 MeV, reflecting
significant discretization effects warranting further inves-
tigation [71]. The authors choose not to associate any
systematic error with this process. In contrast, in the current
paper, we propagate conservative errors in m and ξ coming
from the slightly different dispersion relations for different
species of single hadron into the Ecm values which go into
the Lüscher analysis, and we also implement an additional
systematic error onto every energy level to reflect the
modest observed departures from relativistic dispersion
(see Appendix A). Hence, to a certain extent we are placing
part of the discretization uncertainty into the amplitude
errors, and offering a more conservative estimate of the
precision of determination of the scattering process.
The different light and strange quark masses and

volumes make a direct comparison of spectra presented
in Ref. [28] to those presented in the current paper
impossible, but certain key features can be considered.
All studies so far agree that significant interactions between
DD̄ pairs occur, and Ref. [28] similarly finds a nonzero
coupling between DD̄ and DsD̄s in S-wave. Focussing on
the ½000�Aþ

1 spectrum, a difference is immediately appar-
ent, with the energy levels nearest to DD̄ threshold in
Ref. [28] being found significantly below threshold,
suggesting strong attraction, while in this paper, the
corresponding levels lie very close to the threshold.

29Unlike in the meson-meson operators used in this paper,
Ref. [28] does not make use of optimized single-hadron operator
constructions, which may lead to slower relaxation of correlation
functions to the relevant energy eigenstates with increasing
Euclidean time.

30In our calculation we have observed complete decoupling of
the ηcη from the rest of the scattering problem, and have found
that the spectrum outside those levels with overlap onto ηcη
operators remains unchanged if the ηcη operators are excluded.
As such, it may be the case that Ref. [28]’s exclusion of ηcη
operators has not introduced a significant error.
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The large downward shifts of these levels, when analyzed
using the Lüscher approach, lead to the claim of a bound
state in this scattering system. Figure 23 shows the DD̄
elastic scattering phase-shift corresponding to low-lying
energy levels fromRef. [28], the current paper, and an earlier
calculation at two differing light quark masses [27]. The
levels belowDD̄ threshold in Ref. [28] generate the two red
points at negative values of k cot δ requiring a fit curve that
crosses−

ffiffiffiffiffiffiffiffi
−k2

p
below threshold and hence a bound-state. In

contrast, the black points from the current calculation
indicateweak interaction near threshold and no bound-state.
Reference [28] considers different energy regions sep-

arately and determines amplitudes in the coupled-channel
region using piecewise-in-energy forms rather than the
continuous forms with good analytic properties used in the
current paper.31 The pole lying near theDD̄ threshold is not
present in the amplitude from which the higher two poles

are extracted. A coupled-channel analysis is performed
above DsD̄s threshold, but only a single parametrization is
considered that restricts the possible pole content—it can
support two poles decoupled from each other, but cannot
straightforwardly describe a single resonance coupled to
both the DD̄ and DsD̄s channels.
The current paper presents a more complete study of the

scattering system, considering all possible channels, con-
strained by an order of magnitude more energy levels, and
using a variety of analytically well-behaved amplitudes. We
come to a completely different conclusion about the number
of poles present, and while the pion mass is different, it
would be very surprising if two additional poles move into
the studied energy region under a modest change in the light
quark mass.

C. Interpretation and comparisons
to other theoretical work

Our finding of a single relatively narrow resonance in
each of JPC ¼ 0þþ and 2þþ can be compared to previous
model-based predictions of the state content of the energy
region around the DD̄ and DsD̄s thresholds.
Before the observation of the XYZ candidates, a leading

picture of the observed states above 3 GeV was in terms of
charm-anticharm bound states formed of heavy quarks
moving in a static potential. Our results appear to agree
with the state counting of this picture, with the single χc0
and χc2 resonances corresponding to the 2P radial excita-
tions. The large overlap of energy-levels near to the masses
of these states with cc̄-like operators also supports a
dominant role for charmoniumlike wavefunction compo-
nents in these states. The fact that our scalar state is slightly
heavier than the tensor state32 is in opposition to the
prediction of short-distance spin-orbit effects in this pic-
ture. This might indicate that the physics of coupling to the
open-charm decay channels is stronger than the relativistic
corrections to the interquark potential.
Potential models also predict a single nearby 2−þ state

and a single nearby 3þþ state, as we found, and our
determined masses lie within the spread of predictions
made by various model implementations.
In order to include some of the physics of hadron strong

decay to pairs of lighter hadrons, potential models are
sometimes augmented with an application of first-order
perturbation theory in which an operator that produces a
quark-antiquark pair is introduced. The form of this
operator is an assumption of the approach, and a choice,
known as the “3P0 model,” which successfully describes
some experimental meson decays, has the pair produced
with vacuum quantum numbers. The relative strengths of
open-charm decays predicted by the 3P0 model [72,73] are
not consistently reflected in our extracted pole couplings.
The large coupling toD�D̄� of the tensor resonance relative
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FIG. 23. Comparison of the amplitudes extracted in the region
near DD̄-threshold region from energy levels in this work (with
mπ ≈ 391 MeV), and other lattice calculations, Lang et al. [27]
(mπ ≈ 156 MeV and 266 MeV) and Prelovsek et al. [28]
(mπ ≈ 280 MeV). Presented as k cot δ which has an effective
range expansion (upper panel) and S-wave elastic phase-shift δ
(lower panel).

31In Appendix E of Ref. [28], a continuous function is shown.
However, this is formed by joining the piecewise analyses
together using smoothed-step or sigmoid functions. These func-
tions contain essential singularities which make an analytic
continuation into the complex energy plane questionable. 32Albeit the effect is of limited statistical significance.
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to the scalar resonance is a feature of the 3P0 model, its
spin-recoupling factors giving the amplitudes a ratio of 2.
However, these factors do not work universally, as the ratio
of couplings for χc0 → D�D̄� and χc0 → DD̄ is predicted to
take value 1=

ffiffiffi
3

p
, which is in poor agreement with our

extracted couplings. The smallness of the tensor resonance
coupling to DsD̄s may have an explanation in the D-wave
threshold factor, but a very similar reduction would be
expected for DD̄� decays which is not seen, and the 3P0

model does not provide any compensating factor here.
The observation of XYZ candidate states spurred theo-

retical consideration of possible state constructions going
beyond just cc̄. In particular, the Xð3872Þ atDD̄� threshold
and the Zcð3900Þ nearby have been interpreted as provid-
ing evidence for strong long-distance meson-meson inter-
actions in S-wave, potentially strong enough to induce
binding of molecularlike meson-meson configurations.
Heavy quark spin symmetry applied to the charm quarks

suggests similar strong effects in the D�D̄� S-wave, and
potentially 0þþ; 1þ−; 2þþ partners of the 1þþ Xð3872Þ
[74,75]. These states may be bound relative to D�D̄�, but
because they lie above DD̄ and DD̄� thresholds, they may
manifest as resonances.33 It is suggested that thesemolecular
states appear in addition to the cc̄ states discussed above (or
for the physical eigenstates to be admixtures). The scalar and
tensor resonances found in the current calculation do have
numerically significant couplings to the kinematically
closed D�D̄� channel, which may imply they have signifi-
cant D�D̄� components. However, the state counting sug-
gests that D�D̄� S-wave interactions are not strong enough
to generate additional states (at a pion mass of 391 MeV).
An approach to explaining at least some of the XYZs that

does not directly connect them to meson-meson thresholds
is the suggestion that they contain significant compact
tetraquark components. While the dynamics assumed in
models to get these states to bind varies [77,78], inevitably
such pictures lead to many states beyond those expected in
a cc̄ only picture. Tetraquark states are often proposed
to lie within a few tens of MeVof meson-meson thresholds
with the same quark content and thus unambiguously
demonstrating such components is challenging [79]. The
results presented in this paper do not seem to support
additional states of tetraquark origin, but a natural criticism
would be that the calculation did not include operators
resembling compact tetraquark configurations.34 An earlier
calculation [51] performed on the smallest volume lattice

used here did include a basis of compact tetraquark operators
as well as meson-meson operators. This calculation found
no difference in the extracted finite volume spectrum when
the tetraquark operators were removed, suggesting that
tetraquark components may not be important.

D. Experimental comparisons

The experimental status of the channels studied in this
paper is at present unclear. Peaks are seen in several processes
but often JPC quantum numbers are not known. Nor is it
known how peaks in different final states relate to each other.
It is not possible to directly compare the present work to

experiment due to the larger light quark mass, the known
discretization effects illustrated by the incorrect J=ψ − ηc
hyperfine splitting, leading to expected differences of a few
tens of MeV, and the other systematic uncertainties dis-
cussed above. Nevertheless, we can present some discus-
sion assuming plausible extrapolations to the physical light
and strange quark masses.
It has been observed in several studies that typically

resonance properties vary smoothly with changes in quark
mass [45,53,59,61,80–83].35 It has proven to be reasonable
in many cases to perform extrapolations based upon the
idea that the reduced couplings (pole couplings with the
angular momentum barrier divided out) are constant with
changing quark mass. Predictions have been made using
this approach for f2 resonances [26,42], the b1 resonance
[25], ρJ, ωJ resonances [85], and a hybrid π1 [26].
Typically these extrapolations assume that we know the
physical mass of the resonance from experiment.
For light quark resonances decaying to final states

featuring a pion, there can be a large increase in phase-
space with reduction of light quark mass, and a correspond-
ing rapid growth in the decaywidth of resonances. However,
in the current case, consulting Table IV, we see that even
though the light-quark masses are high, because the charm-
quark mass is much larger than the light-quark mass, the
differences with respect to experiment of the stable hadron
masses remain relatively small, and hence we do not expect
particular large changes in the resonance properties.
For the case of the single extracted scalar resonance, we

might propose two possible extrapolations: (a) if the reso-
nance mass stays where it is (or decreases slightly), there
would be only a modest change in the DD̄ andDsD̄s phase-
spaces, and the state would remain an isolated relatively
narrow resonance with decays toDD̄, toDsD̄s (if this is still
an open channel) and possibly to J=ψω. (b) If the resonance
mass moves up slightly, getting close to or even above the
D�D̄� threshold, the large coupling to that channel in S-wave
could generate a large total width for the state. In either case
there will be just a single scalar resonance.
Compared to this result there would appear to be a surfeit

of experimental scalar candidate states, as discussed in the

33The longest-range process of one-pion exchange is not
present in elastic DD̄ scattering, and hence a bound-state in
DD̄ must be generated by some other process. However, a model
built around vector exchanges does not produce a low lying
S-wave state in DD̄ [76].

34Our meson-meson operators have a spatial structure that is
not compact, rather each meson samples the entire volume of the
lattice. 35Although there are notable exceptions, for example Ref. [84].
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introduction. What is not clear is whether the features
observed experimentally in differing production processes
and final states could actually be due to just a single resonance
appearing in the coupled-channel system. Production proc-
esses must share the same pole singularities as the scattering
t-matrix, but the real-energy axis line shape can be sculpted
by polynomial energy-dependence from the production
factor,36 which, if not accounted for, could lead to slightly
differing resonance masses and widths in different pro-
cesses. It remains to be seen if sufficiently rigorous coupled-
channel analysis could resolve the experimental χc0ð3930Þ;
χc0ð3960Þ peaks, the broad χc0ð3860Þ enhancement, and

possibly the Xð3915Þ as ultimately being due to amplitudes
featuring only a single scalar resonance pole.
For the tensor resonance, similar observations can be

made. However, the D-wave nature of the open decay
modes means that the state will rapidly become narrow if its
mass decreases, while the large S-wave coupling to D�D̄�
might make it broad should it go up in mass. The results are
consistent with there being a single χc2ð3930Þ resonance
coupled to DD̄ [5,6,86], and the current experimental data
is not inconsistent with this having at most a small coupling
to DsD̄s [10].

VIII. SUMMARY

We have presented an investigation of the χc0 and χc2
channels above DD̄ threshold where resonant effects are
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FIG. 24. Results from JPC ¼ 0þþ (left column) and JPC ¼ 2þþ (right column). Top panels: scattering t-matrix elements plotted as
ρiρjjtijj2. Middle: dots show the energy levels used to constrain scattering amplitudes, with further energy levels at lower energies that
mostly constrain the ηcη amplitudes. Bottom panels: resonance pole positions on the “proximal” sheet, the closest unphysical sheet to
the real energies at which s-channel scattering occurs. The most significant partial widths are also indicated, as determined from pole
residues using Eq. (19).

36Or even more rapid energy dependence if the Born-term has
a nearby singularity.
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observed in experiment. Working in the approximation
where charm-quark annihilation is forbidden, for the first
time we have been able to consider all of the necessary
channels up to ψϕ threshold. A summary of our key
findings is presented in Fig. 24.
Working atmπ ≈ 391 MeV,we find a quite simple picture

with a single resonance in both JPC ¼ 0þþ and 2þþ strongly
coupled to open-charm decay modes. Both resonances are
found just below D�D̄� threshold around 4000 MeV with
relatively narrow widths of around 60MeV, and both have a
significant coupling to the kinematically closed D�D̄�
channel in S-wave. A key difference between the resonances
is that the DsD̄s coupling is very small for the tensor
resonance, but for the scalar state it is of approximately equal
strength to the coupling to DD̄.
As a by-product of this work, in order to determine

“background” partial waves that appear in our lattice QCD
calculation, we have found an ηc2 bound state, and a χc3
resonance, both of which have coupling to the DD̄�

channel. Exotic JPC ¼ 1−þ and 3−þ amplitudes were found
to be small below 4100 MeV.
Our results are in disagreement with other theoretical

work reporting bound or near-threshold states in DD̄ in
S-wave [8,9,15,78,87–90], including a prior lattice QCD
calculation [28].
The methods used in this paper may be applied to other

sectors featuring scattering of hadrons containing
charm quarks. Particularly attractive targets are the near-
threshold vector-pseudoscalar enhancements, X=χc1ð3872Þ,
Tccð3875Þþ, andZc=Tb

ψ1ð3900Þþ, whose interaction dynam-
ics are likely related to the states observed in the current paper.
A more complete calculation in a robust lattice QCD
framework of these systems will aid in understanding the
inner workings of QCD at these energies.

Reasonable requests for data, such as energy levels and
correlations, can be directed to the authors and will be
considered in accordance with the Hadron Spectrum
Collaboration’s policy on sharing data [91].
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APPENDIX A: DISPERSION RELATIONS AND
ADDITIONAL SYSTEMATIC UNCERTAINTY

In this appendix we give further details of the dispersion
relations, stable hadron masses and the additional system-
atic uncertainty included in the spectrum. Figure 25 shows
the result of determining stable hadron masses from
dispersion relation fits to each lattice volume individually.
Figure 26 shows the deviations of the computed energies

from the dispersion relation fitted to all three volumes
simultaneously. The size of these residuals, particularly for
the χcJ states, motivates our addition of a systematic error
as described in the main text. Without this additional
systematic, the χ2=Nd.o.f. values for descriptions of com-
puted finite-volume spectra using scattering amplitudes in
many cases are large. By adding this systematic error,
which may reflect discretization effects or some other
unaccounted-for systematic, we make the uncertainty on

the amplitude descriptions more accurately reflect the
uncertainty in the calculation. Additional details in the
context of DK scattering are given in Ref. [45].
In Table V we provide details of the dispersion relation

fits for stable charmed and charmonium mesons using
Eq. (2) that are shown in Fig. 1 and Table II.

APPENDIX B: INCLUDING THE χ c0ð1PÞ
BOUND-STATE IN AMPLITUDES

In this appendix we consider the two-channel rest-frame
analysis of Sec. VA, but additionally include those energy
levels lying far below ηcη threshold which we have
identified as being due to the stable χc0ð1PÞ state. The
purpose is to show that the amplitude behavior above
threshold is unchanged upon this inclusion.
To describe the scattering system including the deep

bound-state, a K-matrix with a pole term and a matrix of
constants is used, with a Chew-Mandelstam phase-space
subtracted at the K-matrix pole location. Describing 13
energy levels results in amplitude parameters,

atm ¼ ð0.60402� 0.00037� 0.00004Þ
atgηcη ¼ ð0.23� 0.09� 0.02Þ
atgDD̄ ¼ ð0.23� 0.63� 0.15Þ

γηcη→ηcη ¼ ð0.97� 0.53� 0.08Þ
γηcη→DD̄ ¼ ð0.05� 1.54� 0.31Þ
γDD̄→DD̄ ¼ ð1.11� 3.24� 0.07Þ

2
6666666664

1.00 0.52 0.02 0.53 0.08 −0.09
1.00 0.45 0.91 0.54 0.37

1.00 0.19 0.99 0.98

1.00 0.28 0.10

1.00 0.96

1.00

3
7777777775

χ2=Nd.o.f. ¼ 8.19
13−6 ¼ 1.17; ðB1Þ
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FIG. 25. Masses of stable hadrons obtained from dispersion relation fits to each lattice volume individually, atmL, using Eq. (2). Fits
include points with momentum jn⃗j2 ≤ 3, 4, 6 for L=as ¼ 16, 20, 24 respectively.
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FIG. 26. Residuals upon fitting stable hadron energies to the dispersion relation given in Eq. (2) with independent values of m, ξ for
each hadron. Gray bands indicate our selection of modest additional systematic uncertainties added to energy levels for J ¼ 0, 1 (left)
and J ¼ 2, 3 (right).

TABLE V. Results of dispersion relation fits on the L=as ¼ 24 lattice with jn⃗j2 ≤ 6.

Hadron atm ξ χ2=Nd.o.f.

D 0.33281(9) 3.466(4) 7.79
7−2 ¼ 1.56

Ds 0.34424(11) 3.457(4) 9.76
7−2 ¼ 1.95

D� 0.35464(14) 3.477(7) 28.6
16−2 ¼ 2.04

D�
s 0.36566(14) 3.483(7) 28.5

16−2 ¼ 2.04

ηc 0.52312(4) 3.491(2) 50.5
7−2 ¼ 10.1a

ψ 0.53715(5) 3.491(2) 128
16−2 ¼ 9.17b

hc 0.61662(26) 3.450(22) 31.4
16−2 ¼ 2.24

χc0 0.60422(25) 3.478(25) 2.69
7−2 ¼ 0.54

χc1 0.61488(46) 3.462(26) 20.9
16−2 ¼ 1.49

χc2 0.62110(28) 3.454(25) 23.8
27−2 ¼ 0.95

η0c 0.64160(55) 3.647(115) 8.58
7−2 ¼ 1.72

ψ 0 0.64566(110) 3.484(141) 7.99
10−2 ¼ 1.00c

aThe largest individual deviation here is 1.95σ, and most are below 1σ, suggesting that correlations are playing a
significant role.

bA single level, in ½002�A1, contributes most of the tension here, having a 4σ deviation—removing this level
results in χ2=Nd.o.f. ¼ 27.7

15−2 ¼ 2.13 and compatible values of atm ¼ 0.53720ð5Þ and ξ ¼ 3.489ð2Þ.
cIn this case, only momenta, jn⃗j2 ≤ 4 were used.
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and the resulting amplitude is presented in Fig. 27, which is
comparable to Fig. 7.
We performed a limited exploration of the space of

possible parametrization variations, finding amplitudes
with gDD̄ ¼ 0 that described the data as well as the above
description. Wewere not able to find amplitudes with a pole
term but with gηcη set to zero that described the data well.
Including moving-frame energy levels do not change these
conclusions.

APPENDIX C: JPC = 0++ AMPLITUDE
DETERMINATIONS WITH 3 AND 5 CHANNELS

In this appendix we investigate scalar amplitudes deter-
mined using highest energies that lie between the two
channel region in Secs. VA and VG and the 7 channel
region in Secs. V B and V H. The aim is to more closely
inspect the DsD̄s near-threshold region, and to show that
inclusion of theD�D̄� channel is not essential to extract the
resonance pole (although the extra levels and wider energy
coverage are helpful).

1. JPC = 0++ below ψω threshold

We determine scattering amplitudes in the region where
ηcη, DD̄ and DsD̄s are active, below the ψω threshold at
atEcm ¼ 0.690. In this case we opt to neglect the ηcη

0
channel which is assumed to be decoupled, and exclude
those levels dominated by overlap with operators resem-
bling ηcη0. One motivation for considering only these levels
is that the description in this energy region appears to have
some tension in the larger energy region S-wave amplitude
determinations, for example see the left panel of Fig. 17.
We make use of rest-frame irreps (L=as ¼ 16, 20, 24)

and moving-frame irreps (L=as ¼ 20, 24) with energies up
to atEcm ¼ 0.690. This includes 5 levels dominated by
overlap with DsD̄s operators very close to DsD̄s threshold
from ½000�Aþ

1 and ½002�A1. The ½001�A1 and ½111�A1 irreps
are included but they do not have any levels dominated by
DsD̄s operators in this energy region.
An example amplitude determined from these energies is

given by a K-matrix of constants Kij ¼ γij. In this case, we
subtract the Chew-Mandelstam function at the threshold of
each channel. The resulting parameter values are,

γηcη→ ηcη ¼ ð1.39� 0.58� 0.40Þ
γDD̄→DD̄ ¼ ð0.13� 0.35� 0.22Þ

γDsD̄s→DsD̄s
¼ ð4.87� 3.84� 3.28Þ

γηcη→DD̄ ¼ ð0.57� 0.32� 0.08Þ
γηcη→DsD̄s

¼ ð3.18� 1.35� 0.96Þ
γDD̄→DsD̄s

¼ ð−0.87� 1.07� 0.45Þ

2
6666666664

1.00 0.23 0.70 0.10 0.92 0.07

1.00 0.32 −0.28 0.26 −0.55
1.00 0.18 0.91 0.13

1.00 0.14 0.84

1.00 0.14

1.00

3
7777777775

χ2=Nd.o.f. ¼ 53.0
60−6−8 ¼ 1.15;

ðC1Þ

where the central value of the γDsD̄s→DsD̄s
parameter is numerically larger than in the other amplitudes in this work, although

with a large uncertainty. The description of the finite-volume energy levels is improved in the region of DsD̄s threshold, as
can be seen in Fig. 28. The amplitudes are plotted in Fig. 29.
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FIG. 27. As Fig. 7, but including levels well below ηcη threshold due to the stable χc0ð1PÞ state. Amplitude as given by Eq. (B1).
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With this selection of levels, stronger features can be
seen at DsD̄s threshold than when considering a wider
energy range. Amplitudes determined from this limited
selection of energies feature poles on unphysical sheets in
the region of at

ffiffiffi
s

p
≈ 0.68, which may be at complex

locations in coupled-channel cases, or on the real axis
below DsD̄s threshold in decoupled cases. In the case
presented in Eq. (C1), there is a pole on a “hidden” sheet,
although within uncertainties the imaginary part is con-
sistent with zero, as summarized in Table VI.
The large uncertainties on the parameters and the plotted

amplitudes indicate that the constraint on DsD̄s is not
particularly strong. We have highlighted this because it is
the most extreme amplitude behavior near DsD̄s threshold
that the finite-volume spectra can tolerate. However, no
poles have been found close toDsD̄s threshold in this work,

in contrast to Ref. [28] which finds one within a few MeV.
The energy shifts seen in the current calculation are smaller
and the corresponding interactions are weak. Adding
further levels at higher energies pushes the solution towards
a smaller DsD̄s amplitude just above threshold, the pole
then moves away, and the coupling weakens. The poles in
Table VI thus appear to be a property of describing energy
levels in too small a region, and are not a good overall
reflection of the findings in this work.

2. Determining JPC = 0++ up to D�D̄� threshold only

The 0þþ resonance identified in Secs. V B and VH lies
below D�D̄� threshold and so, in principle, we should be
able to extract it without considering the D�D̄� and ψϕ
channels, although the strong overlap with D�D̄� operators
of several states below threshold (as seen in Fig. 3) suggest
there is merit in including the kinematically closed D�D̄�
channel.
In this section we consider a coupled ηcη −DD̄ − ηcη

0 −
DsD̄s − ψω scattering system below D�D̄� threshold,
taking the opportunity to test some of the properties of
the amplitudes at lower energies. As with the main analysis,
we begin by using only at-rest energies before making use
of both rest-frame and moving-frame energies together.

16 20 24
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0.62

0.64

0.66

0.68

16 20 24 16 20 24 16 20 24 16 20 24

FIG. 28. As Fig. 7, except solutions from the three-channel amplitudes in Eq. (C1) determined from ½000�Aþ
1 and moving frames A1

irreps are shown as the orange curves.
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FIG. 29. Three-channel JPC ¼ 0þþ scattering amplitudes in
Eq. (C1) determined from ½000�Aþ

1 and moving frame A1 irreps.

TABLE VI. Poles in three channel ηcη −DD̄ −DsD̄s ampli-
tudes, Eq. (C1).

sign Im ðkηcη; kDD̄; kDsD̄s
Þ at

ffiffiffiffiffi
s0

p

ðþ;−;−Þ ð0.675� 0.022Þ � i
2
ð0.027� 0.028Þ

ðþ;þ;−Þ ð0.681� 0.012Þ � i
2
ð0.029� 0.045Þ
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a. Rest-frame energies only

Working below atEcm ¼ 0.709, there are 30 levels over
the three volumes (including three ηcη

0 levels) from
½000�Aþ

1 . Following the methods outlined in the main text,

we make use of a K-matrix with a pole and constants,
Kij ¼ gigj

m2−s þ γij, and a Chew-Mandelstam phase space
subtracted at the K-matrix pole. One representative
result is,

atm ¼ ð0.70398� 0.00128� 0.00035Þ
atgDD̄ ¼ ð0.0867� 0.0155� 0.00143Þ

atgDsD̄s
¼ ð0.1281� 0.0222� 0.00393Þ

γηcη→ηcη ¼ ð0.07� 0.098� 0.048Þ
γDD̄→ψω ¼ ð2.04� 0.620� 0.208Þ
γηcη0→ηcη

0 ¼ ð3.17� 1.49� 0.66Þ

2
6666666664

1.00 −0.10 −0.57 −0.27 −0.16 −0.10
1.00 0.14 −0.07 0.28 0.01

1.00 0.09 0.01 0.00

1.00 −0.14 0.17

1.00 −0.03
1.00

3
7777777775

χ2=Nd.o.f. ¼ 41.9
30−6 ¼ 1.75; ðC2Þ

where as previously all parameters not listed are set
equal to zero. This amplitude is plotted in the top panel
of Fig. 30.
The limited set of energy levels provides relatively little

constraint for the ψω channel, with only three levels
dominated by ψω operators being present very close to
ψω threshold. However, in this case, the ψω amplitude has
an interesting shape, it produces a dip around the pole
position and has a relatively sharp rise from threshold,
resulting in a shallow peak slightly below the resonance
mass. The uncertainties are large and this feature does not
survive the addition of more energies, but it does show how
small strength features in very weakly coupled channels do
not always resemble the dominant resonance.
Adding more free parameters can produce a lower

χ2=Nd.o.f., in particular when allowing nonzero γDD̄→DD̄
and γDsD̄s→DsD̄s

. However these also result large

uncertainties on the determined amplitudes. Freedom in
the γDD̄→ψω parameter can be interchanged with γψω→ψω or
gψω with little effect on the amplitudes within uncertainties,
and only small changes in the χ2=Nd.o.f..

b. Including moving-frame energies

Using rest-frame energies up to atEcm ¼ 0.709 and the
same selection of moving-frame energies up to atEcm ¼
0.690 that were previously used in Sec. C 1, results in 75
levels to constrain the S-wave amplitudes. We fix the
JPC ¼ 2þþ result to the reference amplitude given in
Eq. (15), and for simplicity we fix all other contributing
partial-waves to zero. We also fix the strength of the
decoupled ηcη

0 channel via γηcη0→ηcη
0 ¼ 3, consistent with

the determination in Eqs. (17) and (C2). An example
amplitude determined from these levels is,

atm ¼ ð0.7037� 0.0013� 0.0007Þ
atgDD̄ ¼ ð0.081� 0.016� 0.001Þ
atgDsD̄s

¼ ð0.133� 0.022� 0.009Þ
γηcη→ηcη ¼ ð0.02� 0.08� 0.05Þ
γDD̄→DD̄ ¼ ð−0.53� 0.21� 0.11Þ

γDsD̄s→DsD̄s
¼ ð0.16� 1.02� 0.34Þ

γψω→ψω ¼ ð1.02� 2.01� 0.26Þ
γηcη0→ηcη

0 ¼ 3 ðfixedÞ

2
6666666666664

1.00 0.31 −0.46 −0.22 0.08 0.47 −0.06
1.00 −0.06 −0.05 −0.32 0.42 −0.01

1.00 0.21 −0.11 0.06 0.00

1.00 0.14 0.10 0.09

1.00 0.04 0.05

1.00 0.03

1.00

3
7777777777775

χ2=Nd.o.f. ¼ 89.9
75−7−11 ¼ 1.58:

In this case, the second uncertainties are obtained by
varying the scattering hadron masses to their upper values
in Table II (mi → mi þ δmi), but only half a sigma in the
negative direction (mi → mi − δmi=2). When varying the

masses to their lower values (mi → mi − δmi), we find
qualitatively slightly different solutions which are dis-
cussed below. This amplitude is plotted in the central panel
of Fig. 30.
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In this reduced energy region below D�D̄� thresh-
old, when performing amplitude determinations at the
extreme lower end of the ranges of the hadron masses
(mi → mi − δmi in Table II), we observe a second class of
solution for theDsD̄s amplitude, shown in the bottom panel
of Fig. 30. We see that this solution has a significantly

stronger turn-on of the DsD̄s → DsD̄s amplitude at thresh-
old, and an atypical behavior at higher energies where a
strong peak appears in DD̄ → DD̄.
The parameters corresponding to this solution using the

rather extreme mass values mi − δmi are,

atm ¼ ð0.7069� 0.0010Þ
atgDD̄ ¼ ð0.102� 0.019Þ

atgDsD̄s
¼ ð0.065� 0.057Þ

γηcη→ηcη ¼ ð−0.04� 0.10Þ
γDD̄→DD̄ ¼ ð−0.39� 0.23Þ

γDsD̄s→DsD̄s
¼ ð2.87� 1.02Þ

γψω→ψω ¼ ð−0.22� 1.19Þ
γηcη0→ηcη

0 ¼ 3 ðfixedÞ

2
6666666666664

1.00 −0.17 −0.62 −0.32 0.00 −0.04 −0.12
1.00 −0.14 −0.08 −0.71 0.08 0.00

1.00 0.14 0.26 −0.18 0.07

1.00 0.21 0.27 0.11

1.00 0.13 0.11

1.00 0.09

1.00

3
7777777777775

χ2=Nd.o.f. ¼ 91.9
75−7−11 ¼ 1.61;

and this amplitude has a virtual bound-state pole strongly
coupled to the DsD̄s channel at at

ffiffiffiffiffi
s0

p ¼ 0.6656� 0.0157
with atjcDsD̄s

j ¼ 0.413� 0.056. We highlight this
result in part because it is resembles somewhat the
solution found in Ref. [28], but only qualitatively, as
the pole is roughly 125 MeV below DsD̄s threshold while
Ref. [28] reports a pole within a few MeV of the DsD̄s
threshold.
We consider this solution to be disfavored as it only

appears when an extreme choice is made for all scattering
hadron masses, but even here a scalar resonance appears,
in reasonable agreement with our other determinations,
with a pole position at

ffiffiffiffiffi
s0

p ¼ 0.7068ð9Þ � i
2
0.0059ð26Þ

on the proximal sheet. Large couplings to DD̄ and
DsD̄s and small couplings to the ηcη and ψω channels
are found.
It should also be noted that while the central values look

quite different, the uncertainty bands are largely consistent
across Secs. 2 a and 2 b, and also the main results given
above, as can be seen in Fig. 30.

APPENDIX D: A JPC = 2++ TOY-MODEL STUDY

The purpose of this appendix is to show that the
couplings to the kinematically closed D�D̄� channel
can be determined reliably from the volume-dependence
of energy levels. We illustrate the sensitivity using a
simplified two-channel system with a resonance coupling
to an open D-wave channel (which we call DD̄) and a
closed S-wave channel (D�D̄�). For an approximately
fixed resonance mass and width, we show that the spectra
are sensitive to the value of the coupling to D�D̄�.
This toy-model also contains a further example of the

K-matrix pole “coupling-ratio phenomenon” described in
Sec. V E.
We utilize a two-channel version of the Flatté ampli-

tude Eq. (14), where the lower channel is DD̄f1D2g (with
D-wave suppression close to threshold) and the higher
channel is D�D̄�f5S2g (an S-wave channel that can open
rapidly). The pole parameter is set to atm ¼ 0.7, however
we subtract the real correction from −ig2D�D̄�ρD�D̄� ðm2Þ, as
described after Eq. (14), so that the pole parameter m
retains its meaning. We initially fix atgD�D̄� ¼ 1.6 which is
a representative value giving D�D̄�f5S2g amplitudes sim-
ilar to those found throughout this work. The gDD̄ coupling
is then chosen so that a t-matrix pole width atΓ ¼
−2 Imat

ffiffiffiffiffi
s0

p ¼ 0.0116 is obtained (corresponding to
≈66 MeV). We then reduce gD�D̄� and adjust gDD̄ in order
to maintain an approximately constant t-matrix pole posi-
tion at

ffiffiffiffiffi
s0

p ¼ 0.697� i
2
0.0116.

In Fig. 31 we show the amplitudes and the finite volume
spectra resulting from this procedure. Below atEcm ¼ 0.7,
on the lower half of the resonance hump, we see almost no
variation as these parameters are changed. Similarly, the
finite volume spectra in this energy region show little
sensitivity.
On the other hand above atEcm ¼ 0.7, significant

differences are observed. An avoided level crossing occurs
in every irrep around the position of the lowest D�D̄�

noninteracting energy with departures proportional to the
size of gD�D̄� . These deviations are significantly larger than
typical uncertainties in the computed spectrum and so it is
plausible that the coupling to this channel can be well-
determined.
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We also observe the beginning of the onset of the
coupling-ratio phenomenon in this toy model given that
there is only a relatively small difference between the
amplitudes with atgD�D̄� ¼ 0.8 and atgD�D̄� ¼ 1.6, which
correspond to very similar coupling ratios, gD�D̄�=gDD̄ ¼
1.05, 0.096 respectively.

APPENDIX E: SUMMARY OF AMPLITUDE
PARAMETRIZATIONS

In this appendix we summarise the parametrizations of
the JPC ¼ 3þþ, 2þþ and 0þþ amplitudes.

1. Summary of JPC = 3++ parametrizations

In Table VII we summarize 10 JPC ¼ 3þþ parametriza-
tion variations, describing 16 energy levels in the ½000�Aþ

2

irrep as introduced in Sec. V C. All eigenvalues of the data
correlation matrix were above the cutoff of Λ ¼ 0.02. The
amplitudes are shown in Fig. 10.

2. Summary of JPC = 2++ parametrizations

In Table VIII we summarize 24 JPC ¼ 2þþ parametri-
zation variations obtained including energies from moving
frame irreps. Many more parametrization forms were
attempted but only those with good χ2 minima are retained.
Four additional parmeterizations were obtained with the
same free parameters as the reference amplitude, two with
the scattering hadron masses set to their central values�1σ,
as given in Table II, and two with the anisotropy set to its
upper and lower values 3.444� 0.006 as determined from
the pion. By default we apply a cutoff on data correlation
eigenvalues of Λ ¼ 0.02 as mentioned in the text, with
further details given in Appendix F.

3. Summary of JPC = 0++ parametrizations

a. Coupled ηcη and DD̄ scattering below ηcη0

and DsD̄s thresholds

This section gives further details on the amplitudes
variations used in Sec. V G, where K-matrices are deter-
mined using energies from ½000�Aþ

1 , ½001�A1, ½111�A1 and
½002�A1, resulting in 43 levels. In two of the fits a reduced
selection of energies is used, removing ½002�A1 levels and
resulting in 31 levels. A data correlation eigenvalue cutoff
of Λ ¼ 0.02 is used, resulting in 5 resets for the 43 level
selection, and 3 resets for the 31 level selection. Using two
or three constant parameter terms γij in the K-matrix results
in 10 parametrizations in total, as summarized in Table IX.

b. Coupled-channel scattering up to ψϕ threshold
at rest and atEcm = 0.69 in moving frames

In Table X we summarize JPC ¼ 0þþ parametrization
variations working up to ψϕ threshold while including
moving-frame information. One example with parameter
values and correlations is given in Eq. (17). These ampli-
tudes are plotted in Fig. 18, and are used when determining
t-matrix poles in Sec. VI A.

APPENDIX F: DATA COVARIANCE
EIGENVALUE CUTOFF

Relatively large data correlations between the energy
levels on each lattice volume are found in this work. For
small selections of energy levels, such as those obtained
using only rest-frame energies, this does not present a
problem, but for larger selections of energy levels, such as
those using moving-frames, inverting the data covariance
for use in a correlated χ2 produces an object of questionable
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FIG. 30. A selection of scattering amplitudes determined below
atEcm ¼ 0.709 (just belowD�D̄� threshold) in JPC ¼ 0þþ. Peaks
are seen across all parametrizations in DD̄ that correspond to a
resonance pole consistent with that given in the main text, strongly
coupled to DD̄ and DsD̄s. The top panel shows amplitudes
obtained from 30 rest frame energies. The middle panel shows
amplitudes obtained from 75 energies including moving frames.
The bottom panel highlights a slightly different amplitude found
with hadron masses set to 1σ below their best-fit values.
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validity. Given the use of ensembles of typically∼500 gauge
configurations, one should not expect to be able to reliably
determine all components of data covariance matrices of
increasingly high rank. This issue is most relevant for the
amplitude determinations in Secs. V H and V F.
In Fig. 32, we show the eigenvalues λi of the data

correlation matrices, normalized to the largest eigenvalue,
λ1 for the two largest sets of spectra relevant to scalar and
tensor scattering, including moving-frame energies. A steep

dropoff in value is observed for the smallest value eigen-
values, and we infer that this is associated with these modes
being poorly determined. We choose to place a cut on the
allowed values when performing fits, removing the eigen-
vectors associated with the cut eigenvalues from the matrix
inverse. Our default choice is to retain only those modes
with Λ ¼ λ=λ1 > 0.02. We have explored a range of values
of this cut between Λ ¼ 0.01 and 0.04, and have reported
the modest sensitivity to this choice in earlier Appendices.
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FIG. 31. Toy model amplitudes consisting of DD̄f1D2g and D�D̄�f5S2g as described in the text. Upper panel: scattering amplitudes
plotted as ρiρjjtijj2 for each of the parameters given in the top right. Circles on the horizontal axis indicate threshold energies. Lower
panel: the solid green and blue curves show noninteracting energies corresponding to DD̄ and D�D̄� respectively. Degeneracies are not
indicated since only a single level is expected for each hadron-hadron pair when only a single combination is present in the Lüscher
determinant condition Eq. (5). The dashed horizontal lines indicate kinematic thresholds. The gray band and horizontal solid gray line
indicate the mass and width of the resonance pole. The dotted horizontal line indicates both the position of the mass parameter atm, and
the centre of the peak seen in the DD̄f1D2g amplitudes. The red and gray spectrum of curves show the finite volume spectra obtained
from the Lüscher determinant condition Eq. (5) corresponding to the same-colored amplitudes from the upper panel.
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TABLE VII. JPC ¼ 3þþ parametrization variations. Parameters not listed are fixed to zero. A K-matrix constant parameter γ is
diagonal in 2Sþ1lJ unless otherwise stated. A Chew-Mandelstam phase space with a pole subtraction point is used unless otherwise
stated.

Amplitude parameters χ2=Nd.o.f. Other details

m; gDD̄�f3D3g; γψω→ψωf3D3g; γψω→ψωf5D3g; γψϕ→ψϕf5D3g
& gDsD̄�

sf3D3g; gD�D̄�f5D3g; γDD̄�→DD̄�f3D3g; γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g
8.34
16−10 ¼ 1.39 Reference amplitude

& γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g
8.47
16−7 ¼ 0.94

& γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g
8.45
16−7 ¼ 0.94 Simple phase space

& γDD̄�→DD̄�f3D3g; γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g
8.34
16−8 ¼ 1.04

& gD�D̄�f5D3g; γDD̄�→DD̄�f3D3g; γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g
8.50
16−8 ¼ 1.06

& gD�D̄�f5D3g; γDD̄�→DD̄�f3D3g; γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g 8.48
16−8 ¼ 1.06 Simple phase space

& gD�D̄�f5D3g; γDD̄�f3D3g→D�D̄�f5D3g; γDsD̄�
s→DsD̄�

sf3D3g
4.65
16−8 ¼ 0.58

& gD�D̄�f5D3g; γDD̄�f3D3g→D�D̄�f5D3g; γDsD̄�
s→DsD̄�

sf3D3g; γD�D̄�→D�D̄�f5D3g
4.33
16−9 ¼ 0.62

& gDsD̄�
sf3D3g; γDsD̄�

s→DsD̄�
sf3D3g; γD�D̄�→D�D̄�f5D3g

8.47
16−8 ¼ 1.06

& gDsD̄�
sf3D3g; gD�D̄�f5D3g; γDsD̄�

s→DsD̄�
sf3D3g; γD�D̄�→D�D̄�f5D3g

8.47
16−9 ¼ 1.21

TABLE VIII. JPC ¼ 2þþ parametrization variations. Parameters not listed are fixed to zero. A Chew-Mandelstam phase space with a
K-matrix pole subtraction point is used unless otherwise stated. A cutoff on data correlation eigenvalues of Λ ¼ 0.02 is used unless
otherwise stated. We fix gDD̄ ¼ 10 · at unless indicated otherwise.

Amplitude parameters χ2=Nd.o.f. Other details

m; gDD̄; gDD̄� ; gDsD̄s
; gD�D̄� ; γηcη→ηcη; γψω→ψω; γψϕ→ψϕ

65.3
86−7−23 ¼ 1.17

& gDD̄ (freed) 65.1
86−7−23 ¼ 1.16 gDD̄� ¼ −40 (fixed)

& γDD̄→DsD̄s
62.8

86−8−23 ¼ 1.14 Reference amplitude Eq. (15)

& γDD̄→DD̄; γDD̄�→DD̄� ; γDsD̄s→DsD̄s
; γD�D̄�→D�D̄� 64.0

86−11−23 ¼ 1.23

& γDD̄→DsD̄s
; γDD̄→DD̄� ; γDD̄�→DsD̄s

; γDsD̄s→DsD̄s
56.9

86−11−23 ¼ 1.09

& γDD̄→DsD̄s
; γDD̄�→DD̄� ; γD�D̄�→D�D̄� 65.3

86−10−23 ¼ 1.23

& γDD̄�→DD̄� ; γD�D̄�→D�D̄� 65.3
86−9−23 ¼ 1.21

& γDD̄�→DsD̄s
60.0

86−8−23 ¼ 1.09

& γD�D̄�→D�D̄� 65.3
86−8−23 ¼ 1.19

& γDD̄�→ψω
65.2

86−7−23 ¼ 1.16 γψω→ψω ¼ 0 (fixed)
99.1

86−7−12 ¼ 1.48 Λ ¼ 0.01
74.6

86−7−19 ¼ 1.24 Λ ¼ 0.016
54.4

86−7−28 ¼ 1.07 Λ ¼ 0.024
45.3

86−7−35 ¼ 1.03 Λ ¼ 0.032
36.8

86−7−40 ¼ 0.94 Λ ¼ 0.040

& γDD̄→DsD̄s
63.3
86−8 ¼ 0.81 Uncorrelated

Simple phase space
& γψωf3D2g→ψωf3D2g

66.9
86−8−23 ¼ 1.22

& γDD̄→DsD̄s
þ γDsD̄s→D�D̄� 70.9

86−9−23 ¼ 1.31

& γDD̄→DsD̄s
þ γDsD̄s→D�D̄� 68.1

86−9−23 ¼ 1.26 gDD̄ ¼ 20

& γDD̄→DsD̄s
þ γDD̄�→DD̄� þ γD�D̄�→D�D̄� 69.4

86−10−23 ¼ 1.31

(Table continued)
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We have also explored other approaches, such as
artificially setting the correlations to zero, “shrinkage”
which interpolates between fully correlated and uncorre-
lated [103,104], and using “eigenvalue limits” rather than
hard cutoffs [56]. The outcomes are broadly similar as can
be inferred from Figs. 14 and 18, which include amplitudes
determined using several different values of Λ and one
where the correlations are set to zero, as shown in Tables X
and VIII respectively. Provided the smallest eigenmodes or
the most extreme correlations are tamed using one of these
methods, the results are in good agreement. We consider
Λ ¼ 0.02 to be a conservative choice.

APPENDIX G: ADDITIONAL SCATTERING
AMPLITUDE POLES IN JPC = 2+ +

The JPC ¼ 2þþ amplitudes determined in Sec. V F
feature a single narrow resonance pole that is systematically

present across many parametrizations, but in addition other
poles can be present which vary in location and which do
not have obvious interpretations. We explore these in this
appendix. In particular we investigate the origin of the
closest of these additional poles using simplified elastic and
two-channel systems that capture the main features of the
amplitudes used in this work. We explore the dependence
of these poles on the gDD̄� parameter and propose an
alternative parametrization where the additional poles do
not arise. Ultimately we find that the narrow resonance pole
on the proximal ðDD̄½−�; DD̄�½−�; DsD̄s½−�; D�D̄�½þ�Þ
sheet is the only nearby pole singularity necessary to
describe the finite-volume spectra.
Figure 33 shows the t-matrix poles found for a range of

parametrizations, where the nearby pole on the proximal
sheet (in red) is observed to show very little variation over
parametrization. In Sec. VI A we discuss “mirror” poles in
the context of the scalar amplitudes, and these poles on

TABLE IX. Parameterization variations for two-channel ηcη −DD̄ S-wave scattering amplitudes including moving frame energies.
The first row in each block, indicated by ð�Þ, uses only 31 levels, excluding levels from ½002�A1. “� � �” indicates that a parameter is fixed
to zero. The number of degrees of freedom is taken to be Nd.o.f. ¼ Nlevels − Npars − Nreset using a data-correlation eigenvalue cutoff of
Λ ¼ 0.02 as discussed in Appendix F.

γηcη→ηcη γηcη→DD̄ γDD̄→DD̄ χ2=Nd.o.f.

With Chew-Mandelstam phase space:
0.37(16) −0.65ð18Þ 0.06(49) 28.4

31−3−3 ¼ 1.14 ð�Þ
0.37(15) −0.64ð16Þ 0.15(34) 40.5

43−3−5 ¼ 1.16

� � � −0.45ð14Þ 0.14(32) 47.6
43−2−5 ¼ 1.32

0.40(12) � � � −0.39ð24Þ 48.6
43−2−5 ¼ 1.35

0.37(14) −0.61ð15Þ � � � 40.8
43−2−5 ¼ 1.13

With simple phase space:
0.36(11) −0.51ð15Þ −0.02ð40Þ 45.0

31−3−3 ¼ 1.80 ð�Þ
0.36(14) −0.63ð15Þ 0.14(31) 40.4

43−3−5 ¼ 1.15

� � � −0.46ð14Þ 0.13(31) 47.4
43−2−5 ¼ 1.32

0.40(12) � � � −0.39ð25Þ 48.5
43−2−5 ¼ 1.35

0.36(14) −0.61ð15Þ � � � 40.6
43−2−5 ¼ 1.13

TABLE VIII. (Continued)

Amplitude parameters χ2=Nd.o.f. Other details

Simple phase space
106.6

86−7−12 ¼ 1.59 Λ ¼ 0.010
78.8

86−7−19 ¼ 1.31 Λ ¼ 0.016
69.5

86−7−23 ¼ 1.24 Λ ¼ 0.020
57.0

86−7−28 ¼ 1.12 Λ ¼ 0.024
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“hidden” sheets are to be expected with a large number of
Riemann sheets and several decoupled hadron-hadron
channels in each case. Many of these poles can be ignored
due to their distance on the Riemann surface from physical
scattering. In Fig. 33 the green and blue points show such
“mirror” poles, and we observe that they show a greater
scatter over parametrization variation than the pole on the
proximal sheet.
Figure 33 also shows, in gray, poles found on the

physical sheet. Such poles indicate a breakdown of cau-
sality, but depending upon how close they are to real
scattering energies, the pathology may not be of any
practical relevance. The origin of these poles can be traced
back to the presence of the k−lii barrier factor in Eq. (6) for
D-wave channels. Such barriers are necessary to promote
the expected behavior of amplitudes at threshold,37 but
unless some other part of the amplitude suppresses their

effect at higher-energies, they can give rise to unwanted
energy dependence.
The amplitudes presented in Sec. V E feature a large

contribution to the denominator of the t-matrix from the
DD̄� channel,

∼g2DD̄�f3D2gð2kDD̄� Þ4ρDD̄� ;

where values of gDD̄�f3D2g are found between −30at and
−40at. The dominance of this term over others in the
denominator offers an explanation of the presence of
physical sheet poles. A simple way to see this is by
plotting the positions of the poles of the amplitudes in
the complex-kDD̄� plane, as is done in Fig. 34. Using the
reference parametrization in Eq. (15), the position of the
complex-conjugate pair (in s) of poles due to the resonance
are plotted in blue. The physical sheet poles are shown in
red, and a virtual bound state pole that also arises is shown
in green.

TABLE X. JPC ¼ 0þþ parametrization variations. Parameters not listed are fixed to zero. A Chew-Mandelstam phase space with a
K-matrix pole subtraction point is used unless otherwise stated. A data-correlation eigenvalue cutoff of Λ ¼ 0.02 is used unless
otherwise stated. If γψωf5D4g→ψωf5D4g is not listed, it is fixed to 300. If γηcη0→ηcη

0 is not listed, it is fixed to 3. All meson-meson channels are
1S0 unless otherwise stated.

Amplitude parameters χ2=Nd.o.f. Other details

m; gDD̄; gDsD̄s
; gD�D̄� ; γηcη→ηcη; γψϕ→ψϕ

& gψω; γDD̄→DsD̄s
; γηcη0→ηcη

0 ; γψωf5D4g→ψωf5D4g
91.0

90−10−16 ¼ 1.42 Reference amplitude

& γψω→ψω
91.6

90−7−16 ¼ 1.37

& gψω; γDD̄→DsD̄s
91.5

90−8−16 ¼ 1.39

& gψω; γDD̄→DsD̄s
; γψωf5D4g→ψωf5D4g

91.2
90−9−16 ¼ 1.40

& γDD̄→DD̄; γDD̄→DsD̄s
; gψω 87.1

90−9−16 ¼ 1.34

& γDD̄→DD̄; γDD̄→DsD̄s
; γψω→ψω; γψω→D�D̄� 94.7

90−10−16 ¼ 1.48

& γDD̄→DD̄; γDD̄→DsD̄s
; γψω→ψω

94.7
90−9−16 ¼ 1.46

& γDsD̄s→DsD̄s
; γψω→ψω

93.6
90−9−16 ¼ 1.44

& γD�D̄�→D�D̄� ; γψω→ψω
92.8

90−9−16 ¼ 1.43

& γDD̄→DsD̄s
; γψω→ψω; γηcη0→ηcη

0 95.0
90−9−16 ¼ 1.46

& γψω→ψω
92.9

90−7−16 ¼ 1.39 Simple phase space

& γψω→ψω; γDD̄→DsD̄s
90.6

90−8−16 ¼ 1.37 Simple phase space

& γDD̄→DsD̄s
; gψω 143.0

90−8−6 ¼ 1.88 Λ ¼ 0.01a

& γDD̄→DsD̄s
; gψω 59.4

90−8−35 ¼ 1.26 Λ ¼ 0.04a

& γDD̄→DsD̄s
; γψω→ψω

143.4
90−8−6 ¼ 1.89 Λ ¼ 0.01a

& γDD̄→DsD̄s
; γψω→ψω

115.3
90−8−11 ¼ 1.62 Λ ¼ 0.016

& γDD̄→DsD̄s
; γψω→ψω

82.2
90−8−20 ¼ 1.33 Λ ¼ 0.024

& γDD̄→DsD̄s
; γψω→ψω

69.8
90−8−28 ¼ 1.29 Λ ¼ 0.032

& γDD̄→DsD̄s
; γψω→ψω

59.4
90−8−35 ¼ 1.26 Λ ¼ 0.04a

& γDD̄→DsD̄s
; γψω→ψω

71.0
90−8 ¼ 0.87 Uncorrelated

aThese amplitudes are provided for comparison with Table VIII, and they are not included on the plots or used in the analysis.

37Which matches the behavior of the Lüscher Zeta functions at
threshold.
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These poles can be compared to those present in a
simple toy-amplitude featuring a single elastic DD̄�f3D2g
amplitude constructed from just a K-matrix pole,

K ¼ g2DD̄�=ðm2
0 − sÞ. In this case, the t-matrix has a

denominator D ¼ m2
0 − s − ig2DD̄� ð2kDD̄� Þ5= ffiffiffi

s
p

, and with
gDD̄�f3D2g ¼ −40∶at and atm ¼ 0.71; numerically the final
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FIG. 32. The eigenvalues, λi, of the data correlation matrix normalized to the largest eigenvalue λ1, ordered in decreasing magnitude.
We observe a steep falloff above i ≈ 30 where the directions in the eigenspace are unlikely to be reliably determined. The number of
resets on the plot indicates the number of modes that are discarded on the 203 þ 243 volumes, with cuts of Λ ¼ 0.04 (light gray), 0.02
(dark gray) and 0.01 (black). The “0þþ” and “2þþ” refer to the correlation matrix used in the largest amplitude determinations of these
JPC from Secs. V H and V F respectively.
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FIG. 33. Poles of the JPC ¼ 2þþ amplitudes plotted in the complex kD�D̄� and
ffiffiffi
s

p
planes. The resonance pole on the ð−;−;−;þÞ sheet

is shown in red. A second nearby pole observed on the ðþ;þ;þ;−Þ sheet is shown in green. Several other more distant poles are also
present as described in the text. In particular, there are virtual bound state poles on several sheets belowDD̄ threshold. For each pole the
reference parametrization is highlighted in black.
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FIG. 34. The “roots of unity”-like phenomena present in the 2þþ amplitudes. The gray circles show the solutions of
10−6 − iðatkDD̄� Þ5 ¼ 0, an arbitrary but simple choice whose zeros approximate the positions of the observed poles, and the large
dashed circle shows jatkDD̄� j ¼ 10−6=5. The orange circles are the solutions of m2

0 − s − ig2DD̄� ð2kDD̄� Þ5= ffiffiffi
s

p ¼ 0. The pale blue-green
circles are the solutions of m2

0 − s − ig2DD̄� ð2kDD̄� Þ5= ffiffiffi
s

p
− ig2D�D̄� ð2kD�D̄� Þ= ffiffiffi

s
p ¼ 0 which closely mimics the observed behavior of the

amplitudes determined above. The points with error bars are the relevant poles of the reference parametrization. The open circles on axes
are hadron-hadron thresholds.
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FIG. 35. Left: pole positions in
ffiffiffi
s

p
from the 2þþ amplitudes as a function of gDD̄� colored according to the values shown in the

right figure. Four clusters of poles are shown. The tight cluster below the real axis is the resonance pole on the proximal sheet. The
other poles are strongly dependent on the value of gD�D̄� . Right: the χ2 value computed from the ½000�Eþ and ½000�Tþ

2 irreps at the same
values of gDD̄� .
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term dominates the behavior. In this case the denominator
equals zero at five points shown in orange in Fig. 34, which
lie very close to the roots of 10−6 − iðatkDD̄�Þ5, shown in
gray. This “roots of unity”-like phenomenon is unavoidable
with a large coupling and the D-wave threshold factor in
the denominator.38

In simple coupled DD̄�f3D2g −D�D̄�f5S2g systems, an
additional term −ig2D�D̄� ð2kD�D̄� Þ= ffiffiffi

s
p

arises in the denom-
inator. Adding this results in a very close agreement with
the solutions obtained from the amplitudes determined
from lattice QCD energies, as shown by the pale blue-green
points in Fig. 34. Figure 34 shows only sheets where
ImkD�D̄� > 0, but poles are also present on sheets with
ImkD�D̄� < 0. In this highly simplified two-channel system,

an additional group of five poles arises that are approx-
imately the complex-conjugates in kDD̄� of those in Fig. 34.
The sensitivity of the additional poles to the value

of gDD̄� can be explored. By default we have fixed
gDD̄ ¼ 10at, but owing to the coupling-ratio phenomenon,
there is very little sensitivity to this choice. We may now
consider in addition fixing gDD̄� to a range of values, and
redetermine the remaining parameters by χ2 minimization
for each choice. For simplicity we do this using only the
energies from the ½000�Eþ and ½000�Tþ

2 irreps. In Fig. 35,
the result of this procedure is shown. Four clusters of poles
are plotted, the resonance pole on the proximal sheet
ð−;−;−;þÞ is shown below the real

ffiffiffi
s

p
axis, and three

clusters of spurious poles on the ðþ;þ;þ;�Þ sheets are
plotted above the axis. The closest of these on the
ðþ;þ;þ;þÞ sheet is the equivalent of the physical sheet
pole shown in red in Fig. 34, and the nearby pole on the
ðþ;þ;þ;−Þ sheet is the “mirror” obtained by switching to
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FIG. 36. The amplitude and resonance pole position from the amplitude in Eq. (G1) using the modified threshold factors compared
with other amplitudes obtained in this work. In the left and upper panels we show the diagonal DD̄, DD̄� and D�D̄� amplitudes
compared with the amplitudes given in Eq. (13) using only rest-frame energies (dotted curves) and Eq. (15) including also moving frame
energies (pink curves). In the lower right panel, a comparison of the resonance pole positions are shown, including the value obtained
considering all parametrization variations in Table VIII.

38It is straightforward to observe similar solutions for l > 0 in
a very simple amplitude such as a scattering length approxima-
tion, k2lþ1 cot δl ¼ 1=al.
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the unphysical D�D̄� sheet. These closest two poles move
away from the constrained energy region as gDD̄� is
reduced. The resonance pole position on the proximal
sheet is very well determined and relatively insensitive to
the precise value of gDD̄� . The χ2 is also shown and has a
smooth dependence on gDD̄� . We see that the energy levels
clearly do favor a large value of gDD̄� and the proximity of
the physical sheet pole can be associated with this.
Since the narrow resonance we are interested in lies

some way above DD̄� threshold, we might anticipate that
its properties would not be overly sensitive to the barrier
behavior at threshold. This can be explored by crudely
replacing the k5DD̄� factor with a lower power in the
parametrization. This introduces a mismatch with the
behavior of the Lüscher Zeta functions, but in practice

this only has a significant effect for energies very close to
or more severely below threshold. By restricting to
consideration of the ½000�Eþ and ½000�Tþ

2 spectra, which
have no energy levels at or below threshold that have
significant overlap onto DD̄�-like operators, we antici-
pate that we do not introduce a serious error into the
analysis.
Using a similar parametrization to the reference para-

metrization determined from ½000�Eþ and ½000�Tþ
2 ener-

gies, as given in Eq. (13), we artificially modify the li for
DD̄�f3D2g terms in Eq. (6) to take value 1 rather than 2.
This leads to a term in the denominator with only three
powers of momentum rather than five. Describing 47
energy levels results in an amplitude,

atm¼ð0.7037� 0.0011� 0.0001Þ
“gDD̄�f3D2g

”¼ð−4.39�0.70� 0.17 Þ
gDsD̄sf1D2g ¼ð−0.32� 3.49� 0.97Þ ·at
gD�D̄�f5S2g ¼ð1.74� 0.22� 0.13Þ ·a−1t
gψωf5S2g ¼ð0.00� 0.22� 0.06Þ ·a−1t

γηcηf1D2g;ηcηf1D2g ¼ð22.0� 23.9� 7.83Þ ·a4t
γDD̄f1D2g;DsD̄sf1D2g ¼ð163� 189� 44Þ ·a4t

γψωf5S2g;ψωf5S2g ¼ð−0.88� 0.45� 0.05Þ
γψωf3D2g;ψωf3D2g ¼ð561� 513� 132Þ ·a4t
γψϕf5S2g;ψϕf5S2g ¼ð1.33� 0.78� 0.04Þ

gDD̄f1D2g ¼10 ·at ðfixedÞ

2
6666666666666666666664

1.00 −0.17 −0.18 −0.24 −0.01 −0.15 0.08 −0.07 −0.16 0.01

1.00 −0.17 −0.56 −0.00 0.11 0.27 −0.03 0.06 −0.10
1.00 0.29 −0.02 0.03 −0.57 −0.06 −0.09 −0.06

1.00 −0.00 0.04 −0.32 0.07 0.10 −0.04

1.00 −0.00 0.02 −0.02 0.01 0.00

1.00 0.01 0.02 0.01 −0.01

1.00 0.08 0.10 0.09

1.00 0.08 0.23

1.00 0.03

1.00

3
7777777777777777777775

χ2=Nd.o.f.¼ 49.1
47−10¼1.33: ðG1Þ

This amplitude and its resonance pole position are shown in
Fig. 36, alongside those of other 2þþ amplitudes given in
Eqs. (13) and (15).
The nearby resonance pole on the proximal sheet appears

at at
ffiffiffiffiffi
s0

p ¼ð0.7016�0.0013Þ− i
2
ð0.013�0.003Þ, which,

as anticipated, is essentially the same location as when
the correct D-wave barrier behavior was present for DD̄�.
On the other hand, physical sheet poles are found in

completely different locations for this amplitude, with the
nearest being at at

ffiffiffiffiffi
s0

p ¼ ð0.651� 0.010Þ þ i
2
ð0.169�

0.052Þ, which is very far from physical scattering.
In summary we conclude that the physical sheet poles

found in the amplitudes presented in the main text are an
artifact of the D-wave barrier factors for the DD̄� channel,
while the narrow resonance pole which is the dominant
feature of the 2þþ amplitude is a robust result.
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