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We propose the (3þ 1)-dimensional Z3 lattice gauge theory coupled with the 2-flavor Wilson-Dirac
fermion as a toy model for studying quantum chromodynamics (QCD) at nonzero density. We study its
phase diagram in the space of the lattice gauge couplings g2 and the quark chemical potentials μ and discuss
the similarity and difference compared with anticipated behaviors of actual QCD. This model also provides
a testing ground for various algorithms of the numerical Hamiltonian formalism as its Hilbert space is
finite-dimensional in a finite box.
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I. INTRODUCTION

Unveiling the dense state of nuclear matter remains a
longstanding challenge in quantum chromodynamics
(QCD) [1]. Current theoretical calculations encounter
limitations at nonzero density; for instance, nuclear
many-body theory is restricted to low density, perturbative
QCD to asymptotically high density, and lattice QCD
simulations are hindered by the sign problem. Some
anticipate that quantum computation may offer a future
solution to this problem [2–4]. The quantum computation
of lattice QCD employs the Hamiltonian formalism,
avoiding the sign problem associated with Monte Carlo
sampling. However, it instead has to treat the exponentially
huge Hilbert space. While the Hilbert space of fermion
fields is finite dimensional, that of gauge fields is infinite
dimensional, presenting a more formidable challenge. In
practice, the local Hilbert space of gauge fields is truncated
to finite dimensions, and the infinite-dimensional limit is
subsequently taken. Nevertheless, the computational cost
escalates rapidly in the infinite-dimensional limit [5],
posing one of the critical hurdles in quantum computing
lattice QCD.

In this context, it is very desirable to have a toy model
of nonzero-density QCD that has genuinely finite-
dimensional Hilbert space, and we propose discrete gauge
theories to accomplish the purpose. While lacking a well-
defined continuum limit, discrete gauge theories prove
valuable for testing quantum algorithms for field theories.
The Z2 gauge theories are the most economical model but
have only mesons, just like SUð2Þ gauge theory. Baryons
are essential to imitate nonzero-density QCD, and thus the
Z3 gauge theories will be the simplest candidate of more
sensible models as they have both baryons and mesons. The
mass spectrum of such a model has been studied in the one
spatial dimension [6,7], and the model is termed as “QZD”
(quantum Z3 dynamics) like QCD [7]. (For other uses of
Z3 gauge theories, see, e.g., Refs. [8,9] for the Schwinger
model and Refs. [10,11] for the Abelian-Higgs model.) In
this paper, we uncover the basic properties of the (3þ 1)-
dimensional Z3 lattice gauge theory coupled to the 2-flavor
Wilson-Dirac fermion, and show that it has a rich phase
diagram.

II. HAMILTONIAN OF 3+ 1D QZD

We consider a cubic lattice with periodic boundary
conditions. The gauge field lives on lattice links and the
fermion is defined on lattice sites. The gauge link operator
UkðxÞ and its conjugate operator ΠkðxÞ do not commute
but obey

ΠkðxÞUkðxÞΠ†
kðxÞ ¼ e

2πi
3 UkðxÞ ð1Þ
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with k ¼ 1, 2, 3 [12]. For example, in the basis where the
gauge link operator is diagonalized, these operators are
written by the 3 × 3 clock and shift matrices,

UkðxÞ ¼

0
B@

1 0 0

0 e
2πi
3 0

0 0 e
4πi
3

1
CA; ΠkðxÞ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA:

ð2Þ

The fermion creation and annihilation operators obey the
canonical anticommutation relation

�
ψαðxÞ;ψ†

βðyÞ
� ¼ δx;yδα;β; ð3Þ

where α is a flavor-spinor index (α ¼ 1;…; 4Nf). The total
Hilbert space including unphysical states is given by
ðC3Þ3V ⊗ ðC2Þ4NfV when the lattice volume is V, and its
dimension is exponentially large, 33V × 24NfV , but finite.
The lattice unit is used throughout the paper.
The Hamiltonian consists of electric, magnetic, and

quark terms

H ¼ HE þHB þHf: ð4Þ

The electric and magnetic terms are

HE ¼
X
x

X
k

g2
�
1 −

1

2

�
ΠkðxÞ þ Π†

kðxÞ
��

; ð5Þ

HB ¼
X
x

X
k<l

1

g2

�
1 −

1

2

�
UklðxÞ þ U†

klðxÞ
��

; ð6Þ

where UklðxÞ is the plaquette operator and g2 is the lattice
coupling constant, as usual. We use ΠkðxÞ, instead of the
electric field operator EkðxÞ, for HE (though there is no
essential difference in discrete gauge theories). As for the
quark part, we consider the Nf ¼ 2 Wilson-Dirac fermion

Hf ¼
X
x

�ð3rþmÞψ†ðxÞγ0ψðxÞ

−
1

2

X
k

�
ψ†ðxÞγ0ðr − iγkÞUkðxÞψðxþ ekÞ

þ ψ†ðxþ ekÞγ0ðrþ iγkÞU†
kðxÞψðxÞ

��
; ð7Þ

wherem > 0 is the flavor-degenerate fermion mass and r is
the Wilson parameter to gap out the fermion doublers. The
flavor-spinor index α is implicitly summed up. The quark
number operator is defined by

Q ¼
X
x

ρðxÞ ¼
X
x

�
ψ†ðxÞψðxÞ − 2Nf

�
; ð8Þ

and it is conserved because of the commutation relation
½H;Q� ¼ 0. At a nonzero chemical potential, the
Hamiltonian is shifted by the conserved charge, H − μQ.
To circumvent the unphysical contributions from fermion
doublers, the chemical potential needs to be much smaller
than the Wilson parameter, jμj ≪ 2r.1

The physical states, jΨphysi, must satisfy the Gauss law at
each site. The Gauss law constraint is written as

Y
k¼1;2;3

ΠkðxÞΠ†
kðx − ekÞjΨphysi ¼ e

2πi
3
ρðxÞjΨphysi: ð9Þ

This equation means that the gauge charge is defined by
ρðxÞ=3 mod 1. If one would like to introduce a background
static charge qðxÞ, one needs to replace ρðxÞ by ρðxÞ þ qðxÞ
on the right-hand side of Eq. (9). By taking the products of
Eq. (9) for all sites x, we find thatQmust be quantized in the
multiples of 3 for physical states, and we can define the
baryon number by B ¼ Q=3.

III. VACUUM PROPERTIES

Let us first discuss the physics of (3þ 1)-dimensional
QZD at the vacuum μ ¼ 0 and the associated low-energy
spectrum. When quarks decouple (m → ∞), the system has
a confined phase at the strong couplings g2 ≫ 1 and a
deconfined phase at the weak couplings g2 ≪ 1, and they
are separated by quantum phase transitions. The deconfined
phase is described by a topological order, which is stable
under any local perturbations due to long-range entangle-
ment. The phase transition is first order in pure Z3 gauge
theory [10]. This suggests that a first-order phase transition
at g2c ¼ Oð1Þ is present even when finite-mass quarks are
turned on, so we need to study the strong and weak
couplings separately.

A. Strong coupling

When g2 ≫ 1 and m → ∞, we can apply the strong-
coupling expansion expansion to demonstrate the quark
confinement analytically. In the strong coupling limit, the
electric term in the Hamiltonian, HE, is dominant. Taking
the basis diagonalizing ΠkðxÞ,

ΠkðxÞjEkðxÞi ¼ e
2πi
3
EkðxÞjEkðxÞi ð10Þ

for the gauge part, the vacuum jΩi prefers the trivial
configuration

1When we increase the chemical potential beyond mþ 2r, the
new Fermi surface is formed due to the fermion doubler at a
certain chemical potential. Moreover, the original Fermi surface
and the Fermi surface of the doubler merge into the single Fermi
surface with nontrivial topology for larger μ. Therefore, this
lattice model has many quantum phase transitions associated with
the topology change of Fermi surface in the range μ ≳ 2r.
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jΩi ¼ ⊗
k;x
jEkðxÞ ¼ 0i: ð11Þ

The strong-coupling vacuum is thus unique, and its energy
is ε0 ¼ hΩjHEjΩi ¼ 0. When there is a pair of static charge
and anticharge, qðx1Þ ¼ 1 and qðx2Þ ¼ −1 on the xk axis,
the Gauss law forces the electric field to be nonzero along
the minimal path connecting x1 and x2,

EkðxÞ ¼ 1 for x ¼ x1;…; x2 − ek: ð12Þ

The system energy is proportional to the path length l as
ε0 ¼ g2ð1 − cos 2π

3
Þl [13]. We can show that any charge-

neutral configuration of static charges, e.g., three charges,
exhibits the same behavior. This is nothing but the quark
confinement in the strong-coupling limit.
As a consequence, when we turn on quarks with a finite

mass m > 0, the low-energy spectrum is described by the
tightly bound charge-neutral objects (i.e., hadrons). A
single quark has a nonzero charge but a meson and a
baryon are charge neutral as drawn in Fig. 1. As we
consider the two-flavor case (u and d), the ground states of
these hadrons can exist on one lattice site and thus have
finite masses in the strong coupling limit g2 → ∞. There
are four degenerate ground-state baryons: protons (uud)
and neutrons (udd) with spin �1=2. The low-energy
hadron spectrum is quite similar to that of two-flavor QCD.
Explicit computations of hadron masses require higher-

order calculations of the strong coupling expansion. The
second-order perturbation leads to spontaneous chiral sym-
metry breaking and dressed hadron masses mþOð1=g2Þ
[14]. When the quark massm is small, a pseudoscalar meson
is the pseudo-Nambu-Goldstone boson, so the lightest
particle in the vacuum.2 Therefore, we can conclude that
the baryon-baryon interaction should be dominated by the
pseudoscalar-meson exchange at long distances and thus it is
attractive.

B. Weak coupling

Next, we consider the weak coupling region, g2 ≪ 1, with
m → ∞. In this limit, the Hamiltonian becomes H ¼ HB.
Let us first find the ground state.3 The Hamiltonian is
minimized if

UklðxÞjΩi ¼ jΩi ð13Þ

for all plaquettes UklðxÞ. This condition does not specify
the value of Wilson loops wrapping nontrivial cycles of the
spatial manifold, and their possible values determine the
ground-state degeneracy. For example, the ground state is
unique on the 3-sphere S3, while the ground states are 33 ¼
27-fold degenerate on the 3-torus T3. This is the manifes-
tation of long-range entanglement, and the low-energy
effective theory becomes the topological field theory [18,19].
When the quark mass m is finite, there is a contribution

of the fermionic excitation that travels around a nontrivial
spatial cycle, so the 27-fold degeneracy in the above
discussion is lifted by Oðe−mLÞ at finite volume, where
L is the size of the torus. This shows that the topology
dependence of the ground-state degeneracy still exists in
the infinite-volume limit, L → ∞. In general, the topologi-
cal order is stable under any local perturbations, and thus
the weak-coupling regime is still separated from the strong-
coupling regime by some quantum phase transitions.
In this regime, the system is “deconfined.” Of course, the

Gauss law is violated if we apply the single-quark operator
to the vacuum, but we can consider the separated quark
and antiquark connected by the Wilson line, instead, as a
physical state. The energy does not cost at all even if they
are arbitrarily separated, and we may regard, in this sense,
that low-energy excitations are well described by free
quarks and antiquarks.

IV. PHASE DIAGRAM

So far, our discussion has focused on the properties of
the vacuum. We would like to extend our discussion to a
nonzero-density system by introducing the quark chemical
potential μ, whose ground state minimizes H − μQ.
When μ is small enough, quark/baryon excitations are

suppressed and the ground-state wave function remains
the vacuum one. In the context of the sign problem for

FIG. 1. Mesons and baryons in 2-flavor QZD. The red and blue
balls are u and d quarks, respectively.

2The same conclusion can be obtained by considering the path-
integral formulation of this model. As the model is a vectorlike
gauge theory, its path integral at μ ¼ 0 is semipositive definite,
and thus we can derive the analogue of QCD inequalities [15–17].
This immediately tells that the pseudoscalar meson is the lightest
in the confining vacuum.

3One of the ground states at the weak coupling limit can be
constructed by using the wave function of the ground state at the
strong coupling limit as

jΩgi ¼
Y
x

Y
k<l

UðrÞ
kl ðxÞ⊗

x;k
jEkðxÞ ¼ 0i

where we introduce UðrÞ
kl ðxÞ ¼ 1

3
ð1þUklðxÞ þ U2

klðxÞÞ, which
satisfies UklðxÞUðrÞ

kl ðxÞ ¼ UðrÞ
kl ðxÞ. When the spatial manifolds

have a nontrivial cycle, the above one corresponds to the
symmetric sum of degenerate ground-state wave functions.
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nonzero-density QCD, this is sometimes called the Silver
Blaze phenomenon [20–22]. As we have seen, the system is
gapped and the strong-coupling and weak-coupling
regimes are separated by the quantum phase transition.
Let us increase the chemical potential and consider

the situation where fermions start to be occupied in the
vacuum. In the weak-coupling case, if μ > μc ¼ m, the
quark Fermi surface is formed and the low-energy physics
is well described by the Fermi liquid theory. The interaction
between quarks is given by exchanging the massive
Abelian gauge field, and thus the particle-particle inter-
action is repulsive. Therefore, there is no Cooper instability
and the Fermi surface of quarks is stable, so the system has
gapless fermionic excitations. The phase transition from the
vacuum to the quark Fermi liquid will be second-order.
In the strong coupling case, low-energy excitations are

gauge-singlet hadrons, and only baryons are charged under
the Uð1Þ symmetry. Therefore, the chemical potential must
exceed the 1=3 of the baryon mass M, i.e., μ > μc ¼
M=3 ∼mþOð1=g2Þ, in order to have the Fermi surface
of baryons. The strong coupling expansion predicts that
the onset of the baryon matter is a first-order phase transi-
tion [23,24]. We have seen that the baryon-baryon inter-
action is attractive at long distances in the vacuum case, and
it would be natural to expect that this attraction survives
even at nonzero densities. If so, the Fermi surface of
baryons has the Cooper instability. As a result, baryon
number symmetry is spontaneously broken and baryon
superfluidity is formed.
Summarizing these results, there are at least four distinct

phases; confinement (trivially gapped) vacuum, deconfine-
ment (topologically ordered) vacuum, quark Fermi liquid,
and baryon superfluid. The conjectured phase diagram is
given in Fig. 2, but it is still sketchy and numerical effort is
necessary to determine the locations and the orders of phase
transitions. Note that we have not considered phase
transition lines associated with the spontaneous breaking
of chiral symmetry, as we are focusing on quarks with finite
mass. For small quark masses, phase transition lines may
arise due to approximate chiral symmetry.

V. DISCUSSION

As we have determined the phase structure of QZD, we
would like to discuss what kind of lessons can be learned
from this model for nonzero-density QCD. In particular, we
clarify the similarities and differences between our model
and actual QCD, and point the potential direction to make
their dynamics more similar.
The most significant similarity is the existence of

baryons as charge-neutral composite particles. In the strong
coupling, quarks are confined into hadrons, and their low-
energy feature is similar to the one in actual QCD. We may
think that Z3 corresponds to the center of the SUð3Þ gauge
group, and then the confinement of this model is analogous
to the center-vortex scenario for the confinement mecha-
nism [25–28]. This may be the reason why the properties of
the hadron phase survive to some extent for discrete gauge
theories.
Lastly, let us point out a few important differences when

QZD is compared with actual QCD:
Absence of the asymptotic freedom: In actual QCD, the
gauge coupling depends on the energy scale and it
becomes weaker at high densities. This feature cannot
be realized in discrete gauge theories, and thus the
hadron phase does not go to the quark phase even if
we increase the chemical potential. Therefore, we
need to change the gauge coupling directly to discuss
the connection between the hadron and quark phases.
This difference cannot be circumvented as long as we
use discrete gauge theories.

Absence of the continuum limit: Lattice theories without
the asymptotic freedom do not have the well-defined
continuum limit. Such theories cannot reproduce the
quantum anomaly that comes from the ultraviolet
divergence in continuous spacetime. The model must
be modified to mimic the anomaly for studying
anomaly-induced phenomena, such as the large mass
of the eta meson.

Quark-quark interaction: In SUð3Þ, the one-gluon ex-
change between quarks has two channels, 3 ⊗ 3 ¼
6 ⊕ 3̄. The symmetric channel 6 is repulsive, but the
antisymmetric channel 3̄ is attractive. Due to this
attraction, the quark Fermi sea gets the Cooper
instability and the diquark condensate is formed in
the mean-field analysis, which causes the color super-
conductivity [29]. In our model, however, the quark
Fermi surface is stable because the quark-quark
interaction is repulsive for Abelian gauge theories.
To cure this issue, we need to have the counterpart
of the 3̄ channel by extending the gauge group from
Z3 to some non-Abelian finite groups, or even
more exotic objects such as quantum groups [30–32].
Those extensions of our model may provide an
explicit realization for the quark-hadron continuity
in the 3-flavor situation [33–35]. The validity of
quark-hadron continuity in nonzero-density QCD is
recently debated due to the nontrivial feature of the

FIG. 2. Conjectured phase diagram of (3þ 1)-dimensional
QZD. In the vacuum, the strong- and weak-coupling regimes
are separated by the confinement-deconfinement phase transition.
At nonzero densities, quarks form a stable Fermi surface in the
weak coupling, while baryons form a superfluid condensate in the
strong coupling. So there are at least four distinct phases.

HIDAKA, TANIZAKI, and YAMAMOTO PHYS. REV. D 109, 114502 (2024)

114502-4



Aharonov-Bohm phase around the superfluid vortex
[36–42], so it would be nice to develop various models
for its concrete establishment in QCD-like theories.
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