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In this work, we study the renormalization of nonlocal quark bilinear operators containing an
asymmetric staple-shaped Wilson line at the one-loop level in both lattice and continuum perturbation
theory. These operators enter the first-principle calculation of transverse momentum-dependent parton
distribution functions (TMDPDFs) in lattice QCD using the formulation of large momentum effective
theory. We provide appropriate RI0-type conditions that address the power and logarithmic divergences, as
well as the mixing among staple operators of different Dirac structures, using a number of different possible
projectors. Avariant of RI0, including calculations of rectangular Wilson loops, which cancel the pinch-pole
singularities of the staple operators at infinite length and reduce residual power divergences, is also
employed. We calculate at one-loop order the conversion matrix, which relates the quasi-TMDPDFs in the
RI0-type schemes to the reference scheme MS for arbitrary values of the renormalization momentum scale
and of the dimensions of the staple.
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I. INTRODUCTION

Oneof the directions of research in latticeQCD,which has
shown rapid progress in the last decade, is the first-principle
study of a family of nonperturbative distribution functions
(DFs) that describe the internal structure of hadrons: parton
distribution functions (PDFs), generalized parton distribu-
tion functions (GPDs), and transverse momentum-depen-
dent parton distribution functions (TMDPDFs). All three
types of DFs are crucial for a comprehensive understanding
of the three-dimensional hadron picture. Calculating DFs
from first principles has long been a challenge in Hadron
Physics due to their nonperturbative and light-cone nature.
The latter does not allow for a direct nonperturbative
computation of DFs on a Euclidean lattice. In the last
decade, a groundbreaking approach by X. Ji [1] has over-
come this issue. The approach connects Euclidean equal-
time correlation functions (referred to as quasi-DFs), which
are accessible by lattice simulations, to the physical light-
cone DFs using the framework of large momentum effective

theory (LaMET) [2]. This breakthrough has paved the way
for extracting, for the first time,DFs from lattice simulations.
Several groups have successfully employed this

approach in the calculation of various quark and gluon
DFs on the lattice: quark PDFs and GPDs in Refs. [3–50],
quark TMDPDFs and soft-function in Refs. [51–68], gluon
PDFs in Refs. [69–78], and hadronic light-cone distribution
amplitudes (DA) in Refs. [7,79–82]. An overview of recent
progress in the research of DFs on the lattice can be found
in Refs. [83–87]. The goal of these studies is to comple-
ment the planned experimental programs for investigating
the 3D tomography of the nucleon in major experimental
facilities, such as the electron ion colliders of the U.S.
[88,89] and China [90]. Theoretical studies can signifi-
cantly complement the experimental investigations, espe-
cially when there are limitations either in the experimental
programs or in the phenomenological models used for the
analysis of the experimental data.
The computation of DFs using Ji’s approach (also called

the “quasi-PDFs” approach) involves a three-step process.
Firstly, nonperturbative calculations are performed to
determine hadron matrix elements of gauge-invariant quark
or gluon nonlocal operators. These operators contain path-
ordered Wilson lines with specific shapes, such as straight
lines for PDFs and staple-shaped lines for TMDPDFs.
Secondly, the nonlocal operators are renormalized to
establish a connection with physically measurable quan-
tities. This task is challenging compared to the case of local
operators, as explained below. Lastly, the renormalized
lattice DFs are perturbatively matched to the corresponding

*gspano01@ucy.ac.cy
†marthac@temple.edu
‡haris@ucy.ac.cy

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 114501 (2024)

2470-0010=2024=109(11)=114501(31) 114501-1 Published by the American Physical Society

https://orcid.org/0000-0001-7020-2570
https://orcid.org/0000-0001-9355-6064
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.114501&domain=pdf&date_stamp=2024-06-05
https://doi.org/10.1103/PhysRevD.109.114501
https://doi.org/10.1103/PhysRevD.109.114501
https://doi.org/10.1103/PhysRevD.109.114501
https://doi.org/10.1103/PhysRevD.109.114501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


physical light-cone DFs using LaMET. One-loop matching
formulas have been extracted in the literature for several
quasi-DFs [91,92]; in some cases a two-loop formula is
also available [93,94].
In this study,we focuson the implementationof the second

step in the quasi-PDFs approach regarding the renormaliza-
tion of nonlocal operators using one-loop perturbation theory
in both continuum and lattice regularizations. While a
nonperturbative calculation of the renormalization functions
in numerical simulations of lattice QCD is desirable, per-
turbation theory can give important feedback for the develop-
ment of an appropriate nonperturbative renormalization
prescription, which addresses all kinds of divergences, as
well as possible mixing with operators of equal or lower
dimension allowed by global symmetries. Most importantly,
perturbation theory gives us the matching functions (at a
given order) between nonperturbative renormalization
schemes and continuum perturbative schemes—primarily
MS—employed in phenomenology.
Studies of nonlocal operators with Wilson lines in

continuum perturbation theory go back decades, including
seminal work [95–104] for the renormalization of open and
closed (loops) Wilson lines, with and without singular
points (cusps, self-intersections), and having quark or
gluon fields at the end points. Lattice studies of nonlocal
operators have emerged only in the last decade after the
development of the quasi-PDFs approach. The first per-
turbative lattice calculation of Wilson-line operators was
made by our group in Ref. [105], to one loop for massless
quarks, using the Wilson/clover fermion action and a
variety of Symanzik-improved gluon actions. A straight
Wilson line with quark fields at the end points was
employed in order to investigate the renormalization of
quark quasi-PDFs. This study showed that the lattice
formulation introduces several new complications, such
as mixing among operators of equal dimension and differ-
ent twists, and power-law divergences (even in the absence
of mixing with lower-dimensional operators, in contrast to
the case of local operators). A number of extensions of this
study have been followed by our group regarding the
presence of finite quark mass [106] and the calculation of
one-loop artifacts to all orders in the lattice spacing a [107].
In a different extension of our study, we have considered
nonlocal operators with a symmetric staple-shaped Wilson
line [108] in order to investigate the renormalization of
quark quasi-TMDPDFs. In our current work, we extend
further the latter calculation by employing the more general
case of an asymmetric staple-shaped Wilson line, where all
three segments of the staple can have different lengths.
Studies by other groups along these lines have appeared in
Refs. [109–112].
Staple-shaped nonlocal operators have a wide range of

applicability. They enter the analysis of semi-inclusive
deep inelastic scattering (SIDIS) processes, as well as
the Drell-Yan (DY) processes, in a kinematic region where

the photon virtuality is large and the measured transverse
momentum of the produced hadron is of the order of
ΛQCD [113]. In these analyses, the segments of the staple
that are parallel to the direction in which the hadron is
boosted have an infinite length. Thus, while our study
focuses on finite lengths of the staple segments, an
extrapolation to infinite limit must be taken in the renor-
malized matrix elements of these operators. The presence
or not of an asymmetry in the shape of the staple operators
affects their renormalization. Besides the presence of an
additional scale in the renormalization conditions, the
mixing pattern is different between symmetric and asym-
metric staple operators (see Sec. II B). However, this
difference is not visible in one-loop lattice perturbation
theory, as concluded by the present calculation.
As stated before, there are a number of challenges to

address in order to renormalize the nonlocal Wilson-line
operators of arbitrary shape:
(1) Power divergences arise for cutoff regularized the-

ories, such as lattice QCD [98]. The divergences
depend on the total length (L) of the Wilson line and
can be absorbed in an exponential factor of the form
e−δmL, where δm is a dimensionful regularization-
dependent quantity whose magnitude diverges lin-
early with the regulator.

(2) Logarithmic divergences arise not only from contact
terms but also from the singular points of the Wilson
line. In the case of a straight line, singular points are
just the end points. For operators of different shapes,
there can also be cusp divergences [100], which
depend on the angle and number of cusps present. In
the case of the staple line, there are two cusps of
angle π=2. These divergences can be addressed by
using typical renormalization schemes, such as RI0
or ratio schemes.

(3) Finite operator mixing arises between Wilson-line
operators OΓ with different (products of) Dirac
matrices Γ depending on the regularization. In the
case of straight-line operators, the one-loop compu-
tation [105] shows mixing in pairs between nonlocal
fermion bilinears of the form (OΓ, OfΓ;γν1g=2), where
ν̂1 is the direction of the straight line, for chirality-
breaking actions. Symmetry arguments (reflections,
charge conjugation) [114] confirm that the one-loop
mixing pattern is also valid nonperturbatively. In the
case of (symmetric and asymmetric) staple operators,
the one-loop computation [108] showsmixing in pairs
with a different pattern: (OΓ, O½Γ;γν2 �=2), where ν̂2 is
the direction of the sides of the staple line. However,
symmetry arguments [68] show a wider mixing
pattern: Quadruplets of operators emerge in the
asymmetric case and triplets in the symmetric case
when nonchiral fermions are employed.

(4) In the case of (symmetric and asymmetric) staple
operators, a pinch-pole singularity [57] arises when
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one takes the infinite limit of lateral sizes of the staple
(this limit is included in the definition of TMDPDFs).
This singularity—a linear divergence—comes from
the gluon exchange between the two parallel (“longi-
tudinal”) segments of the staple.

(5) The renormalization functions are (in general) com-
plex in nonminimal subtraction schemes.1

Nonperturbative renormalization prescriptions
[8,58,65,68,115,116] have already been employed in lattice
simulations for both straight-line and staple operators using
RI0-type schemes. There are also studies of alternative
prescriptions, such as the ratio (or short-distance ratio)
scheme [66], Wilson-line-mass-subtraction scheme
[109,117], RI-xMOM scheme (using the auxiliary-field
approach [103,109,118–120]), and a hybrid renormaliza-
tion scheme [121].
While a standard RI0-type scheme (extended in the

presence of mixing) can treat the various types of diver-
gences and mixing of the nonlocal operators at one loop,
recent nonperturbative examinations [66,122] at different
lattice spacings have provided compelling evidence indi-
cating the existence of residual linear divergences in both
straight-line and staple operators. In this regard, an alter-
native version of RI0, as suggested in Refs. [65,123], which
includes the computation of vacuum expectation value
for rectangular Wilson loops, is also employed in our
current work. This prescription (described in Sec. II D) is
expected to suppress the residual power divergences
from the Green’s functions of the staple operators (see
Sec. IV).
The paper is organized as follows: In Sec. II, we provide

the setup of our calculation, including the definition of
the operators under study and the renormalization con-
ditions that we employ throughout, corresponding to four
different variants of the RI0 scheme. Sections III and IV
present our main results in dimensional and lattice
regularization, respectively. This includes both the renorm-
alization functions and conversion matrices between the
RI0-type and MS schemes. In Sec. V, we summarize and
give some future plans. We have also included three
appendices. In Appendix A, we provide a list of formu-
las for the calculation, in dimensional regularization,
of one-loop Feynman integrals appropriate to nonlocal
operators. Appendix B contains the definitions of
Feynman-parameter integrals appearing in our results. In
Appendix C, we collect one-loop results for the renorm-
alization of the quark field in both dimensional and lattice
regularizations.

II. CALCULATION SETUP

A. Definition of asymmetric staple-shaped
Wilson-line operators

First, we define the operators under study along with our
conventions.2 The asymmetric staple-shaped Wilson-line
fermion bilinear operators are defined in Euclidean space as
follows:

OΓðx; z; y; y0Þ≡ ψ̄ðxÞΓWðx; z; y; y0Þ
× ψðxþ zν̂1 þ ðy − y0Þν̂2Þ; ð2:1Þ

where Wðx; z; y; y0Þ denotes the staple-shaped Wilson line
as given schematically in Fig. 1 and defined as

Wðx; z; y; y0Þ≡ Uðx; yν̂2ÞUðxþ yν̂2; zν̂1Þ
× U†ðxþ zν̂1 þ ðy − y0Þν̂2; y0ν̂2Þ; ð2:2Þ

Uðr;lμ̂Þ≡ P exp

�
ig
Z

l

0

dlAμðrþ l μ̂Þ
�
: ð2:3Þ

Uðr;lμ̂Þ denotes the straight-line path-ordered (P) expo-
nential (Wilson line), expressed in terms of the gluon field
Aμ, which connects the points r and rþ lμ̂. A lattice
discretization of Uðr;lμ̂Þ in terms of gluon linksUμðxÞ that
connect points x and xþ aμ̂ is given below:

Uðr;lμ̂Þ ¼
Yl∓1

l¼0

U�μðrþ laμ̂Þ; ð2:4Þ

where U−μðxÞ≡U†
μðx − aμ̂Þ and upper (lower) signs

correspond to l > 0 (l < 0). Other discretizations involve
smeared gluon links, e.g., stout, HYP,Wilson flow.We plan
to investigate the impact of stout smearing at the one-loop
level in future work. There is a total of 16 different

FIG. 1. The shape of the asymmetric staple line, as defined in
the operator OΓðx; z; y; y0Þ. Here, the staple is placed at x ¼ 0.

1The presence of an imaginary part in the renormalization
functions depends on the exact definition of the renormalization
scheme. For example, one can define purely real renormaliza-
tion conditions by using only the real part of “projected” Green’s
functions; in this way, both the real and the imaginary part of the
renormalized Green’s functions will be rendered finite.

2A number of different conventions can be found in the
literature. For example, one can match our convention to
Ref. [68] through y → l, z → b, and ðy − y0Þ → −z.
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operators that can be extracted from Eq. (2.1) depending on
the choice of the Dirac matrix Γ inserted between the
fermion and antifermion fields: Γ ¼ 1 (scalar S), γ5 ≡
γ1γ2γ3γ4 (pseudoscalar P), γμ (vector Vμ), γ5γμ (axial vector
Aμ), σμν ≡ ½γμ; γν�=2 (tensor Tμν). Of particular interest is
the study of vector, axial-vector, and tensor operators,
which correspond to the unpolarized, helicity, and trans-
versity types of TMDPDFs, respectively.
Since we are working in one-loop perturbation theory

with massless fermions, the flavor content of the fermion
fields ψ and ψ̄ is irrelevant for our calculations up to this
order. Thus, our one-loop results are valid for both flavor
singlet and nonsinglet operators, given that there is no
additional mixing with gluon nonlocal operators [70,119].

B. Symmetry properties of staple-shaped operators

We examine below the properties of staple operators
under symmetry transformations. Similar investigations
can be found in [65,68]. Operators with the same behavior
under all symmetries can mix among themselves. In this
way, one can identify the mixing pattern of the staple
operators based on nonperturbative arguments. Since the
staple operators depend on two special directions (ν̂1 and
ν̂2) in which the staple is defined, we consider appropriate
versions of the symmetry transformations of the QCD
action (in Euclidean space) with respect to the special
directions.
(1) Translational symmetry: The operators are covariant

under translations in Euclidean space. Similarly to
the case of local operatorsOðxÞ that cannot mix with
translated versions of themselves (OðyÞ), mixing
among nonlocal operators involving different paths
and shapes for the Wilson line joining the fermion-
antifermion pair cannot occur [98,100,103].

(2) Two-dimensional (2D) rotational (or square, on the
lattice) symmetry: The operators are covariant under
rotations over the two-dimensional (2D) plane trans-
verse to the plane in which the staple is defined. The
16 staple operators are classified into two represen-
tations of the 2D rotational group: (1) scalar:
fS; P; Vν1 ; Vν2 ; Aν1 ; Aν2 ; Tν1ν2 ; Tν3ν4g, (2) vector:
fðVν3 ; Vν4Þ; ðAν3 ; Aν4Þ; ðTν3ν1 ; Tν4ν1Þ; ðTν3ν2 ; Tν4ν2Þg,
where ðν1; ν2; ν3; ν4Þ correspond to different
orthogonal directions in the 4D Euclidean space.
The first representation is one-dimensional, while
the second is two-dimensional reducible [e.g.,
ðVν3 ; Vν4Þ splits into two different one-dimensional
representations: Vν3 þ iVν4 and Vν3 − iVν4]. Oper-
ator mixing can only occur among operators that
support the same irreducible representation. The fact
that an operator such as Vν3 þ iVν4 can mix with
Aν3 þ iAν4 but not with Aν3 − iAν4 implies certain
relations among the corresponding renormalization
and mixing coefficients. Thus, in contrast to the local

operators, which are covariant under 4D rotations,
the residual rotational symmetry cannot completely
prevent mixing between scalar, pseudoscalar, vector,
axial-vector, and tensor operators. Also, operators
that support the same representation of the 4D
rotational group but different representations of
the 2D rotational group, e.g., Vν1 (or Vν2) and
Vρ≠ðν1;ν2Þ, will not share the same renormalization
factor (in contrast to the case of local operators); at
least, the 2D rotational symmetry prevents the
mixing among these operators.

(3) Parity (P): In Euclidean space, temporal and spatial
directions are not distinguished. Thus, parity can be
generalized in any direction. The generalized parity
transformations Pμ for the fermion and gluon
fields with respect to the direction μ are defined
below [124]. Here, x⃗ is the three-vector, which is
perpendicular to the μ direction.

ψðx⃗; xμÞ⟶
Pμ

γμψð−x⃗; xμÞ; ð2:5Þ

ψ̄ðx⃗; xμÞ⟶
Pμ

ψ̄ð−x⃗; xμÞγμ; ð2:6Þ

Aμðx⃗; xμÞ⟶
Pμ

Aμð−x⃗; xμÞ;

Uμðx⃗; xμÞ⟶
Pμ

Uμð−x⃗; xμÞ; ð2:7Þ

Aν≠μðx⃗; xμÞ⟶
Pμ

−Aνð−x⃗; xμÞ;

Uν≠μðx⃗; xμÞ⟶
Pμ

U†
νð−x⃗ − ν̂; xμÞ: ð2:8Þ

The transformation of the staple-shaped operators
under generalized parity is

OΓðx;z;y;y0Þ⟶
Pμ

OγμΓγμðx;ð−1Þδμν1þ1z;ð−1Þδμν2þ1y;

ð−1Þδμν2þ1y0Þ: ð2:9Þ

In the above relation, it is understood that, after the
parity transformation Pμ, there follows a translation
T2x⃗ by an amount 2x⃗; such a translation is clearly
allowed by translational invariance, and it also does
not affect the “relative coordinates” y; y0; z. Thus,

x⃗⟶
Pμ

−x⃗⟶
T2x⃗ þx⃗; ð2:10Þ

and x⃗ remains unchanged. Due to parity, mixing
between operator OΓ with operators OΓγ5 , OΓγ5γν1

,
OΓγ5γν2

, OΓγ5γν1 γν2
is prevented, as shown below (see

Table I).
(4) Time reversal (T ): As in the case of parity, time

reversal in Euclidean space is generalized in any
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direction. The generalized time-reversal transforma-
tions T μ for the fermion and gluon fields with
respect to the direction μ are defined below. We
use the same notation as in parity.

ψðx⃗; xμÞ⟶
T μ

γμγ5ψðx⃗;−xμÞ; ð2:11Þ

ψ̄ðx⃗; xμÞ⟶
T μ

ψ̄ðx⃗;−xμÞγ5γμ; ð2:12Þ

Aμðx⃗; xμÞ⟶
T μ

−Aμðx⃗;−xμÞ;

Uμðx⃗; xμÞ⟶
T μ

U†
μðx⃗;−xμ − μ̂Þ; ð2:13Þ

Aν≠μðx⃗; xμÞ⟶
T μ

Aνðx⃗;−xμÞ;

Uν≠μðx⃗; xμÞ⟶
T μ

Uνðx⃗;−xμÞ: ð2:14Þ

The transformation of the staple-shaped operators
under generalized time reversal is (a translation T2xμ

has also been applied):

OΓðx; z; y; y0Þ

⟶
T μ

Oγ5γμΓγμγ5ðx; ð−1Þδμν1 z; ð−1Þδμν2y; ð−1Þδμν2y0Þ:
ð2:15Þ

Time reversal does not provide any additional
information to the mixing compared to the residual
rotational symmetry and generalized parity.

(5) Charge conjugation (C): The transformations of
fermion and gluon fields under charge conjugation
are given below:

ψðxÞ⟶C
C−1ψ̄TðxÞ; ð2:16Þ

ψ̄ðxÞ⟶C
− ψTðxÞC; ð2:17Þ

AμðxÞ⟶C
−AT

μ ðxÞ; UμðxÞ⟶C ðU†
μðxÞÞT; ð2:18Þ

where C is the charge conjugation matrix satisfying
CγμC−1 ¼ −γTμ . The transformation of the staple-
shaped operators under charge conjugation is

OΓðx; z; y; y0Þ⟶C
O†

γ4ðCΓC−1Þ�γ4ðx; z; y; y
0Þ; ð2:19Þ

where γ4 is the Dirac matrix in the temporal direction.
Charge conjugation does not provide any additional
information on the mixing of asymmetric staple
operators compared to the previously mentioned
symmetries. However, in the case of symmetric staple
operators (y0 ¼ y), charge conjugation forbids the
mixing between operator OΓ with operators OΓγν1

or
OΓγν2

orOΓγν1 γν2
, when ½Γ;Γγν1 � ¼ 0 or ½Γ;Γγν2 � ¼ 0

or ½Γ;Γγν1γν2 � ¼ 0, respectively, as shown below (see
Table I).

(6) Chiral transformations: Under chiral transforma-
tions of fermion fields,

ψðxÞ⟶α
eiαγ5ψðxÞ; ð2:20Þ

ψ̄ðxÞ⟶α
ψ̄ðxÞeiαγ5 ; ð2:21Þ

the staple-shaped operators are invariant only for
Γ ¼ γμ; γ5γμ. Thus, mixing between operator OΓ
with operatorsOΓγν1

,OΓγν2
is eliminated in chirality-

preserving actions.

TABLE I. Symmetry transformations of ÕiðΓÞ [defined in Eqs. (2.26)–(2.33)] under C, P, T . The operators are odd or even under
these transformations: ÕiðΓÞ → �ÕiðΓÞ. The relative sign for each transformation and for each operator is given in the table. The sign is
affected by the commutation and anti-commutation relations of Γ with γμ and γ5, as well as the Hermiticity or anti-Hermiticity of Γ:
dμðΓÞ ¼ �1 when Γγμ ¼ �γμΓ, d5ðΓÞ ¼ �1 when Γγ5 ¼ �γ5Γ, and dH:c:ðΓÞ ¼ �1 when Γ† ¼ �Γ. Operators Õ5 − Õ8 (given in
square brackets) share the same signs as operators Õ1 − Õ4, respectively, for all symmetry transformations, except under C (see last
row), where the signs are opposite: plus (minus) signs correspond to operators Õ1 − Õ4 (Õ5 − Õ8).

Õ1ðΓÞ½Õ5ðΓÞ� Õ2ðΓÞ½Õ6ðΓÞ� Õ3ðΓÞ½Õ7ðΓÞ� Õ4ðΓÞ½Õ8ðΓÞ�
Pν1 þdν1ðΓÞ −dν1ðΓÞ þdν1ðΓÞ −dν1ðΓÞ
Pν2 þdν2ðΓÞ þdν2ðΓÞ −dν2ðΓÞ −dν2ðΓÞ
Pν3 þdν3ðΓÞ −dν3ðΓÞ −dν3ðΓÞ þdν3ðΓÞ
Pν4 þdν4ðΓÞ −dν4ðΓÞ −dν4ðΓÞ þdν4ðΓÞ
T ν1 þdν1ðΓÞd5ðΓÞ þdν1ðΓÞd5ðΓÞ −dν1ðΓÞd5ðΓÞ −dν1ðΓÞd5ðΓÞ
T ν2 þdν2ðΓÞd5ðΓÞ −dν2ðΓÞd5ðΓÞ þdν2ðΓÞd5ðΓÞ −dν2ðΓÞd5ðΓÞ
T ν3 þdν3ðΓÞd5ðΓÞ þdν3ðΓÞd5ðΓÞ þdν3ðΓÞd5ðΓÞ þdν3ðΓÞd5ðΓÞ
T ν4 þdν4ðΓÞd5ðΓÞ þdν4ðΓÞd5ðΓÞ þdν4ðΓÞd5ðΓÞ þdν4ðΓÞd5ðΓÞ
C ðþ1Þ½ð−1Þ�dH:c:ðΓÞd5ðΓÞd4ðΓÞ ðþ1Þ½ð−1Þ�dH:c:ðΓÞd5ðΓÞd4ðΓÞ ðþ1Þ½ð−1Þ�dH:c:ðΓÞd5ðΓÞd4ðΓÞ ðþ1Þ½ð−1Þ�dH:c:ðΓÞd5ðΓÞd4ðΓÞ
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Since C, P, and T transformations can flip the direction
of one or more staple segments or can give a Hermitian
conjugate operator, it is useful to consider the following
basis of eight operators for each Γ:

Oþþ
Γ ≡OΓðx; z; y; y0Þ; ð2:22Þ

O−þ
Γ ≡OΓðx;−z; y; y0Þ; ð2:23Þ

Oþ−
Γ ≡OΓðx; z;−y;−y0Þ; ð2:24Þ

O−−
Γ ≡OΓðx;−z;−y;−y0Þ; ð2:25Þ

and their Hermitian conjugates. The action of the three
discrete symmetries is manifest by taking linear combina-
tions of the eight operators [68], which are odd/even under
C, P, T :

Õ1ðΓÞ≡ ½Oþþ
Γ þO−þ

Γ þOþ−
Γ þO−−

Γ þ ðOþþ
Γ Þ†

þ ðO−þ
Γ Þ† þ ðOþ−

Γ Þ† þ ðO−−
Γ Þ†�=8; ð2:26Þ

Õ2ðΓÞ≡ ½Oþþ
Γ −O−þ

Γ −Oþ−
Γ þO−−

Γ þ ðOþþ
Γ Þ† − ðO−þ

Γ Þ†
− ðOþ−

Γ Þ† þ ðO−−
Γ Þ†�=8; ð2:27Þ

Õ3ðΓÞ≡ ½Oþþ
Γ −O−þ

Γ þOþ−
Γ −O−−

Γ þ ðOþþ
Γ Þ† − ðO−þ

Γ Þ†
þ ðOþ−

Γ Þ† − ðO−−
Γ Þ†�=8; ð2:28Þ

Õ4ðΓÞ≡ ½Oþþ
Γ þO−þ

Γ −Oþ−
Γ −O−−

Γ þ ðOþþ
Γ Þ† þ ðO−þ

Γ Þ†
− ðOþ−

Γ Þ† − ðO−−
Γ Þ†�=8; ð2:29Þ

Õ5ðΓÞ≡ ½Oþþ
Γ þO−þ

Γ þOþ−
Γ þO−−

Γ − ðOþþ
Γ Þ† − ðO−þ

Γ Þ†
− ðOþ−

Γ Þ† − ðO−−
Γ Þ†�=8; ð2:30Þ

Õ6ðΓÞ≡ ½Oþþ
Γ −O−þ

Γ −Oþ−
Γ þO−−

Γ − ðOþþ
Γ Þ† þ ðO−þ

Γ Þ†
þ ðOþ−

Γ Þ† − ðO−−
Γ Þ†�=8; ð2:31Þ

Õ7ðΓÞ≡ ½Oþþ
Γ −O−þ

Γ þOþ−
Γ −O−−

Γ − ðOþþ
Γ Þ† þ ðO−þ

Γ Þ†
− ðOþ−

Γ Þ† þ ðO−−
Γ Þ†�=8; ð2:32Þ

Õ8ðΓÞ≡ ½Oþþ
Γ þO−þ

Γ −Oþ−
Γ −O−−

Γ − ðOþþ
Γ Þ† − ðO−þ

Γ Þ†
þ ðOþ−

Γ Þ† þ ðO−−
Γ Þ†�=8: ð2:33Þ

In Table I, we provide the action of the symmetry trans-
formations C, P, T on the operators ÕiðΓÞ. We find that
quadruplets of the form fÕiðΓÞ; ÕjðΓγν1γν2Þ; ÕkðΓγν1Þ;
ÕlðΓγν2Þg have the same symmetry properties, where i,
j, k, l are all different, and their values depend on which
Dirac matrix Γ is employed. Switching back to the
original basis, we conclude that when the fermion action
breaks chiral symmetry (e.g., Wilson/clover fermions,

twisted-mass fermions), asymmetric staple operators will
mix in groups of 4, as follows3:

ðOΓ;OΓγν1 γν2
;OΓγν1

;OΓγν2
Þ: ð2:34Þ

When chiral fermions (e.g., massless overlap/domain-wall/
continuum fermions) are employed, the mixing pattern is
minimized to ðOΓ;OΓγν1 γν2

Þ.
In the specific case of symmetric staple operators

(y0 ¼ y), the basis of independent operators is reduced:
By employing appropriate translations, ðOþþ

Γ Þ† ¼ O−þ
Γ ,

ðO−þ
Γ Þ† ¼ Oþþ

Γ , ðOþ−
Γ Þ† ¼ O−−

Γ , ðO−−
Γ Þ† ¼ Oþ−

Γ , and
thus, the independent operators are only four for each Γ.
Therefore, the mixing pattern takes the form ðOΓ;
O½Γ;γν1 γν2 �=2;O½Γ;γν1 �=2;O½Γ;γν2 �=2Þ for nonchiral fermions

and ðOΓ;O½Γ;γν1 γν2 �=2Þ for chiral fermions. Depending on
the Dirac matrix Γ, one or three out of the three commu-
tators ½Γ; γν1 �, ½Γ; γν2 �, ½Γ; γν1γν2 � appearing in the mixing
pattern of the symmmetric staple operators with nonchiral
fermions will be zero, thus leading to a mixing triplet or
singlet (multiplicatively renormalizable operator), respec-
tively. In particular, one commutator vanishes when
Γ ¼ γ5, γμ (μ can be any direction), γ5γν1 , γ5γν2 , σν1ν2 ,
σν1μ (μ ≠ ν1; ν2), σν2μ (μ ≠ ν1; ν2), and three commutators
vanish when Γ ¼ 1, γ5γμ (for μ ≠ ν1; ν2), σμρ (for
μ; ρ ≠ ν1; ν2). Similarly, when ½Γ; γν1γν2 � ≠ 0, the mixing
pattern of the symmetric staple operators with chiral
fermions gives a mixing pair; otherwise it leads to a
multiplicatively renormalizable operator. The sets of mix-
ing operators in the case of symmetric staple are given
explicitly below:
(a) For nonchiral fermions, the mixing sets are triplets:

ðσν1ν2 ; γν1 ; γν2Þ, ðγ5; γ5γν1 ; γ5γν2Þ, ðγν3 ; σν3ν1 ; σν3ν2Þ,
ðγν4 ; σν4ν1 ; σν4ν2Þ, and singlets: 1; γ5γν3 ; γ5γν4 ; σν4ν3 ,

(b) For chiral fermions, the mixing sets are doublets:
ðγν1 ; γν2Þ, ðγ5γν1 ; γ5γν2Þ, ðσν3ν1 ; σν3ν2Þ, ðσν4ν1 ; σν4ν2Þ,
and singlets: 1; γ5; γν3 ; γν4 ; γ5γν3 ; γ5γν4 ; σν1ν2 ; σν4ν3 ,

where ðν1; ν2; ν3; ν4Þ correspond to different orthogonal
directions in the 4D Euclidean space. In contrast to the
symmetric case, symmetry arguments alone are not suffi-
cient to establish multiplicative renormalization for any
asymmetric operator.
We note that all-order perturbative studies in the con-

tinuum show that a multiplicative renormalization can
address all the divergences of the nonlocal Wilson-line
operators [98,100,103]. Thus, the mixing that is allowed by

3In principle, the symmetry properties of ÕiðΓÞ reduce the
possible mixing among the 8 × 16 operators in the original basis
to multiplets of 8 × 4 operators with Gamma structures given by
ðOΓ;OΓγν1 γν2

;OΓγν1
;OΓγν2

Þ. The mixing sets are further reduced
to multiplets of four operators by excluding mixing among staple
operators, which involve different paths but the same shape of the
Wilson line [98,100,103].
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symmetries is absent in minimal subtraction schemes.
However, it can occur as finite mixing in nonminimal
schemes. On the lattice, the mixing is present when
employing MS or any nonperturbative intermediate
scheme; while MS is a minimal continuum scheme, on
the lattice, additional finite regularization-dependent terms
contribute to the renormalization functions in order to be
able to match the continuum MS-renormalized Green’s
functions.
In our work, we focus on the wider mixing pattern

arising in the case of asymmetric staple operators when a
chirality-breaking fermion action is employed. Our goal is
to construct a common prescription for renormalizing the
staple operators in any regularization (regularization inde-
pendent). To this end, we consider the following quadru-
plets of the 16 independent bilinear operators OΓ (with
Γ∈ Si)

4:

S1 ≡ f1; σν1ν2 ; γν1 ; γν2g; ð2:35Þ

S2 ≡ fγ5; σν4ν3 ; γ5γν1 ; γ5γν2g; ð2:36Þ

S3 ≡ fγν3 ; γ5γν4 ; σν3ν1 ; σν3ν2g; ð2:37Þ

S4 ≡ fγν4 ; γ5γν3 ; σν4ν1 ; σν4ν2g: ð2:38Þ

In the present study, we do not consider possible mixing
(on the lattice) with higher dimensional operators multiplied
by the appropriate power of the lattice spacing. In the case of
local operators, such mixing is present only for finite values
of the lattice spacing, and it vanishes when taking the
continuum limit. However, in the case of nonlocal operators,
where power divergences a−n; n∈Zþ are present, OðaÞ
effects in the bare Green’s functions can contribute to the
renormalized Green’s functions at two loops.5 Alternatively,
one can suppress these unwanted effects in twoways: (1) by
removing power divergences from the Green’s function
through an appropriate ratio with another Green’s function
that has the same power divergences, e.g., a closed Wilson
loop, (2) by subtracting artifacts from the bare Green’s
functions calculated in lattice perturbation theory. Our group

has successfully applied this method to the renormalization
of local quark bilinear operators [125–127], and more
recently to the renormalization of nonlocal straight
Wilson-line operators for quasi-PDFs [107]. We plan to
study one-loop discretization effects for the staple operators
to all orders in the lattice spacing in future work.

C. Green’s functions of staple-shaped operators
with external fermions

As is standard practice, one-particle-irreducible (1-PI)
two-point amputated Green’s functions of the operators
under study with external elementary fields, e.g., fermion
fields, can be used for the extraction of renormalization
functions6:

ΛΓðq;z;y;y0Þ ¼
X
x

hψðqÞjOΓðx;z;y;y0Þjψ̄ðqÞiamp: ð2:39Þ

A summation over the position of the staple-shaped
operator is taken, which is allowed by translational sym-
metry, in order to simplify the calculations. Such Green’s
functions using local operators are easily calculated in
continuum perturbation theory to very high order. However,
due to the nonlocal nature of the staple-shaped operators,
additional scales (staple lengths) appear in Green’s func-
tions, which make the computation more complex even at
the one-loop level. The corresponding calculation on the
lattice is even more demanding since the procedure for
isolating divergences from the Feynman integrals, as well
as the procedure for taking the continuum limit a → 0
(where a is the lattice spacing) are more complicated (see,
e.g., Refs. [105,108]).
There are four one-loop Feynman diagrams contributing

to ΛΓðq; z; y; y0Þ, shown in Fig. 2. These diagrams will
appear in both continuum and lattice regularizations since
all vertices are present in both regularizations. To this
perturbative order, zero (d1), one (d2 − d3) or two (d4)
gluons stem from the staple-shaped Wilson line. Due to the
shape of the staple, the diagrams are further divided into
thirteen subdiagrams, shown in Fig. 3, depending on the
side of the staple from which gluons emanate.

FIG. 2. One-loop Feynman diagrams contributing to the Green’s functions of the asymmetric staple-shaped operator with external
fermions. The straight (wavy) lines represent fermions (gluons). The operator insertion is denoted by a filled rectangle.

4There is freedom in choosing the signs in front of each
operator, leading to different conventions.

5Oða g2Þ terms from the bare Green’s function multiplied by
Oð1=a g2Þ terms from the renormalization function lead to
Oða0 g4Þ contributions to the renormalized Green’s function.

6The removal of the standard momentum-space delta functions
that appear in Green’s functions such as Eq. (2.39) and Eq. (2.47)
is understood.
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The transformation properties of ΛΓðq; z; y; y0Þ under C, P, T are given below (q⃗ is the momentum three-vector, which is
perpendicular to the μ direction appearing in each transformation):

ΛΓðq; z; y; y0Þ⟶
Pμ

γμΛγμΓγμðð−q⃗; qμÞ; ð−1Þδμν1þ1z; ð−1Þδμν2þ1y; ð−1Þδμν2þ1y0Þγμ; ð2:40Þ

ΛΓðq; z; y; y0Þ⟶
T μ

γμγ5Λγ5γμΓγμγ5ððq⃗;−qμÞ; ð−1Þδμν1 z; ð−1Þδμν2y; ð−1Þδμν2y0Þγ5γμ; ð2:41Þ

ΛΓðq; z; y; y0Þ⟶C
CTγ4Λ

†
γ4ðCΓC−1Þ�γ4ð−q; z; y; y

0Þγ4ðC−1ÞT: ð2:42Þ

By combining Pμ, T μ, and C, ΛΓðq; z; y; y0Þ transforms to

ΛΓðq; z; y; y0Þ ⟶
Pμ·T μ·C

γ5CTγ4Λ
†
γ5γ4ðCΓC−1Þ�γ4γ5ðq;−z;−y;−y

0Þγ4ðC−1ÞTγ5: ð2:43Þ

D. Renormalization conditions

We formulate below different versions of appropriate
regularization-independent (RI0) prescriptions that address
all possible divergences and mixing of the staple-shaped
operators. In contrast to our previous study regarding the
renormalization of symmetric staple operators, we con-
struct renormalization matrices that address the mixing as
observed by studying symmetries and not by studying one-
loop lattice perturbation theory; thus, the renormalization
matrices will be 4 × 4. Several of the nondiagonal elements
of these matrices will vanish at one loop. In this way, the
renormalization prescription will be more appropriate for
nonperturbative calculations addressing possible mixing

that can be seen in higher loops. We first give our
conventions regarding the renormalization of the operators
under study, as well as of the relevant elementary fields and
parameters that enter our perturbative calculations:

OR
Γðx; z; y; y0Þ ¼ ZR;X

ΓΓ0 OX
Γ0 ðx; z; y; y0Þ;

ψRðxÞ ¼ ðZR;X
ψ Þ1=2ψXðxÞ;

gR ¼ μð4−dÞ=2ZR;X
g gX; ð2:44Þ

where ψXðψRÞ is the bare (renormalized) fermion field, and
gXðgRÞ is the bare (renormalized) coupling constant. X
denotes dimensional (DR) or lattice (LR) regularization,

FIG. 3. One-loop subdiagrams contributing to the Green’s functions of the asymmetric staple-shaped operator with external fermions.
The straight (wavy) lines represent fermions (gluons). The operator insertion is denoted by an asymmetric staple-shaped line.
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R denotes renormalization schemes of RI0 or MS, μ is
related to the MS renormalization scale μ̄ [μ̄≡
μð4π=eγEÞ1=2, γE is Euler’s constant], and d is the number
of Euclidean spacetime dimensions (in DR: d≡ 4 − 2ε, in
LR: d ¼ 4).7 A sum over Γ0 matrices, which belong to the
mixing set of Γ [cf. Eqs. (2.35)–(2.38)], is implicit in
Eq. (2.44).8 Given the above conventions, the renormalized
Green’s function ΛR

Γðq; z; y; y0Þ under study is defined
through

ΛR
Γðq; z; y; y0Þ ¼ ðZR;X

ψ Þ−1ZR;X
ΓΓ0 ΛX

Γ0 ðq; z; y; y0Þ: ð2:45Þ

1. RI0 conditions

We first employ the typical RI0 scheme as defined for the
renormalization of local fermion bilinear operators [128] by
extending the renormalization conditions consistently with
the mixing and the definition in Eq. (2.45):

1

4Nc
ðZRI0;X

ψ Þ−1ZRI0;X
ΓΓ0 Tr½ΛX

Γ0 ðq; z; y; y0ÞPΓ00 �
����
q¼q̄

¼ δΓΓ00 ; Γ;Γ00 ∈ Si; ð2:46Þ

where

ZRI0;X
ψ ¼ 1

4Nc
Tr

�
hψXðqÞψ̄XðqÞi−1 · i=q

q2

�����
q¼q̄

; ð2:47Þ

hψXðqÞψ̄XðqÞi is the fermion propagator, q̄ is the
RI0 renormalization four-vector scale, and Nc is the
number of colors. Note that the traces appearing in
Eqs. (2.46)–(2.47) regard both Dirac and color indices.
Also, Eq. (2.46) corresponds to 16 × 4 ¼ 64 conditions,
which determine all the elements of the 4 × 4 renormaliza-
tion matrices for the 4 mixing sets Si.
We use two different choices of projectors in Eq. (2.46):

P½1�
Γ ¼ e−iq·rΓ†; ð2:48Þ

P½2�
Γ ¼

8>>>>><
>>>>>:

e−iq·r
�
1 − =qT=qL

q2T

�
Γ†; Γ∈ S1; S2

e−iq·r
�
1 − ð=qT−=qν3 Þð=qLþ=qν3 Þ

q2T−q
2
ν3

�
Γ†; Γ∈ fγν3 ; γ5γν3 ; σν3ν1 ; σν3ν2g

e−iq·r
�
1 − ð=qT−=qν4 Þð=qLþ=qν4 Þ

q2T−q
2
ν4

�
Γ†; Γ∈ fγν4 ; γ5γν4 ; σν4ν1 ; σν4ν2g

; ð2:49Þ

where ⃗r≡ zν̂1 þ ðy − y0Þν̂2, q⃗L ≡ qν1 ν̂1 þ qν2 ν̂2, and
q⃗T ≡ q⃗ − q⃗L ¼ qν3 ν̂3 þ qν4 ν̂4. Use of these two choices
of projectors amounts to the implementation of two differ-
ent RI0 prescriptions, which we will denote as RI01, RI

0
2 from

now on. Compared to the first choice of projectors, the
second one can further remove finite contributions of some
Dirac structures, allowed by Lorentz symmetry, from the
elements of the renormalization matrices. Similar projec-
tors have also been studied in the renormalization of local
operators, leading to reduced contributions from hadronic
contamination in the nonperturbative data, especially for
small values of the renormalization scale q̄.
The RI0 scheme can address the power9 and logarithmic

divergences, as well as the mixing between different Dirac
structures, in the same way as MS does. However, in
contrast to the MS scheme, RI0 can also treat the pinch-pole
singularity when y → ∞. This means that this infinite limit
can be taken only in the RI0-renormalized Green’s functions
and not in the MS-renormalized Green’s functions of the

staple operators. This is true because both schemes are
defined for finite values of y, where pinch-pole singularities
are not present. Then, terms that diverge with y (in the
y → ∞ limit) do not contribute to the MS renormalization
function, but they do so in RI0. Thus, when multiplying the
bare Green’s functions with their renormalization func-
tions, only in RI0 these terms are eliminated. However,
since RI0 is just an intermediate scheme entering the
procedure of renormalizing the operators in the reference
scheme MS, nonperturbatively, we cannot benefit from this
additional feature of RI0; after conversion to the MS
scheme, the pinch-pole singularity comes back. Thus,
the standard MS prescription is not appropriate for renorm-
alizing staple operators in the infinite limit y → ∞.

2. Alternative prescriptions

Alternative prescriptions that are also applicable in the
limit y → ∞ are described below. The main feature in these
prescriptions stems from the fact that the same pinch-pole
singularity arises in a closed Wilson loop. Also, this object
shows power and cusp divergences as the staple-shaped
operators. As proposed in Ref. [65], we can redefine the
standard staple-shaped operator OΓ by dividing it with the

7Superscripts X and R are omitted when they are clear from the
context.

8From now on, sums over repeated Γ matrices are understood.
9Some power divergences may remain beyond one loop [66].
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square root of the vacuum expectation value of a rectan-
gular z × ðyþ y0Þ Wilson loop Lðz; yþ y0Þ:

ŌΓðx; z; y; y0Þ≡ OΓðx; z; y; y0Þ
hLðz; yþ y0Þi1=2 ; ð2:50Þ

where

Lðz;yþy0Þ≡ 1

Nc
Tr½PfUðx;ðyþy0Þν̂2Þ

×Uðxþðyþy0Þν̂2;zν̂1Þ
×U†ðxþzν̂1;ðyþy0Þν̂2ÞU†ðx;zν̂1Þg�: ð2:51Þ

The dimensions of the Wilson loop are chosen in such a
way as to cancel the power,10 cusp, and pinch-pole
divergences of OΓ. Both the standard MS prescription
and the RI0 prescription [Eq. (2.46)] can now be applied to
the operator ŌΓ. In particular, the condition for RI0 (we will
call it RI0-bar; the related renormalization functions are
denoted by Z̄R;X

ΓΓ0 ) now reads

1

4Nc
ðZRI0;X

ψ Þ−1Z̄RI0;X
ΓΓ0 Tr½Λ̄X

Γ0 ðq; z; y; y0ÞPΓ00 �
����
q¼q̄

¼ δΓΓ00 ; ð2:52Þ

where

Λ̄X
Γ ðq; z; y; y0Þ ¼

X
x

hψXðqÞjŌX
Γ ðx; z; y; y0Þjψ̄XðqÞiamp

¼ ΛX
Γ ðq; z; y; y0Þ

hLXðz; yþ y0Þi1=2 ; ð2:53Þ

Z̄RI0;X
ΓΓ0 ¼ ZRI0;X

ΓΓ0 hLXðz; yþ y0Þi1=2;
ŌR

Γðx; z; y; y0Þ ¼ Z̄R;X
ΓΓ0 ŌX

Γ0 ðx; z; y; y0Þ: ð2:54Þ

Z̄R;X
ΓΓ0 addresses the remaining end-point divergences, as

well as the mixing.
In order to extract Z̄R;X

ΓΓ0 , we need to calculate the one-
loop Feynman diagrams of Fig. 4 contributing to
hLXðz; yþ y0Þi. Older studies of Wilson loops can be
found, e.g., in Refs. [123,129] in both continuum and
lattice using Wilson gluons. Here, we extend these calcu-
lations to the case of Symanzik-improved gluons. For
completeness, we have also repeated the continuum
calculation.

Since the end-point divergences do not depend on the
dimensions of the staple,11 a nonperturbative determination
of Z̄R;X

ΓΓ0 is expected to exhibit a much milder dependence on
the staple lengths z; y; y0 that lie in the renormalization
window: a≪z≪Λ−1

QCD, a ≪ y ≪ Λ−1
QCD, a ≪ y0 ≪ Λ−1

QCD.
In this way it becomes more acceptable to renormalize the
modified operators ŌΓ defined at large values of the lengths
z; y; y0, using renormalization functions Z̄RI0;X

ΓΓ0 defined at
smaller values of z; y; y0 within the perturbative region. To
distinguish the lengths appearing in the bare operators from
the reference lengths appearing in the renormalization
functions, wewill call the latter as z̄; ȳ; ȳ0. If one is interested
in taking the limit y → ∞, then there are only two relevant
lengths: z̄ and ȳ − ȳ0.
Another option that we do not consider in this work is the

short-distance ratio (SDR) scheme, described in Ref. [66].
In this scheme, ratios of hadron matrix elements of the
modified operators at different external momenta are
considered. All the good features of RI0-bar are also valid
in the SDR scheme. However, we stress that SDR is valid
when operator mixing is absent or negligible.

III. CALCULATION IN DIMENSIONAL
REGULARIZATION

A. Green’s functions

We provide below our one-loop results for the bare
Green’s functions ΛDR

Γ ðq; z; y; y0Þ in dimensional regulari-
zation (DR) up toOðε0Þ. For the calculation of the one-loop
momentum integrals, we make use of the formulas given in
Appendix A. The results depend on several Dirac structures
allowed by the residual rotational symmetry, and they are
expressed in terms of integrals over Feynman parameters
and/or over ζ variables running over the sides of the
staples: Fi ≡ Fiðq; rÞ, Gi ≡Giðq; y; zÞ, Ḡi ≡ Ḡiðq; y0; zÞ,

FIG. 4. One-loop diagrams contributing to the vacuum expect-
ation value of the rectangular Wilson loop. The wavy lines
represent gluons.

10As in the original RI0 scheme, some power divergences may
remain beyond one loop. However, by dividing with the Wilson
loop, we expect that the residual power divergences are sup-
pressed.

11On the contrary, power divergences depend on the total
length of the staple line, and thus, renormalization functions in
ordinary RI0 must be computed separately for each choice of the
dimensions of the staple.
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Hi ≡Hiðq; y; zÞ, H̄i ≡ H̄iðq; y0; zÞ, Ii ≡ Iiðq; y − y0; zÞ.
These integrals are listed explicitly in Appendix B. The
following notation is employed: ⃗r≡ zν̂1 þ ðy − y0Þν̂2,
μ ¼ ν3; ν4.

ΛDR
1 ðq; z; y; y0Þ ¼ Σ1;11þ Σ1;2σν1ν2 þ Σ1;3γν1qþ Σ1;4γν2q;

ð3:1Þ

ΛDR
γν1

ðq; z; y; y0Þ ¼ Σ2;1γν1 þ Σ2;2γν2 þ Σ2;31qþ Σ2;4σν1ν2q;

ð3:2Þ

ΛDR
γν2

ðq; z; y; y0Þ ¼ Σ3;1γν2 þ Σ3;2γν1 þ Σ3;31qþ Σ3;4σν1ν2q;

ð3:3Þ

ΛDR
γμ ðq; z; y; y0Þ ¼ Σ4;1γμ þ Σ4;2εν1ν2μργ5γρ þ Σ4;3qμγν1

þ Σ4;4qμγν2 þ Σ4;5σμν1qþ Σ4;6σμν2q

þ Σ4;7qμ1q; ð3:4Þ

ΛDR
σν1ν2

ðq; z; y; y0Þ ¼ Σ5;1σν1ν2 þΣ5;21þΣ5;3γν1qþΣ5;4γν2q;

ð3:5Þ

ΛDR
σμν1

ðq; z; y; y0Þ ¼ Σ6;1σμν1 þ Σ6;2σμν2 þ Σ6;3qμ1

þ Σ6;4qμσν1ν2 þ Σ6;5γμq

þ Σ6;6εν1ν2μργ5γρq

þ Σ6;7qμγν1qþ Σ6;8qμγν2q; ð3:6Þ

ΛDR
σμν2

ðq; z; y; y0Þ ¼ Σ7;1σμν2 þ Σ7;2σμν1 þ Σ7;3qμ1

þ Σ7;4qμσν1ν2 þ Σ7;5γμq

þ Σ7;6εν1ν2μργ5γρqþ Σ7;7qμγν1q

þ Σ7;8qμγν2q; ð3:7Þ

ΛDR
γ5 ðq; z; y; y0Þ ¼ γ5ΛDR

1 ðq; z; y; y0Þ;ΛDR
γ5γν1

ðq; z; y; y0Þ
¼ γ5ΛDR

γν1
ðq; z; y; y0Þ; ð3:8Þ

ΛDR
γ5γν2

ðq; z; y; y0Þ ¼ γ5ΛDR
γν2

ðq; z; y; y0Þ;ΛDR
γ5γμðq; z; y; y0Þ

¼ γ5ΛDR
γμ ðq; z; y; y0Þ; ð3:9Þ

ΛDR
σν4ν3

ðq; z; y; y0Þ ¼ γ5ΛDR
σν1ν2

ðq; z; y; y0Þ; ð3:10Þ

where Σi;j ≡ Σi;jðμ̄2; qν1 ; qν2 ; q2; z; y; y0Þ:

Σi;j ¼ eiq·r
�
δi1 þ

g2CF

16π2

�
δi1

�ð8 − βÞ
ε

þ ð1 − βÞ
�
1þ ln

�
μ̄2

q2

		
þ s0

�
þ si;j



þOðg4Þ

	
; ð3:11Þ

and s0 ≡ s0ðμ̄2; q2; z; y; y0Þ, si;j ≡ si;jðqν1 ; qν2 ; q2; z; y; y0Þ:

s0 ¼ 2ð6þ βÞγE þ 4

�
y
z
tan−1

�
y
z

	
þ y0

z
tan−1

�
y0

z

	
−
y − y0

z
tan−1

�
y − y0

z

	�

þ ð1 − βÞ ln
�
μ̄2

q2

	
þ ð2þ βÞ ln

�
μ̄2r2

4

	
þ 4 ln

�
μ̄2z2

4

	
þ 2

�
ln

�
1þ z2

y2

	
þ ln

�
1þ z2

y02

	�
; ð3:12Þ

s1;1 ¼ 15þ 4F1 þ βð−1þ 2F1 − 2F4Þ þ 2βðF1 − F2Þiq · r − 2ð2Ḡ1 þ G2 þ Ḡ2Þiqν1z
− 2ðH2 −H4Þiqν2yþ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0 − 4ðI1 þ I2Þiqν2ðy − y0Þ; ð3:13Þ

s1;2 ¼ s4;2 ¼ 2ðG3 þH5Þq2yzþ 2ðḠ3 þ H̄5Þq2y0z; ð3:14Þ

s1;3 ¼ s4;5 ¼ −2ðG1 − Ḡ1Þiz; ð3:15Þ

s1;4 ¼ s2;4 ¼ s4;6 ¼ s6;6 ¼ −2ðH1 −H3Þiy − 2ðH̄1 − H̄3Þiy0; ð3:16Þ

s2;1 ¼ 15 − ð2F1 − F4Þ þ βð−1þ 2F1 − F4Þ þ ð2F1 − 4F2 − F4Þ
ðy − y0Þ2 − z2

r2
− βF3q2z2

þ
�
3βF1 − 4βF2 þ 4F3

z2

r2

	
iq · rþ

�
−4F3 þ

1

2
βF4 − 2ð2G1 þ 2Ḡ1 þG2 þ Ḡ2Þ

�
iqν1z

þ βF3ðq · rÞqν1z − 2ðH2 −H4Þiqν2yþ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0
− ½βðF1 − 2F2Þ þ 4ðI1 þ I2Þ�iqν2ðy − y0Þ; ð3:17Þ
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s2;2 ¼ −2ðG3 þH5Þq2yzþ 2ðḠ3 þ H̄5Þq2y0zþ ð−βF3 þ 4I3Þq2ðy − y0Þz

þ 2ð−2F1 þ 4F2 þ F4 þ 2F3iq · rÞ ðy − y0Þz
r2

− 4ðH1 −H3Þiqν1y

þ
�
β

�
F1 − 2F2 þ

F4

2

	
− 4ðF3 þ I1Þ

�
iqν1ðy − y0Þ þ βF3ðq · rÞqν1ðy − y0Þ; ð3:18Þ

s2;3 ¼ −βF3ðy − y0Þ½qν1ðy − y0Þ − qν2z� þ
�
−β

�
F1 − 2F2 þ

F4

2

	
þ 2ð−2F3 þ G1 þ Ḡ1Þ

�
iz

þ 2½−2F1 þ 4F2 þ ð−1þ βÞF4 þ 2F3iq · r� qν1
q2

; ð3:19Þ

s3;1 ¼ 15 − ð2F1 − F4Þ þ βð−1þ 2F1 − F4Þ − ð2F1 − 4F2 − F4Þ
ðy − y0Þ2 − z2

r2
− βF3q2ðy − y0Þ2

þ
�
2βðF1 − F2Þ þ 4F3

z2

ðy − y0Þ2
�
iq · r − 2ð2Ḡ1 þ G2 þ Ḡ2Þiqν1z

− 2ð2H1 þH2 − 2H3 −H4Þiqν2yþ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0

−
�
β

�
F1 − 2F2 þ

F4

2

	
− 4ðF3 þ 2I1 þ I2Þ

�
iqν2ðy − y0Þ þ βF3ðy − y0Þq · r; ð3:20Þ

s3;2 ¼ 2ðG3 þH5Þq2yz − 2ðḠ3 þ H̄5Þq2y0z − ðβF3 þ 4I3Þq2ðy − y0Þzþ 2ð−2F1 þ 4F2 þ F4 þ 2F3iq · rÞ ðy − y0Þz
r2

þ
�
β

�
F1 − 2F2 þ

F4

2

	
− 4ðF3 þ G1Þ

�
iqν2zþ βF3ðq · rÞqν2z; ð3:21Þ

s3;3 ¼ βF3z½qν1ðy − y0Þ − qν2z� þ 2ðH1 −H3Þiy − 2ðH̄1 − H̄3Þiy0 þ
�
−β

�
F1 − 2F2 þ

F4

2

	
þ 4ð−F3 þ I1Þ

�
iðy − y0Þ

þ 2½−2F1 þ 4F2 þ ð−1þ βÞF4 þ 2F3iq · r�qν2
q2

; ð3:22Þ

s3;4 ¼ s7;6 ¼ 2ðG1 − Ḡ1Þiz; ð3:23Þ

s4;1 ¼ 15 − 4F2 þ βð−1þ 2F1 − F4Þ þ 2βðF1 − F2Þiq · r − 2ð2Ḡ1 þ G2 þ Ḡ2Þiqν1z
− 2ðH2 −H4Þiqν2yþ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0 − 4ðI1 þ I2Þiqν2ðy − y0Þ; ð3:24Þ

s4;3 ¼
�
β

�
F1 − 2F2 þ

F4

2

	
− 4ðF3 þ G1Þ

�
izþ βF3zðq · rÞ; ð3:25Þ

s4;4 ¼ −4ðH1 −H3Þiyþ
�
β

�
F1 − 2F2 þ

F4

2

	
− 4ðF3 þ I1Þ

�
iðy − y0Þ þ βF3ðy − y0Þðq · rÞ; ð3:26Þ

s4;7 ¼ 2½−2F1 þ 4F2 − ð1 − βÞF4�
1

q2
− βF3r2 þ 4F3

iq · r
q2

; ð3:27Þ

s5;1 ¼ 15 − 2βð1 − F1Þ − 4F1 − βF3q2r2 þ β

�
3F1 − 4F2 þ

F4

2

	
iq · rþ βF3ðq · rÞ2

− 2ð2G1 þ 2Ḡ1 þG2 þ Ḡ2Þiqν1z − 2ð2H1 þH2 − 2H3 −H4Þiqν2y
þ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0 − 4ð2I1 þ I2Þiqν2ðy − y0Þ; ð3:28Þ
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s5;2 ¼ β

�
F1 − 2F2 þ

F4

2

	
i½qν1ðy − y0Þ − qν2z� þ 2ðG3 þH5Þq2yz − 2ðḠ3 þ H̄5Þq2y0z

− βF3½qν1ðy − y0Þ − qν2z�ðq · rÞ − 4ðH1 −H3Þiqν1y − 4I1iqν1ðy − y0Þ þ 4G1qν2iz; ð3:29Þ

s5;3 ¼ −βF3½qν1ðy − y0Þ − qν2z�zþ 2ðH1 −H3Þiy − 2ðH̄1 − H̄3Þiy0

þ
�
−β

�
F1 − 2F2 þ

F4

2

	
þ 4I1

�
iðy − y0Þ; ð3:30Þ

s5;4 ¼ −βF3½qν1ðy − y0Þ − qν2z�ðy − y0Þ þ
�
β

�
F1 − 2F2 þ

F4

2

	
− 2ðG1 þ Ḡ1Þ

�
iz; ð3:31Þ

s6;1 ¼ 15þ βð−1þ 2F1Þ − 4F1 − βF3q2z2 þ βð3F1 − 4F2Þiq · r

þ
�
β
F4

2
− 2ð2G1 þ 2Ḡ1 þ G2 þ Ḡ2Þ

�
iqν1zþ βF3ðq · rÞqν1z − 2ðH2 −H4Þiqν2y

þ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0 þ ½−βðF1 − 2F2Þ − 4ðI1 þ I2Þ�iqν2ðy − y0Þ; ð3:32Þ

s6;2 ¼ −2ðG3 þH5Þq2yzþ 2ðḠ3 þ H̄5Þq2y0zþ ð−βF3 þ 4I3Þq2ðy − y0Þz − 4ðH1 −H3Þiqν1y

þ
�
β

�
F1 − 2F2 þ

F4

2

	
− 4I1

�
iqν1ðy − y0Þ þ βF3ðq · rÞqν1ðy − y0Þ; ð3:33Þ

s6;3 ¼ s7;4 ¼
�
β

�
F1 − 2F2 þ

F4

2

	
− 4G1

�
izþ βF3zðq · rÞ; ð3:34Þ

s6;4 ¼ −s7;3 ¼ 4ðH1 −H3Þiyþ
�
−β

�
F1 − 2F2 þ

F4

2

	
þ 4I1

�
iðy − y0Þ − βF3ðy − y0Þðq · rÞ; ð3:35Þ

s6;5 ¼ −βF3ðy − y0Þ½qν1ðy − y0Þ − qν2z� þ
�
−β

�
F1 − 2F2 þ

F4

2

	
þ 2ðG1 þ Ḡ1Þ

�
iz; ð3:36Þ

s6;7 ¼ −s7;8 ¼ βF3½ðy − y0Þ2 − z2�; ð3:37Þ

s6;8 ¼ s7;7 ¼ −2βF3ðy − y0Þz; ð3:38Þ

s7;1 ¼ 15þ βð−1þ 2F1Þ − 4F1 − βF3q2ðy − y0Þ2 þ 2βðF1 − F2Þiq · r − 2ð2Ḡ1 þ G2 þ Ḡ2Þiqν1z
− 2ð2H1 þH2 − 2H3 −H4Þiqν2yþ 2ð2H̄1 þ H̄2 − 2H̄3 − H̄4Þiqν2y0

þ
�
β

�
F1 − 2F2 þ

F4

2

	
− 4ð2I1 þ I2Þ

�
iqν2ðy − y0Þ þ βF3ðq · rÞqν2ðy − y0Þ; ð3:39Þ

s7;2 ¼ 2ðG3 þH5Þq2yz − 2ðḠ3 þ H̄5Þq2y0z − ðβF3 þ 4I3Þq2ðy − y0Þz

þ
�
β

�
F1 − 2F2 þ

F4

2

	
− 4G1

�
iqν2zþ βF3ðq · rÞqν2z; ð3:40Þ

s7;5 ¼ 2ðH1 −H3Þiy − 2ðH̄1 − H̄3Þiy0 þ
�
−β

�
F1 − 2F2 þ

F4

2

	
þ 4I1

�
iðy − y0Þ

þ βF3z½qν1ðy − y0Þ − qν2z�: ð3:41Þ
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β is the gauge-fixing parameter [β ¼ 0ð1Þ in Feynman
(Landau) gauge], and εμνρτ is the Levi-Civita tensor
(ε1234 ¼ þ1). The pole term Oð1=εÞ [Eq. (3.11)] comes
from the sum of cusp (d4d, d4f), end-point (d2a, d3c), and
contact singularities (d4a, d4b, d4c).

12 Linear divergences
are not present in DR. Also, the term ½y=z tan−1ðy=zÞ þ
y0=z tan−1ðy0=zÞ� appearing in s0 [Eq. (3.12)] gives rise to a
pinch-pole singularity (linear divergence) in the limit
y → ∞ for fixed values of ðy − y0Þ. This term stems from
the subdiagram d4e. Our results agree with previous studies
in Refs. [108,123] that consider specific cases of the staple
operators. More specifically, when y0 → y, in which the
asymmetric staple gauge link becomes symmetric, the
above expressions reproduce the results of Ref. [108],
where a slightly different basis of Feynman-parameter
integrals has been employed, which is related to our basis
(when y0 ¼ y) through linear combinations and/or integra-
tion by parts. Other vanishing limits of the lengths for one
or more staple segments, which classically result to simpler
shapes, e.g., straight-line gauge link of length y − y0 when
(z → 0), or, straight-line gauge link of length z when (y¼y0
and y → 0), or, single point when (y¼y0 and y→0 and
z → 0), are singular because cusp and end points do not
vanish smoothly in these limits giving rise to linear or
logarithmic divergences [see Eqs. (3.82)–(3.83)]. Thus, in
these cases, a complete consistency check is not applicable.
However, by excluding the divergent parts of our results
(s0), the aforementioned limits can be taken in order to
reproduce the finite parts of the corresponding Green’s
functions with simpler shapes of Wilson line [105]. In
particular, some of the form factors Σi;j are zero resulting in
fewer Lorentz structures for each operator, as expected by
symmetries. The basis of Feynman-parameter integrals is
now reduced due to vanishing terms, or identical integrals.
The different Dirac structures appearing in Eqs. (3.1)–

(3.10) can be classified into two categories: (1) the struc-
tures corresponding to the tree-level Green’s functions of
the staple operators that belong to the same mixing set
according to symmetries (structures multiplied by Σi;1 or
Σi;2) and (2) all the remaining structures. The former
structures are multiplied by regularization-dependent form
factors (Σi;j), while the form factors of the latter structures
do not depend on regularization. This is confirmed by
comparing our one-loop results in both continuum and
lattice regularizations [Eq. (4.2)]. In particular, the bare
Green’s functions in the continuum consist of two instead
of four structures of the first category because chiral
symmetry is preserved (see discussion in Sec. II B). On
the other hand, the lattice bare Green’s functions at one
loop also contain a pair of the four first-category structures,
which is different from that obtained in DR (see Sec. IV).
Since the lattice regularization that we employ breaks chiral

symmetry, we expect that the missing two structures of the
first category will appear in higher loops.
By taking into account the classification of the Dirac

structures in the Green’s functions, we conclude that a
renormalization prescription that considers a wider mixing
pattern, i.e., mixing among all 16 independent operators of
different Γ matrices, is not an optimal choice for renorm-
alizing the staple operators. In this case, several form
factors Σi;j will contribute to the 16 × 16 mixing matrix,
including pure dependence on the regularization-indepen-
dent form factors Σi;j>2 in some nondiagonal elements.
Given that we are interested in matching bare lattice
Green’s functions to the MS scheme (through an inter-
mediate nonperturbative scheme), in which the regulariza-
tion-independent form factors cannot contribute, it is more
economic to consider an intermediate renormalization
prescription that includes only the minimum number of
operators necessary for disentangling the mixing occurring
in the MS scheme on the lattice. In our study, we consider
such a minimal set of operators as dictated by symmetries.
The one-loop renormalized Green’s functions in the MS

scheme can be obtained by removing the Oð1=εÞ term in
Eq. (3.11). Also, the renormalized Green’s functions in any
variant of the RI0 scheme can be obtained by imposing the
corresponding renormalization conditions to the above
results. The extraction of the conversion functions among
these schemes (RI0 variants and MS) is then straightfor-
ward; they are given in Eqs. (3.49), (3.52)–(3.80) for the
schemes under study.
Specific combinations of the form factors Σi;j contribute

in the renormalization conditions of Eq. (2.46) for each

choice of projectors P½1�
Γ and P½2�

Γ . The latter choice has the
advantage that in most cases, only Σi;1 and Σi;2 survive,
which multiply the relevant structures for the study of

mixing. However, in the case of projectors P½2�
γμ and P½2�

γ5γμ ,
for μ ¼ ν3; ν4, some additional form factors can survive
when taking the trace with the amputated Green’s functions
Λγ5γρ and Λγρ , respectively [where ρ ≠ ðν1; ν2; μÞ]. For
instance, Eq. (2.46) for the case Γ ¼ Γ00 ¼ γν3 takes the

following form (in terms of Σi;j), when employing P½1�
γν3
:

ðZRI0;DR
ψ Þ−1½ZRI0

1
;DR

γν3 ;γν3
ðΣ4;1 þ Σ4;5qν1 þ Σ4;6qν2 þ Σ4;7q2ν3Þ

− Z
RI0

1
;DR

γν3 ;γ5γν4
ðΣ4;2 þ Σ4;5qν2 − Σ4;6qν1Þ�jq¼q̄ ¼ 1; ð3:42Þ

while employing P½2�
γν3

gives

ðZRI0;DR
ψ Þ−1½ZRI0

2
;DR

γν3 ;γν3
Σ4;1

− Z
RI0

2
;DR

γν3 ;γ5γν4
ðΣ4;2 þ Σ4;3qν2 − Σ4;4qν1Þ�jq¼q̄ ¼ 1: ð3:43Þ

We see that the second choice of the projector can give a
simpler combination of Σi;j, at least for the term multiplying

12For a per-diagram determination of the pole terms, see
Ref. [108].
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ZDR;RI0
γν3 ;γν3

. But here, the main advantage of using the second
choice of projectors is that the renormalization matrices are
independent of the individual components of the momentum
scale, which are orthogonal to the plane in which the
staple lies. Equation (3.42) depends explicitly on q̄ν3 , while
Eq. (3.43) only depends on q̄ν3 through q̄2T ≡ q̄2ν3 þ q̄2ν4 .
Indeed, the same dependence on transverse components of q̄
regards all renormalization functions resulting from the

choice of projectors P½2�
Γ . Consequently, the nonperturbative

determination of renormalization functions in this prescrip-
tion will only depend on q̄2T , rather than on its individual

components. This gives us the possibility of increasing
statistics in the nonperturbative calculations of renormaliza-
tion functions on the lattice by averaging over different q̄ν3
and q̄ν4 components that have the same q̄2T , according to the
residual 2D symmetry. Furthermore, we expect that by
eliminating contributions coming from the form factors
Σi;jðj > 2Þ, hadronic contaminations, which may be present
in the nonperturbative calculation of the renormalization
functions, will be reduced, as it happens in the case of local
quark bilinear operators.
We also provide the one-loop result for the bare Green’s

function of the Wilson loop hLDRðz; yþ y0Þi:

hLDRðz; yþ y0Þi ¼ 1þ 8
g2

16π2
CF

�
2þ 1

ε
þ 2γE þ yþ y0

z
tan−1

�
yþ y0

z

	
þ z
yþ y0

tan−1
�

z
yþ y0

	

þ ln

�
μ̄2z2

4

	
− ln

�
1þ z2

ðyþ y0Þ2
	�

þOðg4Þ: ð3:44Þ

In the limit y → ∞ [keeping ðy − y0Þ fixed] the divergent
term ðyþ y0Þ=z tan−1ððyþ y0Þ=zÞ in Eq. (3.44) cancels the
divergent term ½y=z tan−1ðy=zÞ þ y0=z tan−1ðy0=zÞ� of s0
[Eq. (3.12)] when calculating Λ̄Γðq; z; y; y0Þ [Eq. (2.53)]
for the RI0-bar schemes.

B. Renormalization functions

The renormalization functions of OΓ and ŌΓ in the MS
scheme have been determined by imposing that the MS-
renormalized Green’s functions of the two operators are
equal to the finite parts (exclude pole terms) of the
corresponding bare Green’s functions:

ZMS;DR
ΓΓ0 ¼ δΓΓ0

�
1 −

ðgMSÞ2
16π2

CF
7

ε
þOððgMSÞ4Þ

�
; ð3:45Þ

Z̄MS;DR
ΓΓ0 ¼ δΓΓ0

�
1 −

ðgMSÞ2
16π2

CF
3

ε
þOððgMSÞ4Þ

�
: ð3:46Þ

As expected, the renormalization functions in Eqs. [(3.45)–
(3.46) are diagonal (there is no mixing) and independent of
the Dirac matrices Γ, Γ0, and the lengths of the staple. In
addition, the result coincides with that obtained for the
symmetric staple operators in our previous work [108];
thus, the asymmetry in the shape of the staple does not
affect the renormalization in MS. The divergent term 7=ε of
Eq. (3.45) comes from the sum of the pole terms in the bare
Green’s function (3.11) and in the renormalization factor of
the external quark fields (see Appendix C). The divergent
term 3=ε of Eq. (3.46) includes the additionalOð1=εÞ terms
coming from the vacuum expectation value of the Wilson
loop (Eq. (3.44). In the latter case, the resulting 3=ε term

coincides with that found in the renormalization of a
straight Wilson-line operator.
In the RI0-type schemes (RI01, RI

0
2, RI

0
1-bar, RI

0
2-bar), the

renormalization functions are (in general) nondiagonal
matrices due to the operator mixing. Their expressions
are given below in terms of the conversion matrices that
connect the RI0-type schemes with the MS scheme, as
defined in the next subsection [Eq. (3.49)]:

Z
RI0i;DR
ΓΓ0 ¼ δΓΓ0 þ ZMS;DR

ΓΓ0 − C
MS;RI0i
ΓΓ0 þOððgMSÞ4Þ; ð3:47Þ

Z̄
RI0i;DR
ΓΓ0 ¼ δΓΓ0 þ Z̄MS;DR

ΓΓ0 − C̄
MS;RI0i
ΓΓ0 þOððgMSÞ4Þ: ð3:48Þ

C. Conversion matrices

By using our results for the bare Green’s functions, we
extract the conversion matrices that match the renormal-
ization matrices of the staple operators from RI0-type (RI01,
RI02, RI

0
1-bar, RI

0
2-bar) schemes to MS:

ZMS;X
ΓΓ0 ¼C

MS;RI0i
ΓΓ00 Z

RI0i;X
Γ00Γ0 ; Z̄MS;X

ΓΓ0 ¼ C̄
MS;RI0i
ΓΓ00 Z̄

RI0i;X
Γ00Γ0 : ð3:49Þ

The conversion matrices are regularization (X) indepen-
dent, and thus, our results in DR are also applicable to the
lattice. They can be used in lattice simulations in order to
translate the renormalized hadron matrix elements of the
staple operators, such as the quasibeam function [68] and
the soft function [62], from the intermediate RI0-type
schemes to MS. According to the mixing pattern, we need
to calculate a total of four (one for each mixing set Si)
conversion matrices of dimensions 4 × 4 for each RI0-type
scheme. We found that the matrices are block diagonal in
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two submatrices of dimensions 2 × 2 at one-loop level13;
these blocks have the same generic structure for all Γ:

CMS;RI0 ¼

0
BBBBBBBB@

CMS;RI0
Γ;Γ CMS;RI0

Γ;Γγν1 γν2
0 0

CMS;RI0
Γγν1 γν2 ;Γ

CMS;RI0
Γγν1 γν2 ;Γγν1 γν2

0 0

0 0 CMS;RI0
Γγν1 ;Γγν1

CMS;RI0
Γγν1 ;Γγν2

0 0 CMS;RI0
Γγν2 ;Γγν1

CMS;RI0
Γγν2 ;Γγν2

1
CCCCCCCCA

þOððgMSÞ4Þ: ð3:50Þ

Introducing a γ5 matrix in both operator and projector
leaves the conversion matrix unaffected to one loop14:

CMS;RI0
γ5Γ;γ5Γ0 ¼ CMS;RI0

Γ;Γ0 þOððgMSÞ4Þ: ð3:51Þ

Thus, the conversion matrix for the mixing set S2 is
identical to the conversion matrix for the mixing set S1.
Also, the conversion matrices for the mixing sets S3 and S4
are related through the interchange ν3 ⇆ ν4.

15

We provide below all nonzero elements of the conversion
matrices for each mixing set for the RI01 and RI02 schemes;
they are expressed in terms of the coefficients s0 and si;j
given in Eqs. (3.12)–(3.41) by setting q ¼ q̄. Here, we use
the notation εLC ≡ εν1ν2ν3ν4 , and μ ¼ ν3; ν4.

C
MS;RI0i
ΓΓ0 ¼ δΓΓ0 þ ðgMSÞ2

16π2
CFðδΓΓ0s0 þ c½i�Γ;Γ0 Þ

þOððgMSÞ4Þ; ð3:52Þ

where for the RI01 scheme (i ¼ 1):

c½1�1;1 ¼ c½1�γ5;γ5 ¼ s1;1 þ s1;3q̄ν1 þ s1;4q̄ν2 ; ð3:53Þ

c½1�1;σν1ν2
¼ εLCc

½1�
γ5;σν4ν3

¼ s1;2 þ s1;3q̄ν2 − s1;4q̄ν1 ; ð3:54Þ

c½1�σν1ν2 ;1
¼ εLCc

½1�
σν4ν3 ;γ5

¼ s5;2 þ s5;3q̄ν1 þ s5;4q̄ν2 ; ð3:55Þ

c½1�σν1ν2 ;σν1ν2
¼ c½1�σν4ν3 ;σν4ν3

¼ s5;1 þ s5;3q̄ν2 − s5;4q̄ν1 ; ð3:56Þ

c½1�γν1 ;γν1
¼ c½1�γ5γν1 ;γ5γν1

¼ s2;1 þ s2;3q̄ν1 þ s2;4q̄ν2 ; ð3:57Þ

c½1�γν1 ;γν2
¼ c½1�γ5γν1 ;γ5γν2

¼ s2;2 þ s2;3q̄ν2 − s2;4q̄ν1 ; ð3:58Þ

c½1�γν2 ;γν1
¼ c½1�γ5γν2 ;γ5γν1

¼ s3;2 þ s3;3q̄ν1 þ s3;4q̄ν2 ; ð3:59Þ

c½1�γν2 ;γν2
¼ c½1�γ5γν2 ;γ5γν2

¼ s3;1 þ s3;3q̄ν2 − s3;4q̄ν1 ; ð3:60Þ

c½1�γμ;γμ ¼ c½1�γ5γμ;γ5γμ ¼ s4;1þ s4;5q̄ν1 þ s4;6q̄ν2 þ s4;7q̄2μ; ð3:61Þ

c½1�γν3 ;γ5γν4
¼ c½1�γ5γν3 ;γν4

¼ −c½1�γν4 ;γ5γν3
¼ −c½1�γ5γν4 ;γν3

¼ εLCðs4;2 þ s4;5q̄ν2 − s4;6q̄ν1Þ; ð3:62Þ

c½1�σμν1 ;σμν1
¼ s6;1 þ s6;5q̄ν1 þ s6;6q̄ν2 − s6;7q̄2μ; ð3:63Þ

c½1�σμν1 ;σμν2
¼ s6;2 þ s6;5q̄ν2 − s6;6q̄ν1 − s6;8q̄2μ; ð3:64Þ

c½1�σμν2 ;σμν1
¼ s7;2 þ s7;5q̄ν1 þ s7;6q̄ν2 − s7;7q̄2μ; ð3:65Þ

c½1�σμν2 ;σμν2
¼ s7;1 þ s7;5q̄ν2 − s7;6q̄ν1 − s7;8q̄2μ; ð3:66Þ

and for the RI02 scheme (i ¼ 2):

c½2�1;1 ¼ c½2�γ5;γ5 ¼ s1;1; ð3:67Þ

c½2�1;σν1ν2
¼ εLCc

½2�
γ5;σν4ν3

¼ s1;2; ð3:68Þ

c½2�σν1ν2 ;1
¼ εLCc

½2�
σν4ν3 ;γ5

¼ s5;2; ð3:69Þ

c½2�σν1ν2 ;σν1ν2
¼ c½2�σν4ν3 ;σν4ν3

¼ s5;1; ð3:70Þ

c½2�γν1 ;γν1
¼ c½2�γ5γν1 ;γ5γν1

¼ s2;1; ð3:71Þ

c½2�γν1 ;γν2
¼ c½2�γ5γν1 ;γ5γν2

¼ s2;2; ð3:72Þ

c½2�γν2 ;γν1
¼ c½2�γ5γν2 ;γ5γν1

¼ s3;2; ð3:73Þ

c½2�γν2 ;γν2
¼ c½2�γ5γν2 ;γ5γν2

¼ s3;1; ð3:74Þ

c½2�γμ;γμ ¼ c½2�γ5γμ;γ5γμ ¼ s4;1; ð3:75Þ

c½2�γν3 ;γ5γν4
¼ c½2�γ5γν3 ;γν4

¼ −c½2�γν4 ;γ5γν3
¼ −c½2�γ5γν4 ;γν3

¼ εLCðs4;2 þ s4;3q̄ν2 − s4;4q̄ν1Þ; ð3:76Þ

c½2�σμν1 ;σμν1
¼ s6;1; ð3:77Þ

c½2�σμν1 ;σμν2
¼ s6;2; ð3:78Þ

c½2�σμν2 ;σμν1
¼ s7;2; ð3:79Þ

c½2�σμν2 ;σμν2
¼ s7;1: ð3:80Þ

13The form of Eqs. (3.50) and (3.51) is valid for all four RI0-type
schemes studied in this work (RI01, RI

0
2, RI

0
1-bar, RI

0
2-bar).14Different definitions of γ5 in d dimensions do not affect the

one-loop result.
15For the second choice of projectors P½2�

Γ , the interchange
ν3 ⇆ ν4 is not needed.
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The conversion matrices for the RI01-bar and RI02-bar schemes are related to those of RI01 and RI02 schemes, respectively,
through

C̄
MS;RI0i
ΓΓ0 ¼ C

MS;RI0i
ΓΓ0 =hLMSðz; yþ y0Þi1=2

¼ C
MS;RI0i
ΓΓ0 − 4δΓΓ0

ðgMSÞ2
16π2

CF

�
2þ 2γE þ yþ y0

z
tan−1

�
yþ y0

z

	
þ z
yþ y0

tan−1
�

z
yþ y0

	

þ ln

�
μ̄2z2

4

	
− ln

�
1þ z2

ðyþ y0Þ2
	�

þOððgMSÞ4Þ: ð3:81Þ

As observed, the conversion matrices in the RI0i and RI
0
i-bar

schemes exhibit differences in their diagonal elements
while remaining unchanged in the nondiagonal elements
up to one loop.
There is a nontrivial dependence of the conversion

matrices (as well as of the bare Green’s functions) on
the staple lengths (z; y; y0) and momentum scale q̄ leading
to singular limits at vanishing or infinite values of these
parameters due to the appearance of contact terms beyond
tree level. In particular, the limit z → 0, despite the fact that
classically it results in a straight Wilson line of length
ðy − y0Þ, gives rise to a linear ∼1=jzj and a logarithmic
∼ lnðz2Þ divergence in the conversion matrices of OΓ
coming from the cusp and pinch-pole divergent terms of
the original operator:

C
MS;RI0i
ΓΓ0 ⟶

z→0
4δΓΓ0

ðgMSÞ2
16π2

CF

�
π

2

jyjþjy0j− jy−y0j
jzj þ lnðμ̄2z2Þ

�

þOðz0ÞþOððgMSÞ4Þ: ð3:82Þ

Setting y0 ¼ y, and considering the limit y → 0, where
the staple becomes a straight line of length z, cusp points
do not vanish smoothly giving logarithmic divergences
∼ lnðy2Þ:

C
MS;RI0i
ΓΓ0 ⟶

y0¼y;y→0
− 4δΓΓ0

ðgMSÞ2
16π2

CF lnðμ̄2y2Þ þOðy0Þ

þOððgMSÞ4Þ: ð3:83Þ

As discussed in Sec. III A, the limit y → ∞, when ðy − y0Þ
is fixed, results in a pinch-pole linear singularity (∼jyj):

C
MS;RI0i
ΓΓ0 ⟶

y→∞;ðy−y0Þ fixed
− 8δΓΓ0

ðgMSÞ2
16π2

CF
π

2

jyj
jzj þOðy0Þ

þOððgMSÞ4Þ; ð3:84Þ

which is eliminated in C̄
MS;RI0i
ΓΓ0 . In contrast to the afore-

mentioned limits, the limit ðy − y0Þ → 0, in which the
asymmetric staple Wilson line becomes symmetric, is
not singular, and thus, our present results can reproduce

our previous results in Ref. [108] for the case of symmetric
staples. Furthermore, the limit q̄2 → 0 is nonsmooth for
some of the operators OΓ giving a logarithmic divergence
(∼ lnðq̄2Þ), as follows:

C
MS;RI0i
ΓΓ0 ⟶

q̄2→0
δΓΓ0dΓ

ðgMSÞ2
16π2

CF ln

�
q̄2

μ̄2

	
þOððq̄2Þ0Þ

þOððgMSÞ4Þ; ð3:85Þ

where dΓ ¼ −3 for (Γ ¼ 1; γ5), 1 for (Γ ¼ σνiνj), and 0 for
(Γ ¼ γνi ; γ5γνi). Note that the limit is taken by rescaling
simultaneously all components of the four-vector scale q̄.
Moreover, the limit q̄2 → ∞ also gives a logarithmic
divergence, which is independent of the operator OΓ:

C
MS;RI0i
ΓΓ0 ⟶

q̄2→∞
7δΓΓ0

ðgMSÞ2
16π2

CF ln

�
q̄2

μ̄2

	
þOððq̄2Þ0Þ

þOððgMSÞ4Þ: ð3:86Þ

Another property of the conversion matrices comes from
the combination of Pμ, T μ; C symmetries: One can prove
[see Eq. (2.43)] that the real (imaginary) parts of the
conversion matrices are even (odd) under (z → −z,
y → −y, y0 → −y0). This is confirmed by our one-loop
computation.
We illustrate our results for the conversion matrices in the

plots of Figs. 5–7 by employing certain values of the free
parameters used in lattice simulations: μ̄ ¼ 2 GeV, β ¼ 1

(Landau gauge), aq̄ ¼ ð2πL n1; 2πL n2; 2πL n3; 2πT ðn4 þ 1
2
ÞÞ,

where a is the lattice spacing, L3 × T is the lattice volume,
and ni ∈Z. Following simulations by ETMC, we choose
isotropic momentum scales in the spatial directions
(n1 ¼ n2 ¼ n3) and a nonzero twist of 1=2 in the temporal
component; the latter choice is compatible with the
antiperiodic boundary conditions applied on the fermion
fields in the temporal direction. As an example, we
apply n1 ¼ n2 ¼ n3 ¼ 4, n4 ¼ 5, L ¼ 32, T ¼ 64, and
a ¼ 0.09 fm. We note that specific choices of ni can lead
to a vanishing imaginary part. In particular, by setting to zero
the two momentum components parallel to the staple seg-
ments, the one-loop expression for the conversion matrices
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FIG. 5. Real and imaginary parts of the conversion matrix elements CMS;RI0
ΓΓ0 , for Γ;Γ0 ¼ γν1 ; γν2, and for the four RI

0-type schemes: RI01,
RI02, RI

0
1-bar, RI

0
2-bar, as functions of y=a [μ̄ ¼ 2 GeV, β ¼ 1 (Landau gauge), aq̄ ¼ ð2πL n1; 2πL n2; 2πL n3; 2πT ðn4 þ 1

2
ÞÞ, n1 ¼ n2 ¼ n3 ¼ 4,

n4 ¼ 5, L ¼ 32, T ¼ 64, and a ¼ 0.09 fm].
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FIG. 6. Real and imaginary parts of the conversion matrix elements CMS;RI0
ΓΓ0 , for Γ;Γ0 ¼ γν1 ; γν2, and for the four RI

0-type schemes: RI01,
RI02, RI

0
1-bar, RI

0
2-bar, as functions of z=a [μ̄ ¼ 2 GeV, β ¼ 1 (Landau gauge), aq̄ ¼ ð2πL n1; 2πL n2; 2πL n3; 2πT ðn4 þ 1

2
ÞÞ, n1 ¼ n2 ¼ n3 ¼ 4,

n4 ¼ 5, L ¼ 32, T ¼ 64, and a ¼ 0.09 fm].
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FIG. 7. Real and imaginary parts of the conversion matrix elements CMS;RI0
ΓΓ0 , for Γ;Γ0 ¼ γν1 ; γν2, and for the four RI

0-type schemes: RI01,
RI02, RI01-bar, RI02-bar, as functions of ðy − y0Þ=a [μ̄ ¼ 2 GeV, β ¼ 1 (Landau gauge), aq̄ ¼ ð2πL n1; 2πL n2; 2πL n3; 2πT ðn4 þ 1

2
ÞÞ,

n1 ¼ n2 ¼ n3 ¼ 4, n4 ¼ 5, L ¼ 32, T ¼ 64, and a ¼ 0.09 fm].
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becomes purely real. However, such a choice of momentum
gives rise to unwanted Lorentz noninvariant contributions in
the nonperturbative calculations. Thus, in our example, we
follow the common practice of employing democratic
momenta with reduced Lorentz noninvariant contributions
at the cost of introducing an imaginary part in the RI0-type
renormalization matrices and the conversion matrices. In
Figs. 5–7, we examine the dependence of some representa-
tive conversion matrix elements on the Wilson-line scales y,
z, and y − y0 (in lattice units), respectively. In particular, we
plot the real and imaginary parts of the 2 × 2 block CMS;RI0

ΓΓ0 ,
ðΓ;Γ0 ¼ γν1 ; γν2Þ, for the four renormalization prescriptions:
RI01, RI

0
2, RI

0
1-bar, RI

0
2-bar.

As shown in Fig. 5, the real part of the diagonal elements
(first plot in the left column and second plot in the right
column) has an almost linear (flat) dependence on y=a in
the RI0i (RI

0
i-bar) schemes due to the presence (absence) of

the pinch-pole singularity. As expected, the convergent
behavior of RI0i-bar appears for large values of y=a (≳6).
There are no significant differences in the real diagonal
elements between schemes with index 1 and 2. The real part
of the nondiagonal elements (first plot in the second
column and second plot in the first column of Fig. 5) also
converges for large values of y=a (≳8) for all RI0-type
schemes. Note that the nondiagonal elements are identical
between RI0i and RI0i-bar schemes (for the same i) at one
loop. Differences between schemes with index 1 and 2 are
now visible: The real nondiagonal elements for the RI02
scheme have smaller absolute values compared to RI01,
which are closer to zero. The relative size of the real
nondiagonal elements compared to the diagonal ones is
∼20%. The imaginary part of the conversion matrix
elements (the four plots in the last two rows of Fig. 5)
gives a much milder contribution compared to the real one
(≲10%). The imaginary (diagonal and nondiagonal) ele-
ments for RI0i-bar coincide with the corresponding elements
for RI0i (for the same i) at one loop. A plateau is observed at
large values of y=a; a more stable behavior is seen for the
nondiagonal elements. As in the case of real nondiagonal
elements, noticeable distinctions can also be spotted in the
imaginary parts between schemes with index 1 and 2.
However, there is no consistent pattern regarding which
scheme yields smaller contributions, as it varies for each
element.
Similar conclusions are extracted from Fig. 6 by con-

sidering the dependence of the conversion matrix elements
on z=a. Here, we observe a convergent dependence for
z=a≳ 6 for all conversion matrix elements, except for the
imaginary diagonal parts (the four plots in the last two rows
of Fig. 6). Now, the real diagonal parts have flat behavior in
both RI0i and RI0i-bar schemes since the pinch-pole singu-
larity does not arise for large values of z=a.
Examining the dependence of the conversion matrix

elements on ðy − y0Þ=a in Fig. 7, we conclude that a more
flat behavior is observed for smaller values of ðy − y0Þ=a,

while for larger values, the elements decrease (in most
cases) rapidly. An almost linear dependence on ðy − y0Þ=a
with a negative slope is obtained in the real diagonal parts
of the RI0i schemes (see the first plot in the first column and
the second plot in the second column of Fig. 7), coming
from the pinch-pole divergent term.
In summary, the conversion matrices exhibit significant

contributions from the real diagonal components, whereas
the imaginary diagonal and nondiagonal elements make
comparatively milder yet perceptible contributions. Safer
conclusions by comparing the different types of renorm-
alization schemes can be obtained when combining the
conversion matrices with the nonperturbative data.

IV. CALCULATION IN THE LATTICE
REGULARIZATION

A. Green’s functions

In the lattice calculation, we employ the Wilson/clover
fermion action (see Ref. [130]) and a family of gluon
Symanzik improved actions [131] of the form:

SG ¼ 2

g2

�
c0
X
plaq

ReTrf1−Uplaqgþ c1
X
rect

ReTrf1−Urectg
�
;

ð4:1Þ

where Uplaq and Urect are the standard four-link “plaquette”
and six-link “2 × 1 rectangle” Wilson loops. We selected
three of the most common choices of the Symanzik
coefficients ci, called Wilson, Tree-Level Symanzik, and
Iwasaki gluon actions, as shown in Table II.
Since we consider mass-independent renormaliza-

tion schemes, we set the quark mass equal to zero.
Consequently, the results from this study are also appli-
cable to the twisted mass fermions [132] in the chiral limit.
One should, however, keep in mind that, in going from the
twisted basis to the physical basis, operator identifications
are modified (e.g., the scalar density, under “maximal
twist,” turns into a pseudoscalar density, etc.).
The results for the one-loop lattice bare Green’s func-

tions of the asymmetric staple operators ΛLR
Γ are presented

below in terms of the MS-renormalized Green’s functions,
derived by the corresponding calculation in DR. The
methodology for calculating the one-loop momentum
integrals on the lattice is described in Refs. [105,108].
Here, we cite results for a general Wilson-line lattice

TABLE II. Selected sets of values for the Symanzik coeffi-
cients. In all cases, they satisfy c0 þ 8c1 ¼ 1.

Gluon action c0 c1

Wilson 1 0
Tree-Level Symanzik 5=3 −1=12
Iwasaki 3.648 −0.331
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operator with n cusps [(nþ 1) segments] and no self-
intersections, as calculated in our previous study consid-
ering symmetric staples [108]. We confirm that the formula
constructed in the latter publication gives the correct result

for the difference between the bare lattice Green’s functions
and the MS-renormalized Green’s functions, also in the
case of asymmetric staple operators studied in this work.
Thus, for a general Wilson-line lattice operator we have

δΛΓ ≡ ΛLR
Γ ðq; r; n; fl1;…;lnþ1g; ν̂i; ν̂fÞ − ΛMS

Γ ðq; r; n; fl1;…;lnþ1g; ν̂i; ν̂fÞ

¼ −
g2CF

16π2
eiq·r

�
2Γ½α1 þ 16π2P2β þ ð1 − βÞ logða2μ̄2Þ� þ 1

2
ðΓν̂i þ ν̂fΓÞðα2 þ α3cSWÞ

þ Γ
�
ðnþ 1Þα4 þ nα5 − 16π2P2β þ ð2ðnþ 1Þ þ βÞ logða2μ̄2Þ þ α6

l
a

�

þOðg4Þ; ð4:2Þ

where r is the four-vector that connects the two end points
of the Wilson line, lj is the length of the jth straight-line
segment and l≡Pnþ1

j¼1 lj is the total length of the Wilson
line, cSW is the clover coefficient in the fermion action, and
ν̂iðν̂fÞ is the direction of the Wilson line in the initial (final)
end point. P2 ¼ 0.02401318111946489ð1Þ [133] and αi
are numerical constants that depend on the gluon action and
the Wilson parameter of the fermion action r; their values
are given in Table III for the Wilson, Tree-level Symanzik,
and Iwasaki gluon actions and for r ¼ 1. The first two
terms in the curly brackets of Eq. (4.2) come from the
sum of Feynman diagrams d2 and d3, while the last term
comes from diagram d4. The expression for the case
under study (asymmetric staple operator with two cusps)
can be extracted by setting n ¼ 2, l ¼ jzj þ jyj þ jy0j,
ν̂i ¼ sgnðyÞν̂2, and ν̂f ¼ −sgnðy0Þν̂2. The corresponding

MS-renormalized Green’s function ΛMS
Γ can be read from

Eqs. (3.1)–(3.41) by removing 1=ε terms.
Conclusions from this calculation are summarized

below:
(1) Linear divergence: On the lattice, there is a linear

divergence, which depends on the length of the
Wilson line and the gluon action that is employed.
This divergence comes from diagrams contributing
to the Wilson-line self-energy. At one loop, the
contributing diagram is only d4.

(2) Logarithmic divergences: In both regularizations
(DR and lattice), there are end-point logarithmic
divergences, coming from diagrams d2 and d3, and
cusp and contact logarithmic divergences, coming
from diagram d4. The coefficients in front of these
divergences are regularization independent.

(3) Operator mixing: Diagrams d2 and d3 give rise
(upon summation) to the Dirac structure Γ0 ¼
ðΓν̂i þ ν̂fΓÞ=2, which differs from the tree-level
structure Γ of the operator. This indicates that
operator mixing is present: In order to remove this
additional structure, we need to renormalize the
Wilson-line operators OΓ and OΓ0 as a doublet by
introducing a 2 × 2 mixing renormalization matrix.
However, as concluded by symmetries, the employ-
ment of 4 × 4 mixing matrices for renormalizing
quadruplets of asymmetric staple-shaped operators
is expected to be required at higher loops. The
mixing contributions at one loop depend solely on
the direction of the Wilson line entering the end
points, regardless of the shape of the Wilson line.
Also, the coefficient α2 þ α3cSW in front of the
structure Γ0 depends on r and cSW; in particular, α2
vanishes when r ¼ 0. Thus, the one-loop mixing
contributions originate from the chirality-breaking
parts of the fermion action. As concluded by
symmetries, these specific contributions are ex-
pected to be absent when a chiral-fermion action
is employed.

(4) Finite contributions: Diagram d1 is identical in DR
and lattice regularization [up to discretization effects
OðaÞ], giving no contribution to the difference δΛΓ.
Finite contributions of diagrams d2 and d3 stem only
from the end points of the Wilson line. Any parts
of a segment that do not include the end points give
finite contributions that differ between DR and
lattice regularization only by discretization effects.
In diagram d4, the finite contributions come from the

TABLE III. Numerical values of the coefficients α1 − α6 appearing in the difference δΛΓ of Eq. (4.2) for r ¼ 1. A systematic error is
quoted coming from the numerical integration over loop momenta.

Gluon action α1 α2 α3 α4 α5 α6

Wilson −4.464066ð5Þ 14.44991(1) −8.284666ð8Þ −4.52575ð1Þ 0 19.95484(2)
Tree-Level Symanzik −4.341269ð5Þ 12.75582(1) −7.673556ð8Þ −3.93028ð1Þ −0.809890ð1Þ 17.29374(2)
Iwasaki −4.163735ð5Þ 9.93653(1) −6.527638ð6Þ −1.90532ð1Þ −2.101083ð2Þ 12.97809(1)
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cusps and the straight-line segments of the Wilson
line; they depend on both the number of cusps (n)
and the number of segments (nþ 1).

Hence, the exact shape of theWilson line does not affect the
one-loop continuum and lattice Green’s functions of the
Wilson-line operators differently; the only additional con-
tributions on the lattice depend on the total length, the
number of cusps, and the direction of the Wilson line
entering the end points.
In order to investigate RI0-bar schemes on the lattice, we

have also calculated the one-loop bare Green’s function of
the Wilson loop hLLRðz; yþ y0Þi, given below in terms of
the corresponding MS-renormalized Green’s function:

hLLRðz; yþ y0Þi ¼ hLMSðz; yþ y0Þi− g2

16π2
CF

�
4ðα4 þ α5Þ

þ 8 lnða2μ̄2Þ þ 2α6
jzj þ jyj þ jy0j

a

�
þOðg4Þ: ð4:3Þ

hLMSðz; yþ y0Þi can be read from Eq. (3.44) by removing
1=ε terms. The result agrees with [129] in the case of
Wilson gluon action. As expected, the linearly divergent
term (1=a) of Eq. (4.3) cancels the linearly divergent term
of Eq. (4.2) when calculating Λ̄LR

Γ ðq; z; y; y0Þ [Eq. (2.53)].

B. Renormalization matrices

The lattice renormalization matrices of the Wilson-line
operators OΓ in the MS scheme (ZMS;LR

ΓΓ0 ) can be extracted
from Eq. (4.2) by imposing that the terms in the curly
bracket are canceled when renormalizing both operator and
external fermion fields in the lattice Green’s function.

ZMS;LR
ΓΓ0 ¼ δΓΓ0

�
1 −

ðgMSÞ2CF

16π2

�
1 − 2α1 − ðnþ 1Þα4 − nα5

− α6
l
a
þ eψ1 þ eψ2 cSW þ eψ3 c

2
SW

− ð2nþ 3Þ lnða2μ̄2Þ
	�

þ δΓ0;ðΓ=̂νiþ=̂νfΓÞ=2
ðgMSÞ2CF

16π2
ðα2 þ α3cSWÞ

þOððgMSÞ4Þ; ð4:4Þ

where eψi comes from the renormalization factor of the
external fermion fields [Eq. (C5)]. In the case under study
(n¼2, l¼jzjþjyjþjy0j, ν̂i ¼ sgnðyÞν̂2, ν̂f ¼ −sgnðy0Þν̂2),
the one-loop renormalization matrices take the following
form, where mixing in quadruplets ðOΓ;OΓγν1 γν2

;OΓγν1
;

OΓγν2
Þ is employed:

ZMS;LR¼

0
BBBBBBBB@

ZMS;LR
Γ;Γ 0 0 ZMS;LR

Γ;Γγν2

0 ZMS;LR
Γγν1 γν2 ;Γγν1 γν2

ZMS;LR
Γγν1 γν2 ;Γγν1

0

0 ZMS;LR
Γγν1 ;Γγν1 γν2

ZMS;LR
Γγν1 ;Γγν1

0

ZMS;LR
Γγν2 ;Γ

0 0 ZMS;LR
Γγν2 ;Γγν2

1
CCCCCCCCA

þOððgMSÞ4Þ: ð4:5Þ

The elements of the above matrix can be read from
Eq. (4.4) by setting ðΓ;Γ0Þ equal to pairs of fΓ;Γγν1γν2 ;
Γγν1 ;Γγν2g. Note that only two nondiagonal elements
survive in each renormalization matrix depending on
whether ðΓ̃=̂νiþ=̂νf Γ̃Þ=2¼sgnðyÞ½Γ̃;γν2 �=2 vanishes or not
for each Γ̃∈ fΓ;Γγν1γν2 ;Γγν1 ;Γγν2g. Thus, the nondiagonal
elements ZMS;LR

ΓΓ0 that are nonvanishing are those corre-
sponding to ðΓ;Γ0Þ ¼ ðγ5; γ5γν2Þ, ðγ5γν2 ; γ5Þ, ðγν1 ; σν1ν2Þ,
ðσν1ν2 ; γν1Þ, ðγν3 ; σν3ν2Þ, ðσν3ν2 ; γν3Þ, ðγν4 ; σν4ν2Þ, ðσν4ν2 ; γν4Þ.
The lattice renormalization matrices for the modified

asymmetric staple-shaped Wilson-line operators ŌΓ in the
MS scheme have the same form as (4.5). Their elements are
given by

Z̄MS;LR
ΓΓ0 ¼ δΓΓ0

�
1 −

ðgMSÞ2CF

16π2
ð1 − 2α1 − α4 þ eψ1 þ eψ2 cSW

þ eψ3 c
2
SW − 3 lnða2μ̄2ÞÞ

�

þ δΓ0;½Γ;γν2 �=2sgnðyÞ
ðgMSÞ2CF

16π2
ðα2 þ α3cSWÞ

þOððgMSÞ4Þ: ð4:6Þ

The linear divergence is now absent from the renormaliza-
tion matrices. The nondiagonal elements are identical
to (4.5).
In the RI0-type schemes, the lattice renormalization

matrices can be obtained from Eq. (3.49) by combining
the corresponding renormalization matrices in the MS
scheme [Eqs. (4.4), (4.6)], and the conversion matrices
calculated in Eqs. (3.52)–(3.81), as follows:

Z
RI0i;LR
ΓΓ0 ¼ δΓΓ0 þ ZMS;LR

ΓΓ0 − C
MS;RI0i
ΓΓ0 þOððgMSÞ4Þ; ð4:7Þ

Z̄
RI0i;LR
ΓΓ0 ¼ δΓΓ0 þ Z̄MS;LR

ΓΓ0 − C̄
MS;RI0i
ΓΓ0 þOððgMSÞ4Þ: ð4:8Þ

They take the following matrix form16:

16The form of Eq. (4.9) is valid for all four RI0-type schemes
studied in this work (RI01, RI

0
2, RI

0
1-bar, RI

0
2-bar).
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ZRI0;LR¼

0
BBBBBBBB@

ZRI0;LR
Γ;Γ ZRI0;LR

Γ;Γγν1 γν2
0 ZRI0;LR

Γ;Γγν2

ZRI0;LR
Γγν1 γν2 ;Γ

ZRI0;LR
Γγν1 γν2 ;Γγν1 γν2

ZRI0;LR
Γγν1 γν2 ;Γγν1

0

0 ZRI0;LR
Γγν1 ;Γγν1 γν2

ZRI0;LR
Γγν1 ;Γγν1

ZRI0;LR
Γγν1 ;Γγν2

ZRI0;LR
Γγν2 ;Γ

0 ZRI0;LR
Γγν2 ;Γγν1

ZRI0;LR
Γγν2 ;Γγν2

1
CCCCCCCCA

þOððgMSÞ4Þ: ð4:9Þ

As in the MS scheme, there are further zero elements in
(4.9) depending on the commutation relations of Γ, Γγν1 ,
Γγν2 , and Γγν1γν2 with γν2 .

V. SUMMARY AND FUTURE PLANS

In this work, we present an extensive and comprehensive
study of the renormalization of nonlocal quark bilinear
operators featuring an asymmetric staple-shaped Wilson
line. This project is motivated by the increased interest in
studying TMDPDFs from lattice QCD using novel
approaches, such as large momentum effective theory
and short-distance factorization, which require matrix
elements of the operators under study. More details can
be found in the TMD Handbook [134].
The analysis is based on a one-loop perturbative calcu-

lation of Green’s functions of such operators in both lattice
and continuum (dimensional) regularizations. Based on our
results, we identify the mixing pattern of these operators
and propose renormalization prescriptions applicable to
perturbative and nonperturbative data. More precisely, we
discuss RI0-type conditions by using different projectors
that effectively address power and logarithmic divergences,
as well as the finite mixing among operators with different
Dirac structures. We have systematically analyzed the
mixing patterns of these operators, leveraging symmetry
arguments for both chiral and nonchiral fermions. We also
introduce a variant of the RI0 prescription, which removes
the pinch-pole singularities inherent in staple operators of
infinite length by incorporating rectangular Wilson loops.
This strategy also eliminates residual power divergences.
Another novel aspect of this work is the extraction of the
conversion factors to the MS scheme using the results in
dimensional regularization. Our calculations are performed
for arbitrary values of the renormalization momentum scale
and the spatial dimensions of the staple. This ensures their
applicability across a broad spectrum of nonperturbative
investigations that may use the results of this work.
Potential future work includes an ambitious extension of

this calculation to two-loop perturbation theory. This
direction has the potential to offer valuable insights and
improvements to ongoing nonperturbative investigations.
By performing higher-order loop calculations, we aim to
refine the renormalization procedure and eliminate sources
of systematic uncertainties. Additionally, we plan to cal-
culate one-loop lattice discretization effects across a range

of staple lengths and momentum scales, which has sig-
nificant potential for enhancing nonperturbative estimates,
particularly at short distances. Other possible directions
include calculations with different lattice formulations,
which might be interesting for the TMD community.
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APPENDIX A: ONE-LOOP FEYNMAN
INTEGRALS WITH ONE EXTERNAL
MOMENTUM IN THE PRESENCE

OF PHASE FACTORS

In this appendix, we collect some useful formulas for
the calculation of one-loop Feynman integrals with one
external momentum in the presence of phase factors. We
briefly describe the procedure that we follow for the
derivation of these formulas in dimensional regularization.
For Supplemental Material we refer to Refs. [105,106].
We consider the following d-dimensional tensor

Feynman integral with one external momentum q, a phase
factor eip·ξ, where ξ is a nonzero four-vector and an
arbitrary number (n) of momentum-loop components pμi
in the numerator:

Id;fμ1;…;μng
α;β ðξ; qÞ≡

Z
ddp
ð2πÞd

eip·ξpμ1…pμn

ðp2Þαðð−pþ qÞ2Þβ : ðA1Þ

In our calculation, ξ is a two-vector lying in the staple’s
plane. In the case of ξ ¼ 0, the phase vanishes, and the
integral is simplified to the standard-form one-loop
Feynman integral calculated in Ref. [135].
The tensor integral of Eq. (A1) can be written in terms

of derivatives with respect to ξ of the scalar integral
Idα;βðξ; qÞ:

Id;fμ1;…;μng
α;β ðξ; qÞ ¼ ð−iÞn d

dξμ1
…

d
dξμn

Idα;βðξ; qÞ; ðA2Þ

Idα;βðξ; qÞ≡
Z

ddp
ð2πÞd

eip·ξ

ðp2Þαðð−pþ qÞ2Þβ : ðA3Þ
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The scalar integral Idα;βðξ; qÞ can be computed using Feynman or Schwinger parametrization leading to the following
expressions (s≡ αþ β − d=2):

Idα;βðξ; q ≠ 0Þ ¼ 21−s−d

πd=2ΓðαÞΓðβÞ
�
ξ2

q2

	
s=2 Z 1

0

dxKs

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ξ2ð1 − xÞx

q �
eixq·ξx−1þβ−s=2ð1 − xÞ−1þα−s=2; ðA4Þ

Idα;βðξ; q ¼ 0Þ ¼ 4αþβΓð−sÞ
πd=2Γðαþ βÞ ðξ

2Þs: ðA5Þ

APPENDIX B: FEYNMAN-PARAMETER INTEGRALS

We write down a list of Feynman-parameter integrals appearing in the one-loop Green’s functions of the asymmetric
staple-shaped Wilson-line operators; they are classified into four categories:

(i) Category F: Fi ≡ Fiðq; rÞ

F1ðq; rÞ ¼
Z

1

0

dxK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2r2

q �
e−ixq·r; ðB1Þ

F2ðq; rÞ ¼
Z

1

0

dxK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2r2

q �
e−ixq·rx; ðB2Þ

F3ðq; rÞ ¼
Z

1

0

dxK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2r2

q �
e−ixq·rxð1 − xÞ; ðB3Þ

F4ðq; rÞ ¼
Z

1

0

dxK1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2r2

q �
e−ixq·r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2r2

q
; ðB4Þ

(ii) Category G: Gi ≡ Giðq; y; zÞ; Ḡi ≡ Ḡiðq; y0; zÞ

G1ðq; y; zÞ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðy2 þ z2ζ2Þ

q �
e−ixq·ðzζν̂1þyν̂2Þð1 − xÞ; ðB5Þ

G2ðq; y; zÞ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðy2 þ z2ζ2Þ

q �
e−ixq·ðzζν̂1þyν̂2Þx; ðB6Þ

G3ðq; y; zÞ ¼
Z

1

0

dx
Z

1

0

dζK1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðy2 þ z2ζ2Þ

q �
e−ixq·ðzζν̂1þyν̂2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

q2ðy2 þ z2ζ2Þ

s
; ðB7Þ

Ḡiðq; y0; zÞ ¼ G�
i ðq; y0;−zÞ; ði ¼ 1; 2; 3Þ; ðB8Þ

(iii) Category H: Hi ≡Hiðq; y; zÞ; H̄i ≡ H̄iðq; y0; zÞ

H1ðq; y; 0Þ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2y2ζ2

q �
e−ixq·yζν̂2ð1 − xÞ; ðB9Þ

H2ðq; y; 0Þ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2y2ζ2

q �
e−ixq·yζν̂2x; ðB10Þ

H3ðq; y; zÞ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðz2 þ y2ζ2Þ

q �
e−ixq·ðzν̂1þyζν̂2Þð1 − xÞ; ðB11Þ

H4ðq; y; zÞ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðz2 þ y2ζ2Þ

q �
e−ixq·ðzν̂1þyζν̂2Þx; ðB12Þ
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H5ðq; y; zÞ ¼
Z

1

0

dx
Z

1

0

dζK1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðz2 þ y2ζ2Þ

q �
e−ixq·ðzν̂1þyζν̂2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

q2ðz2 þ y2ζ2Þ

s
; ðB13Þ

H̄iðq; y0; zÞ ¼ H�
i ðq; y0; zÞ; ði ¼ 1; 2; 3; 4; 5Þ; ðB14Þ

(iv) Category I: Ii ≡ Iiðq; y − y0; zÞ

I1ðq; y − y0; zÞ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðz2 þ ðy − y0Þ2ζ2Þ

q �
e−ixq·ðzν̂1þðy−y0Þζν̂2Þð1 − xÞ; ðB15Þ

I2ðq; y − y0; zÞ ¼
Z

1

0

dx
Z

1

0

dζK0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðz2 þ ðy − y0Þ2ζ2Þ

q �
e−ixq·ðzν̂1þðy−y0Þζν̂2Þx; ðB16Þ

I3ðq; y − y0; zÞ ¼
Z

1

0

dx
Z

1

0

dζK1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞq2ðz2 þ ðy − y0Þ2ζ2Þ

q �
e−ixq·ðzν̂1þðy−y0Þζν̂2Þ·ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞ
q2ðz2 þ ðy − y0Þ2ζ2Þ

s
: ðB17Þ

APPENDIX C: RENORMALIZATION OF FERMION FIELDS

The one-loop expressions for the renormalization factors of the fermion fields in MS and RI0 schemes, using both
dimensional (DR) and lattice (LR) regularizations, are provided in this appendix. The expressions are taken from
Refs. [136,137], respectively. We also give the one-loop conversion factors between the two schemes. We use the
convention ψRðxÞ ¼ ðZR;X

ψ Þ1=2ψXðxÞ.

ZMS;DR
ψ ¼ 1 −

ðgMSÞ2CF

16π2
ðβ − 1Þ 1

ε
þOððgMSÞ4Þ; ðC1Þ

ZRI0;DR
ψ ¼ 1 −

ðgMSÞ2CF

16π2
ðβ − 1Þ

�
1

ε
þ 1þ log

�
μ̄2

q̄2

		
þOððgMSÞ4Þ; ðC2Þ

CMS;RI0
ψ ¼ ZMS;DR

ψ

ZRI0;DR
ψ

¼ ZMS;LR
ψ

ZRI0;LR
ψ

¼ 1þ ðgMSÞ2CF

16π2
ðβ − 1Þ

�
1þ log

�
μ̄2

q̄2

		
þOððgMSÞ4Þ; ðC3Þ

ZRI0;LR
ψ ¼ 1 −

ðgMSÞ2CF

16π2
½ð1þ 16π2P2Þβ þ eψ1 þ eψ2 cSW þ eψ3 c

2
SW þ ð1 − βÞ log ða2q̄2Þ� þOððgMSÞ4Þ; ðC4Þ

ZMS;LR
ψ ¼CMS;RI0

ψ ZRI0;LR
ψ ¼ 1−

ðgMSÞ2CF

16π2
½1þ16π2P2βþ eψ1 þ eψ2 cSWþ eψ3 c

2
SWþð1−βÞ logða2μ̄2Þ�þOððgMSÞ4Þ: ðC5Þ

The numerical constants eψi depend on the gluon action in use; their values for Wilson, tree-level Symanzik, and Iwasaki
improved gluon actions are given in Table IV.

TABLE IV. Numerical values of the coefficients eψ1 -e
ψ
3 appearing in the one-loop renormalization factors of

fermion fields on the lattice for r ¼ 1. A systematic error is quoted coming from the numerical integration over loop
momenta.

Gluon action eψ1 eψ2 eψ3

Wilson 11.8524043(2) −2.24886853ð1Þ −1.397367103ð3Þ
Tree-level Symanzik 8.2312629(2) −2.01542508ð3Þ −1.242202721ð2Þ
Iwasaki 3.3245571(2) −1.60101083ð6Þ −0.973206902ð1Þ
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